第4章空间力系
工程力学-第四章-空间力系
即:
g X F s i cn o F x c s y o F c sc oo s s
g Y F s i sn iF x n s y iF n cs ois n
g Z F co F s sin
⒋ 力沿坐标轴分解
若以 Fx ,Fy ,Fz 表示力沿
直角坐标轴的正交分量,则:
FFxFyFz
⒈ 力矩的大小 ; ⒉ 力矩的转向 ; ⒊ 力的作用线与 矩心所组成的平面的 方位 。
[例] 力P1, P2 , P3 对汽车反镜 绕球铰链O点的 转动效应不同
二、力对点的矩的矢量表示 在平面问题中,力对点的矩是代数量;而在空间问题中, 由空间力对点的矩的三要素知,力对点的矩是矢量。
⒈ 力矩矢的表示方法
⒈ 若 R'0,MO0则力系可合成为一个合力,力系合力R 等于主矢 R ' ,合力 R 通过简化中心O点。(此时主矩与简 化中心的位置有关,换个简化中心,主矩不为零)
⒉ 若 R'0,MO0 , R'MO 时, 可进一步简化,将MO变成( R'',R) 使R'与R'‘ 抵消只剩下R
(MORd) 由于做 M O R d, dM R OM R O ' , 合 R 力 F i
g 方向: com sx(F ), co s m y(F ), co m sz(F )
m O (F )
m O (F )
m O (F )
§4-4 空间一般力系向一点简化
把研究平面一般力系的简化方法拿来研究空间一般力系的 简化问题,但须把平面坐标系 扩充为空间坐标系。
设作用在刚体上有 空间一般力系 F1,F2,Fn
定理:
RxXi RyYi RzZi
第4章空间力系分解
合力的大小
FR ( Fx )2 ( Fy )2 ( Fz )2
Fx 方向余弦 cos( FR , i ) FR
Fy Fz cos( FR , j ) cos( FR , k ) FR FR
7
空间汇交力系的合力等于各分力的矢量和,合力的作用 线通过汇交点.
M 为合力偶矩矢,等于各分力偶矩矢的矢量和。
25
力偶系的合成(与汇交力系的计算完全相同)
合力偶矩矢
M Mi
M x Mix M y Miy Mz Miz
M M xi M y j Mzk
合矢量投影定理:Βιβλιοθήκη 合力偶矩矢的大小和方向余弦:
M
M M M
2 2 ix iy iz
2
M ix cos M
cos
M iy M
M iz cos M
26
空间力偶系平衡的充分必要条件是:合力偶矩矢等于零。
为代数量
z
即:力对轴之矩,等于力在垂直于
该轴的平面上的投影对轴与平面交 点之矩。 O x
y
特殊情况:
1、力与轴平行,矩为零。 2、力与轴相交,矩为零。
即: 力与轴位于同一平面内时,力对轴之矩为零。 16
合力矩定理
空间任意力系的合力对于任一轴的矩等于力系中所有各 力对于该轴的矩的代数和。(用于求力矩)
B
F
F
rBA rA
A
M rBA F
rB
O
23
2、空间力偶等效定理
作用在同一刚体上的两个力偶,如果力偶矩矢相等, 则它们彼此等效。
第四章空间力系
(4-19a)
' FR F2'
F R F1 F 2 Fn Fi
(4-3) (4-4)
或 其中
xi yi
F R F xi i Fyi j Fzi k
F , F , F
zi
为合力 FR 沿x、y、z轴的投影。
(4-5) (4-6)
空间汇交力系平衡的必要和充分条件是该力系的合力等于零。 由此得
y
方向 cos(MO , i ) M x (Fi ) MO
§4-4 空间任意力系向一点的简化●主矢和主矩 二、空间任意力系的简化结果分析 ' 1. FR 0, M O 0 简化结果:合力偶 合力偶矩矢
M O M O (Fi )
主矩与简化中心的位置无关
2、空间力偶的三要素:
(1)大小: M Fd (2)方位:垂直力偶作用面
(3)指向:力偶的转向
§4-3 空间力偶
3、空间力偶的性质: (1)力偶中两力在任意坐标轴投影的代数和为零; (2)力偶对任意点取矩都等于力偶矩,不因矩心的改变而改变; (3)只要保持力偶矩不变,力偶可在其作用面内任意移转, 且可以同时改变力偶中力的大小与力偶臂的长短,对刚
正负号规定:从坐标轴正向看,逆时针转向为正,反之为负。
§4-2 力对点的矩和力对轴的矩
例4-3 已知:F , l , a, 求: Mx F ,My F ,Mz F 解:将力 F 分解如图
第四章:空间力系
第四章空间力系一、要求1、能熟练地计算力在空间直角坐标轴上的投影和力对轴之矩。
2、对空间力偶的性质及其作用效应要有清晰的理解。
3、了解空间力系向一点简化的方法和结果。
4、能应用平衡条件求解空间汇交力系、空间任意力系、空间平行力系的平衡问题。
5、能正确地画出各种常见空间约束的约束反力。
二、重点、难点1、本章重点:力在空间直角坐标轴上的投影和力对轴之矩。
空间汇交力系、空间任意力系、空间平行力系的平衡方程的应用。
各种常见的空间约束及约束反力。
2、本章难点:空间矢量的运算,空间结构的几何关系与立体图。
三、学习指导1、空间力系的基本问题及其研究方法空间力系研究的基本问题仍然是静力学的三个基本问题,即:物体的受力分析、力系的等效替换和力系的平衡条件。
空间力系是力系中最普遍的情形,其它各种力系都是它的特殊情形。
按由浅入深、由特殊到一般的认识规律研究空间力系,是从理论上对静力学作一个系统而完整的总结。
与平面力系的研究方法相似,这里也采用力向一点平移的方法将空间任意力系分解为空间汇交力系和空间力偶系,再应用这两个力系的合成方法来简化原力系,然后根据简化结果推导出平衡条件。
由于空间力系各力作用线分布在空间,因而使问题复杂化。
出现了力在坐标轴上的二次投影法、力对轴的矩以及用向量表示力对点的矩和力偶矩等新问题,简化的结果和平衡方程也复杂了。
2、各类力系的平衡方程各类力系的独立的平衡方程的数目不变。
但是平衡方程的形式可以改变。
上表列出的是一般用形式。
解题指导1、对于解力在直角坐标轴上投影或力沿直角坐标轴分解这类问题,重要的是确定力在空间的位置。
一般解题的思路如下:(1)认清题意,仔细查看结构(或机构)的立体图,它由哪些部件组成,各部件在空间的位置,以及它们和坐标轴的关系。
(2)认清力的作用线在结构(或机构)的哪个平面内,寻找它与坐标面的交角,然后找力与坐标平面的夹角及力与坐标轴的夹角。
(3)考虑用一次投影或二次投影的方法求解。
理论力学 第4章-空间力系
第四章 空间力系
§4-1空间汇交力系
一 空间汇交力系的合成: 1)单 个 力 沿 坐 标 轴 的 分 解 : a)力 的 平 行 六 面 体 法 则 力 的 大 小 : X=Fcosα Y=Fcosβ Z = Fcosγ 力 的 方 向 : 与 x ,y,z 方 向 相 同 为 正 与 x ,y ,z 方 向 相 反 为 负
d) 空 间 汇 交 力 系 的 合 成 :合 力 QQ定 理 . 合力大小: R= ( ∑ X)2 + ( ∑ Y ) 2 + ( ∑ Z ) 2 合 力 方 向 :方 向 余 弦
§4-2 力对轴之矩和力对点之矩
1. 力偶矩矢: 空间力偶对刚体作用矢的效果取 决于以下三个因数
大小:|M|=Fd 转向:右手定则确定 作用面方位:力偶作用面法线所在的空间位置
2. 列空间一般力系平衡方程:
∑x = 0:
T1 + t1 + (T2 + t2 )sinθ + X A + XB = 0
∑ y = 0:
∑M
x
ZA + Z B (T2 + t) θ = 0 cos
பைடு நூலகம்
= 0 : Z B 2b (T1 + T2 ) cos θ b = 0
∑M
∑M
y
= 0 : t1 R + T2 cos θ r T1 R t2 cos θ r = 0
= 0 : (T1 + t2 )b (T2 + t2 ) sin θ b X B 2b = 0
理论力学第七版第四章空间力系
常见的空间力系示例
悬索桥
悬索桥是一种常见的空间力系示例,需要考虑多个力和 力矩的作用。
起重机
起重机是另一个常见的空间力系示例,用于进行吊装和 搬运工作。
空间力系的平衡条件和解题方法
1
ห้องสมุดไป่ตู้
平衡条件
空间力系平衡的条件是合力为零,合力矩为零。
2
解题方法
利用平衡条件和分析方法,逐步确定未知量的数值。
3
示例题目
通过解题方法解决具体问题,加深理解。
空间力系的应用和意义
空间力系的应用涵盖了各个工程领域,可以用于解决实际工程问题,提高工程设计的准确性和效率。
机械工程
用于机械结构的设计和分析,例如机械臂、传动系 统等。
建筑工程
用于建筑物结构的分析和设计,例如桥梁、楼房等。
航空航天
用于航空器和航天器的设计和分析,例如飞机、卫 星等。
海洋工程
用于海洋结构的分析和设计,例如海上平台、潜水 器等。
结论和要点
• 空间力系是由多个力或力矩组成的力的系统。 • 空间力系的力和力矩可以用矢量表示。 • 空间力系需要考虑多个力和力矩的分析和平衡条件。 • 空间力系广泛应用于各个工程领域,提高工程设计的效率和准确性。
复杂性
空间力系一般由多个力和力矩组成,分析较为复杂。
工程应用
空间力系广泛应用于工程力学、机械设计等领域。
空间力系的力和力矩分析方法
力的分析方法
将力分解为分力或合力分解,再 进行叠加得到结果。
力矩的分析方法
根据力对应的力臂和力的矢量关 系,计算力矩。
矢量计算法
利用矢量运算法则,对多个力和 力矩进行矢量计算。
理论力学第七版第四章空 间力系
第四章 空间力系1
MO(F x) MO(F y) x
xFy yFx
y Fx
Fy Fxy
按同类方法求得其他两式:
M x (F ) yFz zFy
M y (F ) zFx xFz
3. 力对点的矩和力对轴的矩的关系
M O (F ) ( yFz zFy ) i ( zFx xFz ) j ( xFy yFx ) k
掌握力在空间坐标轴上的投影、力矩的计算 掌握空间力系的简化方法 掌握平衡问题的求解方法
掌握计算物体重心的方法
§4-1 空间汇交力系
Concurrent force system in space
1. 力在直角坐标轴上的投影
z
若已知力F与正交坐标系 Oxyz三轴间的夹角,则可用直接
投影法。即 Fx = Fcosα
B
d
rA F rB F
rA F rB (F)
(rA rB ) F
rBA F
与点O无关
F’
rB rBA
F A
O rA
M
力偶对空间任一点的矩矢与矩心无关,以
为
记号M(F,F)或M表示力偶矩矢
自
M( F, F ) M rBA F
自由矢量
由 矢
M F rBA sin Fd
这个定理表明:
力偶可在其作用面内任意移动(或移到另一平行平面),而不 改变对刚体的作用效应。
只要保持力偶矩矢量的方向和大小不变 (F,d 可变),则力偶对刚体的作用 效应就不变。 力偶矩矢是空间力偶作用效果的唯一度量。
3.空间力偶系的合成与平衡条件
(1)空间力偶系的合成 设作用于刚体上的两个力偶 M1, M2
M M
B
F d
C
静力学-第4章 空间基本力系
FCD
45
A
y
45
FCE
FBC
x
2. 再选取C点为研究对象,它的受力图如图所示。 这是一空间汇交力系,作直角坐标系Axy,
把力系中各力投影到Axy平面和Az轴上。
先列出对Az轴的投影方程
Fz 0,
F B c C 6 o 0 F s A C F C c D o F C s c Eo 0 s
F A C F A D F A s Bi F n 0
3.联立求解。
FABFAC FAD 3sFin
负号表示三杆都受压力。
44
例题
空间基本力系
4.取球铰链B为研究对象,列平衡方程。
Fx 0, F Bs Ci3n 0 F Bs Di3n 0 0
Fx 3kN , Fy 4kN , Fz 5kN 所以力 F 的大小为
F Fx2Fy2Fz252kN
力 F 的方向余弦及 与坐标轴的夹角为
cos F, i 3 0 .424
52
cos F, j 4 0 .566
52
cos F, k 5 0 .707
40
例题
空间基本力系
例题8
解:
建立如图坐标系Bxyz, 其 中 y 轴 平 分 ∠ CBD 。 由 于 ABCD是 正 交 锥 ,所 以 AB与y 轴 的夹角为θ。
41
例题
空间基本力系
例题8
力F 在坐标面Oxy上投影
1.取球铰链A为研究对 象,受力分析如图。
为求各力在轴x,y上 的投影,可先向坐标面 Oxy上投影,然后再向轴 上投影。
此力系在Axy平面上投影为一平面汇交 力系,其中:
理论力学 第四章 空间力系
12
单位:N·m
2.力对轴的矩
力对轴之矩合力矩定理:各力对任一轴之矩等于各分力对同一轴之矩的 代数和。
例:将Fxy再分解为Fx、Fy,根据合力矩定理则有:
Mz( F ) MO( Fxy ) MO( Fx ) MO( Fy ) xFy yFx
即:FR Fi 0
FR
Fx2 Fy2 Fz2
空间汇交力系的平衡方程
Fx 0 Fy 0
Fz 0
6
例题
如图所起重机,已知CE=EB=DE,角α=30o ,CDB平面与水平面 间的夹角∠EBF= 30o ,重物G=10 kN。如不计起重杆的重量,试求起 重杆所受的力和绳子的拉力。
XYZ
mO (F) (yZ zY ) i (zX xZ) j (xY yX) k
11
§4.3力对轴的矩
1.当力作用面 Z轴时: MZ(F ) M0 F F h
Z
2.当力作用面 Z轴时: M z (F) Mo (Fxy ) Fxy h
F
力与轴相交或与轴平行(力与轴在同一平面内),力对该轴的矩为零.
7
例题
解: 1. 取杆AB与重物为研究对象,受力分析如图。
zD
F2
E
C F 30o
B
F1
α
FA G
A
y
x
其侧视图为
z
E F1
F 30o
B
α
FA G
A
y
8
例 题 4-3
2. 列平衡方程。
zD
F2
E
C F 30o
B
F1
Fx 0,
F1 sin 45 F2 sin 45 0
力学第四章空间力系
§4-3 空间任意力系的平衡方程
解 取折杆为研究对象,画受力图如图所示,选直角坐 标系0xyz,列平衡方程
Fx = 0
FOx = 0
Fy = 0
FOy = 0
Fz = 0
FOz F = 0
Mx F = 0 MOx Fb = 0
§4-3 空间任意力系的平衡方程
平衡基本方程
空间任意力系平衡的充分必要条件:
各力在各坐标轴上的投影代数和分别等于零; 各力对各坐标轴的矩的代数和分别等于零
即:
Fx = 0
Fy = 0
Fz = 0
MxF = 0 M y F = 0 Mz F = 0
§4-3 空间任意力系的平衡方程
§4-3 空间任意力系的平衡方程
例4-5 用空间平衡力系的平面解法重解例4-4 解 重物匀速上升,鼓轮作匀速转动,即处于平衡姿态。取鼓轮为研究 对象。将力G和Q平移到轴线上,分别作垂直平面、水平平面和侧垂直
平面(图a、b、c)的受力图。
a)
c) b)
§4-3 空间任意力系的平衡方程
由(图a、b、 c),列平衡方程。
§4-2 力对轴之矩
力对轴之矩(N·m):度量力使物体绕轴的转动效应
M z (F ) = M O (Fxy ) = Fxyd
结论:力对某轴之矩是力使物体绕该轴 转动效应的度量,其大小等于力对垂直 于某轴平面内力对O点(即某轴在该面 的投影点)之矩。
力对轴之矩的符规定:
§4-2 力对轴之矩
例4-1 图示力F作用在圆轮的平面内,设力F作用线距z轴 距离为d。试计算力F对z轴之矩。
符号规定:从投影的起点到终点的方向与相应坐标轴 正向一致的就取正号;反之,就取负号。
第四章 空间力系和重心
第三节 空间任意力系的简化 1.空间任意力系向任意一点简化 空间任意力系向任意一点简化
1.1空间力的平移 空间力的平移
z F' F F O O y x x F'' x F'' y O y F' F z z
M O (F )
附加力偶矩矢
M O (F ) = Fd
1.2 空间力系的简化
z M2 F'1 M1 O y F'2
3 Fx = F cos α = F 3 −a 3 cosβ = =− 3 3a 3 Fy = F cos β = − F 3 a 3 cosγ = = 3 3a 3 Fz = F cos γ = F 3
Fy
2a
Fx
a
a
[解-方法 2] 解 方法 cosγ = a 3 3 = Fz = F cos γ = F 3 3a 3
点O:空间中任意选择的简化中心 平移到点O, 将 F1 平移到点O,
M1 = M O (F1 )
将空间中的其它力平移到点O: 将空间中的其它力平移到点O:
M 2 = M O (F2 )
x
M n = M O (Fn )
M i = M O (Fi )
1.2 空间力系的简化
z MO M2 M1 O Mn F'R
空间任意力系
空间平行力系
空间汇交力系
空间力系实例
第一节 力在直角坐标轴上的投影
2、力在直角坐标轴上的投影 、
2.1力在空间的表示 力在空间的表示 力的三要素: 力的三要素: 大小、方向、 大小、方向、作用 点 大小: = 大小: F= F
γ
O
β θ
方向: 方向:由α、β、 ϕ 三个方 向角确定或由仰角θ 向角确定或由仰角θ 与方位 来确定。 角ϕ 来确定。 Fxy 作用点: 作用点:物体和力矢的起 点 或终点的接触之点。 或终点的接触之点。
第4章空间力系
12
理论力学电子教案 C 机械工业出版社
力矩矢旳模等于力旳大小与矩心到力作用线垂直 距离旳乘积,即
mO (F ) F d 2OAB面积
假如r 矩心O到力F作用点A旳矢径,则矢积旳模等 于三角形OAB面积旳两倍,其方向与MO(F)旳方向相同, 故力矩矢也能够表达为
力对//它旳轴旳矩为零。 即力F与轴共面时,力 对轴之矩为零。
z
Fz
O
xy
dA
F
B
Fxy
14
理论力学电子教案 C 机械工业出版社
力矩关系定理
[证]任取一点O,并过O点作
z MO(F)
O
xy
B
F
A
B
A Fxy
一轴z,力F对点O之矩MO(F) 垂直于 所在平面,其模为
M O (F ) 2ΔOAB
力F对z轴之矩为
即合力在某一坐标轴上旳投影,等于力系中全部各
力在同一轴上投影旳代数和,这就是空间汇交力系旳合
力投影定理。
合力FR旳大小和方向余弦分别为
FR FR2x FR2y FR2z ( Fx )2 ( Fy )2 ( Fz )2
cos FRx Fx ,
FR
FR
cos FRy Fy ,
FR
假设方向相反,即两杆均受压力。
11
理论力学电子教案 C 机械工业出版社
§ 4.2 力对点旳矩与力对轴旳矩
4.2.1 力对点旳矩 空间力系中,力对于某一点旳作用效应不但与力
矩旳大小和转向有关,还与力矩平面旳方位有关。 所 以空间力对点旳矩必须用力矩矢MO(F)表达。
B
哈工大理论力学第四章
∑F =0
z
FOA sin 45 −P = 0
(拉) F = −1414N F = F = 707N OA OB OC
例4-4 已知: F, l, a,θ 求: x ( F ) , My ( F ) , Mz ( F ) M 解:把力 F 分解如图
Mx F = −F ( l + a) cosθ My F = −Fl cosθ
∑F = 0
FA = 8.66kN
例4-3 已知:P=1000N ,各杆重不计. 求:三根杆所受力. 解:各杆均为二力杆,取球铰O, 画受力图。
∑F =0 ∑F =0
x
y
FOB sin 45 − FOC sin 45 = 0
− FOB cos 45 − FOC cos 45 − FOA cos 45 = 0
空间平行力系的平衡方程
∑F = 0 ∑M
z
x
=0
பைடு நூலகம்
∑M
y
=0
2.空间约束类型举例 2.空间约束类型举例 3.空间力系平衡问题举例 3.空间力系平衡问题举例
§4–6 重 心 6
1.计算重心坐标的公式
P ⋅ xC = P ⋅ x1 + P2 ⋅ x2 + .... + Pn ⋅ xn 1 = ∑ Pi ⋅ xi
M = rBA × F
2、力偶的性质 (1) (1)力偶中两力在任意坐标轴上投影的代数和为零 . (2)力偶对任意点取矩都等于力偶矩,不因矩心的改 力偶对任意点取矩都等于力偶矩, 变而改变。 变而改变。
M O ( F , F ′) = M O ( F ) + M O ( F ′) = rA × F + rB × F ′
理论力学 第四章 空间力系
第四章空间力系本章将研究空间力系的简化和平衡条件。
工程中常见物体所受各力的作用线并不都在同一平面内,而是空司分布的,例如车床主轴、起重设备、高压输电线塔和飞机的起落架等结构。
设计这些结构时,需用空间力系的平衡条件进行计算。
与平面力系一样,空间力系可以分为空间汇交力系、空司力偶系和空间任意力系来研究。
§4-1 空间汇交力系1.力在直角坐标轴上的投影和力沿直角坐标轴的分解若已知力F与正交坐标系Oxyz三轴间的夹角分别为α、β、γ,如图4-1所示,则力在三个轴上的投影等于力F的大小乘以与各轴夹角的余弦,即X=cosαY=cosβ (4-1)Z=cosγ当力与坐标轴Ox、Oy间的夹角不易确定时,可把力先投影到坐标平面Oxy上,得到力,然后再把这个力投影到x、y轴上。
在图4-2中,已知角γ和,则力在三个坐标轴上的投影分别为X=sinγcosY=sinγsin (4-2)Z=cosγ若以、、表示力F沿直角坐标轴x、y、z的正交分量,以i、j、k分别表示沿x、y、z坐标轴方向的单位矢量,如图4-3所示,则图4-2=++=X i+Y j+Z k (4-3)由此,力在坐标轴上的投影和力沿坐标轴的正交分矢量间的关系可表示为:=X i,=Y j,=Z k (4-4)如果己知力F在正交轴系Oxyz的三个投影,则力F的大小和方向余弦为=cos(,i)=cos(,j)= (4-5)cos(,k)=例4-1图4-4所示的圆柱斜齿轮,其上受啮合力的作用。
已知斜齿轮的齿倾角(螺旋角) β和压力角α,试求力沿x、y和z轴的分力。
解:先将力向z轴和Oxy平面投影,得Z=-sinα=cosα再将力向x、y轴投影,得X=-sinβ=-cosαsinβY=-cosβ=-cosαcosβ则沿各轴的分力为=-cosαsinβi,=-cosαcosβj,=-sinαk式中i、j、k为沿x、y、z轴的单位矢量,负号表明各分力与轴的正向相反。
空间力系
MO(F)
定位矢量
空间力系
空间力矩
2.力对轴的矩
z
F
Fz
Fxy Fxy
F
o d
M z dFxy
逆时针+,顺时针-
空间力系
空间力矩
力对轴之矩用来表征——力对刚体绕某轴的转动效应。 力对轴之矩合力矩定理:合力对任一轴之矩等于各分力对同 一轴之矩的代数和。
z Mz(F)
M z ( F ) M z ( Fz ) M z ( Fxy ) M O ( Fxy )
M x ( F ) yFz zF y M y ( F ) zFx xFz M z ( F ) xFy yFx
( yFz zF y )i ( zFx xFz ) j ( xF y yFx )k
★ 力对点的矩矢在通过该点的某 轴上的投影,等于力对该轴的矩。
M z ( F ) Fxy h 2 AOAb
O
F
Fz
h
B b
★ 力对轴的矩等于力在垂直于该轴
x 的平面上的投影对轴与平面交点的矩。
A
Fxy
y
空间力系
空间力矩
力对轴的矩的特点: (1)力对轴之矩是代数量,逆时针为正,顺时针为负; (2)力与轴相交或与轴平行(力与轴在同一平面内),力对该
MO (F ) r F
xa y b, z 0
i x Fx
j k y z Fy Fz
Fx F cos sin , F y F cos cos Fz F sin
M O ( F ) Fb sin i Fa sin j ( Fb sin sin Fa sin cos ) k
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
y la x l z0 力作用点坐标 M x ( F ) yFz zFy ( l a ) ( F cos ) F cos (l a ) M y ( F ) zFx xFz l F cos Mz (F ) xFy yFx l 0 (l a ) F sin F sin ( l a ) 20
MO ( F ) r F x Fx
x
r
j
A(x,y,z) y
h
i
j y Fy
k z Fz
r xi yj zk F Fx i Fy j Fz k
yFz zFy i zFx xFz j xFy yFx k
第四章 空 间 力 系
1
第四章 空间力系
作用在物体上的力系,其作用线分布在空间,而且不 能简化到某一平面时,这种力系就称为空间力系。 P
A C
E
B
F
m1=Fr1 y FCy m2=Pr2
FBy x
z
F
FCz
P
FBz
2
§4—1 空间汇交力系
一、 力在空间直角坐标系上的投影
1、直接投影法
已知力与 x、y、z 轴夹角,即力的方向角α、β、γ。
M
M M M
2 2 ix iy iz
2
M ix cos M
cos
M iy M
M iz cos M
26
空间力偶系平衡的充分必要条件是:合力偶矩矢等于零。
F
C
空间力偶矩矢为自由矢量。 力为滑移矢量。
F F F
B
B
F
力对点之矩为定点矢量。
rA BA
A
24
3.力偶系的合成与平衡条件
M1 M2
Mn
Mn
M1
M2
Mn
M1
M2
与汇交力系的合成相同,对于空间力偶系:
M Mi
(证明P80自习)
P
y
F
z
0
F1 cos 45 sin 30 F2 cos 45 sin 30 FA cos 30 P 0
解得:
F1 F2 3.54kN
FA 8.66kN
9
§4—2 力对点的矩和力对轴之矩
平面上力对一点之矩,实际上为力使物体对过该点与
平面垂直的轴的力矩。即:
B
F
F
rBA rA
A
M rBA F
rB
O
23
2、空间力偶等效定理
作用在同一刚体上的两个力偶,如果力偶矩矢相等, 则它们彼此等效。
只要保持力偶矩不变,力偶可在其作用面内任意移转,
可以同时改变力的大小与力偶臂的长短,且作用面可以平行
移动,对刚体的作用效果不变。
符号规定:
为代数量
逆 z 轴看,Fxy使物体绕O点逆时针转动为正,反之为负。
z
O
Mz F
z
Fxy
Mz F
O
Fxy
> 0
< 0
右手螺旋法则:四指屈向表Fxy绕O点转动方向,拇指
与 z 轴指向一致为正,反之为负。
15
力对轴之矩
Mz (F ) MO (Fxy ) Fxy h
M y ( F ) zFx xFz
对照:
x
Fx
F xy
Fy
MO ( F ) yFz zFy i zFx xFz j xFy yFx k
力对点之矩在通过该点的某轴上的投影,等于力对该轴之矩。
18
注意:
理论分析——用力对点之矩。 实际计算——用力对轴之矩。
M 为合力偶矩矢,等于各分力偶矩矢的矢量和。
25
力偶系的合成(与汇交力系的计算完全相同)
合力偶矩矢
M Mi
M x Mix M y Miy Mz Miz
M M xi M y j Mzk
合矢量投影定理:
合力偶矩矢的大小和方向余弦:
y’ y
z
Ft
Fxy y
Ft Fr x
Fa x
6
Fy =- Fa = - Fcos cos
Fz=- Fr =- Fsin
二、空间汇交力系的合力与平衡条件 空间汇交力系的合力 FR F i
合力投影定理
FRx Fix Fx
FRy Fiy Fy
FRz Fiz Fz
Fz
γ O Fx φ
F
x
Fy=Fsinγsinφ
Fz=Fcosγ
4
3、投影与分力的关系
在直角坐标系中,投影与分力的关系和平面问题完全相同。 将力沿坐标轴分解,如图。 (1)投影的绝对值=分力的大小。 (2)投影的符号为正,分力与相 应坐标轴的方向一致。 力
F
2 2
z
F F zz γ
F Fy F
为代数量
z
即:力对轴之矩,等于力在垂直于
该轴的平面上的投影对轴与平面交 点之矩。 O x
y
特殊情况:
1、力与轴平行,矩为零。 2、力与轴相交,矩为零。
即: 力与轴位于同一平面内时,力对轴之矩为零。 16
合力矩定理
空间任意力系的合力对于任一轴的矩等于力系中所有各 力对于该轴的矩的代数和。(用于求力矩)
§4–3
400N
400N
空间力偶
400N 400N 1000N
讨论空间力偶对物体的作用效果
0.5m
400N 0.2m 0.5m 400N
1000N
(1) 大小:力与力偶臂的乘积; (2) 方向:转动方向; (3) 作用面:力偶作用面。
21
力偶矩矢定义式:
M
M rBA F
M rAB F
k
j
r
A(x,y,z) y
MO ( F ) z xFy yFx
力矩矢的起点:力对点之矩大小和方向都与矩心O位
置有关,故力矩矢的起点必须在O点。所以力对点之矩为
定点矢量(定位矢量)。
13
2、力对轴之矩
F
是力使物体绕轴转动效果的度量。
分解
Fz ∥ z
Fxy在与z轴垂直的xy面内
z
经验可知:Fz不能使门转动。只有Fxy对门
有转动效应。且这种转动效应与力Fxy的大小 及其作用线到点O的距离有关。
O
x
力对轴之矩定义式为:
Mz (F ) MO (Fxy ) Fxy h
为代数量
h
B
A
y
即:力对轴之矩,等于力在垂直于该轴的平面上的投影 对轴与平面交点之矩。
14
2、力对轴之矩 Mz (F ) MO (Fxy ) Fxy h
M (F ) cos(M O , k ) z MO (F )
19
例4-4
直角手柄ABCDE在平面Axy内,力F在垂直与y轴的平面内如图。
求力F对x、y、z轴的力矩。
a 分解力F z l l
z’
解: (方法1)利用合力矩定理 M x ( F ) Fz (l a) F cos ( l a )
12
MO ( F ) yFz zFy i zFx xFz j xFy yFx k
力矩矢量在坐标轴上的投影:
B
z
MO (F )
M O ( F ) x yFz zFy
F
i O
x
M O ( F ) y zFx xFz
所以,欲求力对一点之矩,可先求力对过该点三个直角坐
标轴的矩。 MO ( F )
2 2 2 M x ( F ) MO ( F ) MO ( F )
M (F ) cos(M O , i ) x MO (F )
M y (F ) cos(M O , j ) MO (F )
求:杆受力及绳拉力。 解:研究对象:起重杆AB E F
z
D F2 E
30o
z
30
F1 cos 45
30o
F
x
0
F1 sin 45 F2 sin 45 0
F
y
0
x’
C θ A x
F1 FA
BF
B
FA
P yA θ
FA sin 30 F1 cos 45 cos 30 F2 cos 45 cos 30 0
z
90
Fz
γ β
Fz=Fcosγ
F Fy y
α
x Fx O
Fy=Fcosβ
Fx=Fcosα
3
2.二次投影法 已知力F 与 z 轴夹角γ,以及在与该轴垂直平面上的投影与另
一轴的夹角φ 。 z
(1) F 向 z 轴和 xy 面投影
Fz=Fcosγ Fxy=Fsinγ Fy Fxy y (2) Fxy向 x、y 轴投影 Fx=Fsinγcosφ Fy=Fsinγsinφ Fx=Fsinγcosφ
y
y
投影
Fx F y Fz
2
x
α β F x O Fx