填料塔结构特点及应用

合集下载

塔式反应器

塔式反应器
29
直径不超过75mm的散装填料,可取最小
润湿速率 (LW)min=0.08 m3/(m·h);
对于直径大于 75mm的散装填料,
(LW)min =0.12 m3/(m·h)。
填料表面润湿性能与填料的材质有关。 常用的陶瓷、金属、塑料三种材质而言,
以陶瓷填料的润湿性能最好,塑料填料的润湿 性能最差。
反应在液相内进行,为液相控制。
化学吸收可以大大降低塔的高度, 而物理吸收塔过高,不能够实现。
2
5.1 概述
一、塔式反应器特点及应用
1.填料塔---快速和瞬间反应过程,特别适合与低压和介质 具有腐蚀性的操作。
2.板式塔---中速和快速反应过程。大多采用加压操作,适 用于传质过程控制的加压反应过程。
3.喷雾塔---瞬间反应过程,适合于有污泥,沉淀和生成固体 产物的体系,气膜控制的反应系统,气液两相返混严重。
17
液体再分布器
作用: 减轻液体流动时, 逐渐增大的壁流现象。
如令每段填料层的高度为Z, 塔径为D,对乱堆拉西环, 取
随着填料性能的改进, 之值可增大, 该值一般在3至10之间。
18
气体入口布气结构
作用:防止气体直接冲刷填料层。 当塔径小时,将进气管做成向下45º的切口, 以免气
体直接冲刷填料层。对大塔,气体入塔向下 方做成喇叭形以扩大或多空管气体分布器。
28
液体喷淋密度: 指单位塔截面积上,单位时间内喷淋的液体体积, 以U表示,单位为m3/m2·h)。
Umi n (Lw)mian
式中 U min ——最小喷淋密度,m3/(m2·h); (LW) min ——最小润湿速率,m3/(m·h); a ——填料的比表面积,m2/m3。
最小润湿速率:在塔的截面上,单位长度的 填料周边的最小液体体积流量。

填料塔结构示意图

填料塔结构示意图

填料塔结构示意图Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】填料塔的结构及其工作原理填料塔的作用是起到吸收作用,是化工、石油化工和炼油生产中最重要的设备之一。

以下讲一下填料塔的结构特点:填料塔是以塔内的填料作为气液两相间接触构件的传质设备。

填料塔的塔身是一直立式圆筒,底部装有填料支承板,填料以乱堆或整砌的方式放置在支承板上。

填料的上方安装填料压板,以防被上升气流吹动。

液体从塔顶经液体分布器喷淋到填料上,并沿填料表面流下。

气体从塔底送入,经气体分布装置(小直径塔一般不设气体分布装置)分布后,与液体呈逆流连续通过填料层的空隙,在填料表面上,气液两相密切接触进行传质。

填料塔属于连续接触式气液传质设备,两相组成沿塔高连续变化,在正常操作状态下,气相为连续相,液相为分散相。

当液体沿填料层向下流动时,有逐渐向塔壁集中的趋势,使得塔壁附近的液流量逐渐增大,这种现象称为壁流。

壁流效应造成气液两相在填料层中分布不均,从而使传质效率下降。

因此,当填料层较高时,需要进行分段,中间设置再分布装置。

液体再分布装置包括液体收集器和液体再分布器两部分,上层填料流下的液体经液体收集器收集后,送到液体再分布器,经重新分布后喷淋到下层填料上。

填料塔具有生产能力大,分离效率高,压降小,持液量小,操作弹性大等优点。

填料塔也有一些不足之处,如填料造价高;当液体负荷较小时不能有效地润湿填料表面,使传质效率降低;不能直接用于有悬浮物或容易聚合的物料;对侧线进料和出料等复杂精馏不太适合等。

填料的分类填料的种类很多,根据装填方式的不同,可分为散装填料和规整填料。

1.散装填料散装填料是一个个具有一定几何形状和尺寸的颗粒体,一般以随机的方式堆积在塔内,又称为乱堆填料或颗粒填料。

散装填料根据结构特点不同,又可分为环形填料、鞍形填料、环鞍形填料及球形填料等。

现介绍几种较为典型的散装填料:拉西环鲍尔环阶梯环弧鞍填料矩鞍填料金属环矩鞍填料球形填料(1)拉西环填料于1914年由拉西(F. Rashching)发明,为外径与高度相等的圆环。

填料塔流体力学特性解读

填料塔流体力学特性解读

,位于干填料压降线的左侧,且
基本上与干填料压降线平行。
2018/11/20
(4)载液区
当气速超过载点时,气体
【有关规律】载点气速随喷
对液膜的曳力较大,对液膜流 淋量增大而减小。
动产生阻滞作用,使液膜增厚
,填料层的持液量随气速的增 加而增大,此现象称为拦液。 开始发生拦液现象时的空塔气 速称为载点气速,曲线上的转
吸收设备——填料塔
吸 收
一、填料塔的结构与填料性能 二、填料塔的流体力学性能 三、填料塔的附件
2018/11/20
二、填料层内气液两相的流体力学特性
填料塔的流体力学性能主要包括填料层的持液量 、填料层的压降、液泛等。 1、填料层的持液量 在一定操作条件下,由于液膜与填料表面的摩擦
以及液膜与上升气体的摩擦,有部分液体停留在填
填料层内的气液分布不均 气体和液体在填料层内的沟流 气液的湍流脉动使气液微团停留时间不一致
2018/11/20
5、液体喷淋密度和填料表面的润湿
填料表面的润湿状况取决于塔内液体喷淋密度 及填料材质的表面润湿性能。 •喷淋密度U
——指单位塔截面积上,单位时间内喷淋的液体体积,以 U表示,单位为m3/(m2· h)。 为保证填料层的充分润湿,喷淋密度大于最小喷淋密度
【影响液泛的因素】影响因素很多,如填料的特性、
流体的物性及操作的液气比等。
2018/11/20
【特点】气体为分散相,液体为连续相。
正 常 操 作 时 的 填 料 塔
2018/11/20
填 料 塔 的 液 泛 现 象
2018/11/20
3、填料塔的液泛
液泛时的空塔气速
(2)影响液泛的因素 填料特性 影响液泛 的因素

浅谈填料塔的结构、性能及安装注意点

浅谈填料塔的结构、性能及安装注意点

浅谈填料塔的结构、性能及安装注意点——南京市金陵石化烷基苯厂烷一平涛210046 关键字:填料塔安装注意点引言烷基苯联合装置400#的主要任务是:在催化剂氟化氢存在的条件下,使苯和来自脱氢装置的C10~C13直链烷烯烃混合物中的烯烃进行烷基化反应,生成直链烷基苯。

并经过脱苯、脱烷烃、烷基苯精馏等过程,制取高质量的洗涤剂用直链烷基苯。

C-405与C-406作为其中最重要的一环,分别肩负着将烷烃(返回300#循环以及部分作为机泵的冲洗液)与烷基化物分离以及将烷基苯(主要产品)与重烷苯分离。

这两个在整个联合装置内都处于比较重要的地位的塔,采用的却同样是填料塔的结构。

1.填料塔的主要内件填料塔的主要内件主要由以下组成1.1 填料填料作为填料塔的重要组成部分,其作用相当于板式塔中的塔盘,是塔中物料进行温度交换和传质的主要场所。

填料主要分为散装填料与规整填料两种。

散装填料是一个个具有一定几何形状和尺寸的颗粒体,一般以随机的方式堆积在塔内,又称为乱堆填料或颗粒填料。

散装填料根据结构特点不同,又可分为环形填料、鞍形填料、环鞍形填料及球形填料等。

规整填料是按一定的几何构形排列,整齐堆砌的填料。

规整填料种类很多,根据其几何结构可分为格栅填料、波纹填料、脉冲填料等。

1.2 液体分布器液体分布器是保证传质顺利进行的重要塔内件之一。

分散相得到良好的分散和液滴群沿塔截面均匀分布是塔内传质过程得以顺利进行的必要条件。

大中型填料塔塔顶回流分布器在无脏堵情况下应优先选择带管式预分布器的二级槽式液体分布器(见图1),以便于安装、检修,且不易形成液沫夹带。

槽盘式气液分布器(见图2)是一种重力式液体分布器,由于该分布器的喷淋孔开在升气管的中上部,重脏物沉于盘底,小孔以下的空间内可以贮存大量的重脏物;轻脏物浮在液层上面;液层中的小孔难以被堵塞。

管式液体分布器一般都属于压力型分布器,目前应用十分广泛,其优点在于不仅适用于整砌填料,而且适用于乱堆填料。

精馏塔之填料塔

精馏塔之填料塔

一. 填料塔的结构与特点
当液体沿填料层向下流动时,有逐渐向塔壁 集中的趋势,使得塔壁附近的液流量逐渐增 大,这种现象称为壁流。壁流效应造成气液 两相在填料层中分布不均,从而使传质效率 下降。因此,当填料层较高时,需要进行分 段,中间设置再分布装置。液体再分布装置 包括液体收集器和液体再分布器两部分,上 层填料流下的液体经液体收集器收集后,送 到液体再分布器,经重新分布后喷淋到下层 填料上。
二. 填料的类型及性能评价
与同样尺寸的拉西环相比,鲍尔环的气液 通量可提高50%,而压降仅为其一半,分 离效果也得到提高。其改进为阶梯形鲍尔 环,圆筒部分的一端制成喇叭口形状。这 样填料间呈现点接触,床层均匀且空隙率 大,与鲍尔环相比气体阻力减少25%,生 产能力提高10%。
二. 填料的类型及性能评价
沟流现象。 液体再分布器:避免壁流现象发生。 支撑板:支撑填料层,使气体均匀分布。
除沫器:防止塔顶气体出口处夹带液体。
一. 填料塔的结构与特点
一. 填料塔的结构与特点
气体从塔底送入,经气体分布装置(小直 径塔一般不设气体分布装置)分布后,与 液体呈逆流连续通过填料层的空隙,在填 料表面上,气液两相密切接触进行传质。 填料塔属于连续接触式气液传质设备,两 相组成沿塔高连续变化,在正常操作状态 下,气相为连续相,液相为分散相。
⑨波纹填料:波纹填料是 由许多层波纹薄片组成, 各片高度相同但长短不等, 搭配组合成圆盘状,填料 波纹与水平方向成45°倾 角,相邻两片反向重叠使 其波纹互相垂直。圆盘填 料块水平放入塔内,相邻 两圆盘的波纹薄片方向互 成90°角。
金属丝网波纹填料 金属孔板波纹填料
二. 填料的类型及性能评价
波纹填料因波纹薄片的材料与形状不同分成

填料塔常用填料概要

填料塔常用填料概要

填料塔
(四)手孔 手孔是指手和手提灯能伸入的设备孔口,用于不便进入或不必进 入设备即能清理、检查或修理的场合。 手孔又常用作小直径填料塔装卸填料之用,在每段填料层的上下 方各设置一个手孔,卸填料的手孔有时附带挡板,以免反应生成物积 聚在手孔内。 (五)塔内件 填料塔的内件有填料、填料支撑装置、填料压紧装置、液体分布 装置和液体收集再分布装置等。合理的选择和设计塔内件,对保证填 料塔的正常操作及优良的传质性能十分重要。 (1)除沫器 当空塔气速较大,塔顶溅液现象严重,以及工艺过 程不允许出塔气体夹带雾滴的情况下,设置除沫装置,从而减少液体 的夹带损失,确保气体的纯度,保证后续设备的正常操作。 常用的除沫装置有折板除沫器(见图4.5)丝网除沫器(见图4.6) 以及旋流板除沫器。此外还有链条型除沫器、多孔材料除沫器及玻璃 纤维除沫器等。在分离要求不严格的场合,还将干填料层作除沫器用。
填料塔
填料塔结构如右图所示,它由塔体、 液体分布器、填料压紧装置、填料层、 液体收集与再分配装置和支撑栅板组成。
ቤተ መጻሕፍቲ ባይዱ
1-塔体;2-液体分布器;3-填料 压紧装置;4-填料层;5-液体收集与 再分配装置;6-支撑栅板 图4.3 填料塔结构
填料塔
(二)塔体支座 塔设备常采用裙式支座 (见图4.4),它应当具有足 够的强度和刚度,来承受塔 体操作重量、风力等引起的 载荷。
(d)排管式
(e)环管式
填料塔-液体分布装置
槽式液体分布器通常是由分流槽(又 称主槽或一级槽)、分布槽(又称副槽或二 级槽)构成的。一级槽通过槽底开孔将液体 初分为若干流股,分别加入其下方的液体分 布槽,分布槽的槽底(或槽壁)上设有孔道, 将液体均匀分布于填料层上,如图片4.10 (f)所示。槽式分布器具有较大的操作弹 性和较好的抗污性,特别适合于气液负荷大 及含有固体悬浮物、粘度大的分离场合。由 于槽式分布器具有优良的分布性能和抗污垢 性能,应用范围非常广泛。

填料塔

填料塔
液泛
L2> L1
C’ C
L=0
填料层──Δp∝u1.8~2.0 L≠0,有液体喷淋,填料为湿 填料层
Δp
载点
B’
B A’
载液 区
低气速下:交互作用不明显 随u↑:交互作用开始显著 ──载点气速 u↑↑:至一定值,形成恶性 循环──泛点气速
A u
正常工作
液泛
(2) 液泛气速关联图 压降对填料塔操作的可靠性和经济性有着决定性的影响。 选择填料和确定塔径时,不同系统应控制的压降范围不同。 压降影响因素:填料特性(几何形状、比表面积、ε 等),流 体物性(μ、σ 等)以及操作条件(气液流量、T 等)。 难以进行准确的理论计算,迄今仍然只能由各种经验关联式 或关联图进行估算。
二、 填料塔
1. 填料塔结构、特点与工业要求 (1)总体结构 填料层:气液两相接触传质场所 液体分布器:使入塔液体均匀分布 液体再分布器:汇集近壁液体于中 央区域 除雾器:防止液滴带出(通常为填 料层或丝网层) 支承板:支承填料层,使进气均匀 分布
气体 液体再分布器 填料压网 填料 支承栅板 液体分布装置 液体
(2)工业要求 • 单位体积传质界面大,即a大; • 单位填料高度压降小,即ε大; • 效率高; • 机械强度高; • 耐腐蚀; • 造价低 • 重量轻;
(3)特点(与板式塔相比) • 生产能力大 • 分离效率高 •压降(流动阻力)小 • 持液量小(持液量指塔在正常操作时填料表面、内件或塔板上 所持有的液量。) • 操作弹性大 缺点 • 填料造价高 •液相负荷小时传质效率降低 •不能直接用于悬浮物或易聚合物料 • 对侧线进料和出料等复杂精馏不太适合
§3.2传质设备简介
一.概述
1.传质设备的功能 为气液相传质提供场所。因此它应提供充分的气液接触,足够 大的传质接触面,强化湍流强度以提高传质系数,以最大的传 质推动力改善传质效果。 它不仅广泛应用于分离过程,还可用于非均相反应系统。气-液 相传质设备一般称为塔设备。 2.气-液传质设备分类 按气-液接触的方式分类 • 连续接触式设备(填料塔、湍球塔) •分级接触式设备(主要是板式塔)

填料塔反应器结构、特点和适用范围

填料塔反应器结构、特点和适用范围

填料塔反应器结构、特点和适用范围填料塔反应器是一种常见的化工设备,广泛应用于催化反应、吸收分离、气体净化等工艺过程中。

它的结构特点和适用范围如下所述。

一、结构特点:1. 填料:填料塔反应器内部装有填料,填料的种类和形状不同,可以根据反应物质的性质和反应条件进行选择。

常见的填料有环状填料、球状填料、网状填料等。

填料的存在可以增加反应器的表面积,提高反应效率。

2. 反应器壳体:填料塔反应器通常由金属或非金属材料制成,具有耐高温、耐腐蚀的特性。

壳体内部通常有进料口、出料口、排气口等设备,方便反应物质的输入、产物的收集和废气的排放。

3. 分层结构:填料塔反应器内部通常采用分层结构,可以使反应物质在塔内均匀分布,增加反应效率。

分层结构可以采用板式结构或者隔板结构,使流体在塔内产生旋涡状流动,增加反应物质与填料的接触面积。

4. 冷却装置:填料塔反应器通常需要进行冷却处理,以控制反应的温度。

冷却装置可以采用内置冷却管或者外部冷却器,通过循环冷却剂来降低反应温度,确保反应的稳定进行。

二、特点:1. 高效:填料塔反应器可以通过增加填料的方式增加反应表面积,提高反应效率。

填料的存在可以使反应物质与催化剂充分接触,提高反应速率。

2. 灵活性:填料塔反应器的填料种类和形状可以根据不同的反应物质和反应条件进行选择,具有较大的灵活性。

可以适应不同的反应过程和催化剂要求。

3. 安全性:填料塔反应器通常具有较好的密封性能,可以有效地防止反应物质的外泄和废气的排放。

同时,填料塔反应器可以进行温度和压力的控制,确保反应的安全进行。

4. 经济性:填料塔反应器的结构简单,制造成本较低。

填料的存在可以提高反应效率,减少反应时间,降低能耗和生产成本。

三、适用范围:1. 催化反应:填料塔反应器广泛应用于各种催化反应过程中,如氨合成、氢化反应、裂解反应等。

填料的存在可以提高催化剂的利用率,提高反应速率。

2. 吸收分离:填料塔反应器可以用于气体吸收分离过程中,如酸气的吸收、有机物的吸附等。

填料塔的结构及其工作原理

填料塔的结构及其工作原理

创作编号:GB8878185555334563BT9125XW创作者:凤呜大王*填料塔的结构及其工作原理填料塔的作用是起到吸收作用,是化工、石油化工和炼油生产中最重要的设备之一。

以下讲一下填料塔的结构特点:填料塔是以塔内的填料作为气液两相间接触构件的传质设备。

填料塔的塔身是一直立式圆筒,底部装有填料支承板,填料以乱堆或整砌的方式放置在支承板上。

填料的上方安装填料压板,以防被上升气流吹动。

液体从塔顶经液体分布器喷淋到填料上,并沿填料表面流下。

气体从塔底送入,经气体分布装置(小直径塔一般不设气体分布装置)分布后,与液体呈逆流连续通过填料层的空隙,在填料表面上,气液两相密切接触进行传质。

填料塔属于连续接触式气液传质设备,两相组成沿塔高连续变化,在正常操作状态下,气相为连续相,液相为分散相。

当液体沿填料层向下流动时,有逐渐向塔壁集中的趋势,使得塔壁附近的液流量逐渐增大,这种现象称为壁流。

壁流效应造成气液两相在填料层中分布不均,从而使传质效率下降。

因此,当填料层较高时,需要进行分段,中间设置再分布装置。

液体再分布装置包括液体收集器和液体再分布器两部分,上层填料流下的液体经液体收集器收集后,送到液体再分布器,经重新分布后喷淋到下层填料上。

填料塔具有生产能力大,分离效率高,压降小,持液量小,操作弹性大等优点。

填料塔也有一些不足之处,如填料造价高;当液体负荷较小时不能有效地润湿填料表面,使传质效率降低;不能直接用于有悬浮物或容易聚合的物料;对侧线进料和出料等复杂精馏不太适合等。

填料的分类填料的种类很多,根据装填方式的不同,可分为散装填料和规整填料。

1.散装填料散装填料是一个个具有一定几何形状和尺寸的颗粒体,一般以随机的方式堆积在塔内,又称为乱堆填料或颗粒填料。

散装填料根据结构特点不同,又可分为环形填料、鞍形填料、环鞍形填料及球形填料等。

现介绍几种较为典型的散装填料:拉西环鲍尔环阶梯环弧鞍填料矩鞍填料金属环矩鞍填料球形填料(1)拉西环填料于1914年由拉西(F. Rashching)发明,为外径与高度相等的圆环。

填料吸收塔的特点

填料吸收塔的特点

填料吸收塔的特点
填料塔的特点主要包括以下几点:
1. 结构简单:填料塔由塔体、填料、液体分布器等部分组成,结构简单,易于设计和制作。

2. 处理能力较大:填料塔的传质面积较大,可以适应较大的流量和负荷,因此具有较大的处理能力。

3. 分离效率高:填料塔内的填料具有较大的表面积,可以提供更好的传质和扩散条件,因此具有较高的分离效率。

4. 阻力较小:填料塔内的填料可以减少流动阻力,降低能耗,同时减少设备的磨损和维护成本。

5. 适用范围广:填料塔适用于各种不同的气体和液体混合物的分离,包括高湿度、高粘度、易聚合等特殊物料的处理。

6. 易于控制:填料塔内的填料可以方便地更换或清洗,因此可以方便地调整和优化设备的性能,同时也可以控制和减少环境污染。

总的来说,填料塔是一种高效、稳定、可靠的分离设备,在化工、石油、环保等领域得到了广泛应用。

化工原理下册第三章-填料塔-本科

化工原理下册第三章-填料塔-本科
25
二、填料的性能及其评价
(2)空隙率 单位体积填料层的空隙体积称为空隙率,以 表示,其单位为 m3/m3,或以%表示。 分析

~ 流动阻力 ~ 塔压降 ~ 生产能力 ~ 流动阻力 ~ 传质效率
26
二、填料的性能及其评价
(3)填料因子 填料的比表面积与空隙率三次方的比值称为填 料因子,以 表示,其单位为1/m。
60
二、填料塔工艺尺寸的计算
2.填料层高度的计算 (1)传质单元高度法
Z H OG NOG
(2)等板高度法
Z NT HETP
注意问题: ①填料层的分段; ②设计填料层高度 Z 1.3 ~ 1.5 Z。
61
三、填料层压降的计算
1.散装填料压降的计算
计算方法:由埃克特通用关联图计算。 2.规整填料压降的计算 计算方法: ①由压降关联式计算; ②由实验曲线计算。
2.填料规格的选择 (1)散装填料规格的选择 散装填料常用的规格(公称直径)有 DN16 DN25 DN38 DN50 DN76 填料规格
~ 传质效率 ~ 填料层压降
填料 公称 直径
54
选择原则:D/d ≥ 8
塔 径
一、填料的选择
(2)规整填料规格的选择 规整填料常用的规格(比表面积)有 125 150 250 350 500 700 同种类型的规整填料,其比表面积越大,传 质效率越高,但阻力增加,通量减少,填料费用 也明显增加。故选用时,应从分离要求、通量要 求、场地条件、物料性质以及设备投资、操作费 用等方面综合考虑。
经验值
39
第3章 蒸馏和吸收塔设备
3.2 填料塔 3.2.4 填料塔的内件
40
一、填料支承装置

填料塔的附属结构

填料塔的附属结构

填料塔的附属结构填料支承板(Packing support plate )主要包括:填料支承装置;液体分布及再分布装置;气体进口分布装置;除沫装置等。

要求:(1)足够的机械强度以承受设计载荷量,支承板的设计载荷主要包括填料的重量和液体的重量。

(2)足够的自由面积以确保气、液两相顺利通过。

总开孔面积应不小于填料层的自由截面积。

一般开孔率在70%以上。

常用结构:栅板;升气管式;气体喷射式。

栅板(support grid):优点是结构简单,造价低;缺点是栅板间的开孔容易被散装填料挡住,使有效开孔面积减小。

升气管式:具有气、液两相分流而行和开孔面积大的特点。

气体由升气管侧面的狭缝进入填料层。

气体喷射式(multibeam packing support plate):具有气、液两相分流而行和开孔面积大的特点。

气体由波形的侧面开孔射入填料层。

床层限位圈和填料压板(Bed limiter and hold down plate)填料压紧和限位装置安装在填料层顶部,用于阻止填料的流化和松动,前者为直接压在填料之上的填料压圈或压板,后者为固定于塔壁的填料限位圈。

规整填料一般不会发生流化,但在大塔中,分块组装的填料会移动,因此也必需安装由平行扁钢构造的填料限制圈。

液体分布器(Liquid distributor)作用:将液体均匀分布于填料层顶部。

莲蓬头分布器:一种结构十分简单的液体喷洒器,其喷头的下部为半球形多孔板,喷头直径为塔径的1/3~1/5,一般用于直径在0.6m以下的塔中。

它的主要缺点是喷洒孔易堵塞,且气量较大时液沫夹带量大。

压力型多孔管式分布器:有环形和梯形两种。

优点:结构简单、造价低、易于支承。

自由面积较大,气体阻力小,适用于气体流量很大的场合。

其操作弹性在2~2.5:1之间。

缺点:也存在小孔易堵塞的问题,故被喷淋的液体不能有固体颗粒或悬浮物。

梯形二级槽式液体分布器优点:具有较多的喷淋点数,分布质量比较高,且操作弹性可高达4:1。

化工原理第五章(填料塔)

化工原理第五章(填料塔)
短管形填料中较好的一种。
2013-7-14
④弧鞍与矩鞍(berl saddle and intolox saddle)
【弧鞍形填料】
1931年出
现的这类填
料称弧鞍形
填料,是因
形如马鞍而
得名。
2013-7-14
【结构特点】这种填料层中主要为弧形的液体通道
,填料层内的空隙较环形填料(尤其较拉西环填料
主,增加了填料间的空隙,可以促进液膜的表面更
新,有利于传质效率的提高。
2013-7-14
2013-7-14
【性能特点】(1)由于高径比减少,使得气体绕填 料外壁的平均路径大为缩短,减少了气体通过填料
层的阻力。
(2)阶梯环的性能略优于鲍尔环,与鲍尔环相比,
生产能力可提高10%,气体阻力可降低5%左右,是
2013-7-14
金属拉西环
2013-7-14
塑料拉西环
2013-7-14
【拉西环的性能特点】 (1)拉西环是最早使用的人造填料(此前的填料为
碎石、砖块、焦炭等),制造容易,曾得到极为广
泛的应用。
(2)大量的工业实践表明,拉西环由于高径比太大,
堆积时相邻之间容易形成线接触,填料层的均匀性
差。因此,拉西环填料层中的液体存在着严重的壁
接触时间长,气液趋于平衡态,在塔内几乎不构成
有效传质区。
【结论】填料的比表面积并非有效的传质面积。
2013-7-14
(2) 空隙率ε 【定义】塔内单位体积填料层具有的空隙体积, m2/m3。 【影响】ε为一分数。ε值大则气体通过填料层的阻 力小,故ε值以高为宜。 填料的空隙率越大,气体通过的能力(处理能力 )越大且压降低。因此,空隙率是评价填料性能优 劣的又一重要指标。

填料塔及板式塔的区别

填料塔及板式塔的区别

筛板
效率较高,成本低
安装要求水平,易堵, 操作范围窄 操作范围窄,效率较 低 操作范围比浮阀塔和 泡罩塔窄
舌形板
结构简单,生产能力 大 生产能力大,效率高
斜孔板
三、填料塔的结构及填料特性
1.填料塔的结构 填料层:提供气液接触的场所。 液体分布器:均匀分布液体,以避免发生沟流现象。 液体再分布器:避免壁流现象发生。 支撑板:支撑填料层,使气体均匀分布。 除沫器:防止塔顶气体出口处夹带液体。
塔板类型 泡罩板 优点 较成熟,操作范围宽 缺点 结构复杂,阻力大, 生产能力低 采用丌锈钢,浮阀易 脱落 适用范围 某些要求弹性好的特 殊塔 分离要求高,负荷变 化大;原油常压分馏 塔 分离要求高,塔板较 多;化工中丙烯塔 分离要求较低的闪蒸 塔 分离要求高,生产能 力大
15
浮阀板
效率高,操作范围宽
安装在填料层上端。作用是保持填料层为一高度固定的床层, 从而保持均匀一致的空隙结构,使操作正常、稳定,防止在高 压降、瞬时负荷波动等情况下,填料层发生松动或跳动。 分为: 填料压板。自由放置于填料上端,靠自身重量将填料压紧。适 用于陶瓷、石墨材质的散装填料。 床层限制板。固定在填料上端。
25
26
3. 填料的类型及性能评价
35
⑤球型: 球体为空心,气体和液体从其内部经过。由于球体 结构的对称性,填料装填密度均匀,丌易产生空穴 和架桥,故气液分散性能好。 常采用塑料材质。一般用于特定场合,工程上应用 较少。
36
规整填料
规整填料一般由波纹状的金属网丝或多孔板重叠而成。 使用时根据填料塔的结构尺寸,叠成圆筒形整块放入塔内或分块拼成圆 筒形在塔内砌装。 优点:空隙大,生产能力大,压降小。流道规则,只要液体初始分布 均匀,则在全塔中分布也均匀,因此规整填料几乎无放大效应,通常 具有很高的传质效率。 缺点:造价较高,易堵塞难清洗,因此工业上一般用于较难分离或分 离要求很高的情况。

填料塔结构示意图

填料塔结构示意图

填料塔结构示意图集团标准化办公室:[VV986T-J682P28-JP266L8-68PNN]填料塔的结构及其工作原理填料塔的作用是起到吸收作用,是化工、石油化工和炼油生产中最重要的设备之一。

以下讲一下填料塔的结构特点:填料塔是以塔内的填料作为气液两相间接触构件的传质设备。

填料塔的塔身是一直立式圆筒,底部装有填料支承板,填料以乱堆或整砌的方式放置在支承板上。

填料的上方安装填料压板,以防被上升气流吹动。

液体从塔顶经液体分布器喷淋到填料上,并沿填料表面流下。

气体从塔底送入,经气体分布装置(小直径塔一般不设气体分布装置)分布后,与液体呈逆流连续通过填料层的空隙,在填料表面上,气液两相密切接触进行传质。

填料塔属于连续接触式气液传质设备,两相组成沿塔高连续变化,在正常操作状态下,气相为连续相,液相为分散相。

当液体沿填料层向下流动时,有逐渐向塔壁集中的趋势,使得塔壁附近的液流量逐渐增大,这种现象称为壁流。

壁流效应造成气液两相在填料层中分布不均,从而使传质效率下降。

因此,当填料层较高时,需要进行分段,中间设置再分布装置。

液体再分布装置包括液体收集器和液体再分布器两部分,上层填料流下的液体经液体收集器收集后,送到液体再分布器,经重新分布后喷淋到下层填料上。

填料塔具有生产能力大,分离效率高,压降小,持液量小,操作弹性大等优点。

填料塔也有一些不足之处,如填料造价高;当液体负荷较小时不能有效地润湿填料表面,使传质效率降低;不能直接用于有悬浮物或容易聚合的物料;对侧线进料和出料等复杂精馏不太适合等。

填料的分类填料的种类很多,根据装填方式的不同,可分为散装填料和规整填料。

1.散装填料散装填料是一个个具有一定几何形状和尺寸的颗粒体,一般以随机的方式堆积在塔内,又称为乱堆填料或颗粒填料。

散装填料根据结构特点不同,又可分为环形填料、鞍形填料、环鞍形填料及球形填料等。

现介绍几种较为典型的散装填料:拉西环?鲍尔环?阶梯环?弧鞍填料?矩鞍填料?金属环矩鞍填料?球形填料(1)拉西环填料于1914年由拉西(F. Rashching)发明,为外径与高度相等的圆环。

填料塔的结构特点

填料塔的结构特点

填料塔一、填料塔的结构特点【图片3-10】填料塔的结构示意图图片3-10所示为填料塔的结构示意图,填料塔是以塔内的填料作为气液两相间接触构件的传质设备。

填料塔的塔身是一直立式圆筒,底部装有填料支承板,填料以乱堆或整砌的方式放置在支承板上。

填料的上方安装填料压板,以防被上升气流吹动。

液体从塔顶经液体分布器喷淋到填料上,并沿填料表面流下。

气体从塔底送入,经气体分布装置(小直径塔一般不设气体分布装置)分布后,与液体呈逆流连续通过填料层的空隙,在填料表面上,气液两相密切接触进行传质。

填料塔属于连续接触式气液传质设备,两相组成沿塔高连续变化,在正常操作状态下,气相为连续相,液相为分散相。

当液体沿填料层向下流动时,有逐渐向塔壁集中的趋势,使得塔壁附近的液流量逐渐增大,这种现象称为壁流。

壁流效应造成气液两相在填料层中分布不均,从而使传质效率下降。

因此,当填料层较高时,需要进行分段,中间设置再分布装置。

液体再分布装置包括液体收集器和液体再分布器两部分,上层填料流下的液体经液体收集器收集后,送到液体再分布器,经重新分布后喷淋到下层填料上。

填料塔具有生产能力大,分离效率高,压降小,持液量小,操作弹性大等优点。

填料塔也有一些不足之处,如填料造价高;当液体负荷较小时不能有效地润湿填料表面,使传质效率降低;不能直接用于有悬浮物或容易聚合的物料;对侧线进料和出料等复杂精馏不太适合等。

二、填料的类型填料的种类很多,根据装填方式的不同,可分为散装填料和规整填料。

1.散装填料散装填料是一个个具有一定几何形状和尺寸的颗粒体,一般以随机的方式堆积在塔内,又称为乱堆填料或颗粒填料。

散装填料根据结构特点不同,又可分为环形填料、鞍形填料、环鞍形填料及球形填料等。

现介绍几种较为典型的散装填料。

【图片3-11】几种典型的散装填料拉西环鲍尔环阶梯环弧鞍填料矩鞍填料金属环矩鞍填料球形填料(1)拉西环填料拉西环填料于1914年由拉西(F. Rashching)发明,为外径与高度相等的圆环,如图片拉西环所示。

高效规整填料塔的设计及精馏节能技术

高效规整填料塔的设计及精馏节能技术

02
03
自适应控制
智能控制
根据精馏过程的实时数据,自动 调整控制参数,使系统始终处于 最佳运行状态。
结合人工智能和机器学习技术, 实现精馏过程的智能控制和优化。
案例分析:成功降低能耗
1 2
案例一
某化工厂通过采用热能回收技术和优化操作条件, 成功将精馏过程的能耗降低了20%。
案例二
某石化企业采用新型填料和塔内件对精馏塔进行 改造,传质效率提高了30%,能耗降低了15%。
02 高效规整填料技术
规整填料概念及优势
规整填料定义
规整填料是一种在塔内按一定几何构形均匀排列,整齐堆砌的填料,具有特定的 几何形状和尺寸。
规整填料优势
相较于散装填料,规整填料具有更高的传质效率和更低的压降,能够提供更好的 流体分布和更大的比表面积。
高效规整填料种类介绍
金属规整填料
陶瓷规整填料
维护保养周期及内容
制定合理的维护保养计划, 定期对填料塔进行全面检 查和维护保养。
检查并更换损坏的液体分 布器、气体分布器和密封 件等易损件。
清洗填料表面的污垢和沉 积物,保持填料的清洁和 良好的传质性能。
对设备的腐蚀情况进行检 查,并采取必要的防腐措 施。
故障诊断与排除方法
01 02 03 04
热能回收
通过热交换器回收塔顶和塔底的余热,用于预热原料 或产生蒸汽,从而减少热能消耗。
优化操作条件
通过调整操作参数,如温度、压力、回流比等,使精 馏过程在最佳状态下运行,降低能耗。
新型填料与塔内件
采用高效规整填料和新型塔内件,提高传质效率,降 低能耗。
先进控制策略在精馏中应用
01
模型预测控制
通过建立精馏过程的数学模型, 预测未来状态并优化控制策略, 实现节能降耗。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档