氮杂环卡宾
nhc分子量
nhc分子量分子量是指物质中所有原子的相对质量之和。
而NHC,即氮杂环卡宾(N-heterocyclic carbene),是一种重要的有机化合物,具有广泛应用于催化剂、配体和有机合成等领域的特性。
因此,了解NHC的分子量对于研究和应用都具有重要意义。
NHC的化学结构中,氮原子与两个碳原子形成一个五元杂环,并且该杂环中的两个空轨道电子被认为是NHC的特征性质。
根据NHC的分子式C₃H₄N₂,我们可以得到其分子量。
在计算分子量之前,我们需要了解不同元素的相对原子质量。
根据国际标准,碳的相对原子质量为12.01,氢的相对原子质量为1.008,氮的相对原子质量为14.01。
根据NHC的分子式C₃H₄N₂,我们可以分别计算出碳、氢和氮的相对原子质量。
因为NHC中有3个碳原子,所以将碳的相对原子质量乘以3;因为NHC中有4个氢原子,所以将氢的相对原子质量乘以4;因为NHC中有2个氮原子,所以将氮的相对原子质量乘以2。
然后将这三部分的结果相加,即可得到NHC的分子量。
具体计算过程如下:碳的相对原子质量:12.01 × 3 = 36.03氢的相对原子质量:1.008 × 4 = 4.032氮的相对原子质量:14.01 × 2 = 28.02NHC的分子量:36.03 + 4.032 + 28.02 = 68.082因此,NHC的分子量约为68.082。
这个数值对于研究和应用NHC 具有重要意义。
在催化剂领域,NHC通常与过渡金属形成复合物催化剂,其催化性能与分子量相关。
此外,分子量也与化合物的物理性质和反应特性相关。
值得注意的是,NHC是一类化合物的统称,而不仅仅指代某一个具体化合物。
因此,不同的NHC化合物可能具有不同的分子量。
对于特定的NHC化合物,我们需要根据其分子式来计算分子量。
通过对NHC分子量的计算,我们可以更好地理解和掌握这类化合物的特性和应用。
在实际科研和工程应用中,准确的分子量信息对于确定化合物的纯度、计算反应物的摩尔数等问题都具有重要意义。
氮杂环卡宾(nhc) 电子组态
氮杂环卡宾(nhc) 电子组态1 什么是氮杂环卡宾(NHC)氮杂环卡宾(NHC)是一种新型的有机电子组态,又称氮杂环卡宾醛。
它是存在于一种稳定的卡宾结构中的卡宾醛,其中含有C,N,O或Si三种元素。
这种组态有很多优势,包括稳定性、高级结构特征及分子结构,这些特征都有助于控制各种有机反应的过程和产物的产生。
2 氮杂环卡宾(NHC)的电子组态氮杂环卡宾(NHC)电子组态属同分异构体,它们具有不同的结构并且存在着明显的电子轨道重叠区。
氮杂环卡宾(NHC)通过它们共享电子对稳定性提供了增强,这是由于它们含有弥散电子源,可以被视为能量场中的活性区域。
这种能量场对活性区域周围的自旋状态及结合产生影响。
3 氮杂环卡宾(NHC)的应用氮杂环卡宾(NHC)具有非常广泛的应用,主要研究领域包括催化剂、有机合成、有机电化学等。
其中,催化剂是氮杂环卡宾(NHC)的主要用途,为此氮杂环卡宾(NHC)有很多的Poisson–Boltzmann型的反应势,主要包括自由基活性化反应、缩合反应、氢转移反应等,不仅可以调节活性反应的性质,还能够提高活性化反应的活性。
除了催化剂之外,氮杂环卡宾(NHC)还可以用于有机合成、改性、聚合等,可以非常有效地促进复杂有机合成,而且活性和稳定性都比传统有机合成高。
氮杂环卡宾(NHC)还可以用于有机电化学,如催化伏安曲线电解质化、电沉积膜等,可以提高电化学反应的速率和效率。
4 后续发展氮杂环卡宾(NHC)是一种稳定性高、容易合成的有机组态,用于以上所提到的应用场景,均获得了很好的效果,未来有望在更多领域得到应用,如药物研发、催化合成等。
在未来,NHC可以被更好地利用,以期望达到更高效的发展,加速新的研究成果的应用,极大地满足人们的生活所需。
《氮杂环卡宾银、钯功能化的配位聚合物的合成及其催化性质的研究》
《氮杂环卡宾银、钯功能化的配位聚合物的合成及其催化性质的研究》一、引言近年来,随着科学技术的不断发展,金属与配体的配合物已成为众多化学和材料科学研究领域的重要组成部分。
特别地,含氮杂环卡宾银和钯的功能化配位聚合物,因其独特的结构特点和潜在的应用价值,引起了广泛的关注。
本篇论文主要针对此类配位聚合物的合成及其催化性质进行研究。
二、实验部分1. 材料与试剂实验所用的原料和试剂均购买自正规供应商,并在使用前未进行进一步的纯化处理。
实验中所使用的溶剂如甲醇、乙醇等均为分析纯。
2. 氮杂环卡宾银、钯功能化配位聚合物的合成根据预先设计好的实验方案,以氮杂环卡宾为配体,通过与银盐或钯盐进行反应,成功合成了氮杂环卡宾银、钯功能化的配位聚合物。
反应条件为:在适当的温度和压力下,将配体与金属盐溶液混合,经过一定时间的搅拌后,得到目标产物。
三、表征与分析通过核磁共振、X射线衍射、扫描电镜等手段对合成的配位聚合物进行了详细的表征。
结果表明,所合成的配位聚合物具有预期的结构和形态。
四、催化性质研究1. 催化加氢反应在适当的条件下,以所合成的氮杂环卡宾银、钯功能化的配位聚合物为催化剂,进行了催化加氢反应的实验。
实验结果表明,该催化剂在反应中表现出良好的催化活性,能有效地促进反应的进行。
2. 催化氧化反应此外,我们还研究了该催化剂在催化氧化反应中的性能。
实验结果表明,该催化剂在氧化反应中同样表现出良好的催化效果,能够有效地提高反应的转化率和选择性。
五、结论本论文成功合成了氮杂环卡宾银、钯功能化的配位聚合物,并对其进行了详细的表征。
通过催化加氢和氧化反应的实验研究,发现该催化剂具有良好的催化性能。
这为该类配位聚合物在催化领域的应用提供了有力的理论依据和实践经验。
未来我们将进一步研究其在实际工业生产中的应用前景。
六、展望尽管本论文对氮杂环卡宾银、钯功能化的配位聚合物的合成及其催化性质进行了研究,但仍有许多问题值得进一步探讨。
例如,可以尝试合成更多种类的此类配位聚合物,研究其结构与性能的关系;还可以探索其在其他类型反应中的应用,如烷基化反应等。
《氮杂环卡宾贵金属配合物的合成及其催化性能探究》
《氮杂环卡宾贵金属配合物的合成及其催化性能探究》一、引言随着对化学科学与技术的深入发展,对贵金属配合物的研究已日益增多。
特别是氮杂环卡宾贵金属配合物,由于其独特的结构和性质,在有机合成、催化、材料科学等领域中得到了广泛的应用。
本篇论文主要研究氮杂环卡宾贵金属配合物的合成及其催化性能,为该领域的研究提供理论依据和实验数据。
二、氮杂环卡宾贵金属配合物的合成1. 合成原料与试剂本实验采用氮杂环卡宾配体、贵金属盐等作为主要原料和试剂。
所有试剂均为分析纯,使用前未进行进一步处理。
2. 合成方法氮杂环卡宾贵金属配合物的合成主要采用溶液法。
首先将氮杂环卡宾配体与贵金属盐在有机溶剂中混合,加热搅拌一定时间后,冷却、过滤、洗涤、干燥,得到目标产物。
3. 合成结果与讨论通过单晶X射线衍射、元素分析、红外光谱等手段对合成的氮杂环卡宾贵金属配合物进行表征。
结果表明,我们成功合成了目标产物,其结构与预期相符。
三、催化性能探究1. 催化反应类型本实验主要探究氮杂环卡宾贵金属配合物在有机反应中的催化性能,如氢化反应、氧化反应、加成反应等。
2. 催化实验方法将氮杂环卡宾贵金属配合物作为催化剂,加入到底物中,在一定温度、压力和时间内进行反应。
通过对比有无催化剂条件下的反应结果,评估催化剂的催化性能。
3. 催化结果与讨论实验结果表明,氮杂环卡宾贵金属配合物在有机反应中具有良好的催化性能。
它能有效地降低反应活化能,提高反应速率,且对反应的选择性也有显著提高。
此外,该类催化剂具有良好的重复使用性,能有效降低生产成本。
四、结论本论文成功合成了氮杂环卡宾贵金属配合物,并对其催化性能进行了探究。
结果表明,该类催化剂在有机反应中具有良好的催化性能和重复使用性。
这为氮杂环卡宾贵金属配合物在有机合成、催化、材料科学等领域的应用提供了理论依据和实验数据。
未来,我们将进一步研究该类催化剂的合成方法和催化性能,以期在工业生产中发挥更大的作用。
五、展望随着科学技术的不断发展,对催化剂的性能要求也越来越高。
氮杂环卡宾 化学
氮杂环卡宾化学氮杂环卡宾是一类重要的有机化合物,具有独特的结构和化学性质。
本文将从氮杂环卡宾的定义、合成方法、反应性质以及应用领域等方面进行介绍,以便读者更好地了解和认识这一化合物。
我们来了解一下氮杂环卡宾的定义。
氮杂环卡宾是指具有含氮的环状结构,并且带有一个孤对电子的中间体。
它们通常具有高度的反应性和活性,可以与其他分子发生共价键形成新的化合物。
氮杂环卡宾的合成方法有多种途径。
其中最常用的方法是通过在反应体系中引入碱金属和相应的氮杂环前体来生成氮杂环卡宾。
例如,可以通过将相应的氨基化合物与碱金属反应,生成氮杂环卡宾的碱盐,然后再通过酸处理得到纯净的氮杂环卡宾。
氮杂环卡宾的反应性质非常丰富,可以进行多种不同类型的反应。
其中最重要的反应是与亲电试剂发生加成反应,形成新的碳-氮键。
此外,氮杂环卡宾还可以与自由基、亲核试剂等发生反应,生成各种不同的有机化合物。
这些反应使得氮杂环卡宾在有机合成化学领域中有着广泛的应用。
氮杂环卡宾在有机合成中的应用非常广泛。
它们可以作为中间体参与到复杂有机分子的合成中,例如用于合成天然产物、药物、高分子材料等。
此外,氮杂环卡宾还可以作为催化剂参与到有机反应中,促进反应的进行,提高反应的效率和选择性。
总结起来,氮杂环卡宾是一类重要的有机化合物,具有独特的结构和化学性质。
通过合适的合成方法可以得到纯净的氮杂环卡宾,并可以利用其丰富的反应性质进行有机合成和催化反应。
氮杂环卡宾在有机合成化学领域中有着广泛的应用,对于研究和开发新型有机化合物具有重要的意义。
希望通过本文的介绍,读者能够对氮杂环卡宾有一个更全面的了解。
《氮杂环卡宾贵金属配合物的合成及其催化性能探究》
《氮杂环卡宾贵金属配合物的合成及其催化性能探究》一、引言随着科学技术的不断发展,人们对有机合成与催化过程的需求愈发增长。
贵金属配合物以其独特的物理和化学性质,在许多化学反应中扮演着重要角色。
近年来,氮杂环卡宾贵金属配合物作为一种重要的催化剂体系,其合成与催化性能研究已成为化学领域的热点之一。
本文将就氮杂环卡宾贵金属配合物的合成及其催化性能进行详细探究。
二、氮杂环卡宾贵金属配合物的合成1. 合成方法氮杂环卡宾贵金属配合物的合成通常包括两个步骤:首先合成氮杂环卡宾配体,然后将其与贵金属盐进行配位反应。
常见的合成方法包括:溶剂法、固相法、微波法等。
本文采用溶剂法进行合成,以获得较高纯度的产品。
2. 实验步骤(1)配体的合成:以合适的氮杂环化合物为原料,通过适当的反应条件,合成氮杂环卡宾配体。
(2)配合物的合成:将合成的氮杂环卡宾配体与贵金属盐(如钯、铂、铑等)在溶剂中混合,控制温度和时间,进行配位反应。
通过优化反应条件,可得到较高产率的氮杂环卡宾贵金属配合物。
三、催化性能探究1. 反应类型氮杂环卡宾贵金属配合物在有机合成中具有广泛的应用,如烯烃氢化、烯烃氧化、交叉偶联等反应。
本文将着重探讨其在烯烃氢化反应中的催化性能。
2. 催化过程及性能评价(1)烯烃氢化反应:以氮杂环卡宾贵金属配合物为催化剂,加入底物和氢源,控制反应条件(如温度、压力、时间等),进行烯烃氢化反应。
通过对比不同催化剂的活性、选择性及稳定性,评价其催化性能。
(2)性能评价标准:以转化率、选择性、催化剂寿命等指标评价催化剂的催化性能。
同时,通过分析反应产物的结构,验证氮杂环卡宾贵金属配合物在催化过程中的作用机制。
四、结果与讨论1. 合成结果通过优化反应条件,成功合成了不同种类的氮杂环卡宾贵金属配合物。
通过元素分析、红外光谱、核磁共振等手段对产物进行表征,确认其结构与纯度。
2. 催化性能分析(1)烯烃氢化反应结果:在相同反应条件下,对比不同催化剂的催化性能。
氮杂环卡宾铁配合物的研究
氮杂环卡宾铁配合物的研究
氮杂环卡宾铁配合物的研究
氮杂环卡宾因其易合成、毒性小、空间位阻和电子效应易调控、与中心金属的配位能力强等特点,已成为构建金属有机化合物的一个重要配体.通常含氮杂环卡宾的金属配合物不仅具有很好的稳定性,而且还具有很好的催化性能.被用做催化剂用于各类反应.本文就氮杂环卡宾化合物的性质特征以及合成方法进行研究,并分析其与金属作用的原理.研究了以主要金属铁为例的氮杂环卡宾金属配合物的性质.
作者:张冲仲崇民 ZHANG Chong ZHONG Chong-min 作者单位:哈尔滨师范大学,黑龙江,哈尔滨,150025 刊名:化学工程师ISTIC英文刊名:CHEMICAL ENGINEER 年,卷(期):2008 22(12) 分类号:O626 关键词:卡宾杂环金属铁。
噻唑-2-亚基新型氮杂环卡宾配合物的合成及催化应用
噻唑-2-亚基新型氮杂环卡宾配合物的合成及催化应用噻唑-2-亚基新型氮杂环卡宾配合物的合成及催化应用摘要随着有机合成方法学的不断发展,氮杂环卡宾(N-heterocyclic carbenes,简称NHCs)作为广泛应用于金属催化中的配体之一,已经成为有机化学的一个重要分支领域。
本文将介绍一种新型的氮杂环卡宾配合物——噻唑-2-亚基氮杂环卡宾(thiazol-2-ylidene),并介绍其合成方法和催化应用。
一、引言有机合成中的催化剂起到了至关重要的作用,高效、环保的催化剂在有机合成领域具有广泛的应用前景。
噻唑-2-亚基氮杂环卡宾是一种新型的NHCs配体,具有多样化的结构和良好的配位能力,因此在金属催化反应中展现了出色的催化活性和选择性。
二、合成方法噻唑-2-亚基氮杂环卡宾的合成一般采用两步法。
首先,通过中等强度碱和卤代噻唑的反应在适当的溶剂中得到相应的亚胺盐。
然后,将亚胺盐与碱金属碱金属碱金属醇盐反应,得到最终的噻唑-2-亚基氮杂环卡宾配合物。
三、催化应用噻唑-2-亚基氮杂环卡宾配合物在有机合成中具有广泛的应用,其优点主要体现在以下几个方面:1. 金属催化反应中的配体稳定性:噻唑-2-亚基氮杂环卡宾配合物具有较高的稳定性,可以在较苛刻的催化反应条件下提供稳定的配体环境。
2. 催化剂的可调性:通过改变噻唑-2-亚基氮杂环卡宾上的不同取代基团,可以调节配合物的电子性质,从而达到调控催化剂活性和选择性的目的。
3. 催化反应的高效性:噻唑-2-亚基氮杂环卡宾作为配体可以提供良好的相容性和反应活性,可以应用于碳-碳键和碳-氮键的形成等不同类型的反应中。
四、案例分析1. 噻唑-2-亚基氮杂环卡宾配合物在铜催化的偶联反应中的应用:将噻唑-2-亚基氮杂环卡宾配合物与醛类底物经过铜的催化,在温和的条件下进行偶联反应,得到相应的过渡金属配合物。
该反应具有较高的立体选择性和良好的产率,可应用于有机合成的天然产物的构建中。
N-杂环卡宾的合成和应用【文献综述】
毕业论文文献综述应用化学N-杂环卡宾的合成和应用1 前言1.1 卡宾卡宾(carbene)又称碳烯,一般以R2C表示,指碳原子上只有两个键连有基团,还剩有两个未成键电子的高活性中间体。
卡宾的寿命远低于一秒,只能在低温下(77K以下)捕获,在晶格中加以分离和观察。
卡宾与碳自由基一样,属于不带正负电荷的中性活泼中间体。
卡宾只有6个价电子,含有一个电中性的二价碳原子,在这个碳原子上有两个未成键的电子。
卡宾是一种强Lewis酸,具有很强的亲电性。
1.2 N-杂环卡宾最早对N-杂环卡宾的研究起始于1960年,当时Wanzlick[1]等对噻唑-2-碳烯进行了详尽透彻的研究。
由于噻唑-2-碳烯类化合物异常的活泼性,尽管在当时Wanzlick并没有成功通过分离技术得到N-杂环卡宾,但是他们意识到咪唑环中邻位氮原子的给电子效应可以稳定2-位上的卡宾中心,这一思想为之后的N-杂环卡宾化学的发展奠定了基础。
在这之后,N-杂环卡宾引起了化学家们的广泛的研究兴趣。
在近十几年来,N-杂环卡宾的的研究得到了迅速的发展,特别是在金属成键的配位化学这一领域。
最近几年,N-杂环卡宾的金属络合物作为一种催化剂,已经在多个领域取得了广泛的应用。
N-杂环卡宾被看作是一种有机膦配体的代替品。
在某一些有机金属催化反应方面,N-杂环卡宾被当做配体已经成功取代了应用广泛的膦配体。
由于在催化方面的出色表现,N-杂环卡宾配合物的合成及其催化性质的研究受到了国内外化学家的关注。
1.2.1N-杂环卡宾的分类及其应用常见的N-杂环卡宾根据环上氮原子的数目不同或氮原子位置的不同有咪唑型卡宾,三唑型卡宾等。
N-杂环卡宾一般以单线态形式存在,卡宾碳原子采用sp2杂化形式,卡宾碳原子周围有6个电子,是一个缺电子体系,卡宾碳原子上的一对电子处在σ轨道上。
从电子共轭效应考虑,2个氮原子p轨道上的孤对电子和卡宾碳原子上的空p轨道可以发生给电子共轭效应,这样降低了卡宾碳原子的缺电子性。
N-杂环卡宾的合成和应用【文献综述】
毕业论文文献综述应用化学N-杂环卡宾的合成和应用1 前言1.1 卡宾卡宾(carbene)又称碳烯,一般以R2C表示,指碳原子上只有两个键连有基团,还剩有两个未成键电子的高活性中间体。
卡宾的寿命远低于一秒,只能在低温下(77K以下)捕获,在晶格中加以分离和观察。
卡宾与碳自由基一样,属于不带正负电荷的中性活泼中间体。
卡宾只有6个价电子,含有一个电中性的二价碳原子,在这个碳原子上有两个未成键的电子。
卡宾是一种强Lewis酸,具有很强的亲电性。
1.2 N-杂环卡宾最早对N-杂环卡宾的研究起始于1960年,当时Wanzlick[1]等对噻唑-2-碳烯进行了详尽透彻的研究。
由于噻唑-2-碳烯类化合物异常的活泼性,尽管在当时Wanzlick并没有成功通过分离技术得到N-杂环卡宾,但是他们意识到咪唑环中邻位氮原子的给电子效应可以稳定2-位上的卡宾中心,这一思想为之后的N-杂环卡宾化学的发展奠定了基础。
在这之后,N-杂环卡宾引起了化学家们的广泛的研究兴趣。
在近十几年来,N-杂环卡宾的的研究得到了迅速的发展,特别是在金属成键的配位化学这一领域。
最近几年,N-杂环卡宾的金属络合物作为一种催化剂,已经在多个领域取得了广泛的应用。
N-杂环卡宾被看作是一种有机膦配体的代替品。
在某一些有机金属催化反应方面,N-杂环卡宾被当做配体已经成功取代了应用广泛的膦配体。
由于在催化方面的出色表现,N-杂环卡宾配合物的合成及其催化性质的研究受到了国内外化学家的关注。
1.2.1N-杂环卡宾的分类及其应用常见的N-杂环卡宾根据环上氮原子的数目不同或氮原子位置的不同有咪唑型卡宾,三唑型卡宾等。
N-杂环卡宾一般以单线态形式存在,卡宾碳原子采用sp2杂化形式,卡宾碳原子周围有6个电子,是一个缺电子体系,卡宾碳原子上的一对电子处在σ轨道上。
从电子共轭效应考虑,2个氮原子p轨道上的孤对电子和卡宾碳原子上的空p轨道可以发生给电子共轭效应,这样降低了卡宾碳原子的缺电子性。
氮杂环卡宾 化学
氮杂环卡宾化学氮杂环卡宾是一类具有高度活性的中间体,其中氮原子取代了碳原子的位置。
它们通常具有一个孤对电子,使其成为一种强力的亲电试剂。
由于其特殊的电子结构,氮杂环卡宾在有机合成和金属配位化学中发挥着重要的作用。
氮杂环卡宾的研究始于20世纪50年代,当时化学家们开始研究含有五元环的杂环卡宾。
随着研究的深入,氮杂环卡宾的多样性和应用领域逐渐扩展。
目前已经发现了许多种类的氮杂环卡宾,如三唑酮卡宾、吡唑卡宾、吡咯卡宾等。
氮杂环卡宾具有独特的反应性质,可以参与多种有机合成反应。
最常见的反应是它们与亲核试剂的加成反应,如与醇、胺等亲核试剂的加成反应,形成相应的加合物。
此外,氮杂环卡宾还可以与酰基、烯烃、炔烃等进行环化反应,生成具有特殊结构的化合物。
氮杂环卡宾还可以与金属形成配位化合物。
这些配位化合物具有重要的催化性质,在有机合成和金属有机化学领域广泛应用。
例如,氮杂环卡宾与贵金属形成的配位化合物可以催化碳-氮键或碳-碳键的形成,从而实现复杂有机分子的构建。
除了在有机合成和金属配位化学中的应用,氮杂环卡宾还在材料科学领域发挥着重要的作用。
由于其特殊的电子结构和反应性质,氮杂环卡宾可以用来构建具有特殊功能的材料,如光电材料、荧光材料等。
虽然氮杂环卡宾具有许多有用的特性,但由于它们的高度活性和不稳定性,其研究和应用还面临着许多挑战。
例如,氮杂环卡宾的合成方法仍然较为困难,需要使用特殊的试剂和条件。
此外,由于其高度活性,氮杂环卡宾在反应中往往会与其他试剂发生副反应,导致产物的选择性降低。
氮杂环卡宾是一类具有高度活性和独特反应性质的化合物。
它们在有机合成、金属配位化学和材料科学等领域具有重要的应用价值。
随着对氮杂环卡宾研究的深入,相信我们将能够更好地理解其特性和应用,为化学领域的发展做出更大的贡献。
【文献综述】氮杂卡宾对二异丙基碳二亚胺的活化
N CN这种神秘作用的研究。
在1958年,Breslow就认识到在众多酶催化反应中氮杂环卡宾作为亲核催化剂扮演着重要的角色。
他的开创性工作告诉人们辅酶维生素B1 7,天然产生的噻唑盐,在生物化学转化反应中起了至关重要的作用。
这是最早的涉及到氮杂环卡宾催化化学的研究[13]。
氮杂环卡宾作为有机小分子催化剂在许多有机反应中表现出了很好的催化效果,如氮杂环卡宾可以催化不对称安息香缩合反应、Stetter反应、醛与亚胺的反应、α,β-不饱和醛与醛/酮的反应、酮参与的安息香类型的反应、醛和醇的反应、芳基氟化物的酰基化反应,酯基交换反应以及聚合反应等[14],在这里不再做详细介绍。
由于卡宾特殊的配位能力,在许多关键的有机合成催化起着重要作用:如C-H键的活化、C-H、C-C、C-O和C-N键的形成,氮杂环卡宾都能稳定和活化金属中心。
氮杂环卡宾被看作膦配体的代替和扩展,在一些有机金属催化反应方面,氮杂环卡宾作为配体已经取代了应用普遍的膦配体。
氮杂环卡宾类的配体与有机膦配体相比较,具有更好的金属键合能力以及更灵活多变的空间位阻和电子效应,并且易于制备;结构类型多样化;对热、水和空气稳定等[15]。
1.4 氮杂环卡宾金属配合物的应用以上提到了氮杂环卡宾与各种物质的反应,以及在催化其它反应上的重要作用;氮杂环卡宾除了自身非常活泼的反应性能外,更多研究的是以其为配体的络合物在重要反应中的应用。
这些络合物主要以金属配体为主的络合物,而其它物质作为配体的络合物的研究还不是很多。
1.4.1 氮杂环卡宾金属配合物在碳-碳多重键硅氢加成反应中的应用氮杂环卡宾金属配合物是合成Si-C键最经济、最有效的方法之一,也是合成硅烷偶联剂最直接、最经济、最有效、最绿色的方法。
而硅氢加成中最核心的部分是高性能(高活性、高选择性、高稳定性)催化剂的研究。
Peris等首次合成了一系列的单卡宾配位和双卡宾配位的Rh-NHC配合物,并将这些Rh-NHC 配合物用于催化苯乙烯、乙炔苯和已炔的硅氢加成反应;2006年,Peris等用相似的方法合成了双卡宾配位的Rh-NHC配合物,并用于催化乙炔苯和已炔与二甲基苯基氢硅烷和三乙氧基氢硅烷的硅氢加成反应,得到较好的炔烃的转化率[16]。
氮杂环卡宾单线态
氮杂环卡宾单线态
氮杂环卡宾单线态(NitrogenHeterocyclicCarbene,NHC)是一种具有卡宾特征的氮杂环化合物。
它由一个含有一个孤对电子的氮原子和一个带有两个共轭碳氮双键的杂环构成。
NHC分子可以通过抽取一个氢原子形成一个空的p轨道,使其能够与金属离子形成稳定的配合物。
NHC单线态具有以下几个特点:
1.孤对电子:NHC单线态的氮原子上有一个孤对电子。
这个孤对电子是由于氮原子的化学性质,具有较高的反键性。
这使得NHC分子能够与金属离子形成稳定的配合物,并广泛应用于金属催化反应中。
2.强碱性:由于孤对电子的存在,NHC单线态具有较强的碱性。
它可以与强酸发生反应,形成相应的盐。
3.稳定性:NHC单线态的分子结构相对稳定,能够在常规反应条件下进行催化反应。
它在金属催化反应中表现出较好的催化效果,包括氧化还原反应、羰基化反应、氨基化反应等。
4.高反应活性:NHC单线态能够与金属离子形成强键,并提供活性位点用于催化反应的进行。
它的配体特性使得金属离子在反应中能够发挥更高的催化效果,提高反应速率和选择性。
总结来说,氮杂环卡宾单线态是一种具有孤对电子和碱性的
化合物,具有较好的稳定性和较高的反应活性。
它在金属催化
反应中发挥重要的作用,并在有机合成中具有广泛的应用潜力。
常见的氮杂环卡宾催化剂
常见的氮杂环卡宾催化剂嘿,朋友们,今天咱们来聊聊一个在化学界闪闪发光的明星——氮杂环卡宾催化剂!别担心,听起来可能有点高大上,但其实它们跟咱们生活中的很多东西都有关系。
想象一下,在你的厨房里,你的妈妈用调料来提味,这些催化剂就像化学反应中的调味料,能让反应变得更加美味可口。
好,咱们开始吧!1. 什么是氮杂环卡宾?1.1 卡宾的来历首先,咱们得了解一下什么是卡宾。
简单说,卡宾就是一种比较神秘的化合物,它的结构中有一个碳原子上只挂着两个基团,哦,对了,还有一个孤立的电子!这让它变得非常活跃,像个小火箭,随时准备去参与各种化学反应。
而氮杂环卡宾,顾名思义,里面多了个氮原子,形成了一个小环,这样的结构让它更加稳定,反应也更顺畅。
1.2 重要性与应用那么,这些小家伙有什么用呢?哎呀,别小看它们哦,氮杂环卡宾在有机合成中可谓是“神兵天将”。
比如,在药物合成、材料科学等领域,它们都能大显身手。
就像是超级英雄出场,能够加速反应、提高选择性,让复杂的反应变得简单易行。
说到底,这可不是一件小事,化学界需要这样的小助手来推动科学进步呢!2. 常见的氮杂环卡宾催化剂2.1 N杂环卡宾(NHC)谈到氮杂环卡宾,N杂环卡宾(NHC)可是当仁不让的明星。
它们的结构简单,通常由一个氮原子和两个碳原子组成,像个小小的三角形。
这些NHC可不止长得好看,它们在催化反应中的表现更是让人刮目相看。
用它们催化的反应速度简直飞起,谁还敢说化学难呢?2.2 其他类型的催化剂除了NHC,咱们还有其他类型的氮杂环卡宾催化剂,比如叫做“吡咯烷卡宾”的那种。
这些小家伙的结构稍微复杂一点,但它们的活性同样不容小觑。
在某些特殊的反应中,吡咯烷卡宾能表现出极好的催化效果,简直是“有备而来”,让科学家们兴奋不已。
3. 如何使用氮杂环卡宾?3.1 实际操作说到这儿,很多人可能会问,那我该如何使用这些氮杂环卡宾呢?其实,使用起来并没有想象中那么复杂。
大多数情况下,研究人员会先合成出这种催化剂,然后在反应体系中添加进去,调节温度和时间,让它们尽情发挥。
氮杂环卡宾催化 2-吡喃酮化合物
氮杂环卡宾催化 2-吡喃酮化合物下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!氮杂环卡宾催化 2吡喃酮化合物合成的新进展摘要:氮杂环卡宾是一类重要的有机催化剂,在有机合成领域发挥着重要作用。
同核氮杂环卡宾铜化合物的合成
同核氮杂环卡宾铜化合物的合成
同核氮杂环卡宾铜化合物的合成方法有多种,以下是其中一种常用的合成方法:
1. 首先,准备好所需的原料和试剂:包括含氮杂环卡宾配体的底物、铜盐、还原剂、溶剂等。
2. 将含氮杂环卡宾配体的底物与铜盐反应。
通常情况下,可以将底物溶解在适当的溶剂中,加入铜盐,并加热反应。
反应的温度和时间可以根据具体的底物和反应条件进行调整。
3. 在反应过程中加入还原剂。
还原剂的选择可以根据具体的反应条件进行调整,常用的还原剂包括亚磷酸三乙酯、亚砜等。
还原剂的加入有助于促进反应的进行,并提高产物的收率。
4. 反应完成后,将反应液进行过滤或萃取,得到目标产物。
可以通过旋转蒸发或冷冻干燥等方法将产物从溶剂中分离出来。
需要注意的是,在合成同核氮杂环卡宾铜化合物时,由于氮杂环卡宾具有较强的还原性和不稳定性,因此需要在惰性气氛下进行反应,避免与空气中的氧气和水分接触。
此外,反应过程中需要控制反应温度和时间,以避免产生副反应或分解产物。
合成过程中还需要注意操作的安全性,避免对人身和环境造成危害。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
N‑Heterocyclic Carbene-Palladium(II)-1-Methylimidazole Complex-Catalyzed Direct C−H Bond Arylation of(Benz)imidazoles with Aryl ChloridesZheng-Song Gu,†Wen-Xin Chen,†and Li-Xiong Shao*,†,‡†College of Chemistry and Materials Engineering,Wenzhou University,Chashan University Town,Wenzhou,Zhejiang Province 325035,People’s Republic of China‡College of Chemistry and Life Sciences,Zhejiang Normal University,Jinhua,Zhejiang Province321004,People’s Republic of China *Supporting InformationINTRODUCTIONC2-arylated(benz)imidazoles are frequently found in various pharmaceuticals,biologically active compounds and materials.1 Recently,the transition metal-catalyzed direct C−H bond arylation of(benz)imidazoles has been noticed as a potentially more efficient and convenient alternative for the straightfor-ward synthesis of such compounds.2However,during the past years,the scope of the arylating reagents is limited to the more active aryl iodides and bromides.3To the best of our knowledge,only very few examples on the palladium-catalyzed direct C2-arylation of(benz)imidazoles using aryl chlorides in the presence of phosphine ligands were reported to date, despite their lower cost and more easy availability.4Therefore, despite that some progress has been made in the direct C2-arylation of(benz)imidazoles,the research for efficient methods using the more applicable,while less active,aryl chlorides as the arylating reagents is still in great demand.5 Previously,we have reported that a well-defined N-heterocyclic carbene-Pd(II)-1-methylimidazole[NHC-Pd(II)-Im]complex 1can easily activate aryl chlorides in traditional C−C couplings such asα-arylation of carbonyl compounds,6Suzuki−Miyaura coupling,7Mizoroki−Heck reaction,8Hiyama reaction9and C−N coupling.10Furthermore,in a very recent communication,we found that NHC-Pd(II)-Im complex1can also efficiently catalyze the direct C−H bond arylation of(benzo)oxazoles using aryl chlorides as the arylating reagents.11These results thus prompted us to further investigate its application in activating aryl chlorides toward the direct C2-arylation of (benz)imidazoles.Herein,we report these results in detail.■RESULTS AND DISCUSSIONInitially,1-methylbenzimidazole2a(0.49mmol)was chosen as the model substrate for the reaction with chlorobenzene3a(2.0equiv)in the presence of NHC-Pd(II)-Im complex1(2.0mol%)under various conditions.For example,in thefirst round, toluene/H2O(2.0mL/0.5equiv)was chosen as the solvents to evaluate the effect of bases.The best result was achieved usingKO t Bu as the base to give the desired product4a in89%yield (Table1,entry6),while in the presence of other bases such asK2CO3,KOH,K3PO4·3H2O,LiO t Bu and NaO t Bu,almost no product could be detected(Table1,entries1−5).The replacement of solvents from toluene/H2O to THF/H2O anddioxane/H2O resulted in product4a only being isolated in48 and40%yields,respectively(Table1,entries7and8).In addition,in the presence of other solvents such as DMSO/ H2O,DMF/H2O,CH3CN/H2O and DME/H2O,no desired product could be detected(Table1,entries9−12). Furthermore,after careful investigations,it was found that the amount of H2O dramatically affected the reaction.That is,the introduction of0.5equiv of H2O was found to be necessary for such transformation.For instance,only18%yield of product4a was obtained when dry toluene was used as the solvent(Table 1,entry13).When1.0equiv of H2O was added,a significantly higher yield(84%)was achieved(Table1,entry14).However, when the amount of H2O was increased to3.0equiv,the yield of4a drastically decreased to5%(Table1,entry15).These results thus encouraged us to further investigate the effect of H2O.It is known that KO t Bu will be partially hydrolyzed to KOHand HO t Bu under the above reaction conditions.Therefore, three more control experiments were carried out:(1)the combination of KO t Bu(1.5equiv),KOH(0.5equiv)and HO t Bu(0.5equiv)was introduced instead of KO t Bu(2.0Received:May9,2014Published:May28,2014©2014American Chemical /10.1021/jo5010058|.Chem.2014,79,5806−5811equiv)and H 2O (0.5equiv),and product 4a was obtained in a comparable yield (84%)(Table 1,entry 6and Scheme 1,eq 1);(2)the combination of KO t Bu (1.5equiv)and HO t Bu (0.5equiv)was introduced,and product 4a was also formed in a comparable yield (82%)(Table 1,entry 6and Scheme 1,eq 2);(3)the combination of KO t Bu (1.0equiv)and HO t Bu (1.0equiv)was introduced,and a similar yield of product 4a was observed (84%)(Table 1,entry 14and Scheme 1,eq 3).On the basis of these results,although the real function of H 2O was unclear at this stage,it could be inferred that when a combination of toluene and H 2O was used as the solvent,HO t Bu derived from the hydrolysis of KO t Bu might play an important role in such transformation.12We next explored the scope of the C2-arylation of 1-methylbenzimidazole 2a with a variety of aryl chlorides 3under the identical optimal experimental conditions.Under the suitable conditions,the procedure proved to be general on all substrates tested (Table 2).It seems that the substituents on the aryl chlorides 3a ffected the reactions to some extent.For example,for the reaction involving sterically hindered 2-methylphenyl chloride 3d ,good yields are obtained by simplyincreasing the catalyst loading,although only moderate yield can be obtained under the optimal reaction conditions (Table 2,entries 3and 4).For electron-rich aryl chlorides such as 4-methoxyphenyl chloride 3e and 4-dimethylaminophenyl chloride 3g ,slightly higher catalyst loading or elevated temperature is necessary for the achievement of higher yields (Table 2,entries 5and 6;entries 8and 9).In addition,heteroaryl chlorides such as 2-chloropyridine 3k and 2-chlorothiophene 3l could be used,giving rise to the desired products 4k and 4l in acceptable yields,respectively (Table 2,entries 13and 14).The reaction was further investigated using a variety of benzimidazoles 2and aryl chlorides 3as the substrates under the optimal conditions.As can be seen from Table 3,all 1-methylbenzimidazoles 2,regardless of electron-rich substituents such as 5,6-Me 2(2b ),5-Me (2c ),5-MeO (2e )or electron-poor substituents such as 5-F (2d )attaching on the phenyl groups,could react with aryl chlorides 3smoothly to give the desired C2-arylated products 4in good to high yields (Table 3,entries 1−17).In addition,it seems that for the reactions involving electron-poor 5-F-benzimidazole 2d ,better yields can be achieved under identical conditions (Table 3,entries 11−15).1-Benzylbenzimidazole 2f was also suitable for this reaction to give the corresponding products 4ad −4ag in good yields (Table 3,entries 18−21).Encouraged by the above results using benzimidazoles as the substrates,the optimal conditions were then expanded to theTable 1.Optimization for Complex 1Catalyzed Direct C −H Bond Arylation of 1-Methylbenzimidazole 2a with Chlorobenzene 3aentry a solvent base yield (%)1toluene/H 2O K 2CO 3ND2toluene/H 2O KOH ND3toluene/H 2O K 3PO 43H 2O ND4toluene/H 2O LiO t Bu ND5toluene/H 2O NaO t Bu <56toluene/H 2O KO t Bu 897THF/H 2O KO t Bu 488dioxane/H 2O KO t Bu 409DMSO/H 2O KO t Bu ND10DMF/H 2O KO t Bu ND11CH 3CN/H 2O KO t Bu ND12DME/H 2O KO t Bu ND13toluene KO t Bu 1814b toluene/H 2O KO t Bu 8415c toluene/H 2O KO t Bu 5a If not otherwise speci fied,all reactions were carried out using 2a (0.49mmol),3a (2.0equiv),base (2.0equiv),1(2.0mol %)in organic solvents (2.0mL)and H 2O (0.5equiv)at 120°C for 6h.b H 2O (1.0equiv)was added.c H 2O (3.0equiv)was added.Scheme 1.Three Control Experiments Table 2.NHC-Pd(II)-Im 1Catalyzed Direct C −H Bond Arylation of 1-Methylbenzimidazole 2a with Aryl Chlorides 3aIf not otherwise speci fied,all reactions were carried out using 2a (0.49mmol),3(2.0equiv),1(X mol %),KO t Bu (2.0equiv)in toluene/H2O (2.0mL/0.5equiv)at 120°C for 6h.b The temperature was 130°C./10.1021/jo5010058|J.Org.Chem.2014,79,5806−58115807reactions between 1-methylimidazole and aryl chlorides.It was found that the ratio between two substrates dramatically a ffected the reaction.For example,when the reaction between 1-methylimidazole (0.49mmol)and chlorobenzene (2.0equiv)was carried out under the optimal conditions shown in Table 1,entry 6,the desired C2-arylated product was obtained only in 29%yield,along with the 2,5-diarylated byproduct in 8%yield.To our pleasure,subtly changing the ratio of the substrates will result in exclusive C2-arylated selectivity.For instance,when excess 1-methylimidazole (2.0equiv)was used as the substrate,the desired C2-arylated products could be achieved in good to high yields as the sole product under the optimal conditions.The results are shown in Table 4.It seems that substituents on the aryl chlorides have some e ffect on the reaction.For example,aryl chlorides having electron-rich groups such as 4-Me (3b )and 3-Me (3c )gave better yields than that having electron-neutral (3a )and electron-poor 4-F group (3i )(Table 4,entries 2and 3vs entries 1and 5).In addition,2-methylphenyl chloride 3d gave inferior result (74%),maybe partially due to its steric hindrance (Table 4,entry 4).■CONCLUSIONS In conclusion,NHC-Pd(II)-Im complex,as the nonphosphine complex,was first used as the catalyst in the direct C −H bond arylation of (benz)imidazoles using the less expensive,less active,and easily available aryl chlorides as the arylating reagents.Under the optimal conditions,various (benz)-imidazoles can react with kinds of activated,unactivated,and deactivated aryl chlorides smoothly to give the desired C2-arylated products in good to high yields.13For instance,both substrates bearing electron-rich,-neutral,and -poor substituents are tolerated in such transformation.The NHC-Pd(II)complex catalyzed direct C −H bond arylation between (benz)imidazoles and aryl chlorides reported in this paper will become a good,economical,and e fficient supplement to the traditional methods for the formation of 2-aryl (benz)imidazoles.■EXPERIMENTAL SECTIONGeneral Remarks.Melting points are uncorrected.NMR spectra wererecordedat 300/500(for 1H NMR)or 75/125MHz (for 13CNMR),respectively.1H NMR and 13C NMR spectra recorded inCDCl 3solutionswere referenced to TMS (0.00ppm)and the residual solvent peak (77.0ppm),respectively.J -values are in anic solvents used were dried by standard methods.The mass analyzer type for thehigh resolution mass spectra (HRMS,ESI)is quadrupole.Other commercially obtained reagents were used without further puri fication.Flash column chromatography was performed on silica gel.General Procedure for the NHC-Pd(II)-Im Complex 1Catalyzed Reactions Between (Benz)imidazoles and Aryl Chlorides.Under N 2atmosphere,KO t Bu (0.98mmol),NHC-Pd(II)-Im complex 1(0.0098mmol),toluene (2.0mL),H 2O (0.245mmol),benzimidazoles 2(0.49mmol)and aryl chlorides 3(0.98mmol)weresuccessivelyadded into a Schlenk reaction tube.Themixture wasstirred vigorously at 120°C for 6h.Then the solvent wasremoved under reduced pressure,and the residue was puri fied by flashchromatography (eluent:petroleum ether/ethyl acetate =10:1forbenzimidazole derivatives and 3:1for imidazole derivatives)to give thepure products pound 4a :3j white solid (90.7mg,89%);1H NMR (CDCl 3,300MHz,TMS)δ7.85−7.76(m,3H),7.57−7.52(m,3H),7.41−7.29(m,3H);13C{H}NMR (CDCl 3,75MHz)δ153.7,142.9,136.5,130.1,129.7,129.4,128.6,122.7,122.4,119.8,109.6,pound 4b :3j white solid (92.6mg,85%);1H NMR (CDCl 3,300MHz,TMS)δ7.85−7.80(m,1H),7.64(d,J =8.1Hz,2H),7.36−7.25(m,5H),3.80(s,3H),2.42(s,3H);13C{H}NMR (CDCl 3,75MHz)δ153.8,142.8,139.7,136.4,129.24,129.17,127.1,122.5,122.2,119.5,109.5,31.5,21.3.Compound 4c :3j white solid (94.0mg,86%);1H NMR (CDCl 3,500MHz,TMS)δ7.83−7.81(m,1H),7.60(s,1H),7.49(d,J =7.5Hz,1H),7.37(t,J =7.5Hz,1H),7.34−7.28(m,4H),3.79(s,3H),2.42(s,3H);13C{H}NMR (CDCl 3,75MHz)δ153.8,142.7,138.5,136.4,130.4,130.1,129.9,128.3,126.2,122.6,122.3,119.6,109.5,31.5,21.3.Compound 4d :14white solid(80.4mg,74%);1H NMR (CDCl 3,500MHz,TMS)δ7.84−7.82(m,1H),7.44−7.30(m,7H),3.63(s,3H),2.27(s,3H);13C{H}NMR (CDCl 3,75MHz)δ153.7,142.9,Table 3.NHC-Pd(II)-Im 1Catalyzed Direct C −H Bond Arylation of Benzimidazoles 2with Aryl Chlorides 3entry a 2(R 2/R 3)3(R 1)yield (%)12b (5,6-Me 2/Me)3a (H)4m ,8722b 3b (4-Me)4n ,843b 2b 3e (4-OMe)4o ,8242b 3i (4-F)4p ,865b 2b 3j (4-vinyl)4q ,8462c (5-Me/Me)3a 4r ,8672c 3b 4s ,858b 2c 3e 4t ,8492c 3i 4u ,8810b 2c 3j 4v ,86112d (5-F/Me)3a 4w ,97122d 3b 4x ,96132d 3e 4y ,86142d 3i 4z ,96152d 3j 4aa ,88162e (5-OMe/Me)3a 4ab ,86172e 3b 4ac ,84182f (H/benzyl)3a 4ad ,84192f 3b 4ae ,8520b 2f 3e 4af ,82212f 3j 4ag ,84a If not otherwise speci fied,all reactions were carried out using 2a (0.49mmol),3(2.0equiv),1(2.0mol %),KO tBu (2.0equiv)in toluene/H 2O (2.0mL/0.5equiv)at 120°C for 6h.b NHC-Pd(II)-Im 1(3.0mol %)was added.Table 4.NHC-Pd(II)-Im 1Catalyzed Direct C −H Bond Arylation of 1-Methylimidazole 5with Aryl Chlorides 3entry a 3(R 1)[X]t (°C)yield (%)13a (H)21204ah ,8623b (4-Me)31404ai ,9933c (3-Me)31304aj ,9743d (2-Me)41404ak ,7453i (4-F)41404al ,8463j (4-vinyl)31304am ,87a All reactions were carried out using 5(2.0equiv),3(0.75mmol),KO tBu (2.0equiv),1(X mol %)in toluene/H 2O (2.0mL/0.5equiv)for 12h./10.1021/jo5010058|J.Org.Chem.2014,79,5806−58115808137.9,135.5,130.4,130.2,129.9,129.8,125.7,122.5,122.2,119.8, 109.4,30.5,19.6.Compound4e:3j white solid(96.2mg,82%);1H NMR(CDCl3, 300MHz,TMS)δ7.82−7.78(m,1H),7.72(d,J=7.5Hz,2H), 7.40−7.29(m,3H),7.05(d,J=7.5Hz,2H),3.89(s,3H),3.86(s, 3H);13C{H}NMR(CDCl3,75MHz)δ160.6,153.6,142.8,136.5, 130.7,122.38,122.37,122.2,119.4,114.0,109.4,55.3,31.6. Compound4f:15white solid(96.8mg,83%);1H NMR(CDCl3, 500MHz,TMS)δ7.84−7.82(m,1H),7.46−7.40(m,2H),7.34−7.30 (m,4H),7.07−7.05(m,1H),3.89(s,3H),3.88(s,3H);13C{H} NMR(CDCl3,75MHz)δ159.7,153.6,142.8,136.5,131.3,129.6, 122.8,122.4,121.6,119.8,115.9,114.6,109.6,55.4,31.7. Compound4g:16white solid(83.8mg,68%);1H NMR(CDCl3, 500MHz,TMS)δ7.80(dd,J=6.0,2.5Hz,1H),7.69(d,J=9.0Hz, 2H),7.35(dd,J=6.0,2.5Hz,1H),7.36−7.27(m,2H),6.81(d,J= 9.0Hz,2H),3.87(s,3H),3.05(s,6H);13C{H}NMR(CDCl3,75 MHz)δ154.6,151.0,143.0,136.6,130.3,121.94,121.91,119.1,117.2, 111.6,109.2,40.1,31.7.Compound4h:yellow liquid(107.2mg,87%);1H NMR(CDCl3, 300MHz,TMS)δ7.86−7.80(m,1H),7.39−7.28(m,4H),7.12−7.11 (m,1H),7.01−6.97(m,1H),6.87−6.83(m,1H),3.84(s,3H),3.01 (s,6H);13C{H}NMR(CDCl3,75MHz)δ154.7,150.6,142.8,136.5, 130.7,129.0,122.5,122.2,119.6,117.2,113.6,113.4,109.5,40.5,31.6; MS(ESI)252[M+H]+;HRMS(ESI)calcd for C16H18N3[M+H]+ 252.1495,found252.1506;IR(neat)ν2363,1607,1483,1436,1348, 1284,1242,1126,1062,990,956,845,776,737,695cm−1. Compound4i:17white solid(90.8mg,82%);1H NMR(CDCl3, 500MHz,TMS)δ7.82−7.80(m,1H),7.74(dd,J=8.5,5.0Hz,2H), 7.38−7.29(m,3H),7.21(t,J=8.5Hz,2H),3.82(s,3H);13C{H} NMR(CDCl3,125MHz)δ163.6(d,J C−F=249.0Hz),152.7,142.8, 136.5,131.3(d,J C−F=8.5Hz),130.2,126.3(d,J C−F=3.1Hz),123.8, 122.8,122.5,119.8,115.8(d,J C−F=21.6Hz),109.6,31.6. Compound4j:white solid(98.6mg,86%);mp116−117°C;1H NMR(CDCl3,300MHz,TMS)δ7.84−7.81(m,1H),7.71(d,J=8.1 Hz,2H),7.52(d,J=8.1Hz,2H),7.35−7.27(m,3H),6.75(dd,J= 17.7,10.8Hz,1H),5.84(d,J=17.7Hz,1H),5.34(d,J=10.8Hz, 1H),3.80(s,3H);13C{H}NMR(CDCl3,75MHz)δ153.1,142.3, 138.8,136.3,135.9,129.5,128.9,126.3,122.8,122.5,119.4,115.4, 109.6,31.6;MS(ESI)235[M+H]+;HRMS(ESI)calcd for C16H15N2[M+H]+235.1230,found235.1228;IR(neat)ν1630, 1464,1402,1377,1322,1250,993,909,851,821,760,745,738,702 cm−1.Compound4k:18white solid(57.5mg,56%);1H NMR(CDCl3, 300MHz,TMS)δ8.69−8.67(m,1H),8.38(d,J=8.1Hz,1H), 7.85−7.80(m,2H),7.44−7.28(m,4H),4.25(s,3H);13C{H}NMR (CDCl3,75MHz)δ150.5,150.2,148.5,142.3,137.2,136.8,124.7, 123.7,123.3,122.6,119.9,109.9,32.6.Compound4l:16white solid(61.0mg,58%);1H NMR(CDCl3, 300MHz,TMS)δ7.81−7.77(m,1H),7.57−7.55(m1H),7.51−7.49 (m,1H),7.35−7.26(m,3H),7.19−7.16(m,1H),3.94(s,3H);13C{H}NMR(CDCl3,75MHz)δ147.7,142.6,136.4,132.3,128.5,127.9,127.8,122.9,122.6,119.6,109.3,31.6.Compound4m:white solid(100.6mg,87%);mp171−172°C;1H NMR(CDCl3,300MHz,TMS)δ7.76−7.73(m,2H),7.57(s,1H), 7.54−7.47(m,3H),7.15(s,1H),3.81(s,3H),2.42(s,3H),2.40(s, 3H);13C{H}NMR(CDCl3,75MHz)δ152.9,141.5,135.2,131.9, 131.2,130.5,129.4,129.3,128.6,119.8,109.8,31.6,20.6,20.3;MS (ESI)237[M+H]+;HRMS(ESI)calcd for C16H17N2[M+H]+ 237.1386,found237.1402;IR(neat)ν1601,1534,1438,1381,1318, 1176,1020,1000,924,846,818,771,690cm−1.Compound4n:white solid(103.0mg,84%);mp122−123°C;1H NMR(CDCl3,300MHz,TMS)δ7.63(d,J=7.8Hz,2H),7.57(s, 1H),7.29(d,J=7.8Hz,2H),7.12(s,1H),3.77(s,3H),2.41(s,3H), 2.40(s,3H),2.38(s,3H);13C{H}NMR(CDCl3,75MHz)δ152.7, 140.6,139.7,134.8,131.9,131.3,129.25,129.18,126.9,119.3,109.8, 31.6,21.3,20.5,20.2;MS(ESI)251[M+H]+;HRMS(ESI)calcd for C17H19N2[M+H]+251.1543,found251.1552;IR(neat)ν1604, 1478,1461,1377,1323,1180,1140,1107,1014,871,850,819,729, 681cm−1.Compound4o:white solid(107.0mg,82%);mp147−148°C;1H NMR(CDCl3,300MHz,TMS)δ7.72(d,J=8.7Hz,2H),7.56(s, 1H),7.13(s,1H),7.01(d,J=8.7Hz,2H),3.86(s,3H),3.82(s,3H), 2.41(s,3H),2.38(s,3H);13C{H}NMR(CDCl3,75MHz)δ160.6, 153.0,141.5,135.2,131.6,131.0,130.7,122.9,119.6,114.0,109.7, 55.4,31.6,20.6,20.3;HRMS(ESI)calcd for C17H19N2O[M+H]+ 267.1492,found267.1495;IR(neat)ν1610,1481,1436,1382,1320, 1289,1242,1171,1022,875,831,792,750,717cm−1. Compound4p:white solid(107.0mg,86%);mp172−173°C;1H NMR(CDCl3,300MHz,TMS)δ7.74−7.68(m,2H),7.55(s,1H), 7.20−7.12(m,3H),3.77(s,3H),2.41(s,3H),2.38(s,3H);13C{H} NMR(CDCl3,75MHz)δ163.5(d,J C−F=248.8Hz),151.6,140.6, 134.8,132.2,131.6,131.3(d,J C−F=8.4Hz),130.2,126.0,123.5, 119.4,115.7(d,J C−F=21.7Hz),109.9,31.6,28.8,20.5,20.2;MS (ESI)255[M+H]+;HRMS(ESI)calcd for C16H15N2F[M+H]+ 255.1292,found255.1294;IR(neat)ν1607,1525,1436,1377,1318, 1219,1157,1003,837,809,730,706,674cm−1.Compound4q:white solid(107.9mg,84%);mp142−143°C;1H NMR(CDCl3,300MHz,TMS)δ7.74(d,J=8.4Hz,2H),7.58(s, 1H),7.53(d,J=8.4Hz,2H),7.15(s,1H),6.75(dd,J=17.4,11.1Hz, 1H),5.85(d,J=17.4Hz,1H),5.36(d,J=11.1Hz,1H),3.84(s,3H), 2.41(s,3H),2.38(s,3H);13C{H}NMR(CDCl3,75MHz)δ152.2, 140.7,138.7,136.0,134.9,132.1,131.5,129.4,129.0,126.3,119.4, 115.2,109.8,31.7,20.5,20.2;MS(ESI)263[M+H]+;HRMS(ESI) calcd for C18H19N2[M+H]+263.1543,found263.1545;IR(neat)ν1627,1461,1382,1323,1143,1059,1008,990,903,841,761,716, 686cm−1.Compound4r:white solid(93.6mg,86%);mp122−123°C;1H NMR(CDCl3,500MHz,TMS)δ7.73−7.71(m,2H),7.61(s,1H), 7.50−7.46(m,3H),7.22(d,J=8.0Hz,1H),7.12(d,J=8.0Hz,1H), 3.77(s,3H),2.49(s,3H);13C{H}NMR(CDCl3,125MHz)δ153.3, 142.6,134.4,132.0,129.8,129.5,129.2,128.5,124.2,119.2,109.1, 31.5,21.4;MS(ESI)223[M+H]+;HRMS(ESI)calcd for C15H15N2 [M+H]+223.1230,found223.1232;IR(neat)ν1494,1461,1372, 1322,1013,927,862,793,768,743,701,675cm−1.Compound4s:white solid(98.4mg,85%);mp118−119°C;1H NMR(CDCl3,300MHz,TMS)δ7.75(d,J=8.1Hz,2H),7.60(s, 1H),7.31(d,J=8.1Hz,2H),7.24(d,J=8.1Hz,1H),7.13(d,J=8.1 Hz,1H),3.81(s,3H),2.49(s,3H),2.42(s,3H);13C{H}NMR (CDCl3,75MHz)δ153.3,142.1,140.0,134.3,132.3,129.33,129.26, 126.6,124.3,119.0,109.1,31.7,21.5,21.4;MS(ESI)237[M+H]+; HRMS(ESI)calcd for C16H17N2[M+H]+237.1386,found 237.1401;IR(neat)ν1613,1475,1444,1377,1318,1020,878, 848,821,789,747,727cm−1.Compound4t:white solid(103.7mg,84%);mp105−106°C;1H NMR(CDCl3,300MHz,TMS)δ7.66(d,J=8.7Hz,2H),7.58(s, 1H),7.18(d,J=8.4Hz,1H),7.08(d,J=8.1Hz,1H),6.98(d,J=9.0 Hz,2H),3.82(s,3H),3.74(s,3H),2.48(s,3H);13C{H}NMR (CDCl3,75MHz)δ160.6,153.2,142.5,134.4,131.9130.6123.8, 122.1,118.9,113.9,108.9,55.2,31.5,21.4;MS(ESI)253[M+H]+; HRMS(ESI)calcd for C16H17N2O[M+H]+253.1335,found 253.1344;IR(neat)ν1607,1481,1464,1448,1385,1328,1179, 1245,1109,833,781,763,738,682cm−1.Compound4u:white solid(103.4mg,88%);mp129−130°C;1H NMR(CDCl3,300MHz,TMS)δ7.77−7.68(m,2H),7.58(s,1H), 7.27−7.11(m,4H),3.81(s,3H),2.49(s,3H);13C{H}NMR(CDCl3, 75MHz)δ163.6(d,J C−F=249.1Hz),152.3,142.2,134.3,132.5, 131.4(d,J C−F=8.5Hz),125.8,124.5,123.5,119.1,115.8(d,J C−F= 21.7Hz),109.2,31.6,28.8,21.5;MS(ESI)241[M+H]+;HRMS (ESI)calcd for C15H14N2F[M+H]+241.1136,found241.1132;IR (neat)ν1607,1537,1467,1381,1315,1235,1152,838,804,791,756, 733,682cm−1.Compound4v:white solid(104.5mg,86%);mp121−122°C;1H NMR(CDCl3,300MHz,TMS)δ7.68(d,J=8.1Hz,2H),7.60(s, 1H),7.49(d,J=8.1Hz,2H),7.19(d,J=8.4Hz,1H),7.10(d,J=8.4 Hz,1H),6.73(dd,J=17.7,10.8Hz,1H),5.82(d,J=17.7Hz,1H), 5.32(d,J=10.8Hz,1H),3.75(s,3H),2.48(s,3H);13C{H}NMR (CDCl3,75MHz)δ152.9,142.6,138.6,135.9,134.5,132.0,129.4, 129.0,126.2,124.2,119.1,115.2,109.0,31.6,21.4;MS(ESI)249[M +H]+;HRMS(ESI)calcd for C17H17N2[M+H]+249.1386,found/10.1021/jo5010058|.Chem.2014,79,5806−5811 5809249.1390;IR(neat)ν1621,1455,1382,1323,1250,1146,1059, 1017,985,899,843,791,739,686cm−1.Compound4w:white solid(107.5mg,97%);mp102−103°C;1H NMR(CDCl3,300MHz,TMS)δ7.73−7.70(m,2H),7.50−7.45(m, 4H),7.25−7.22(m,1H),7.02(td,J=9.0,2.4Hz,1H),3.80(s,3H);13C{H}NMR(CDCl3,75MHz)δ159.4(d,J C−F=236.0Hz),154.8,142.7(d,J C−F=12.6Hz),132.9,129.9,129.3(d,J C−F=19.1Hz), 128.6,111.1,110.7,109.9(d,J C−F=10.2Hz),105.1(d,J C−F=24.1 Hz),31.7;MS(ESI)227[M+H]+;HRMS(ESI)calcd for C14H12N2F[M+H]+227.0979,found227.0976;IR(neat)ν1621, 1593,1489,1472,1424,1374,1326,1143,1020,956,900,852,791, 776,751,702cm−1.Compound4x:a white solid(113.0mg,96%);mp117−118°C;1H NMR(CDCl3,300MHz,TMS)δ7.63(d,J=8.1Hz,2H),7.47(dd,J =9.3,2.4Hz,1H),7.33−7.25(m,3H),7.04(td,J=9.3,2.4Hz,1H), 3.83(s,3H),2.43(s,3H);13C{H}NMR(CDCl3,75MHz)δ159.5 (d,J C−F=236.3Hz),154.9,142.4,142.3,140.4,132.8,129.3(d,J C−F= 14.7Hz),126.3,111.2,110.8,110.0(d,J C−F=10.2Hz),105.0(d,J C−F =24.2Hz),31.8,21.4;MS(ESI)241[M+H]+;HRMS(ESI)calcd for C15H14N2F[M+H]+241.1136,found241.1147;IR(neat)ν1618, 1593,1483,1430,1382,1326,1242,1124,1014,955,855,828,803, 775,734,716cm−1.Compound4y:white solid(107.9mg,86%);mp105−106°C;1H NMR(CDCl3,300MHz,TMS)δ7.67(d,J=8.7Hz,2H),7.44(dd,J =9.0,2.4Hz,1H),7.23(dd,J=9.0,4.5Hz,1H),7.04−6.98(m,3H), 3.85(s,3H),3.80(s,3H);13C{H}NMR(CDCl3,75MHz)δ160.9, 159.4(d,J C−F=235.7Hz),154.8,142.6(d,J C−F=12.8Hz),132.8, 130.7,121.6,114.1,110.8,110.5,109.8(d,J C−F=10.2Hz),104.9(d, J C−F=24.1Hz),55.3,31.8;MS(ESI)257[M+H]+;HRMS(ESI) calcd for C15H14N2FO[M+H]+257.1085,found257.1098;IR(neat)ν1610,1481,1436,1334,1292,1242,1183,1115,1020,955,844, 826,796,778,741,716cm−1.Compound4z:a white solid(114.8mg,96%);mp124−125°C;1H NMR(CDCl3,300MHz,TMS)δ7.73(dd,J=8.4,5.4Hz,2H),7.45 (dd,J=9.3,2.4Hz,1H),7.29−7.18(m,3H),7.04(td,J=9.3,2.4Hz, 1H),3.82(s,3H);13C{H}NMR(CDCl3,75MHz)δ163.7(d,J C−F= 249.6Hz),159.5(d,J C−F=236.3Hz),153.9,142.6(d,J C−F=12.8 Hz),132.8,131.3(d,J C−F=8.5Hz),130.2,125.6(d,J C−F=3.2Hz), 115.9(d,J C−F=21.8Hz),111.3,111.0,110.0(d,J C−F=10.1Hz), 105.1(d,J C−F=24.1Hz),31.7;MS(ESI)245[M+H]+;HRMS (ESI)calcd for C14H11N2F2[M+H]+245.0885,found245.0895;IR (neat)ν1587,1483,1430,1388,1326,1233,1155,1121,1090,961, 850,803,733cm−1.Compound4aa:white solid(108.8mg,88%);mp144−145°C;1H NMR(CDCl3,300MHz,TMS)δ7.74(d,J=7.8Hz,2H),7.54(d,J =7.8Hz,2H),7.47(d,J=9.0Hz,1H),7.31(dd,J=9.0,4.5Hz,1H), 7.08(t,J=9.0Hz,1H),6.77(dd,J=17.4,10.8Hz,1H),5.87(d,J= 17.7Hz,1H),5.38(d,J=10.8Hz,1H),3.88(s,3H);13C{H}NMR (CDCl3,75MHz)δ159.4(d,J C−F=236.2Hz),154.5,142.7(d,J C−F =12.8Hz),139.0,135.8,132.9,129.4,128.6,126.4,115.5,111.0(d, J C−F=26.0Hz),109.9(d,J C−F=10.3Hz),105.1(d,J C−F=24.1Hz), 31.8;MS(ESI)252[M+H]+;HRMS(ESI)calcd for C16H14N2F[M +H]+253.1136,found253.1150;IR(neat)ν1624,1481,1438,1405, 1326,1273,1143,1000,959,909,895,851,803,738,712cm−1. Compound4ab:19white solid(100.4mg,86%);1H NMR(CDCl3, 300MHz,TMS)δ7.75−7.72(m,2H),7.53−7.47(m,3H),7.31(d,J =2.1Hz,1H),7.23(d,J=8.7Hz,1H),6.95(dd,J=9.0,5.4Hz,1H), 3.86(s,3H),3.80(s,3H);13C{H}NMR(CDCl3,75MHz)δ156.4, 153.5,142.9,130.9,129.7,129.6,129.2,128.6,112.9,110.0,101.5, 55.7,31.6.Compound4ac:white solid(103.7mg,84%);mp100−101°C;1H NMR(CDCl3,300MHz,TMS)δ7.63(d,J=8.1Hz,2H),7.32−7.30 (m,3H),7.23(d,J=8.7Hz,1H),6.95(dd,J=8.7,2.4Hz,1H),3.87 (s,3H),3.80(s,3H),2.43(s,3H);13C{H}NMR(CDCl3,75MHz)δ156.3,153.9,143.4,139.7,131.2,129.3,129.1,127.2,112.6,109.8, 101.7,55.8,31.7,21.3;MS(ESI)253[M+H]+;HRMS(ESI)calcd for C16H17N2O[M+H]+253.1335,found253.1351;IR(neat)ν1618,1590,1486,1433,1377,1332,1273,1194,1160,1028,948,826, 798,729,713cm−1.Compound4ad:20white solid(117.1mg,84%);1H NMR(CDCl3, 300MHz,TMS)δ7.88(d,J=8.1Hz,1H),7.68−7.66(m,2H), 7.44−7.38(m,3H),7.31−7.23(m,4H),7.20−7.15(m,2H),7.06(d,J =6.6Hz,2H),5.40(s,2H);13C{H}NMR(CDCl3,75MHz)δ154.0, 143.0,136.2,136.0,129.9,129.8,129.1,128.9,128.6,127.6,125.8, 122.9,122.5,119.8,110.4,48.2.Compound4ae:20white solid(124.2mg,85%);1H NMR(CDCl3, 300MHz,TMS)δ7.88(d,J=7.8Hz,1H),7.58(d,J=7.8Hz,2H), 7.29−7.15(m,8H),7.07(d,J=6.9Hz,2H),5.41(s,2H),2.38(s, 3H);13C{H}NMR(CDCl3,75MHz)δ154.0,142.5,140.1,136.2, 135.8,129.4,129.0,128.9,127.6,126.6,125.8,122.9,122.6,119.6, 110.4,48.3,21.3.Compound4af:20white solid(126.2mg,82%);1H NMR(CDCl3, 300MHz,TMS)δ7.86(d,J=8.1Hz,1H),7.63(d,J=8.7Hz,2H), 7.34−7.25(m,4H),7.23−7.15(m,2H),7.10−7.07(m,2H),6.97−6.92(m,2H),5.42(s,2H),3.81(s,3H);13C{H}NMR(CDCl3,75 MHz)δ160.9,153.8,142.4,136.2,135.8,130.6,129.0,127.7,125.8, 122.8,122.7,121.7,119.4,114.1,110.3,55.2,48.3.Compound4ag:white solid(127.6mg,84%);mp134−135°C;1H NMR(CDCl3,300MHz,TMS)δ7.90(d,J=7.8Hz,1H),7.67(d,J =7.2Hz,2H),7.47(d,J=7.2Hz,2H),7.30−7.08(m,8H),6.73(dd, J=17.4,10.5Hz,1H),5.82(d,J=17.4Hz,1H),5.45(s,2H),5.33(d, J=10.5Hz,1H);13C{H}NMR(CDCl3,75MHz)δ153.5,142.5, 138.9,136.0,135.81,135.78,129.2,128.9,128.7,127.6,126.4,125.7, 123.0,122.7,119.6,115.4,110.4,48.2;MS(ESI)311[M+H]+; HRMS(ESI)calcd for C22H19N2[M+H]+311.1543,found 311.1551;IR(neat)ν1604,1452,1388,1354,1326,1242,1157, 1076,980,917,854,778,761,724,716,695cm−1.Compound4ah:21colorless liquid(101.9mg,86%);1H NMR(500 MHz,CDCl3,TMS)δ7.62(d,J=8.0Hz,2H),7.45−7.38(m,3H), 7.11(s,1H),6.95(s,1H),3.72(s,3H);13C{H}NMR(125MHz, CDCl3)δ147.7,130.5,128.5,128.45,128.36,128.3,122.2,34.3. Compound4ai:22colorless liquid(127.8mg,99%);1H NMR(500 MHz,CDCl3,TMS)δ7.52(d,J=8.0Hz,2H),7.26(d,J=8.0Hz, 2H),7.10(d,J=0.9Hz,1H),6.95(d,J=0.9Hz,1H),3.73(s,3H), 2.40(s,3H);13C{H}NMR(125MHz,CDCl3)δ147.9,138.4,129.1, 128.4,128.2,127.7,122.0,34.6,21.2.Compound4aj:23colorless liquid(125.1mg,97%);1H NMR(500 MHz,CDCl3,TMS)δ7.47(s,1H),7.38(d,J=7.5Hz,1H),7.32(t,J =7.5Hz,1H),7.20(d,J=7.5Hz,1H),7.10(d,J=1.5Hz,1H),6.93 (d,J=1.5Hz,1H),3.71(s,3H),2.39(s,3H);13C{H}NMR(125 MHz,CDCl3)δ147.8,138.1,130.3,129.3,129.2,128.11,128.10, 125.3,122.1,34.3,21.2.Compound4ak:colorless liquid(95.5mg,74%);1H NMR(500 MHz,CDCl3,TMS)δ7.34−7.24(m,4H),7.13(s,1H),6.97(s,1H), 3.47(s,3H),2.22(s,3H);13C{H}NMR(125MHz,CDCl3)δ147.6, 138.2,130.3,130.22,130.18,129.1,128.0,125.4,120.4,33.2,19.5;MS (ESI)173[M+H]+;HRMS(ESI)calcd for C11H13N2[M+H]+ 173.1073,found173.1088;IR(neat)ν1623,1557,1471,1401,1338, 1282,1143,1116,1013,987,914,906,844,791,750,717,685cm−1. Compound4al:24colorless liquid(110.8mg,84%);1H NMR(500 MHz,CDCl3,TMS)δ7.60(dd,J=8.5,5.5Hz,2H),7.14(t,J=8.5 Hz,2H),7.10(d,J=1.0Hz,1H),6.96(d,J=1.0Hz,1H),3.72(s, 3H);13C{H}NMR(125MHz,CDCl3)δ162.9(d,J C−F=247.1Hz), 146.9,130.5(d,J C−F=8.3Hz),128.3,126.8(d,J C−F=3.3Hz),122.3, 115.5(d,J C−F=21.6Hz),34.3.Compound4am:colorless liquid(120.0mg,87%);1H NMR(500 MHz,CDCl3,TMS)δ7.60(d,J=8.5Hz,2H),7.48(d,J=8.5Hz, 2H),7.11(d,J=1.0Hz,1H),6.94(d,J=1.0Hz,1H),6.74(dd,J= 18.0,10.5Hz,1H),5.81(dd,J=18.0,0.5Hz,1H),5.30(dd,J=10.5, 0.5Hz,1H),3.72(s,3H);13C{H}NMR(125MHz,CDCl3)δ147.4, 137.5,136.1,129.8,128.5,128.3,126.1,122.4,114.6,34.4;MS(ESI) 185[M+H]+;HRMS(ESI)calcd for C12H13N2[M+H]+185.1073, found185.1083;IR(neat)ν1600,1504,1467,1454,1338,1275, 1129,1017,949,914,846,804,778,727,692cm−1./10.1021/jo5010058|.Chem.2014,79,5806−5811 5810ASSOCIATED CONTENT*Supporting InformationCopy of1H and13C NMR spectra of compounds4.This material is available free of charge via the Internet at http://.■AUTHOR INFORMATIONCorresponding Author*Fax:86-577-86689300.E-mail:shaolix@.NotesThe authors declare no competingfinancial interest.■ACKNOWLEDGMENTSFinancial support from Open Research Fund of Top Key Discipline of Chemistry in Zhejiang Provincial Colleges and Key Laboratory of the Ministry of Education for Advanced Catalysis Materials(Zhejiang Normal University)(No.ZJHX201305)is greatly appreciated.■REFERENCES(1)For some selected examples,please see:(a)Zhou,B.-H.;Li,B.-J.; Yi,W.;Bu,Z.-Z.;Ma,L.Bioorg.Med.Chem.Lett.2013,23,3759−3763.(b)Do,T.T.;Bae,J.H.;Yoo,S.I.;Lim,K.T.;Woo,H.Y.;Kim, J.H.Mol.Cryst.Liq.Cryst.2013,581,31−37.(c)Rahim,A.S.A.; Salhimi,S.M.;Arumugam,N.;Pi,L.C.;Yee,N.S.;Muttiah,N.N.; Keat,W.B.;Hamid,S.A.;Osman,H.;Mat,I.b.J.Enzyme Inhib.Med. Chem.2013,28,1255−1260.(d)Kamal,A.;Kashi Reddy,M.;Shaik, T.B.;Rajender;Srikanth,Y.V.V.;Santhosh Reddy,V.;Bharath Kumar,G.;Kalivendi,S.V.Eur.J.Med.Chem.2012,50,9−17.(e)Vitale,G.;Corona,P.;Loriga,M.;Carta,A.;Paglietti,G.;La Colla, P.;Busonera,B.;Marongiu,E.;Collu,D.;Loddo,R.Med.Chem.2009, 5,507−516.(f)Dahiya,R.;Pathak,D.Eur.J.Med.Chem.2007,42, 772−798.(g)Falco,J.L.;Pique,M.;Gonza l ez,M.;Buira,I.;Terencio, J.;Pe r ez,C.;Príncep,M.;Palomer,A.;Guglietta,A.Eur.J.Med.Chem. 2006,41,985−990.(h)Bhongade,B.A.;Gouripur,V.V.;Gadad,A. K.Bioorg.Med.Chem.2005,13,2773−2782.(2)For recent selected reviews on the transition metal-catalyzed direct C−H bond functionalizations,please see:(a)Kuhl,N.; Hopkinson,M.N.;Wencel-Delord,J.;Glorius,F.Angew.Chem.,Int. Ed.2012,51,10236−10254.(b)Engle,K.M.;Mei,T.-S.;Wasa,M.; Yu,J.-Q.Acc.Chem.Res.2012,45,788−802.(c)Arockiam,P.B.; Bruneau, C.;Dixneuf,P.H.Chem.Rev.2012,112,5879−5918.(d)Yamaguchi,J.;Yamaguchi,A.D.;Itami,K.Angew.Chem.,Int.Ed. 2012,51,8960−9009.(e)Shibahara,F.;Murai,n .Chem. 2013,2,624−636.(f)Mousseau,J.J.;Charette,A.B.Acc.Chem.Res. 2013,46,412−424.(g)Bonin,H.;Sauthier,M.;Felpin,F.-X.Adv. Synth.Catal.2014,356,645−671.(h)Zhao,C.;Crimmin,M.R.; Toste,F.D.;Bergman,R.G.Acc.Chem.Res.2014,47,517−529. (3)(a)Shibahara,F.;Yamauchi,T.;Yamaguchi,E.;Murai,. Chem.2012,77,8815−8820.(b)Zhang,W.;Zeng,Q.-L.;Zhang,X.-M.;Tian,Y.-J.;Yue,Y.;Guo,Y.-J.;Wang,.Chem.2011,76, 4741−4745.(c)Yan,X.-M.;Mao,X.-R.;Huang,Z.-Z.Heterocycles 2011,83,1371−1376.(d)Shibahara,F.;Yamaguchi,E.;Murai,T.J. Org.Chem.2011,76,2680−2693.(e)Joo,J.M.;Barry Toure,B.; Sames,.Chem.2010,75,4911−4920.(f)Lewis,J.C.; Berman,A.M.;Bergman,R.G.;Ellman,J.A.J.Am.Chem.Soc.2008, 130,2493−2500.(g)Yoshizumi,T.;Tsurugi,H.;Satoh,T.;Miura,M. Tetrahedron2008,49,1598−1600.(h)Bellina, F.;Calandri, C.; Cauteruccio,S.;Rossi,R.Tetrahedron2007,63,1970−1980.(i)Bellina,F.;Cauteruccio,S.;Rossi,.Chem.2007,72, 8543−8546.(j)Lewis,J.C.;Wu,J.Y.;Bergman,R.G.;Ellman,J.A. Angew.Chem.,Int.Ed.2006,45,1589−1591.(k)Bellina, F.; Cauteruccio,S.;Mannina,L.;Rossi,R.;Viel,.Chem. 2006,693−703.(l)Bellina,F.;Cauteruccio,S.;Rossi,. Chem.2006,1379−1382.(m)Bellina,F.;Cauteruccio,S.;Mannina, L.;Rossi,R.;Viel,.Chem.2005,70,3997−4005.(n)Lewis,J.C.;Wiedemann,S.H.;Bergman,R.G.;Ellman,.Lett.2004,6,35−38.(4)(a)Chiong,H.A.;Daugulis,.Lett.2007,9,1449−1451.(b)Liu,B.;Wang,Z.;Wu,N.-J.;Li,M.-L.;You,J.-S.;Lan,J.-B.Chem. Eur.J.2012,18,1599−1603.(5)In2011,Lee and co-workers reported the direct C5-arylation ofimidazoles with aryl chlorides by Pd complexes bearing phosphines and N-heterocyclic carbenes;please see:Vijaya Kumar,P.;Lin,W.-S.;Shen,J.-S.;Nandi,D.;Lee,anometallics2011,30,5160−5169.(6)(a)Yin,H.-Y.;Liu,M.-Y.;Shao,.Lett.2013,15,6042−6045.(b)Xiao,Z.-K.;Yin,H.-Y.;Shao,.Lett.2013,15, 1254−1257.(c)Xiao,Z.-K.;Shao,L.-X.Synthesis2012,44,711−716.(7)(a)Tang,Y.-Q.;Lu,J.-M.;Shao,anomet.Chem.2011,696,3741−3744.(b)Zhou,X.-X.;Shao,L.-X.Synthesis2011,3138−3142.(8)Gao,T.-T.;Jin,A.-P.;Shao,L.-X.Beilstein .Chem.2012,8,1916−1919.(9)Gu,Z.-S.;Shao,L.-X.;Lu,anomet.Chem.2012,700,132−134.(10)(a)Chen,W.-X.;Shao,.Chem.2012,77,9236−9239.(b)Zhu,L.;Ye,Y.-M.;Shao,L.-X.Tetrahedron2012,68,2414−2420.(c)Zhu,L.;Gao,T.-T.;Shao,L.-X.Tetrahedron2011,67, 5150−5155.(11)Shen,X.-B.;Zhang,Y.;Chen,W.-X.;Xiao,Z.-K.;Hu,T.-T.;Shao,.Lett.2014,16,1984−1987.(12)For some selected reviews on the transition metal-catalyzedreactions in the presence of water,please see:(a)Li,B.;Dixneuf,P.H.Chem.Soc.Rev.2013,42,5744−5767.(b)Velazquez,H.D.;Verpoort,F.Chem.Soc.Rev.2012,41,7032−7060.(c)Lipshutz,B.H.;Ghorai,S.Aldrichimica Acta2008,41,59−72.(d)Carril,M.;SanMartin,R.;Domínguez,E.Chem.Soc.Rev.2008,37,639−647.(e)Cornils,B.;Herrmann,W.Aqueous-Phase Organometallic Catalysis2;Wiley-VCH: Weinheim,Germany,2004.(f)Genet,J.P.;Savignac,anomet.Chem.1999,576,305−317.(13)While we were preparing this manuscript,Huynh and co-workerreported the example of NHC-Pd complex catalyzed direct C5-arylation of1-methylimidazole with aryl bromides and chlorides in low to moderate yields;please see:Guo,S.;Huynh,anometallics 2014,33,2004−2011.(14)Hachiya,H.;Hirano,K.;Satoh,T.;Miura,M.Angew.Chem.,Int.Ed.2010,49,2202−2205.(15)Huang,J.-K.;Chan,J.;Chen,Y.;Borths,C.J.;Baucom,K.D.;Larsen,R.D.;Faul,M.M.J.Am.Chem.Soc.2010,132,3674−3675.(16)Chakrabarty,M.;Mukherji,A.;Mukherjee,R.;Arimab,S.;Harigaya,Y.Tetrahedron Lett.2007,48,5239−5242.(17)Jin,X.-K.;Liu,Y.-X.;Lu,Q.-Q.;Yang,D.-J.;Sun,J.-K.;Qin,S.-S.;Zhang,J.-W.;Shen,J.-X.;Chu,C.-H.;Liu,.Biomol.Chem.2013,11,3776−3780.(18)Huang,W.-K.;Cheng,C.-W.;Chang,S.-M.;Lee,Y.-P.;Diau,E.mun.2010,46,8992−8994.(19)Hubbard,J.W.;Piegols,A.M.;So d erberg,B.C.C.Tetrahedron2007,63,7077−7085.(20)Guru,M.M.;Ali,M.A.;Punniyamurthy,.Chem.2011,76,5295−5308.(21)Truong,T.;Daugulis,O.J.Am.Chem.Soc.2011,133,4243−4245.(22)Jose l glesias,M.J.;Prieto,A.;Carmen Nicasio,.Lett.2012,14,4318−4321.(23)Oi,S.;Sato,H.;Sugawara,S.;Inoue,.Lett.2008,10,1823−1826.(24)Brauer, D.J.;Kottsieper,K.W.;Like, C.;Stelzer,O.;Waffenschmidt,H.;Wasserscheid,anomet.Chem.2001,630, 177−184./10.1021/jo5010058|.Chem.2014,79,5806−5811 5811。