第三章 固体材料表面与界面电子过程

合集下载

高二物理竞赛课件:固体表面及界面接触现象之表面态

高二物理竞赛课件:固体表面及界面接触现象之表面态
子的各一个价电子组成共价键。
晶体表面,晶格突然断裂,最外层的Si原子
出现未配对电子,即存在一个未饱和的键,称为
悬挂键。பைடு நூலகம்
悬挂键上的电子对应的能量状态称为表面态。
从能量高低的角度考虑,表面态的能量高于价带中的电子能量(体内配
对价键上的电子能量)低于导带中的电子能量(晶格空间的准自由电子的能
量状态),因此它的能量值必定在禁带范围内。
微分电容
其中:
() = [+ − − + () − ()൧
讨论非简并情况,满足玻尔兹曼分布,则
B
B
其中np0和pp0分别表示半导体内部热平衡电子浓度和热平衡空穴浓度。
外电场垂直作用于热
平衡P型半导体表面
层所满足的泊松方程。
B
B
电荷密度 QS 0 E0 。
• 金属和半导体的表面存在一定的电荷分布。
空间电荷区
• 空间电荷区的存在可以屏蔽外电场,使其不能深入半导体内部(空间电荷区存在
内建电场)。
由于表面层内存在电场,必然存在势能。附加了电势能后,
半导体表面层内的能带必然发生变化。下面以P型半导体为
例分析。
电子电势:
电势:
外加电场:
E ( x)
电场方向由半导体表
面指向半导体内部。
dV ( x)
dx
qV ( x)
半导体表面与体内之间的电
势差称为半导体的表面势。
空穴电势的变化
情况与电子相反。
空间电荷区出现附加的静电势能,使电子在半导体内部
和表面层的势能不相同,则相应的能带发生变化。
这种半导体表面空间电荷区
表面能带
悬挂键的密度很高

材料表界面第三章固体表面

材料表界面第三章固体表面

V1= V2 即 k1 P (1-θ) =k2θ
k1 p
k2 k1 p

b k1 k2
3.3.2 Langmuir吸附等温式
3. Langmuir吸附等温式
= bp
(3-10)
1+bp b为吸附系数
(1)低压或吸附很弱时,bp《1, 则θ=bp,即θ与p成直线关系,符 合Herry定律;
固-气界面吸附的影响因素:
2、压力 无论是物理吸附还是化学吸附,压力增加,吸附量皆 增大。 无论是物理吸附还是化学吸附,吸附速率均随压力的 增加而增加。
3.3 固-气界面吸附
固-气界面吸附的影响因素:
3、吸附剂和吸附质性质
(1)极性吸附剂易于吸附极性吸附质。如硅胶、硅铝催化剂等极性吸 附剂易于吸收极性的水、氨、乙醇等分子。 (2)非极性吸附剂易于吸附非极性吸附质。如活性炭、碳黑是非极性 吸附剂,故其对烃类和各种有机蒸气的吸附能力较大。炭黑的情况比较 复杂,表面含氧量增加时,其对水蒸气的吸附量将增大。 (3)一般吸附质分子的结构越复杂,沸点越高,被吸附的能力越强。 这是因为分子结构越复杂,范德华引力越大;沸点越高,气体的凝结力 越大,这些都有利于吸附。 (4)酸性吸附剂易吸附碱性吸附质,反之亦然。例如,石油化工中常 见的硅铝催化剂、分子筛、酸性白土等均为酸性吸附剂或固体酸催化剂, 故它们易于吸附碱性气体(如NH3、水蒸气和芳烃蒸气等)。 (5)吸附剂的孔结构。
例 2 在239.55 K,不同平衡压力下的 CO 气体在活 性炭表面上的吸附量 V (单位质量活性炭所吸附的 CO 气体在标准状态下的体积值)如下:
p /kPa 13.466 25.065 42.663 57.329 71.994 89.326

固体表面与界面

固体表面与界面

固体表面与界面无机材料制备及使用过程发生的种种物理化学变化,都是由无机材料表面向内部逐渐进行的,这些过程的进行都依赖于无机材料的表面结构与性质。

人们平时遇到和使用的各种无机材料其体积大小都是有限的,即无机材料总有表面暴露在与其相接触的介质内。

相互接触的界面上或快或慢地会发生一系列物理化学作用。

产生表面现象的根本原因在于无机材料表面质点排列不同于内部,无机材料表面处于高能量状态。

基于此,本章主要介绍无机固体的表面及结构,陶瓷晶界及结构,界面行为,包括弯曲表面效应、吸附与表面改性、润湿与粘附,以及近30年来从原子、分子水平上研究固体表面组成、结构和性能的各种表面分析及测试方法等知识。

并讨论粘土-水系统中粘土胶粒带电与水化等一系列由于粘土粒子表面效应而引起的胶体化学性质,如泥浆的稳定性、流动性、滤水性、触变性和泥团的可塑性等。

为了解和运用表面科学知识解决无机材料相关科学与工程问题奠定基本的必要的理论基础。

处在物体表面的质点其境遇和内部质点不同,表面的质点由于受力不均衡而处于较高的能阶,从而使物体表面呈现一系列特殊的性质。

例如,将1kg石英砂从直径为10-2m粉碎到10-9m,比表面积(单位质量或单位体积物质所具有的总表面积,单位:m2/kg或m2/m3)与比表面能(等温等压条件下,增加单位新表面所需要的可逆非膨胀功称为比表面能,简称表面能。

单位:J/m2)的变化如表5-1示,可看出仅仅由于分散度(物料被分散的程度,是物质粒度的一种度量。

分散度越大,物质粒径越小)的变化而使细粉石英比表面能增加1千万倍.相当于650kg水升高1℃需要的能量。

粉碎石英的机械能转化为表面能贮存的石英粉内。

由于高分散度物系比低分散度物系能量高得多,必然使物系由于分散度的变化而使两者在物理性质(如熔点、沸点、蒸气压、溶解度、吸附、润湿和烧结等)和化学性质(化学活性、催化、固相反应)方面有很大的差别。

随着材料科学的发展,固体表面的结构和性能日益受到科学界的重视,而逐渐形成一门独立学科——表面化学和表面物理。

第三章 材料表面与界面

第三章 材料表面与界面

铜合金中的孪晶
9.相界
在多相组织中,具有不同晶 体结构的两相之间的分界面 称为相界。
小角度晶界
对称倾侧晶界 、不对称 倾侧晶界、 扭转晶界
小角度晶界 最简单的小角度晶界是对称倾侧晶界, 最简单的小角度晶界是对称倾侧晶界, 对称倾侧晶界 由一系列柏氏矢量互相平行的同号刃型 位错垂直排列而成,晶界两边对称, 位错垂直排列而成,晶界两边对称,两 晶粒的位相差为θ,柏氏矢量为b 晶粒的位相差为 ,柏氏矢量为 ,当θ很 很 小时,求得晶界中位错间距为D=b/θ。 小时,求得晶界中位错间距为 。 对称倾侧晶界中同号位错垂直排列, 对称倾侧晶界中同号位错垂直排列, 刃型位错产生的压应力场与拉应力场可 互相抵消,不产生长程应力场, 互相抵消,不产生长程应力场,其能量 最低。 最低。
D.非平衡偏聚 由于空位的存在,促使溶质原子向晶界迁移 的偏聚,辐射或加热时产生大量空位在冷却 时向晶界迁移并消失,同时拖着溶质原子运 动,溶质原子富集在晶界。
E.非平衡偏聚特点: a. 偏聚范围大,在晶界上形成一定宽度偏聚 带,达几微米,偏聚带两侧有溶质原子贫化 区。 b. 非平衡偏聚在适当冷却速度下发生 c. 一定冷速下,淬火温度升高,由于空位增 多,偏聚及贫化宽度增加
C. 二面角的用途 (a)杂质在金属压力加工中影响 Cu中Bi有 热脆是因为Bi低熔点液相薄膜分布 (b)粉末冶金烧结时润湿性:选Co与WC (c)对焊料影响:焊接时用助焊剂使焊料润 湿被焊金属表面
6.晶界偏聚平衡偏聚及非平衡偏聚 A. 平衡偏聚 平衡条件下由于溶质与溶剂原子尺寸相差很 大,溶质原子在晶内、晶界的畸变能差很大, 造成溶质原子在晶界富集 ,如Cu-1Sn%合 金,:Sn的偏析,Sn的原子半径比Cu大9%, 发生严重点阵畸变

第三章 材料表面与界面化学(材料化学)

第三章 材料表面与界面化学(材料化学)

对于性质相当稳定的石英(SiO2)矿物,曾进行 过许多研究。 例如把经过粉碎的SiO2,用差 热分析方法测定其573oC时 相变 时发现,相应的相变吸热峰面积随SiO2粒度而 有明显的变化。 当粒度减小到5-10µ时,发生相转变的石英量 就显著减少。当粒度约为1.3µ时,则仅有一半 的石英发生上述的相转变。 但是如若对上述石英粉末处理,以溶去表面层, 然后重复进行差热分析测定,则发现参予上述 相变的石英量增加到100%。这说明石英粉体 表面是无定形结构。
为保持液膜所施之外力f与活动边的长度l成 外力f 外力 正比:f=2γl(系数2是因为液膜有两个表 = 面)。 /2l为液体的表面张力系数,是垂直通过 γ=f/2 /2 液体表面上任一单位长度、与液面相切地收 缩表面的力,简称表面张力。方向指向液膜 平面中心的。单位N/m。
一、表面力场 1.表面力 . 固体表面上的原子(分子)与液体表面一样,其 受力是不对称的,即晶体中每个质点周围都存在着 一个力场。该力场与质点处的环境有关。
在不同条件下,这些极化离子在表面取向不 同,则表面结构和性质也不相同。 在常温时,表面极化离子的电矩通常是朝内 部取向以降低其表面能。因此常温下铅玻璃 具有特别低的吸湿性。 但随温度升高,热运动破坏了表面极化离子 的定向排列,故铅玻璃呈现正的表面张力温 度系数。 可以看到,不同极化性能的离子进入玻璃表 面层后,对表面结构和性质的影响。
因此,即使是新鲜的玻璃表面,其化学成分, 结构也会不同于内部。这种差异可以从表面 折射率、化学稳定性、结晶倾向以及强度等 性质的观测结果得到证实。 对于含有较高极化性能的离子如Pb2+、 Sn2+、Sb2+、Cd2+等的玻璃,其表面结构 和性质会明显受到这些离子在表面的排列 取向状况的影响。这种作用本质上也是极 化问题。

第三章 材料化学表面与界面

第三章 材料化学表面与界面
Department of Materials Science and Engineering
3.2 固体表面自由能的近似计算 1.单质晶体的规整面的表面自由能

表面同体相最大区别:表面有断键或者悬键。 表面的张力可以由表面的悬键来计算:
(1)键能:ε=△Hs/(0.5ZNA)
△Hs—升华能;Z—配位数;NA—阿福加德罗常数
Department of Materials Science and Engineering
d0
d0
离子晶体表面双电层
离子晶体表面的电子云变形和离子重排
University of Science and Technology of China
Department of Materials Science and Engineering
不同的规整面表面自由能不同;
实际晶体表面能小于计算的结果 ,这是由于原子的重构; 固体界面:共格、半共格、非共 格之分。
100 / 111 1.15
University of Science and Technology of China
Department of Materials Science and Engineering

表面张力:使体相停止生长或者表面收缩的力。
γ=F/2L; γ=(△G/ △A)T,P 表面自由能:使体相停止生长的能量或者断开的能量。 △G=-SdT+Vdp+γdA

University of Science and Technology of China
Department of Materials Science and Engineering
University of Science and Technology of China 非共格晶界示意图

材料科学基础 第三章 晶体缺陷 (七)解读

材料科学基础 第三章 晶体缺陷 (七)解读

图 离子晶体表面的双电层
3.3.1 外 表 面
表面 (crystal surface)
偏离平衡位置的并造成表层点阵畸变的且影响到邻 近的能量比内部高的几层高能量的原子层。
表面能(γ):晶体表面单位面积自由能的增加
dW dS
T L
被割断的结合键数目 能量 形成单位新表面 每个键
根据晶界两侧晶粒位相差的不同可分为小角度晶界和 大角度晶界。亚晶界属于小角度晶界。
图 晶界与亚晶界示意图
3.3.2 晶界和亚晶界
确定晶界位置用:二维点阵中晶界位置可用 两个晶粒的位向差 θ和晶界相对于一个点阵某 一平面的夹角 φ来确定。根据相邻晶粒之间位 向差θ角的大小不同可将晶界分为两类: 按θ的大小分类: 小角度晶界θ<10º 大角度晶界θ>10º
依附界面,长大依靠界面迁移;因此,界面的结构和特性
影响凝固和相变过程; 由于界面的重要影响,受到广泛的重视,成为材料科学的 重要组成内容。
3.3.3 孪晶界
孪晶( twin )的定义:
孪晶是指两个晶体(或一个晶体
的两部分)沿一个公共晶面构成 镜面对称的位向关系,这两个 晶体就称为“孪晶(twin)”,此 公共晶面就称孪晶面。
(7)晶界具有不同与晶内的物理性质。
亚晶界属与小角度晶界,为各种亚结构的交界,大小 和尺寸与热加工条件有关。
亚晶界
5、界面对材料性能的影响
界面是晶体中的面缺陷,对晶体材料的性质和转变过程有重要影响;
界面阻碍位错运动,引起界面强化,提高材料的强度。界面阻碍变
形,使变形分布均匀、提高材料的塑性,强度、塑性的提高相应使 材料韧性也得到改善。因此,界面的增加,得到细晶组织,可大大 改善材料的力学性能; 界面具有高的能量,化学介质不稳定,产生晶界腐蚀,故影响材料

无机材料物理化学固体表面与界面

无机材料物理化学固体表面与界面

无机材料物理化学固体表面与界面在材料科学的世界中,无机材料物理化学是一个极其重要的研究领域,特别是在固体表面与界面方面的研究。

这些研究涵盖了各种无机材料,包括金属、非金属、半导体和绝缘体等,它们的表面和界面行为对材料的性质和性能有着深远的影响。

我们来看看固体表面的物理化学。

固体表面是一个具有特殊结构和性质的相,它与相邻的介质(如气体、液体或另一种固体)相互作用。

这种相互作用会影响材料的润湿性、吸附性、反应性以及电子传输等性质。

例如,通过改变表面的粗糙度或化学活性,我们可以控制材料表面的润湿性,进而影响其与液体的相互作用。

界面在无机材料中同样扮演着重要的角色。

在无机材料中,界面可以是两种不同材料之间的接触面,也可以是同一材料不同晶面之间的接触面。

这些界面上的原子排列和电子结构会不同于体相材料,从而影响材料的物理和化学性质。

例如,石墨烯和氮化硼之间的界面可以影响电子传输和热导率。

我们还研究了固体表面和界面在光电、催化、储能等领域的应用。

这些应用需要我们对材料的表面和界面性质有深入的理解,才能实现高效的能量转化和优异的性能。

例如,在太阳能电池中,我们需要优化半导体材料的表面结构以增加光吸收和载流子分离效率;在催化剂中,我们需要理解表面结构对反应活性的影响以设计高效的催化剂。

无机材料物理化学中的固体表面与界面研究为我们提供了理解和控制材料性质的新途径。

通过深入了解材料的表面和界面性质,我们可以设计出具有优异性能的新材料,并优化其在能源、环保、信息技术等领域的应用。

在过去的几十年中,纳米科技的发展取得了令人瞩目的成就。

无机纳米材料,作为一种重要的纳米科技领域,具有许多独特的物理、化学和机械性质,因此在许多领域具有广泛的应用前景。

然而,由于其表面能高,无机纳米材料容易团聚和稳定性差,这限制了其实际应用。

为了解决这些问题,表面修饰改性成为了一种有效的手段。

通过对无机纳米材料进行表面修饰改性,可以有效地提高其稳定性、相容性和生物活性,从而进一步拓展其应用范围。

第三章晶体缺陷表面与界面

第三章晶体缺陷表面与界面
对称倾斜晶界 不对称倾斜晶界 扭转晶界
对称倾斜晶界:可以看成由一列平行的刃型位错构成
位错间距D和柏氏矢量b之间关系:
不对称倾斜晶界
如果对称倾斜晶界的界面绕某一轴旋转一角度, 虽然两晶粒的位相差仍然是,但此时两晶粒不再 对称,称为不对称倾斜晶界。
不对称倾斜晶界有两个自由度和。其结构可以 看成由两组柏氏矢量相互垂直的刃型位错 交 错排列构成,两组位错各自间距 分别为:
扭转 晶界
扭转晶界可以看成两部分晶体绕某一轴 在一个共同平面上相对扭转一个角构成 的,扭转轴垂直于这一共同晶面。也可 以看成由相互交叉的螺位错组成。
Db

纯扭转晶界和倾斜晶界的不同在于:倾斜晶 界形成时,转轴在晶界内;扭转晶界的转 轴则垂直于晶界。
一般小角度晶界都可看成两部分晶体绕某 一轴旋转一角度而形成,不过该转轴即不 平行也不垂直晶界,故可看成一系列刃位 错,螺位错或混合位错的网络组成。
• 5)在某种情况下可产生晶界上溶质原子的贫化—负吸附
• 6)产生晶界偏聚的原因,有一种解释:固溶体中溶质原 子和溶剂原子的尺寸不同,晶界偏聚可使系统能量降低
晶界特性
• 1)晶界处点阵畸变大,存在晶界能,故晶 粒长大和晶界平直化是一个自发过程
• 2)晶界处原子排列不规则→阻碍塑性变形 →Hb,sb↑(细晶强化)
• 表面能的作用产生表面吸附现象
外表面的特点
• 周期性的排列被破坏-相邻原子比晶内少 • 由于成分偏析和表面吸附,表面成分与晶内不一
致 • 表面原子的键合与晶内不同,偏离正常的平衡位
置,表面层原子点阵畸变 • 厚度一般几个原子层 • 最外层原子有一半原子健悬空,能量高,表面活
性高
表面能:
定义为形成单位面积的新表面所需做的功

无机非金属材料科学基础课件:固体的表面与界面行为(145页PPT课件) -

无机非金属材料科学基础课件:固体的表面与界面行为(145页PPT课件) -
例如鉛玻璃,由於鉛原子最外層有4個價電子 (6S26P2),當形成Pb2+時,因最外層尚有兩個電子, 對接近於它的O2-產生斥力,致使Pb2+的作用電場不對稱, Pb2+以2Pb2+ Pb4+ + Pb0方式被極化變形。
在常溫時,表面極化離子的電矩通常是 朝內部取向以降低其表面能。因此常溫下鉛 玻璃具有特別低的吸濕性。但隨溫度升高, 熱運動破壞了表面極化離子的定向排列,故 鉛玻璃呈現正的表面張力溫度係數。
如圖,肥皂膜的一端在力F的作用下移動。肥皂 膜沿著x軸方向移動了dx的距離,當它勻速移動時, 拉力F與肥皂膜表面所產生的張力大小相等、方向相 反。如果以γ表示單位長度表面的張力數值,則在把 肥皂膜拉伸dx距離時所作的功W為:

某肥皂膜的拉伸
某肥皂泡的膨脹
如果不考慮重力場對肥皂泡的作用,泡總是呈 球形的。假設肥皂泡的半徑為r,它的總表面能值為 4πr2γ。當這個肥皂泡的半徑增大或減小dr時,它的 總表面能就要增大或減小8πrγdr。使肥皂泡擴張的條 件為泡內壓力大於泡外壓力,即在肥皂泡膜的內外 兩側存在一個壓力差△P。這個壓差所產生的膨脹功 為
一些晶體化合物的表面能
3. 粉體表面結構
粉體在製備過程中,由於反復地破碎,不斷形成新 的表面。表面層離子的極化變形和重排使表面晶格畸變, 有序性降低。因此,隨著粒子的微細化,比表面增大, 表面結構的有序程度受到愈來愈強烈的擾亂並不斷向顆 粒深部擴展,最後使份體表面結構趨於無定形化。
基於X射線、熱分析和其他物理化學方法對粉體表面 結構所作的研究測定,提出兩種不同的模型。一種認為 粉體表面層是無定形結構;另一種認為粉體表面層是粒 度極小的微晶結構。 • 粉體表面層是無定形結構 的實驗驗證:

材料物理化学固体的表面与界面详解演示文稿

材料物理化学固体的表面与界面详解演示文稿
从静电力学原理得ζ电位计算公式:
σ-表面电荷密度; d-扩散层厚度; ε-分散介质介电常数。
影响因素:
a)固相表面电荷密度——σ增大:ζ升高 b)电解质浓度—— 随电解质加入,ζ出现极大值 c)吸附阳离子的影响
第十五页,共81页。
第十六页,共81页。
粘土吸附以下阳离子时, ζ电位


离子电价高,每个离子所平衡的胶核负电荷数越多,胶团 中的电位下降越快,扩散层越薄,ζ降低。
离子交换能力的表征; 主要由吸附量来决定。通常以pH=7时,吸附离子毫克当量
数/100g干粘土表示(单位:毫克当量数/百克干粘 土 );
分为阳离子交换容量和阴离子交换容量,如阳离子交换容
量代表粘土在一定pH条件下的净负电荷数;
吸附量决定于中和表面电荷所需的吸附物的量。
第二十一页,共81页。
影响因素:
第四页,共81页。
1. 粘土与水的结合
结构水——以OH-形成存在于粘土晶格中,约在400~600℃
脱去,可用红外光谱检测。
吸附水——层间结合水,约100~200℃除去,与粘土颗粒的 中 的O或OH以氢键结合的水。 牢固结合水—紧挨粘土表面,通过氢键与粘土离子结合并作 有规则定向排列,又称吸附水膜,其厚度约3~10个水分子
结论:粘土粒子板面带负电,边棱可带正或负电。
第十一页,共81页。
高岭石价键断裂使边棱带正电或负电 酸性介质中(pH<6):边棱带正电; 中性介质中(pH≈7):边棱不带电; 碱性介质中(pH>8):边棱带负电。
粘土正负电荷代数和是粘土净电荷。 由于粘土负电荷远大于正电荷,则主要 带负电荷;
粘土粒子荷电性是粘土-水系统具有 一系列胶体性质的主要原因之一。
第四十六页,共81页。

3 陶瓷物化 第三章 固体表面与界面

3 陶瓷物化 第三章 固体表面与界面

氧化物如Al2O3、ZrO2、SiO2等有此类效应。这些氧化物的表面大部 分由氧离子组成,正离子被氧离子所屏蔽。例如,Zn在ZnO(0001) 面上晶格收缩0.1-0.2A;MgO(111)面上负离子外延伸3%,正离子 收缩1% 。
产生这种变化的程度主要取决于离子极化性能。金属氧化物表面易
于发生弛豫使表面带负电,并且有表面电矩。
双电层的厚度增加可导致表面能和硬度降低。
应用:超细粉体由于弛豫产生表面电荷,影响工艺性能。陶瓷材料生产 中,原料破碎研磨以便提高活性;但表面电荷引起粉料团聚。
2、粉体表面结构
粉体在制备过程中,由于反复地破碎,
不断形成新的表面。表面层离子的极化
变形和重排使表面晶格畸变,有序性降 低。因此,随着粒子的微细化,比表面 增大,表面结构的有序程度受到愈来愈 强烈的扰乱并不断向颗粒深部扩展,最
理想表面
2、清洁表面

清洁表面是指不存在任何吸附、催化反应、杂质扩散等物理化学效应的表面。 这种清洁表面的化学组成与体内相同,但周期结构可以不同于体内。根据表
面原子的排列,清洁表面又可分为台阶表面、弛豫表面、重构表面等。
[110] [112] [111]
(1)台阶表面 台阶表面不是一个平面,它是由 有规则的或不规则的台阶的表面所 组成

晶体中每个质点周围存在一个力场,在晶体内部,质点力场对称,
在表面边界对称性破坏,出现剩余键力,或表面力场。 固体表面与表面附近分子或原子之间的表面力可 分为:1)化学力; 2)分子引吸附剂利用表面质点的不饱和价键将吸附物吸附到表面之后,吸附
剂可能把它的电子完全给予吸附物,使吸附物变成负离子(如吸附于大多数
晶 体 表 面
的正离子应处于稳定的
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

同的真空静止电子能级,并假定金属的功函数大于 半导体的功函数,即Wm>Ws;EF(S) > EF(M)
(a)接触前
(b)间隙很大
29
(c)紧密接触;(d)忽略间隙
金属和n型半导体接触能带图(Wm>Ws)
30
(c)紧密接触
特点:1)随着D的减小,靠近半导体一 侧的金属表面负电荷密度增加,同时, 靠近金属一侧的半导体表面的正电荷密 度也随之增加。 2)由于半导体中自由电荷密度的限制, 正电荷分布在半导体表面相当厚的一层 表面层内,即空间电荷区。 表面势:在空间电荷区内便存在一定的电场,造成能带弯 曲,使半导体表面和内部之间存在电势差Vs,即表面势。 接触电势差一部分降落在空间电荷区,另一部分降落在金 属和半导体表面之间,于是有 Ws Wm=Vms+Vs
•表面处电场存在→载流子在表面响应→重新分 布→产生屏蔽作用,阻止外场深入内部;
43
金属材料:自由载流子密度很大,表面形成 极薄层(Å数量级)就足以将外场屏蔽掉; 半导体材料:自由载流子密度小,必须经过 一定距离后,才能将外电场屏蔽掉,这个区 域就是表面空间电荷层区。 如果载流子密度愈小,则空间电荷层就愈厚。 在室温下,表面层厚度可以用Debey长度LD 来估记:
51
3.4 MIS结构
半导体器件的特性都和半导体的表面性质有着密切的关系。 半导体的表面状态对晶体管和半导体集成电路的参数和稳 定性有很大影响。 MOS(金属-氧化物-半导体)器件、电荷耦合器件,表面发 光器件等,就是利用半导体表面效应而制成的。 因此,研究半导体表面现象,发展有关半导体表面的理论, 对于改善器件性能,提高器件稳定性,以及指导人们探索 新型器件等都有着十分重要的意义。 MIS(指金属—绝缘层—半导体)结构
������ •决定电子运动状态是主要取决于对电子的作用势 (原子核、电子间) •具体电子运动状态是通过薛定鄂方程求出电子的波 函数及其对应的本征能量。
2
原子能级分裂成能级示意图
当原子与原子结合成固体时,原子之间存在相互 作用,电子存在共有作用; 无数电子形成一个系统以后,电子运动特性(范围) → 能带
电子
空穴对
N型半导体中的多数载流子(多子) 为电子。空穴为少数载流子(少子)
10
杂质半导体
P型半导体
结构图
11
杂质半导体
载流子
受主杂质原子电离 热激发 空穴 空穴 负离子对 电子对 呈电中性
P型半导体中的多数载流子(多子) 为空穴。电子为少数载流子(少子)
12
载流子运动方式及其电流
扩散运动及扩散电流
p区的能带上移, n区能带下移,直至费米能 级处处相等时,p-n结达到平 衡状态。 16
平衡p-n结的能带图
2 PN结基本特性
1) 空间电荷
电离受主与 少量电子的 负电荷严格 平衡空穴电 荷 电中性 空间电荷 电离施主与少 量空穴的正电 荷严格平衡电 子电荷
电中性
带负电荷的电离受主 带正电荷电离施主 负电荷区 正电荷区
3
能带理论简介
4
在k空间中,电子能量En(k)函数关系
K空间:又称波矢空间,描述微观粒子运动状态的空 间,K空间中的一个点对应着一个确定的状态
K空间是以倒格子为基础的倒格空间
5
E~k, 能带结构(能量色散关系)
导带底
价带顶
导带
价带
Si立方晶系 晶体的能带结构(半导体,间接能隙)
6
半导体的基础知识
半导体;N-type P-type半导体;导带;价带;禁带 本征半导体 杂质半导体 载流子运动方式及形成电流
7
1.1 本征半导体
纯净的、不含杂质
的半导体
8
杂质半导体
杂质半导体分:N型半导体和P型半导体两类
N型半导体
结构图
9
杂质半导体
载流子
施主杂质原子电离 电子 正离子对 呈电中性
热激发
电容和扩散电容都随外加电压而变化,是可变电容。
24
4)p-n结接触电势差
a.平衡p-n结的空间电荷区两端间的电势 差VD,称为p-n结的接触电势差或内建 电势差。
b. 相应的电子电势能之差即能带的弯曲量qVD
称为p-n结的势垒高度
qVD=EFn-EFp
25
3.2 金属和半导体的接触特性
1.金属和半导体的功函数 金属的功函数:
第三章
固体材料表面与界面电子 过程
3.1 半导体与半导体界面特性-PN结 3.2 金属与半导体的接触特性
3.3 表面势、表面态、表面电导
3.4 MIS结构
3.5 PN结与功能器件
3.6 晶界势垒及其电荷区
电子的特点
•电子运动状态:能量、运动的范围 电子运动的特点:微质点、高速度运动 ������ 在空 不可能确定某电子在某空间位臵→用 间出现的概率(电子云及密度) 能量不连续→能级
在绝对零度时,一个起始能量等于费米能级的电子, 由金属内部逸出到真空中静止所需要的最小能量
Wm=E0-(EF)m
E0表示真空中静止电子的能量
26
半导体的功函数 在绝对零度时,一个起始能 量等于费米能级的电子,由 半导体内部逸出到真空中所 需要的最小能量
Ws=E0-(EF)s
从Ec到E0的能量间隔
=E0-Ec
36
37
Vzc(r): 价电子间的交换和相关势 在定性地讨论Vzc(r)的特征时,其表达式可表 示为:
其中v(r)为体内价电子电荷密度,a为常数。•
38
2
39
40
(3)表面态类型
41
(4)
42
(5)
•产生表面空间电荷层的条件:表面的外电场;
半导体上的绝缘层中存在的电荷在表面感生的 电场;表面因产生离子吸附而引起的表面电场; 金属、与半导体(或绝缘体)因功函数不同而形 成接触电势等。
54
表面空间电荷区域能带的弯曲
4)空间电荷区内的电势也要随距离逐渐变化,这样,半导体 表面相对体内就产生电势差,同时能带也发生弯曲。
d)对于空穴,情况完全相似。 e)没有电流流过p-n结。或者说流过p-n结的净电流为零
18
PN结基本特性
VD:势垒电压
VD =
0.6~0.8V 或 0.2~0.3V
VD阻止多子继
续扩散,同时有 利少子定向漂移
PN结平衡
VD
19
2)单向导电性
U U
PN结加正向电压
流过PN结的电流随外 加电压U的增加而迅 速上升,PN结呈现为 小电阻。 该状态称为PN结正向 导通状态。


又称为电子亲合能,它表示要使半导体导带底 的电子逸出体外所需要的最小能量。
半导体的功函数又可表示为 Ws= + Ec ( EF ) s = En=Ec-(EF)s 又称肖特基势垒
+En
27
半导体功函数与杂质浓度的关系(计算值)
28
2.接触电势差 (1)设想有一块金属和一块n型半导体,它们有共
q
Vm金属的电势;Vs半导体电势;Vms:接触电势;Vs:表面电势
31
d)忽略间隙
若D小到可以与原子间距相比较, 电子就可自由穿过间隙,这时 Vms很小,接触电势差绝大部分 降落在空间电荷区。 特点: 1)(Ws-Wm)/q=Vs。 2)半导体一边的势垒高度为 qVD=-qVs=Wm-Ws
3)金属一边的势垒高度: q ns=qVD+En=-qVs+En=Wm-Ws+En电作用主要是库仑势。表面离子的 配位数、空位等缺陷,对氧化物的 对氧 化物的电子 电子 结构 结构有明显影响 有明显影响。
46
47
(7)
48
49
50
(8)氧化物-半导体界面态
氧化物-半导体界面电子态(Si-SiO2)
•化学处理后的硅表面会存在一层极薄SiO2层。 •对Si表面电子输运有影响是SiO2-Si的界面所 形成的附加态,即界面态。因为在外场作用 下响应时间快。
15
能带图特点: 1) 电子从费米能级高的n 区流向费米能级低的p区,空 穴则从p区流向n区,因而EFn 下移,而EFp移,直至EFn=EFp 时为止。这时p-n结中有统一 的费米级能Ef 2)空间电荷区内电势V(x) V(x):np降低 电子电势能-qV(x) n p区不断升高
EFn和EFp分别表示n型和p型半导 体的费米能级

32
4) 半导体表面形成一个正的空间电荷
区,电场体内指向表面;Vs0,半导 体表面电子的能量高于体内,能带向 上弯曲,形成表面势垒。势垒空间中 空间电荷由电离施主形成, 电子浓度比体内小,形成一个阻挡层。
33
n型Ge、Si,GaAs的qns 测量值(300K)
34
3.3 表面势与表面态
35
部分电子和空穴 “存入”势垒区
电子和空穴中和
势垒区宽度变窄, 空间电荷数量减少
22
当p-n结加正向偏压时,势垒区的电场随正向偏压的增 加而减弱势垒区宽度变窄,空间电荷数量减少,因为空 间电荷是由不能移动的杂质离子组成的,所以空间电荷 的减少是由于n区的电子和p区的空穴过来中和了势垒区 中一部分电离施主和电离受主; 在外加正向偏压增加时,将有一部分电子和空穴“存入” 势垒区。反之,当正向偏压减小时,势垒区的电场增强, 势垒区宽度增加,空间电荷数量增多,这就是有一部分电 子和空穴从势垒区中“取出”。 p-n结上外加电压的变化,引起了电子和空穴在势垒区的 “存入”和“取出”作用,导致势垒区的空间电荷数量随 外加电压而变化,这和一个电容器的充放电作用相似。这 种p-n结的电容效应称为势垒电容
23
扩散电容
电子从n 区 注入P区, 增加了P区 的电子积累, 增加了浓度 梯度
相关文档
最新文档