最新倒立摆系统的控制器设计
倒立摆模糊控制系统设计
倒立摆模糊控制系统设计摘要:本文针对倒立摆的运动控制问题,设计了一种模糊控制系统,用于实现倒立摆的平衡控制。
首先,对于倒立摆的动力学建模进行了分析,并通过控制算法确定了控制系统的目标和控制策略。
然后,根据倒立摆在不同状态下的响应特点,设计了合适的模糊控制规则,并调节了控制参数,以实现系统的优化控制。
最后,在实验中验证了该控制系统的有效性和稳定性。
关键词:倒立摆;模糊控制;动态建模;控制规则设计目标:实现倒立摆的平衡控制,使其能稳定地保持在竖直状态。
设计过程:一、动态建模倒立摆是一种非线性系统,因此需要对其进行动态建模。
考虑倒立摆的运动方程:mL2θ¨+mgLsinθ=up其中,m为摆球的质量,L为摆杆的长度,g为重力加速度,θ为摆杆与竖直方向的夹角,up为施加在摆杆末端的控制力。
将θ和θ¨分别记做y和v,则系统的状态方程可以表示为:y'=v二、控制算法倒立摆的控制目标是使其保持在竖直状态,即y=0,v=0。
根据控制算法的思想,需要设计一个合适的控制策略,使得系统能够在有限时间内达到目标状态并保持在该状态。
采用PD控制器设计控制策略,其中Kp和Kd分别表示比例增益和微分增益。
up=Kp(y-0)+Kd(v-0)三、模糊控制规则根据倒立摆在不同状态下的响应特点,设计了合适的模糊控制规则。
具体而言,将y 和v的取值范围划分为若干个模糊集合,对应于不同的控制动作。
例如,当y远离目标点0时,需要施加较大的控制力;而当y接近目标点时,应逐渐减小控制力以避免过度响应。
通过实验和调节控制参数,确定了合适的模糊控制规则和参数设置,以实现倒立摆的优化控制。
结果与讨论:通过实验验证,该模糊控制系统能够实现倒立摆的平衡控制,并且具有一定的鲁棒性和稳定性。
在控制参数设置上,应根据倒立摆的特点和实际应用需求,进行适当调整,以实现最优控制效果。
自动控制原理课程设计——倒立摆系统控制器设计
一、引言支点在下,重心在上,恒不稳定的系统或装置的叫倒立摆。
倒立摆控制系统是一个复杂的、不稳定的、非线性系统,是进行控制理论教学及开展各种控制实验的理想实验平台。
问题的提出倒立摆系统按摆杆数量的不同,可分为一级,二级,三级倒立摆等,多级摆的摆杆之间属于自有连接(即无电动机或其他驱动设备)。
对倒立摆系统的研究能有效的反映控制中的许多典型问题:如非线性问题、鲁棒性问题、镇定问题、随动问题以及跟踪问题等。
通过对倒立摆的控制,用来检验新的控制方法是否有较强的处理非线性和不稳定性问题的能力。
倒立摆的控制问题就是使摆杆尽快地达到一个平衡位置,并且使之没有大的振荡和过大的角度和速度。
当摆杆到达期望的位置后,系统能克服随机扰动而保持稳定的位置。
倒立摆的控制方法倒立摆系统的输入来自传感器的小车与摆杆的实际位置信号,与期望值进行比较后,通过控制算法得到控制量,再经数模转换驱动直流电机实现倒立摆的实时控制。
直流电机通过皮带带动小车在固定的轨道上运动,摆杆的一端安装在小车上,能以此点为轴心使摆杆能在垂直的平面上自由地摆动。
作用力u平行于铁轨的方向作用于小车,使杆绕小车上的轴在竖直平面内旋转,小车沿着水平铁轨运动。
当没有作用力时,摆杆处于垂直的稳定的平衡位置(竖直向下)。
为了使杆子摆动或者达到竖直向上的稳定,需要给小车一个控制力,使其在轨道上被往前或朝后拉动。
本次设计中我们采用其中的牛顿-欧拉方法建立直线型一级倒立摆系统的数学模型,然后通过开环响应分析对该模型进行分析,并利用学习的古典控制理论和Matlab /Simulink仿真软件对系统进行控制器的设计,主要采用根轨迹法,频域法以及PID(比例-积分-微分)控制器进行模拟控制矫正。
2 直线倒立摆数学模型的建立直线一级倒立摆由直线运动模块和一级摆体组件组成,是最常见的倒立摆之一,直线倒立摆是在直线运动模块上装有摆体组件,直线运动模块有一个自由度,小车可以沿导轨水平运动,在小车上装载不同的摆体组件。
自动控制原理课程设计-倒立摆系统控制器设计
1 引言支点在下,重心在上,恒不稳定的系统或装置的叫倒立摆。
倒立摆控制系统是一个复杂的、不稳定的、非线性系统,是进行控制理论教学及开展各种控制实验的理想实验平台。
1.1 问题的提出倒立摆系统按摆杆数量的不同,可分为一级,二级,三级倒立摆等,多级摆的摆杆之间属于自有连接(即无电动机或其他驱动设备)。
对倒立摆系统的研究能有效的反映控制中的许多典型问题:如非线性问题、鲁棒性问题、镇定问题、随动问题以及跟踪问题等。
通过对倒立摆的控制,用来检验新的控制方法是否有较强的处理非线性和不稳定性问题的能力。
倒立摆的控制问题就是使摆杆尽快地达到一个平衡位置,并且使之没有大的振荡和过大的角度和速度。
当摆杆到达期望的位置后,系统能克服随机扰动而保持稳定的位置。
1.2 倒立摆的控制方法倒立摆系统的输入来自传感器的小车与摆杆的实际位置信号,与期望值进行比较后,通过控制算法得到控制量,再经数模转换驱动直流电机实现倒立摆的实时控制。
直流电机通过皮带带动小车在固定的轨道上运动,摆杆的一端安装在小车上,能以此点为轴心使摆杆能在垂直的平面上自由地摆动。
作用力u平行于铁轨的方向作用于小车,使杆绕小车上的轴在竖直平面内旋转,小车沿着水平铁轨运动。
当没有作用力时,摆杆处于垂直的稳定的平衡位置(竖直向下)。
为了使杆子摆动或者达到竖直向上的稳定,需要给小车一个控制力,使其在轨道上被往前或朝后拉动。
本次设计中我们采用其中的牛顿-欧拉方法建立直线型一级倒立摆系统的数学模型,然后通过开环响应分析对该模型进行分析,并利用学习的古典控制理论和Matlab /Simulink仿真软件对系统进行控制器的设计,主要采用根轨迹法,频域法以及PID(比例-积分-微分)控制器进行模拟控制矫正。
2 直线倒立摆数学模型的建立直线一级倒立摆由直线运动模块和一级摆体组件组成,是最常见的倒立摆之一,直线倒立摆是在直线运动模块上装有摆体组件,直线运动模块有一个自由度,小车可以沿导轨水平运动,在小车上装载不同的摆体组件。
基于PID的倒立摆控制系统设计
基于PID的倒立摆控制系统设计摘要:倒立摆(Inverted Pendulum)控制系统设计是控制理论教学中的一种典型的实验对象,具有很高的教学和科研价值。
本文基于PID控制算法,设计一个倒立摆控制系统,对倒立摆进行控制。
首先介绍了倒立摆系统模型和其动力学方程,然后详细介绍PID控制算法的原理和设计方法,并将其应用于倒立摆系统中,进行控制器的设计。
最后,通过MATLAB/Simulink软件进行系统仿真,并对仿真结果进行分析和讨论。
研究结果表明,PID控制算法能够有效地控制倒立摆系统,并且具有良好的控制性能和稳定性。
一、引言倒立摆控制系统是一种实验教学中常见的控制对象,其模型简单、控制复杂度适中,具有很高的教学和科研价值。
倒立摆系统被广泛应用于控制理论教学、控制算法研究以及控制系统设计等领域。
PID控制是一种常用的控制算法,具有简单、易实现、稳定性好等特点。
因此,本文将基于PID控制算法设计一个倒立摆控制系统,对倒立摆进行控制。
二、倒立摆系统模型和动力学方程倒立摆系统由一个竖直放置的杆和一个可沿杆轴线做直线运动的摆组成。
根据杆的位置和速度,可以得到倒立摆的状态变量,进而得到系统的动力学方程。
本文采用小角度近似,假设杆的运动范围很小,可以将其近似为线性系统,动力学方程可以表示为:$$(M+m)l\ddot{\theta}-ml\ddot{x}\cos(\theta)+m\sin(\theta)g=0$$$$\ddot{x}-\ddot{\theta}l=0$$其中,M为杆的质量,m为摆的质量,l为杆的长度,g为重力加速度,x为摆的位置,$\theta$为杆的倾斜角度。
三、PID控制算法原理和设计方法PID控制算法是一种基于误差信号的反馈控制算法,由比例控制、积分控制和微分控制三部分组成。
比例控制根据当前误差的大小进行控制;积分控制用于消除系统的稳态误差;微分控制用于预测误差的变化趋势,提高系统的响应速度和稳定性。
倒立摆的LQR稳定控制器设计
——现代控制理论实验
一、实验目的和要求
• 熟悉倒立摆的系统组成 • 学习利用MATLAB软件进行控制器的设计与仿真 • 运用LQR理论设计倒立摆的稳定控制器 • 设计的控制器能够成功进行倒立摆实时控制
二、倒立摆系统原理
计算机
运动控制卡
伺服驱动器
伺服电机
倒立摆
光电码盘1 光电码盘2
• 倒立摆系统原理图
三、理论分析
•二次型最优调节器问题 :
已知状态完全能控的线性连续定常系统,其状态方 程为:
x(t) Ax(t) Bu(t) x(0) x0
确定下列最优控制向量:
u*(t) Kx(t)
使得下列二次型性能指标达到最小值:
J (u) 1 [xT (t)Qx(t) uT (t)Ru(t)]dt 20
0 27.83
0x 0
0 1
x
0.8832u 0
0
2.357
x
x 1
y
0
0 0
0 1
0 0
x
0 0u
LQR控制器的设计
• 开环仿真
LQR控制器的设计
• 使用完全状态反馈设计控制器
• 系统在阶跃输入R作用下会偏离平衡状态,需要设计控 制器使得摆杆在控制器的作用下仍然回到垂直位置, 小车可以到达新的指定位置。
LQR控制器的设计
可以通过改变Q阵的非零元素来调节控制器以得到期望 的响应。
(2)取Q=diag(3000 0 1000 0),R=1时:
K=[-54.772,-34.419,117.17,21.918]
此时的目标泛函:
J 2
1 2ห้องสมุดไป่ตู้
倒立摆系统地控制器设计
目录摘要................................................................... - 2 - 1 倒立摆系统概述.............................................................. - 3 -1.1倒立摆的种类.......................................................... - 3 -1.2系统的组成............................................................ - 3 -1.3工程背景.............................................................. - 3 -2 数学模型的建立.............................................................. - 4 -2.1牛顿力学法系统分析.................................................... - 4 -2.2拉氏变换后实际系统的模型.............................................. - 7 -3 开环响应分析................................................................ - 8 -4 根轨迹法设计............................................................... - 10 -4.1校正前倒立摆系统的闭环传递函数的分析................................. - 10 -4.2系统稳定性分析....................................................... - 10 -4.3 根轨迹设计........................................................... - 11 -4.4 SIMULINK仿真........................................................ - 14 -5 直线一级倒立摆频域法设计.................................................. - 15 -5.1 系统频域响应分析..................................................... - 15 -5.2频域法控制器设计..................................................... - 16 -5.2.1控制器的选择................................................... - 16 -5.2.2系统开环增益的计算............................................. - 17 -5.2.3校正装置的频率分析............................................. - 17 -5.3 Simulink仿真........................................................ - 21 -6 直线一级倒立摆的PID控制设计.............................................. - 22 -6.1 PID简介............................................................. - 22 -6.2 PID控制设计分析..................................................... - 22 -6.3 PID控制器的参数测定................................................. - 23 -7 总结与体会................................................................. - 26 -7.1总结................................................................. - 26 -7.2体会................................................................. - 26 - 参考文献..................................................................... - 27 -摘 要倒立摆是一种典型的非线性,多变量,强耦合,不稳定系统,许多抽象的控制概念如系统的稳定性、可控性、系统的抗干扰能力等都可以通过倒立摆直观的反应出来;倒立摆的控制思想在实际中如实验、教学、科研中也得到广泛的应用;在火箭飞行姿态的控制、人工智能、机器人站立与行走等领域有广阔的开发和利用前景。
倒立摆系统的控制器设计1(含5篇)
倒立摆系统的控制器设计1(含5篇)第一篇:倒立摆系统的控制器设计1刘翰林倒立摆系统的控制器设计引言1.1 问题的提出生活在大千世界里,摆无处不在。
何为摆?支点在下,重心在上,恒不稳定的系统或装置的叫倒立摆。
相反,支点在上而重心在下的则称为顺摆。
现实生活中,旋转着的芭蕾舞演员,杂技的顶伞,墙上挂钟的钟摆,工作中的吊车等都可被看作是一个摆。
倒立摆的种类繁多,其中包括悬挂式、直线、环形、平面倒立摆等。
一级、二级、三级、四级乃至多级倒立摆。
1.2 倒立摆系统简介倒立摆是机器人技术、控制理论、计算机控制等多个领域、多种技术的有机结合,其被控系统本身又是一个绝对不稳定、高阶次、多变量、强耦合的非线性系统,可以作为一个典型的控制对象对其进行研究。
最初研究开始于二十世纪50年代,麻省理工学院(MIT)的控制论专家根据火箭发射助推器原理设计出一级立摆实验设备。
近年来,新的控制方法不断出现,人们试图通过倒立摆这样一个典型的控制对象,检验新的控制方法是否有较强的处理多变量、非线性和绝对不稳定系统的能力,从而从中找出最优秀的控制方法。
倒立摆系统作为控制理论究中的一种比较理想的实验手段,为自动控制理论的教学、实验和科研构建一个良好的实验平台,以用来检验某种控制理论或方法的典型方案,促进了控制系统新理论、新思想的发展。
由于控制理论的广泛应用,由此系统研究产生的方法和技术将在半导体及精密仪器加工、机器人控制技术、人工智能、导弹拦截控制系统、航空对接控制技术、火箭发射中的垂直度控制、卫星飞行中的姿态控和一般工业应用等方面具有广阔的利用开发前景。
平面倒立摆可以比较真实的模拟火箭的飞行控制和步行机器人的稳定控制等方面的研究。
1.3 倒立摆的分类倒立摆已经由原来的直线一级倒立摆扩展出很多种类,典型的有直线倒立摆,环形倒立摆,平面倒立摆和复合倒立摆等,倒立摆系统是在运动模块上装有倒立摆装置,由于在相同的运动模块上可以装载不同的倒立摆装置,倒立摆的种类由此而丰富很多,按倒立摆的结构来分,有以下类型的倒立摆: 1)直线倒立摆系列直线倒立摆是在直线运动模块上装有摆体组件,直线运动模块有一个自由度,小车可以沿导轨水平运动,在小车上装载不同的摆体组件,可以组成很多类别的倒立摆,直线柔性倒立摆和一般直线倒立摆的不同之处在于,柔性倒立摆有两个可以沿导轨滑动的小车,并且在主动小车和从动小车之间增加了一个弹簧,作为柔性关节。
倒立摆系统的控制器设计
自动控制理论课程设计倒立摆系统的控制器设计学生姓名:李可达指导教师:黄建明班级:自动化6班学号:20105107重庆大学自动化学院二O一二年十二月课程设计指导教师评定成绩表项目分值优秀(100>x≥90)良好(90>x≥80)中等(80>x≥70)及格(70>x≥60)不及格(x<60)评分参考标准参考标准参考标准参考标准参考标准学习态度15学习态度认真,科学作风严谨,严格保证设计时间并按任务书中规定的进度开展各项工作学习态度比较认真,科学作风良好,能按期圆满完成任务书规定的任务学习态度尚好,遵守组织纪律,基本保证设计时间,按期完成各项工作学习态度尚可,能遵守组织纪律,能按期完成任务学习马虎,纪律涣散,工作作风不严谨,不能保证设计时间和进度技术水平与实际能力25设计合理、理论分析与计算正确,实验数据准确,有很强的实际动手能力、经济分析能力和计算机应用能力,文献查阅能力强、引用合理、调查调研非常合理、可信设计合理、理论分析与计算正确,实验数据比较准确,有较强的实际动手能力、经济分析能力和计算机应用能力,文献引用、调查调研比较合理、可信设计合理,理论分析与计算基本正确,实验数据比较准确,有一定的实际动手能力,主要文献引用、调查调研比较可信设计基本合理,理论分析与计算无大错,实验数据无大错设计不合理,理论分析与计算有原则错误,实验数据不可靠,实际动手能力差,文献引用、调查调研有较大的问题创新10 有重大改进或独特见解,有一定实用价值有较大改进或新颖的见解,实用性尚可有一定改进或新的见解有一定见解观念陈旧论文(计算书、图纸)撰写质量50结构严谨,逻辑性强,层次清晰,语言准确,文字流畅,完全符合规范化要求,书写工整或用计算机打印成文;图纸非常工整、清晰结构合理,符合逻辑,文章层次分明,语言准确,文字流畅,符合规范化要求,书写工整或用计算机打印成文;图纸工整、清晰结构合理,层次较为分明,文理通顺,基本达到规范化要求,书写比较工整;图纸比较工整、清晰结构基本合理,逻辑基本清楚,文字尚通顺,勉强达到规范化要求;图纸比较工整内容空泛,结构混乱,文字表达不清,错别字较多,达不到规范化要求;图纸不工整或不清晰指导教师评定成绩:指导教师签名:年月日课程设计题目 倒立摆系统的控制器设计学院 自动化学院 专业 自动化年级 2010级1、已知参数和设计要求:M :小车质量 1.096kg m :摆杆质量 0.109kg b :小车摩擦系数 0.1N/sec l :摆杆转动轴心到杆质心的长度 0.25m I :摆杆惯量 0.0034kgm 2建立以小车加速度为系统输入,以摆杆角度为系统输出的被控对象数学模型。
直线型一级倒立摆系统的控制器设计
直线型一级倒立摆系统的控制器设计引言1. 设计目的(1)熟悉直线型一级倒立摆系统(2)掌握极点配置算法(3)掌握MATLAB/simulink动态仿真技术2. 设计要求基于极点配置算法完成对于直线型一级倒立摆系统的控制器设计3. 系统说明倒立摆控制系统是一个复杂的、不稳定的、非线性系统,对倒立摆系统的研究能有效的反映控制中的许多典型问题:如非线性问题、鲁棒性问题、镇定问题、随动问题以及跟踪问题等。
通过对倒立摆的控制,用来检验新的控制方法是否有较强的处理非线性和不稳定性问题的能力。
同时,其控制方法在军工、航天、机器人和一般工业过程领域中都有着广泛的用途,如机器人行走过程中的平衡控制、火箭发射中的垂直度控制和卫星飞行中的姿态控制等。
4. 设计任务(1)建立直线型一级倒立摆系统的状态空间表达式。
(2)对该系统的稳定性、能观性、能控性进行分析。
(3)应用极点配置法对该直线型一级倒立摆系统进行控制器设计。
(4)使用MATLAB/simulink软件验证设计结果目录设计目的........................................................................................... 2-4设计要求:. (4)系统说明:....................................................................................... 4-5设计任务........................................................................................... 5-8运行结果......................................................................................... 8-11收获与体会.. (10)参考文献 (12)1. 设计目的(1)熟悉直线型一级倒立摆系统倒立摆控制系统是一个复杂的、不稳定的、非线性系统,对倒立摆系统的研究能有效的反映控制中的许多典型问题:如非线性问题、鲁棒性问题、镇定问题、随动问题以及跟踪问题等。
直线倒立摆系统的LQR控制器设计及仿真_毕业设计精品
直线倒立摆系统的LQR控制器设计及仿真_毕业设计精品1.引言直线倒立摆系统主要由一个质量块和一个固定的轨道组成,质量块可以在轨道上自由运动。
该系统的目标是在面对各种扰动时保持质量块的平衡。
LQR控制器是一种优化控制方法,可以通过调整控制器的参数来实现系统动态响应的优化。
2.直线倒立摆系统建模m*x''+b*v+m*g=f-u在LQR控制器设计过程中,需要将系统的动力学方程转化为状态空间模型。
定义状态变量为x1=x,x2=x',那么系统的状态空间模型可以表示为:x1'=x2x2'=(1/m)*(f-u-b*x2-m*g)3.LQR控制器设计LQR控制器设计的目标是通过调整控制器的参数来最小化系统的性能指标J。
在直线倒立摆系统中,我们可以选择以能耗作为性能指标,即J = ∫(u(t)^2)dt。
那么LQR控制器设计的目标是最小化能耗。
LQR控制器设计方法的关键是设计系统的状态反馈增益矩阵K。
具体的设计步骤如下:1)将系统的状态空间模型表示为矩阵形式:x'=Ax+Buy=Cx+Du其中,A为状态转移矩阵,B为输入矩阵,C是输出矩阵,D为直接递增矩阵。
2) 根据系统的状态空间模型计算系统的LQR控制器增益矩阵K。
增益矩阵K可以通过解代数矩阵Riccati方程得到:K=(R+B'*S*B)^(-1)*B'*S*A其中,S为Riccati方程的解。
3) 计算系统的控制器增益矩阵L。
增益矩阵L可以通过解代数矩阵Riccati方程得到:L=(R+B'*S*B)^(-1)*B'*S*C4.LQR控制器仿真在设计完成LQR控制器之后,可以进行仿真实验来验证控制器的效果。
可以使用MATLAB或Simulink来进行仿真。
在仿真实验中,需要设置各个参数的初始值,并且加入一些扰动以测试控制器的稳定性。
通过观察系统的状态变量和控制力的响应曲线,可以评估控制器的性能。
倒立摆控制系统的设计与实现
倒立摆控制系统的设计与实现引言倒立摆是一种复杂的机械系统,在工业自动化、机器人学、航空航天等领域都有广泛应用。
如何掌控倒立摆的姿态是一个重要的问题,因此进行控制系统的设计和实现是必不可少的。
本文将介绍倒立摆控制系统的设计和实现。
一、倒立摆系统的组成倒立摆系统是由一个摆杆和一个转轴组成的。
摆杆通过转轴和转动连接到支架上。
倒立摆的底部是一个电机,用于向倒立摆施加力。
二、倒立摆系统的控制原理控制倒立摆的核心原理是反馈控制。
传感器将倒立摆的状态信息反馈给控制器,控制器计算出所需的力矩,然后电机施加所需的力矩将摆杆保持在垂直状态。
三、倒立摆系统的控制器设计1.控制器的类型在倒立摆控制系统中,传统的PID控制器被广泛使用。
此外,还有一些高级控制器,如模糊控制器和神经网络控制器。
2.传感器的选择为了计算正确的力矩,我们需要一个准确的传感器。
我们可以选择陀螺仪、加速度计或角度传感器。
3.控制器参数调整控制器参数调整是控制器设计的关键部分之一。
所选的控制器对系统响应时间、稳态误差和阻尼比等指标具有不同的影响。
通过不断调整控制器的参数,使系统保持稳定并快速响应。
四、倒立摆系统的实现在实际的倒立摆系统中,除了控制器外,还需要编写程序来将传感器数据反馈给控制器,计算力矩并控制电机。
此外,还需要设计电路板和选择适当的电机来控制摆杆的倾斜。
五、倒立摆系统的应用1.教育倒立摆系统可以用于教授物理、控制工程和机器人学等学科的基础知识。
其可视化和实验性质使其非常适合用于学术教学。
2.机器人学倒立摆控制系统在机器人学中得到广泛应用。
它可以用于控制机器人臂的运动,以及控制移动机器人的平衡。
3.摆臂系统倒立摆控制系统还可以用于改进摆臂系统,以控制各种工艺参数。
在重型机器和船舶等领域,通过控制倒立摆的悬挂动态平衡,可以使要处理的物品更加稳定。
结束语倒立摆控制系统是一项极具挑战性的工程。
它可以用于教学、机器人学和工业自动化等领域。
通过正确的传感器和控制器设计,结合适当的电路和机械设计,可以实现快速和精确的摆杆控制,从而取得非常好的结果,并具有广泛的应用前景。
倒立摆控制系统的设计
倒立摆控制系统的设计倒立摆是一个常见的控制系统示例,用于探索倒立摆的控制理论和设计方法。
倒立摆是一个由一个可旋转的杆和一个质量可忽略不计的小球组成的系统。
通过控制杆的角度和角速度,可以使小球保持在直立的位置上,即实现倒立摆系统的控制。
首先,需要建立倒立摆的数学模型。
数学模型可以通过运动学和动力学方程来描述。
运动学方程描述摆杆角度和角速度之间的关系,动力学方程描述摆杆受到的力和加速度之间的关系。
根据数学模型可以得到系统的传递函数,即将输入信号映射为输出信号的数学表达式。
其次,通过对系统传递函数进行稳定性分析,选择合适的PID参数。
PID控制器由比例项、积分项和微分项组成,可以通过调整这三个参数来实现系统的控制。
比例项用于调整响应速度,积分项用于消除稳态误差,微分项用于抑制震荡。
根据系统的稳定性分析,可以选择合适的PID参数。
然后,进行PID控制器的仿真和调整。
通过将PID控制器连接到倒立摆系统并进行仿真,在仿真中可以观察系统的响应和稳定性。
如果系统的响应不理想,可以通过调整PID参数来改善系统的性能。
最后,实施实际的控制系统,并进行参数调优。
将设计好的PID控制器实施到实际的倒立摆系统中,通过不断调整PID参数,观察系统的响应和稳定性,以达到设计要求。
此外,还可以采用其他控制策略进行倒立摆控制系统的设计。
模糊控制方法利用模糊推理和模糊集合来实现系统的控制,可以处理非线性和模糊的系统。
模型预测控制方法则利用建立系统动态模型进行优化预测,以实现更精确的控制。
在设计控制系统时,还需考虑实际应用中的实时性、鲁棒性和可扩展性等因素。
倒立摆控制系统的设计是一个综合技术问题,需要结合系统的特点和实际应用要求来进行综合设计。
总结起来,倒立摆控制系统的设计包括建立数学模型、选择控制策略和参数、仿真和调整PID控制器、实施及参数调优等步骤。
通过合理的设计和优化,可以实现倒立摆系统的稳定控制。
在实际应用中,还需考虑系统的实时性、鲁棒性和可扩展性等因素,对控制系统进行综合设计和优化。
倒立摆系统的控制器设计
14
& ( I + ml 2 )φ& − mglφ = ml&& x & ( M + m) && + bx − mlφ& = u x &
如果令 v = && ,进行拉普拉斯变换,得到 x 进行拉普拉斯变换, 摆杆角度和小车位移的传递函数: 摆杆角度和小车位移的传递函数:
Impulse Response 60 50 40 30 20
q = (M+m)*(I+m*l^2)-(m*l)^2; (M+m)*(I+m*l^2)-
10
0
0
0.2
0.4
0.6
0.8
1
num = [m*l/q 0 0] den = [1 b*(I+m*l^2)/q -(M+m)*m*g*l/q -b*m*g*l/q 0]
图 直线一级倒立摆控制系统
8
系统的组成:倒立摆系统由倒立摆本体, 系统的组成:倒立摆系统由倒立摆本体,电 控箱以及控制平台(包括运动控制卡和PC机 控箱以及控制平台(包括运动控制卡和 机)三 大部分组成。 大部分组成。
9
工程背景: 工程背景: (1) 机器人的站立与行走类似双倒立摆系统。 机器人的站立与行走类似双倒立摆系统。 (2) 在火箭等飞行器的飞行过程中为了保持其 正确的姿态要不断进行实时控制。 正确的姿态要不断进行实时控制。 (3) 通信卫星要保持其稳定的姿态使卫星天线 一直指向地球使它的太阳能电池板一直指向太阳。 一直指向地球使它的太阳能电池板一直指向太阳。 (4)为了提高侦察卫星中摄像机的摄像质量必须 (4)为了提高侦察卫星中摄像机的摄像质量必须 能自动地保持伺服云台的稳定消除震动。 能自动地保持伺服云台的稳定消除震动。 (5) 多级火箭飞行姿态的控制也可以用多级倒 立摆系统进行研究。 立摆系统进行研究。 倒立摆系统是机器人技术、控制理论、 倒立摆系统是机器人技术、控制理论、计算机 控制等多个领域、多种技术的有机结合。 控制等多个领域、多种技术的有机结合。
自动控制原理课程设计——倒立摆系统控制器设计
一、引言支点在下,重心在上,恒不稳定的系统或装置的叫倒立摆。
倒立摆控制系统是一个复杂的、不稳定的、非线性系统,是进行控制理论教学及开展各种控制实验的理想实验平台。
1.1问题的提出倒立摆系统按摆杆数量的不同,可分为一级,二级,三级倒立摆等,多级摆的摆杆之间属于自有连接(即无电动机或其他驱动设备)。
对倒立摆系统的研究能有效的反映控制中的许多典型问题:如非线性问题、鲁棒性问题、镇定问题、随动问题以及跟踪问题等。
通过对倒立摆的控制,用来检验新的控制方法是否有较强的处理非线性和不稳定性问题的能力。
倒立摆的控制问题就是使摆杆尽快地达到一个平衡位置,并且使之没有大的振荡和过大的角度和速度。
当摆杆到达期望的位置后,系统能克服随机扰动而保持稳定的位置。
1.2倒立摆的控制方法倒立摆系统的输入来自传感器的小车与摆杆的实际位置信号,与期望值进行比较后,通过控制算法得到控制量,再经数模转换驱动直流电机实现倒立摆的实时控制。
直流电机通过皮带带动小车在固定的轨道上运动,摆杆的一端安装在小车上,能以此点为轴心使摆杆能在垂直的平面上自由地摆动。
作用力u 平行于铁轨的方向作用于小车,使杆绕小车上的轴在竖直平面内旋转,小车沿着水平铁轨运动。
当没有作用力时,摆杆处于垂直的稳定的平衡位置(竖直向下)。
为了使杆子摆动或者达到竖直向上的稳定,需要给小车一个控制力,使其在轨道上被往前或朝后拉动。
本次设计中我们采用其中的牛顿-欧拉方法建立直线型一级倒立摆系统的数学模型,然后通过开环响应分析对该模型进行分析,并利用学习的古典控制理论和Matlab /Simulink 仿真软件对系统进行控制器的设计,主要采用根轨迹法,频域法以及PID(比例- 积分- 微分)控制器进行模拟控制矫正。
2 直线倒立摆数学模型的建立直线一级倒立摆由直线运动模块和一级摆体组件组成,是最常见的倒立摆之一,直线倒立摆是在直线运动模块上装有摆体组件,直线运动模块有一个自由度,小车可以沿导轨水平运动,在小车上装载不同的摆体组件。
PID控制的一阶倒立摆控制系统设计
PID控制的一阶倒立摆控制系统设计一阶倒立摆控制系统是一种常见的控制系统,通过PID控制器对倒立摆系统进行稳定控制,使其在一定的时间内达到平衡位置。
本文将详细介绍一阶倒立摆控制系统的设计流程和方法。
1.引言一阶倒立摆控制系统是一类具有非线性动力学特性的控制系统。
其基本结构包含一个摆杆和一个摆杆在垂直方向上运动的小车。
该控制系统的目标是通过调节小车的运动,使摆杆能够在垂直方向上保持平衡。
为了实现这个目标,我们需要设计一个有效的控制方案,并使用PID控制器对系统进行控制。
2.模型建立首先,我们需要建立一阶倒立摆系统的数学模型。
假设摆杆的长度为L,摆杆与水平线的夹角为θ,小车与水平线的位置为x,小车与水平线的速度为v。
根据牛顿运动定律和平衡条件,可以得到如下模型:m*x'=m*a=F(1)M*x'' = -F*l*sin(θ) - b*v (2)I*θ'' = F*l*cos(θ) - M*g*l*sin(θ) (3)其中,m是小车的质量,M是摆杆的质量,l是摆杆的长度,b是摩擦系数,g是重力加速度,I是摆杆的转动惯量。
将式(3)对时间t求导得到:I*θ''' = -b*l*θ' - M*g*l*cos(θ) (4)3.控制设计为了设计PID控制器,我们需要首先将系统模型线性化。
可以将非线性的动力学模型近似为线性模型,并在静态平衡点附近进行线性化。
静态平衡点是系统的平衡位置,满足以下条件:x=0,v=0,θ=0,θ'=0。
我们可以对系统模型进行泰勒级数展开,保留一阶项,得到如下线性化模型:m*x'=F(5)M*x''=-F*l*θ(6)I*θ''=F*l(7)经过线性化,系统的动力学模型变为了一组线性微分方程。
接下来,我们使用PID控制器对系统进行控制。
4.PID控制器设计PID控制器由比例项、积分项和微分项组成,用于校正系统输出与目标值之间的差异。
倒立摆的LQR稳定控制器设计
采用牛顿动力学方法可建立单级倒立摆系统的微分方程如下:
( M m) x bx ml cos ml 2 sin F ( I ml 2 ) mgl sin mlx cos
建立模型及分析
线性化后两个方程如下:
2 ( I ml ) mgl mlx ( M m) x bx ml u
-0.2
-0.4
-0.6
-0.8
-1
-1.2
0
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
LQR控制器的设计
(1)Q11=5000,Q33=100 得:K=[-70.7107 -38.1782 110.8049 20.3521] LQR控制的阶跃响应曲线
0.1 0.08 0.06 0.04 0.02 0 -0.02 -0.04 -0.06 小车位移 小车速度 摆杆角度 摆杆角速度
建立模型及分析建立模型及分析对建模后的一级倒立摆系统进行阶跃响应分析有下图由图可以看出小车位移和摆杆角度都是发散的所以倒立摆系统不稳定2000400060008000100005010015050100150stepresponsetimeseconds建立模型及分析建立模型及分析系统能控性是控制器设计的前提由能控性矩阵mbab利用matlab可得出rankm4所以系统完全可控
K R 1BT P
式中 P 是代数Riccati方程:
PA AT P PBR1BT P Q 0
的正定矩阵解 。
LQR控制器的设计
2.用完全状态反馈设计控制器
系统在阶跃输入R作用下会偏离平衡状态,需要设计控 制器使得摆杆在控制器的作用下仍然回到垂直位置,小 车可以到达新的指定位置。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录摘要.......................................................................................................................................... - 5 - 1 倒立摆系统概述................................................................................................................................ - 6 -1.1倒立摆的种类......................................................................................................................... - 6 -1.2系统的组成............................................................................................................................. - 6 -1.3工程背景................................................................................................................................. - 6 -2 数学模型的建立................................................................................................................................ - 7 -2.1牛顿力学法系统分析............................................................................................................. - 7 -2.2拉氏变换后实际系统的模型............................................................................................... - 10 -3 开环响应分析.................................................................................................................................. - 11 -4 根轨迹法设计.................................................................................................................................. - 13 -4.1校正前倒立摆系统的闭环传递函数的分析....................................................................... - 13 -4.2系统稳定性分析................................................................................................................... - 13 -4.3 根轨迹设计.......................................................................................................................... - 14 -4.4 SIMULINK仿真..................................................................................................................... - 17 -5 直线一级倒立摆频域法设计........................................................................................................ - 18 -5.1 系统频域响应分析.............................................................................................................. - 18 -5.2频域法控制器设计............................................................................................................... - 19 -5.2.1控制器的选择........................................................................................................... - 19 -5.2.2系统开环增益的计算............................................................................................... - 20 -5.2.3校正装置的频率分析............................................................................................... - 20 -5.3 Simulink仿真..................................................................................................................... - 24 -6 直线一级倒立摆的PID控制设计................................................................................................ - 25 -6.1 PID简介............................................................................................................................... - 25 -6.2 PID控制设计分析............................................................................................................... - 25 -6.3 PID控制器的参数测定....................................................................................................... - 26 -7 总结与体会...................................................................................................................................... - 29 -7.1总结....................................................................................................................................... - 29 -7.2体会....................................................................................................................................... - 29 - 参考文献.............................................................................................................................................. - 30 -摘要倒立摆是一种典型的非线性,多变量,强耦合,不稳定系统,许多抽象的控制概念如系统的稳定性、可控性、系统的抗干扰能力等都可以通过倒立摆直观的反应出来;倒立摆的控制思想在实际中如实验、教学、科研中也得到广泛的应用;在火箭飞行姿态的控制、人工智能、机器人站立与行走等领域有广阔的开发和利用前景。
因此,对倒立摆系统的研究具有十分重要的理论和实践意义。
本文首先将直线倒立摆抽象为简单的模型以便于受力分析进行机理建模,然后通过牛顿力学原理进行分析,得出相应的模型,进行拉氏变化带入相应参数得出摆杆角度和小车位移、摆杆角度和小车加速度、摆杆角度和小车所受外界作用力、小车位移与小车所受外界作用力的传递函数,其中摆杆角度和小车加速度之间的传递函数为:02()0.02725()()0.01021250.26705s G s V s s Φ==- ………………………(1) 即我们在本次设计中主要分析的系统的传递函数。
然后从时域角度着手,分析直线一级倒立摆的开环单位阶跃响应和单位脉冲响应,利用Matlab 中的Simulink 仿真工具进行仿真,得出结论该系统的开环响应是发散的。
最后分别利用根轨迹分析法,频域分析法和PID 控制法对倒立摆系统进行校正。