土工合成材料80285

合集下载

公路工程施工管理用表(A01-A29

公路工程施工管理用表(A01-A29

公路工程施工管理用表王大庆庞威编著人民交通出版社前言公路工程项目施工管理信息记录工作是一项非常重要的工作,它体现了管理者的管理水平,对有效地保证工程质量具有重要意义。

因此,提供一套全面、系统、规范的信息记录表格样式就显得尤为重要和迫切。

近期、交通部重新修订并颁布了《公路工程质量检验评定标准》(JTG F80—2004)和《公路工程竣工(交工)验收办法》(交公路发[2004]446号文件)颁布了《关于贯彻执行公路工程竣交工验收办法有关事宜的通知》(交公路发[2004]446号)。

这次修订的标准和办法改动很大,以往的表格样式应适时更新。

为此,编者根据新的标准和办法,结合国家和省重点公路建设项目上使用的表格样式的实际情况,以及几年来的项目建设管理经验,编写了一套较为全面、系统、规范的表格样式,旨在能够提高工作效率,减少不必要的环节,使得工程质量保证资料更加真实可靠,更加规范化和标准化,为实现信息管理现代化打下坚实的基础,全面提高工程管理水平,尤其是提高工程质量的管理水平.本书编写的主要依据是《公路工程质量检验评定标准》(JTG F80—2004),《工路工程竣工(交工)验收办法》(交工路发[2004]446号文件),《关于贯彻执行公路竣交工验收办法有关事宜的通知》(交工路发[2004]446号),《公路工程施工监理规范》(JTJ 077-95)等有关规范文件,具有较强的针对性和实用性。

但是,在具体使用时,还需要在项目建设施工过程中进一步地实践和检验,不足和错误之处敬请各位同行批评指正。

目录第一章表格设计 (1)第二章表格填写要求及说明 (5)第三章承包人用表(A表).................................................................. (9)A-01 施工组织设计报审表 (11)A—02 动员预付款支付申请表 (11)A—03 施工技术方案报审表 (12)A-04 施工放样报验单 (12)A-05 建筑材料报验单 (13)A-06 进场设备报验单 (13)A—08 工程开工申请单 (14)A-08-1 工程开工申请单 (15)A—09 承包人每旬工作计划 (15)A—10 中间检验申请单 (16)A—11 工程报验单 (16)A-12 合同外工程单价申报表 (17)A—13 计日工单价申请表 (17)A-14 材料价格调整申报表 (18)A-15 中间计量表 (18)A—16 中间计量支付汇总表 (19)A—17 合同内工程月计量申报表 (19)A—18 合同外工程月计量申报表 (20)A—19 计日工月计量申报表 (20)A—20 索赔申请表 (21)A-21 复工申请 (21)A—22 设计变更报审表 (22)A-23 工程质量事故报告单 (22)A-24 付款申请 (23)A-25 延长工期申报表 (23)A—26 交工报验单 (24)A-27 缺陷责任工程报验单 (24)A—28 承包人申报表(通用) (25)A-29 承包人月工作计划 (25)第四章施工监理用表(B表) (27)B—01 监理工程师通知(通用) (29)B—02 合同外工程通知单 (29)B—03 计日工通知 (30)B—04 设计变更通知 (30)B—05 工程检验认可书………………………………………………………………B-07 工程缺陷责任期终止证书 (32)B-08 索赔时间/金额审批表 (32)B-09 工程暂停指令 (33)B—10 复工指令 (33)B—11 工作指令 (34)B-12 现场指令 (34)B-13 变更指令 (35)B—14 工程监理月报告单 (35)B-15 监理日志 (36)B—16 监理工程师报告(通知) (36)B-17 监理旬报表 (37)B-18 工地会议纪要 (37)B—19 监理工程师报告(通知) (38)第五章质量检验评定用表(C表) (39)质量检验评定表(土建工程) (41)C—01 工程质量检验评定用表 (42)C—02 分项工程检测记录表 (42)C—03 沥青面层压实度汇总分析评定表 (43)C-04 沥青面层压实度汇总分析评定表 (43)C-05 水泥混凝土路面面层弯拉强度汇总分析评定表(一) (44)C-06 水泥混凝土路面面层弯拉强度汇总分析评定表(二) (44)C-07 水泥稳定土路面基层(底基层)压实度汇总分析评定表 (45)C—08 水泥稳定土路面基层(底基层)无侧限抗压汇总分析评定表 (45)C—09 水泥稳定土路面基层(底基层)压实度汇总分析评定表 (46)C-10 水泥稳定土路面基层(底基层)无侧限抗压汇总分析评定表 (46)C—11 土方路基(上路床)压实度汇总分析评定表(一) (47)C—12 土方路基(上路床)压实度汇总分析评定表(二) (47)C-13 弯沉值汇总分析评定表(一) (48)C—14 弯沉值汇总分析评定表(二) (48)C-15 路面结构层厚度汇总分析评定表(一) (49)C—16 路面结构层厚度汇总分析评定表(二) (49)C-17 路基土石方工程检测记录(一) (50)C-18 路基土石方工程检测记录(二) (50)C—19 路基土石方工程检测记录(三) (51)C-20 水泥稳定粒料基层(底基层)检测记录 (51)C-21 水泥混凝土路面面层检测记录(一) (52)C-22 水泥混凝土路面面层检测记录(二) (52)C—23 砌体砂浆抗压强度汇总分析评定表…………………………………………C—24 水泥稳定土路面基层(底基层)无侧限抗压强度质量评定表 (53)C—25 水泥混凝土路面面层弯拉强度质量评定表 (54)C—26 水泥稳定土路面基层(底基层)无侧限抗压强度质量评定表 (54)C-27 土方路基质量检验评定表 (55)C-28 石方路基质量检验评定表 (55)C-29 砂砾垫层质量检验评定表 (56)C—30 袋装砂井、塑料排水板质量检验评定表 (56)C-31 碎石桩(砂桩)质量检验评定表 (57)C—32 粉喷桩质量检验评定表 (57)C-33 加筋工程土工合成材料质量检验评定表 (58)C—34 隔离工程土工合成材料质量检验评定表 (58)C—35 过滤排水工程土工合成材料质量检验评定表 (59)C—36 防裂工程土工合成材料质量检验评定表 (59)C-37 管节预制质量检验评定表 (60)C-38 管道基础及管节安装质量检验评定表 (60)C-39 检查(雨水)井砌筑质量检验评定表 (61)C—40 土沟质量检验评定表 (61)C-41 浆砌排水沟质量检验评定表 (62)C—42 盲沟质量检验评定表 (62)C-43 排水泵站(沉井)质量检验评定表 (63)C-44 砌体挡土墙质量检验评定表 (63)C-45 干砌挡土墙质量检验评定表 (64)C-46 悬臂式和扶壁式挡土墙质量检验评定表 (64)C-47 筋带质量检验评定表 (65)C—48 锚杆、拉杆质量检验评定表 (65)C-49 面板预制质量检验评定表 (66)C—50 面板安装质量检验评定表 (66)C-51 锚杆、锚锭板和加筋土挡土墙总体质量检验评定表 (67)C-52 锚杆、锚锭板和加筋土挡土墙墙背填土质量检验评定表 (67)C—53 抗滑桩质量检验评定表 (68)C—54 喷锚防护质量检验评定表 (68)C-55 锥、护坡质量检验评定表 (69)C-56 浆砌砌体质量检验评定表 (69)C-57 干砌片石质量检验评定表 (70)C—58 导流工程质量检验评定表……………………………………………………C—59 石笼防护质量检验评定表 (71)C—60 水泥混凝土面层质量检验评定表 (71)C-61 沥青混凝土面层和沥青碎(砾)石面层质量检验评定表 (72)C—62 沥青贯入式面层(或上拌下贯式面层)质量检验评定表 (72)C—63 沥青表面处治面层质量检验评定表 (73)C—64 水泥土基层和底层质量检验评定表 (73)C-65 水泥稳定粒料基层和底基层质量检验评定表 (74)C—66 石灰土基层和底基层质量检验评定表 (74)C—67 石灰稳定粒料基层和底基层质量检验评定表 (75)C—68 石灰粉煤灰土基层和底基层质量检验评定表 (75)C—69 石灰、粉煤灰稳定粒料基层和底基层质量检验评定表 (76)C—70 级配碎(砾)石基层和底基层质量检验评定表 (76)C—71 填隙砾石(矿渣)基层和底基层质量检验评定表 (77)C-72 路缘石铺设质量检验评定表 (77)C-73 路肩质量检验评定表 (78)C—74 桥梁总体质量检验评定表 (78)C-75 钢筋安装质量检验评定表 (79)C-76 钢筋网质量检验评定表 (79)C-77 预制桩钢筋安装质量检验评定表 (80)C—78 钢丝、钢绞线先张法质量检验评定表 (80)C-79 粗钢筋先张法质量检验评定表 (81)C—80 后张法质量检验评定表 (81)C—81 基础砌体质量检验评定表 (82)C—82 墩、台身砌体质量检验评定表 (82)C-83 拱圈砌体质量检验评定表 (83)C—84 侧墙砌体质量检验评定表 (83)C—85 扩大基础质量检验评定表 (84)C—86 钻孔灌注桩质量检验评定表 (84)C—87 挖孔桩质量检验评定表 (85)C—88 预制桩质量检验评定表 (85)C-90 地下连续墙质量检验评定表 (86)C—91 沉井质量检验评定表 (87)C-92 双壁钢围堰的制作拼装质量检验评定表 (87)C—93 沉井或钢围堰封底混凝土质量检验评定表 (88)C—94 承台质量检验评定表 (88)C—95 大体积混凝土结构质量检验评定表 (89)C-96 墩、台身质量检验评定表 (89)C-97 柱或双壁墩身质量检验评定表 (90)C-98 墩、台身安装质量检验评定表 (90)C—99 墩、台帽或盖梁质量检验评定表 (91)C—100 拱桥组合桥台质量检验评定表 (91)C-101 台背填土质量检验评定表 (92)C-102 梁(板)预制质量检验评定表 (92)C—103 梁(板)安装质量检验评定表 (93)C-104 就地浇筑梁(板)质量检验评定表 (93)C-105 顶推施工梁质量检验评定表 (94)C-106 悬臂浇筑梁质量检验评定表 (94)C—107 悬臂拼装梁质量检验评定表 (95)C—108 转体施工梁质量检验评定表 (95)C-109 就地浇筑拱圈质量检验评定表 (96)C-110 预制拱圈节段质量检验评定表 (96)C—111 桁架拱杆件预制质量检验评定表 (97)C—112 主拱圈安装质量检验评定表 (97)C-113 悬臂拼装的桁架质量检验评定表 (98)C-114 腹拱安装质量检验评定表 (98)C-115 转体施工拱质量检验评定表 (99)C-116 劲性骨架加工质量检验评定表 (99)C—117 劲性骨架安装质量检验评定表 (100)C-118 劲性骨架拱混凝土浇筑质量检验评定表 (100)C-119 钢管拱肋制作质量检验评定表 (101)C—120 钢管拱肋安装质量检验评定表 (101)C-121 钢管拱肋混凝土浇筑质量检验评定表 (102)C—122 吊杆的制作与安装质量检验评定表 (102)C—123 柔性系杆质量检验评定表 (103)C—124 钢板梁制作质量检验评定表 (103)C-125 钢桁节段制作质量检验评定表 (104)(104)C—127 钢梁防护涂装质量检验评定表 (105)C—128 钢梁安装质量检验评定表 (105)C-129 斜拉桥塔柱段质量检验评定表 (106)C-130 横梁质量检验评定表 (106)C—131 平行钢丝斜拉索制作与防护质量检验评定表 (107)C—132 主墩上梁段浇筑质量检验评定表 (107)C—133 混凝土斜拉桥梁的悬臂浇筑质量检验评定表 (108)C-134 混凝土斜拉桥梁的悬臂拼装质量检验评定表 (108)C-135 钢箱梁段制作质量检验评定表 (109)C-136 钢斜拉桥箱梁段的悬臂拼装质量检验评定表 (109)C—137 钢斜拉桥钢箱梁段的支架安装质量检验评定表 (110)C-138 工字梁段制作质量检验评定表 (110)C-139 结合梁工字梁段悬臂拼装质量检验评定表 (111)C-140 结合梁斜拉桥混凝土板施工质量检验评定表 (111)C-141 悬索桥塔柱段质量检验评定表 (112)C-142 预应力锚固系统制作质量检验评定表 (112)C—143 刚架锚固系统制作质量检验评定表 (113)C-144 预应力锚固系统制作质量检验评定表 (113)C—145 刚架锚固系统安装质量检验评定表 (114)C—146 锚碇混凝土块体质量检验评定表 (114)C—147 主索鞍制作质量检验评定表 (115)C—148 散索鞍制作质量检验评定表 (115)C-149 主索鞍安装质量检验评定表 (116)C—150 散索鞍安装质量检验评定表 (116)C-151 索股和锚头的制作与防护质量检验评定表 (117)C—152 主缆架设质量检验评定表 (117)C-153 主缆防护质量检验评定表 (118)C—154 索夹制作与防护质量检验评定表 (118)C—155 吊索和锚头制作与防护质量检验评定表 (119)C—157 钢箱梁段制作质量检验评定表 (120)C—158 钢加劲梁安装质量检验评定表 (120)C-159 防水层质量检验评定表 (121)C-160 桥面铺装质量检验评定表 (121)C—161 复合桥面水泥混凝土铺装质量检验评定表 (122)C-162 钢桥面板上防水粘结层质量检验评定表 (122)C-163 钢桥面板上沥青混凝土铺装质量检验评定表 (123)C—164 支座垫石质量检验评定表 (123)C-165 挡块质量检验评定表 (124)C-166 支座安装质量检验评定表 (124)C-167 斜拉桥、悬索桥的支座安装质量检验评定表 (125)C-168 伸缩缝安装质量检验评定表 (125)C-169 混凝土小型构件质量检验评定表 (126)C—170 人行道铺设质量检验评定表 (126)C-171 栏杆安装质量检验评定表 (127)C—172 混凝土小型构件质量检验评定表 (127)C-173 桥头搭板质量检验评定表 (128)C-174 涵洞总体质量检验评定表 (128)C-175 涵台质量检验评定表 (129)C—176 管座及涵管安装质量检验评定表 (129)C-177 盖板制作质量检验评定表 (130)C-178 盖板安装质量检验评定表 (130)C—179 箱涵浇筑质量检验评定表 (131)C-180 拱涵浇(砌)筑质量检验评定表 (131)C-181 倒虹吸竖井砌筑质量检验评定表 (132)C-182 一字墙和八字墙质量检验评定表 (132)C—183 涵洞填土质量检验评定表 (133)C—184 顶入法施工的桥、涵质量检验评定表 (133)C—185 隧道总体质量检验评定表 (134)C-186 明洞浇筑质量检验评定表 (134)C—187 防水层质量检验评定表 (135)C-188 明洞回填质量检验评定表 (135)C-189 洞身开挖质量检验评定表 (136)C—190 (钢纤维)喷射混凝土支护质量检验评定表 (136)(137)C-192 钢筋网支护质量检验评定表 (137)C-193 仰拱质量检验评定表 (138)C-194 混凝土衬砌质量检验评定表 (138)C-195 钢支撑支护质量检验评定表 (139)C—196 衬砌钢筋质量检验评定表 (139)C—197 防水层质量检验评定表 (140)C-198 止水带质量检验评定表 (140)C—199 超前锚杆质量检验评定表 (141)C-200 超前钢管质量检验评定表 (141)C-201 交通标志质量检验评定表 (142)C—202 路面标线质量检验评定表 (143)C-203 波形梁钢护栏质量检验评定表 (144)C-204 混凝土护栏质量检验评定表 (145)C—205 缆索护栏质量检验评定表 (145)C—206 突起路标质量检验评定表 (146)C-207 轮廓标质量检验评定表 (146)C-208 防眩设施坦检验评定表 (147)C-209 隔离栅和防落网质量检验评定表 (147)C-210 砌块体声屏障质量检验评定表 (148)C-211 金属结构声屏障质量检验评定表 (148)C-212 中央分隔带绿化质量检验评定表 (149)C—213 路侧绿化质量检验评定表 (149)C—214 互通立交区绿化质量检验评定表 (150)C-215 养护管理区、服务区绿化质量检验评定表 (150)C—216 取、弃土场绿化质量检验评定表 (151)C-217 建设项目(合同段)质量检验评定表 (151)质量检验评定表(机电工程) (152)C—218 车辆检测器质量检验评定表 (153)C—219 气象监测器质量检验评定表 (154)C-220 闭路电视监视系统质量检验评定表 (155)C-221 可变标志质量检验评定表 (156)C—222 电缆线路质量检验评定表 (157)C-223 监控中心设备安装及系统调测质量检验评定表 (158)C-225 地图板质量检验评定表 (160)C—226 监控系统计算机网络质量检验评定表 (161)C-227 通信管道与光、电缆线路质量检验评定表 (162)C—228 光纤数字传输系统质量检验评定表 (163)C-229 数字程控交换系统质量检验评定表 (165)C-230 紧急电话系统质量检验评定表 (166)C-231 无线移动通信系统质量检验评定表 (167)C-232 通信电源质量检验评定表 (168)C-233 入口车道设备车质量检验评定表 (169)C-234 出口车道设备质量检验评定表 (171)C—235 收费站设备及软件质量检验评定表 (173)C—236 收费中心设备及软件质量检验评定表 (174)C—237 IC-卡发卡编码系统质量检验评定表 (175)C-238 内部有线对讲及紧急报警系统质量检验评定表 (175)C—239 闭路电视监视系统质量检验评定表 (176)C-240 收费站内光、电缆及塑料管质量检验评定表 (177)C-241 外场设备电力电缆线路质量检验评定表 (177)C-242 中心(站)内低压配电设备质量检验评定表 (178)C—243 照明设施(灯杆)质量检验评定表 (179)C-244 环境检测设备质量检验评定表 (180)C-245 报警与诱导设施质量检验评定表 (180)C-246 通风设施质量检验评定表 (181)C-247 照明设施(灯具)质量检验评定表 (182)C-248 本地控制器质量检验评定表 (182)C-249 消防设施质量检验评定表 (183)C-250 隧道监控中心设备及软件质量检验评定表 (184)质量检验评定表(专业特大桥) (185)C—251 分项工程质量检验评定汇总表(一) (186)C-252 分项工程质量检验评定汇总表(二) (186)C-253 分部工程质量检验评定表 (187)C-254 工程质量检验评定汇总表 (187)C—255 单位工程质量检验评定表 (188)C-256 挖孔桩混凝土浇筑质量检验评定表 (188)C—257 承台混凝土浇筑质量检验评定表 (189)C—258 塔身混凝土浇筑质量检验评定表 (189)C—259 索塔横梁混凝土浇筑质量检验评定表 (190)C-261 预应力筋的制作及张拉质量检验评定表 (191)C—262 锚锭基坑质量检验评定表 (191)C—263 锚锭混凝土浇筑质量检验评定表 (192)C-264 锚固系统制造质量检验评定表 (192)C—265 锚固系统安装质量检验评定表 (193)C-266 预应力锚索质量检验评定表 (193)C—267 扩大基础混凝土浇筑质量检验评定表 (194)C-268 系梁混凝土浇筑质量检验评定表 (194)C-269 台身混凝土浇筑质量检验评定表 (195)C—270 墩柱混凝土浇筑质量检验评定表 (195)C—271 墩(台)帽混凝土浇筑质量检验评定表 (196)C—272 预制梁(板)质量检验评定表 (196)C-273 板、梁安装质量检验评定表 (197)C—274 锥坡质量检验评定表 (197)C—275 主索鞍制造质量检验评定表 (198)C-276 散索鞍制造质量检验评定表 (198)C—277 索夹制造质量检验评定表 (199)C—278 钢箱梁段防护质量检验评定表 (199)C-279 钢箱梁段制造质量检验评定表 (200)C-280 索股制作质量检验评定表 (201)C—281 吊索制作质量检验评定表 (201)C—282 主索鞍安装质量检验评定表 (202)C-283 散索鞍安装质量检验评定表 (202)C—284 主缆架设质量检验评定表 (203)C-285 索夹及吊索安装质量检验评定表 (203)C-286 主缆及吊索防护质量检验评定表 (204)C—287 钢箱梁梁段安装质量检验评定表 (204)C-288 钢箱梁支座安装质量检验评定表 (205)C-289 桥梁总体质量检验评定表 (205)C—290 伸缩缝安装质量检验评定表 (206)C-291 栏杆质量检验评定表 (206)C—292 钢防撞护栏安装质量检验评定表…………………………………………(207)C—293 混凝土护栏质量检验评定表 (207)C—294 缆索护栏质量检验评定表 (208)C—295 标志质量检验评定表 (208)C—296 标线质量检验评定表 (209)C-297 照明设施质量检验评定表 (209)C—298 行车道铺装质量检验评定表 (210)C—299 人行道铺装质量检验评定表 (210)第六章试验记录用表(D表) (211)公路土工试验规程用表(JTJ 051-93) (213)D—01 土样试验委托书 (214)D—02 扰动土试件制备记录 (215)D-03 含水量试验记录(烘干法) (216)D-04 含水量试验记录表(酒精法) (216)D-05 含水量试验记录(比重法) (217)D-06 含水量试验记录(碳化钙气压法) (217)D—07 土的密度试验(一)(环刀法;电动取土器法) (218)D—08 密度试验记录(蜡封法) (218)D—09 密度试验记录(灌水法) (219)D—10 土的密度试验记录(灌砂法) (219)D-11 比重试验记录(比重瓶法) (220)D-12 比重试验记录(浮称法) (220)D—13 比重试验记录(虹吸筒法) (221)D—14 土的颗粒分析试验(筛分法) (221)D-15 土的颗粒分析试验(甲种比重计法) (222)D-16 土的颗粒分析试验(移液管法) (222)D-17 土的液限塑限联合试验 (223)D—18 滚搓法塑限试验记录 (223)D—19 扰动土收缩试验记录(缩限试验) (224)D-20 原状土收缩试验记录 (224)D-21 天然稠度试验记录 (225)D—22 砂的相对密实度试验记录 (225)D—23 自由膨胀率试验记录 (226)D—24 无荷载膨胀试验记录(膨胀含水量) (226)D-25 无荷载膨胀试验记录(膨胀量) (227)D-26 有荷载膨胀量试验 (227)D-27 膨胀力试验记录 (228)D—28 强烈毛细管水上升高度试验记录 (228)D-29 常水头渗透试验记录 (229)D-30 变水头渗透试验记录 (230)D—31 土的击实试验 (231)D-32 标准击实试验记录 (231)D—33 最大干密度试验记录(振动台法、表面振动压实记法) (232)D—34 承载比CBR(贯入)试验记录 (232)D-35 承载比CBR(膨胀量)试验记录 (233)D—36 回弹模量(杠杆压力仪与强度仪法)试验记录 (233)D—37 单轴固结试验记录(一) (234)D—38 单轴固结试验记录(二) (234)D-39 单轴固结试验记录(三) (235)D-40 快速法固结试验记录 (236)D-41 黄土湿陷试验记录 (236)D-42 直接剪切试验记录(一) (237)D-43 直接剪切试验记录(二) (238)D—44 三轴压缩试验记录(一) (239)D—45 三轴压缩试验记录(二) (240)D—46 三轴压缩试验记录(三) (241)D—47 粗粒土大三轴试验记录(一) (241)D—48 粗粒土大三轴试验记录(二) (242)D—49 无则限抗压强度试验记录 (243)D-50 烧失量试验记录 (243)D—51 有机质含量试验记录 (244)D—52 易溶盐总量试验记录(质量法) (244)D—53 碳酸根和碳酸氢根试验记录 (245)D—54 氯根试验记录 (245)D-55 钙、镁离子试验记录(EDTA驱位滴定法) (246)D—56 硫酸根试验记录(质量法) (246)D—57 硫酸根试验记录(EDTA间接配位滴定法) (247)D—58 钠、钾离子试验记录(火焰光度法) (247)D-59 中溶盐试验记录(质量法) (248)D—60 碳酸盐试验记录(气量法) (248)D-61 阳离子交换量试验记录(EDTA—铵盐快速法) (249)D-62 阳离子交换量试验记录(草酸铵-氯化铵法) (249)D-63 二氧化硅含量试验记录 (250)D—64 倍半氧化物总量试验记录 (250)D-65 铁、铝试验记录 (251)D-66 钙、镁试验记录 (251)公路土工合成材料试验规程用表(JTJ 060-98) (252)D-67 土工合成材料单位面积质量试验记录 (253)D—68 土工合成材料厚度试验记录(厚度仪法) (253)D-69 土工合成材料厚度试验记录(强度仪法) (254)D-70 土工格栅、土工网网孔尺寸测试记录 (254)D—71 土工格栅温度收缩系数试验记录 (255)D-72 土工合成材料拉伸试验记录 (255)D-73 土工合成材料握持拉伸试验记录 (256)D-74 土工合成材料撕裂试验记录 (256)D-75 土工合成材料圆球顶破试验记录 (257)D—76 土工合成材料CBR顶破试验记录 (257)D-77 土工合成材料刺破试验记录 (258)D-78 土工合成材料落锥穿透试验记录 (258)D-79 土工合成材料直剪摩擦试验记录 (259)D-80 土工合成材料拉拔试验记录 (259)D—81 土工合成材料蠕变试验记录 (260)D-82 土工合成材料孔径试验记录(干筛) (260)D—83 土工合成材料孔径试验记录(显微镜) (261)D-84 土工织物垂直渗透试验记录 (262)D-85 土工织物平面渗透试验记录 (263)D—86 土工合成材料淤堵试验记录 (264)公路工程沥青及沥青混合料试验规程用表(JTJ 052—2000) (265)D—87 沥青试验报告 (266)D-88 沥青密度与相对密度试验记录表 (266)D—89 沥青针入度试验记录表 (267)D—90 沥青延度试验记录表 (267)D—91 沥青软化点试验记录表 (268)D—92 沥青闪点和燃点试验记录表 (268)D—93 沥青含水量试验记录表 (269)D-94 沥青脆点试验记录表 (269)D-95 沥青化学组分试验 (270)D—96 沥青蜡含量试验记录表 (271)D—97 沥青旋转薄膜加热试验记录表……………………………………………(271)D-98 沥青化学组分(四组分法)试验记录表 (272)D-99 液体石油沥青蒸馏试验记录表 (272)D-100 煤沥青蒸馏试验记录表 (273)D—101 煤沥青酚含量试验记录表 (273)D-102 煤沥青萘含量试验记录表(抽滤法) (274)D—103 沥青混合料密度、饱水率试验记录表 (274)D—104 沥青混合料的矿料级配试验记录表 (275)D-105 沥青混合料试件制备 (276)D-106 沥青混合料马歇尔稳定度试验报告(一) (277)D—107 沥青混合料马歇尔稳定度试验报告(二) (278)D-108 沥青混合料试验记录表 (278)D—109 沥青乳液检验记录表 (279)公路工程石料试验规程用表(JTJ 054-94) (280)D—110 石料岩石学鉴定记录 (281)D-111 密度试验记录(比重瓶法) (281)D—112 密度试验记录(李氏比重瓶法) (282)D—113 毛体积密度试验记录(静水称量法) (282)D—114 体积密度试验记录(量积法) (283)D-115 毛体积密度试验记录(蜡封法) (283)D-116 吸水率试验记录 (284)D-117 冻融试验记录 (284)D—118 耐冻系数试验记录 (285)D-119 坚固性试验记录(规则形状试件) (285)D—120 抗压强度试验记录 (286)D—121 间接抗拉强度试验(劈裂法)记录 (286)D-122 抗剪强度试验记录 (287)D-123 抗折强度试验记录 (287)D—124 石料静弹性模量试验记录(杠杆引伸仪法) (288)D-125 石料静弹性模量试验记录(电阻应变仪法) (289)D-126 石料静弹性模量试验记录(镜式引伸仪法) (289)D—127 磨耗试验记录表(洛杉矶法) (290)D-128 磨耗试验记录表(狄法尔法)(一) (290)D—129 磨耗试验记录表(狄法尔法)(二) (291)公路工程无机结合料稳定材料试验规程用表(JTJ 057—94) (292)D—130 稳定土含水量试验记录表 (293)D-131 稳定土击实试验记录表 (293)D—132 无侧限抗压强度试验记录表 (294)D—133 间接抗拉强度试验 (294)D-134 室内回弹模量试验(承载板法) (295)D-135 水泥或石灰剂量的测定(EDTA滴定法)试验记录表 (295)D-136 石灰有效氧化钙的测定试验记录表 (296)D—137 石灰氧化钙的测定试验记录 (296)D—138 石灰有效钙和氧化镁的合量试验记录表 (297)公路路基、路面现场测试规程用表(JTJ 095—95) (298)D-139 土基现场CBR值测定记录表 (299)D-140 承载板测定记录表 (299)D-141 水泥混凝土路面抗弯强度试验记录表 (300)D-142 水泥混凝土路面抗弯强度评定结果报告表 (300)D-143 沥青路面破损调查统计表 (301)D-144 水泥混凝土路面的破损调查统计表 (301)D—145 平整度横坡宽度厚度检测汇总表 (302)D-146 路基弯沉值检验汇总表 (302)D-147 回弹弯沉测定记录 (303)D-148 压实度试验记录汇总表 (303)公路工程水质分析操作规程用表(JTJ 056-84) (304)D—149 水的总固体试验记录表 (305)D—150 公路工程水质分析记录表 (305)公路工程金属试验规程(JTJ 055—83) (306)D—151 钢材静弹性模量试验记录表 (307)D-152 金属洛氏硬度(HRC)试验记录表 (307)D-153 钢筋拉伸及弯曲试验记录表 (308)D-154 焊接接头弯曲试验记录表 (308)D—155 焊接接头拉伸试验记录表 (309)公路工程水泥混凝土试验规程用表(JTJ 053—94) (310)D—156 水泥细度试验记录表 (311)D—157 水泥标准稠度用水量、凝结时间、安定性试验记录表 (311)D-158 水泥胶砂强度试验记录表 (312)D—159 混凝土试件制作试验报告单 (312)D—160 水泥混凝土(砂浆)抗压强度试验报告 (313)D—161 水泥混凝土(砂浆)抗折强度试验记录表 (313)D—162 混凝土砂浆抗压(抗折)强度试验汇总表 (314)D—163 混凝土抗压弹性模量试验记录表 (314)D-164 混凝土抗折弹性模量试验记录表 (315)D-165 水泥混凝土配合比试验报告 (315)D-166 路面水泥混凝土配合比设计 (316)公路工程集料试验规程(JTJ 058—2000) (317)D—167 材料试验委托单 (318)D—168 材料试验报告单 (318)D—169 粗集料试验报告 (319)D—170 粗集料试验记录(一) (320)D-171 粗集料试验记录(二) (321)。

PC料2858检测报告

PC料2858检测报告

PC料2858检测报告
1.供应PC德国拜耳2405高流动
2.供应PC德国拜耳2407高流动抗紫外线
3.供应PC德国拜耳2807中粘度抗紫外线
4.供应PC德国拜耳2207高流动抗紫外线
5.供应PC德国拜耳28052865中粘度
6.供应PC德国拜耳2858,2658,2458食品级
7.供应PC德国拜耳2456,2856,2558食品级
8.供应PC德国拜耳6557中粘度易脱模阻燃V-0
9.供应PC德国拜耳6555阻燃V0中粘度
10.供应PC德国拜耳3103,3105抗紫外线,高粘度,中高分子量,注射或挤塑成型;
11.供应PC德国拜耳3208特性:高粘度,高分子量,挤塑成型,耐冲击,FDA认可,水触稳定性
12.供应PC 德国拜耳6485,6457,6265,6555,6557阻燃VO
13.供应PC德国拜耳2605中低粘度耐冲击
14.供应PC德国拜耳2097高流动,耐高温
15.供应PC沙伯基础(原GE)500R阻燃VO加纤10%,抗冲击
16.供应PC沙伯基础(原GE)940-701/NC防火VO,黑色,半透明透明
17.供应PC沙伯基础(原GE)940A-116阻燃V0中粘度
18.供应PC沙伯基础(原GE)25U,943A防火抗紫外线。

ASTM A 802-1995(R2001)

ASTM A 802-1995(R2001)

Designation:A802/A802M–95(Reapproved2001)Standard Practice forSteel Castings,Surface Acceptance Standards,Visual Examination1This standard is issued under thefixed designation A802/A802M;the number immediately following the designation indicates the year of original adoption or,in the case of revision,the year of last revision.A number in parentheses indicates the year of last reapproval.A superscript epsilon(e)indicates an editorial change since the last revision or reapproval.This standard has been approved for use by agencies of the Department of Defense.1.Scope1.1This practice covers the acceptance criteria for the surface inspection of steel castings by visual examination.Four levels of acceptance standards are provided.1.2Acceptance levels utilize Steel Castings Research and Trade Association(SCRATA)2graded reference comparators for the visual determination of surface texture,surface rough-ness,and surface discontinuities described as follows:Acceptance levelsA—Surface TextureB—Nonmetallic InclusionsC—Gas PorosityD—Solidification DiscontinuitiesE—Sand Expansion DiscontinuitiesF—Metal InsertsG—Thermally Cut SurfacesH—Mechanically Prepared SurfacesJ—Welded Surfaces1.3Descriptions of terms related to casting discontinuities are in Section2.1.4This standard does not purport to address all of the safety concerns,if any,associated with its use.It is the responsibility of the user of this standard to establish appro-priate safety and health practices and determine the applica-bility of regulatory limitations prior to use.2.Terminology2.1Definitions of Terms Specific to This Standard:2.1.1expansion discontinuities:2.1.1.1veins,n—raised,narrow,linear ridges that form upon cracking of the sand mold or core due to expansion of sand and the resulting mold or core stresses duringfilling of the mold with liquid steel.2.1.1.2rat tails,n—long,narrow,linear depressions or small steps occurring on a casting surface.Rat tails form as a result of sand expansion and minor buckling of the mold surface duringfilling of the mold with liquid metal.2.1.1.3scab,n—a raised,rough area on a casting that usually consists of a crust of metal covering a layer of sand. Sometimes,a scab consists of a raised,rough area of essen-tially solid metal on the surface of a casting.2.1.2external chills:2.1.2.1external chills,n—usually metal blocks,or graphite and carbon blocks,that are incorporated into the mold to locally increase the rate of heat removal during solidification. Brackets have the same purpose but represent an integral part of the casting.Brackets are produced by providing suitable cavities in the mold or core.External chills may produceflat spots and edges(raised areas or depressions)on the casting surface.Brackets merely change the casting appearance due to their presence.Brackets may be removed or allowed to remain on the casting.2.1.2.2parting line and core printfins,n—thin projections of excess metal at the parting plane between mold halves or core and mold.Causes are improper closing of the mold, insufficient weighting or clamping of the mold for pouring,or uneven pattern surfaces at the matching locations.Core print fins are usually caused by improper dimensions of core prints of the pattern or core box,by rough placement of cores in a soft mold,or by inadequately secured cores.2.1.3fusion discontinuities:2.1.3.1wrinkles,n—elongated,smooth depressions of the casting surface,frequently appearing in closely spaced groups. Wrinkles result from irregularities of the liquid metalflow in the mold cavity,frequently associated with low temperature, and are distinguished from the more severe phenomenon of laps,folds,or cold shuts where the casting surface is actually folded over.2.1.3.2laps,folds,and cold shuts,n—interchangeable terms to describe the appearance of the casting surface that is actually folded over.They develop due to low temperature, unfavorableflow conditions caused by oxidefilms,or combi-nations thereof.1This practice is under the jurisdiction of ASTM Committee A01on Steel,Stainless Steel,and Related Alloys and is the direct responsibility of SubcommitteeA01.18on Castings.Current edition approved Sept.10,1995.Published November1995.Originallypublished as A802–st previous edition A802/A802M–89.2Available from The Castings Development Centre,7East Bank Road,Sheffield,UK S23PT.1Copyright©ASTM International,100Barr Harbor Drive,PO Box C700,West Conshohocken,PA19428-2959,United States.2.1.3.3misrun,n —an incompletely formed casting,due to only partial filling of the mold cavity when the liquid metal solidifies prematurely.The resulting casting appearance is characterized by rounded edges,for a mild degree of misrun.Irregular,malformed edges of more severe misruns,and not fully formed castings,are characteristic.Frequently,misruns are associated with such discontinuities as wrinkles or laps and folds,or both.2.1.4gas porosity,n —a concave discontinuity in castings due to the evolution of gas,either from the solidifying metal or the surrounding mold.2.1.5inserts:2.1.5.1chaplets,n —metallic (steel)devices used to main-tain the spacing between the core and the mold.Low liquid metal temperature and unfavorable flow conditions in the mold may produce insufficient fusion and cause irregular contact areas on the casting surface.2.1.5.2internal chills,n —metallic (steel)devices used to locally increase the rate of heat removal during solidification.Incomplete fusion due to low liquid steel temperatures and prevailing flow conditions may produce irregularities of the surface similar to those that may be associated with chaplets.2.1.6linear discontinuities,n —elongated discontinuities are considered linear if their length equals or exceeds three times the width.2.1.6.1cracks,n —cold and hot ,less jagged,sometimes straight ruptures that occur after solidification of the casting,due to excessive strain.Sometimes cracks are referred to as cold,hot,or heat treat-cracks to indicate the condition of the castings,or the operation during which the cracks occur.2.1.6.2hot tears,n —jagged ruptures in castings that occur during the final stages of solidification,while there is still some liquid in the interdendritic spaces,or shortly after solidification is complete.2.1.7metal removal marks,n —flame cutting and air carbon-arc cutting produce parallel grooves in the cut-off area.Finer marks are produced with the abrasive cut-off wheel and grinding.2.1.8nonmetallic inclusions,n —casting surface inclusions such as ceroxides,slag,and sand are partially or completely removed during the cleaning process of pressure blasting.Surface discontinuities left by these inclusions are referred to by the inclusion type that caused their formation:2.1.8.1Ceroxides cause depressions on the surface of the casting by displacement of molten metal.Ceroxides consist ofa mixture of low-melting oxides and partially fused sand.The crater-like appearance of the casting surface depression is typical.2.1.8.2Depressions on the casting surface caused by slag are similar to those caused by ceroxides.They differ by a more rounded appearance of the depression and do not exhibit the crater-like appearance of ceroxides.2.1.8.3Depressions caused by sand are similar to those of ceroxides and slag.Their appearance may,at times,more closely reflect the granular nature of the sand.2.1.9shrinkage under risers and gates,and revealed by machining,n —a shrinkage void is a discontinuity in castings due to the lack of available liquid feed metal during solidifi-cation contraction.Riser removal and machining may reveal shrinkage that extends from the interior of the casting to the near surface area.2.1.10surface texture,n —cast surfaces have a multi-directional lay,without the uniform sequence of ridges and valleys of machined surfaces.2.1.11welding:2.1.11.1weld undercuts,n —narrow elongated depressions that border the weld contour and result from improper welding conditions or inadequate control of welding operations.2.1.11.2weld spatter,n —weld metal droplets that solidified against and adhere to the component being welded.3.Ordering Information3.1The inquiry and order should specify the following information:3.1.1Acceptance Level —More than one acceptance level may be specified for different surfaces of the same casting (see Section 4),3.1.2If any types of discontinuities are unacceptable,3.1.3Extent of casting surfaces to be examined,and 3.1.4Number of castings to be examined.4.Acceptance Standards4.1Levels of acceptance for visual inspection are listed in Table 1.4.2Surface discontinuities not covered in Practice A 802/A 802M shall be a matter of agreement between the purchaser and the manufacturer.5.Keywords5.1steel castings;surface acceptance standards;visualTABLE 1Visual Inspection Acceptance CriteriaSurface Feature Level I Level II Level III Level IV Surface textureA1A2A3A4Nonmetallic inclusions B1B2B4B5Gas porosityC2C1C3C4Fusion discontinuities ...A D1D2D5Expansion discontinuities ...A ...A E3E5Inserts...A ...A F1F3Metal removal marks:Thermal G1G2G3G5Mechanical H1H3H4H5WeldsJ1J2J3J5ANoreference comparator plate is available for this surface feature and level.ASTM International takes no position respecting the validity of any patent rights asserted in connection with any item mentioned in this ers of this standard are expressly advised that determination of the validity of any such patent rights,and the risk of infringement of such rights,are entirely their own responsibility.This standard is subject to revision at any time by the responsible technical committee and must be reviewed everyfive years and if not revised,either reapproved or withdrawn.Your comments are invited either for revision of this standard or for additional standards and should be addressed to ASTM International Headquarters.Your comments will receive careful consideration at a meeting of the responsible technical committee,which you may attend.If you feel that your comments have not received a fair hearing you should make your views known to the ASTM Committee on Standards,at the address shown below.This standard is copyrighted by ASTM International,100Barr Harbor Drive,PO Box C700,West Conshohocken,PA19428-2959, United States.Individual reprints(single or multiple copies)of this standard may be obtained by contacting ASTM at the above address or at610-832-9585(phone),610-832-9555(fax),or service@(e-mail);or through the ASTM website ().。

pc2858物性

pc2858物性

食品级PC 2858 德国拜耳性能特点∙可用环氧乙烷消毒∙可用蒸汽消毒∙生物兼容性∙脱模性能良好∙中等粘性用途医疗/护理领域的应用机构评级ISO 10993RoHS 合规性 RoHS 合规形式颗粒料加工方法注射成型多点数据∙Creep Modulus vs. Time(ISO 11403-1)∙Isochronous Stress vs.Strain (ISO 11403-1)Isothermal Stress vs. Strain (ISO11403-1) ∙Secant Modulus vs. Strain (ISO 11403-1)∙Shear Modulus vs. T emperature (ISO 11403-1)Specific Volume vs Temperature (ISO 11403-2)PC 2858 德国拜耳物性表资料由长城塑胶提供T e L 1 3 6 8 6 6 5 8 5 1 7物理性能额定值单位制测试方法密度 1.20 g/cm³ISO 1183表观密度30.66 g/cm³ISO 60熔流率(300°C/1.2 kg) 10 g/10 min ISO 1133溶化体积流率(MVR)(300°C/1.2kg)9.00 cm³/10min ISO 1133收缩率横向流量0.60 到0.80 % ISO 2577流量0.60 到0.80 % ISO 2577横向流量: 2.00 mm 40.75 % ISO 294-4流量: 2.00 mm 40.70 % ISO 294-4吸水率ISO 62饱和, 23°C 0.30 %平衡, 23°C, 50% RH 0.12 %硬度额定值单位制测试方法球压硬度115 MPa ISO 2039-1机械性能额定值单位制测试方法拉伸模量(23°C) 2350 MPa ISO 527-2/1拉伸应力ISO 527-2/50屈服, 23°C 66.0 MPa断裂, 23°C 70.0 MPa拉伸应变ISO 527-2/50 屈服, 23°C 6.1 %断裂, 23°C 130 %断张率(23°C) > 50 % ISO 527-2/50 拉伸蠕变模量ISO 899-11 hr 2200 MPa1000 hr 1900 MPa弯曲模量5 (23°C) 2400 MPa ISO 178弯曲强度5ISO 178 23°C 97.0 MPa3.5% 应变, 23°C 73.0 MPaFlexural Strain at Flexural7.1 % ISO 178 Strength 6 (23°C)薄膜额定值单位制测试方法3800 cm³/m²/bar/24 hr ISO 2556 Carbon Dioxide Permeability(23°C, 100.0 µm)Nitrogen Permeability (23°C,120 cm³/m²/bar/24 hr ISO 2556 100.0 µm)650 cm³/m²/bar/24 hr ISO 2556 Oxygen Permeability (23°C,100.0 µm)冲击性能额定值单位制测试方法简支梁缺口冲击强度7ISO 179/1eA -30°C, 完全断裂16 kJ/m²23°C, 局部断裂75 kJ/m²简支梁缺口冲击强度ISO 179/1eU -60°C 无断裂-30°C 无断裂23°C 无断裂悬壁梁缺口冲击强度8ISO 180/A-30°C, 完全断裂14 kJ/m²23°C, 局部断裂85 kJ/m²多轴向仪器化冲击能量ISO 6603-2 -30°C 65.0 J23°C 60.0 J多轴向仪器化冲击力峰值ISO 6603-2 -30°C 6300 N23°C 5400 N热性能额定值单位制测试方法热变形温度0.45 MPa, 未退火137 °C ISO 75-2/B1.8 MPa, 未退火125 °C ISO 75-2/A玻璃转化温度9145 °C ISO 11357-2维卡软化温度-- 145 °C ISO 306/B50-- 146 °C ISO 306/B120 Ball Pressure T est (136°C) Pass IEC 60695-10-2 线形膨胀系数ISO 11359-2流动: 23 到55°C 0.000065 cm/cm/°C横向: 23 到55°C 0.000065 cm/cm/°C导热系数10 (23°C) 0.20 W/m/K ISO 8302电气性能额定值单位制测试方法表面电阻率 1.0E+16 ohm IEC 60093体积电阻率(23°C) 1.0E+16 ohm·cm IEC 60093耐电强度(23°C, 1.00 mm) 34 kV/mm IEC 60243-1相对电容率IEC 60250 23°C, 100 Hz 3.1023°C, 1 MHz 3.00耗散因数IEC 60250 23°C, 100 Hz 0.0005023°C, 1 MHz 0.0090漏电起痕指数(解决方案A) 250 V IEC 60112可燃性额定值单位制测试方法灼热丝易燃指数IEC 60695-2-12 1.50 mm 850 °C3.00 mm 930 °C热灯丝点火温度IEC 60695-2-130.750 mm 875 °C1.50 mm 875 °C3.00 mm 900 °C极限氧指数1128 % ISO 4589-2 Flash Ignition T emperature 480 °C ASTM D1929 Self Ignition T emperature 550 °C ASTM D1929光学性能额定值单位制测试方法折射率12 1.586 ISO 489透射率ISO 13468-2 1000 µm 89.0 %2000 µm 89.0 %3000 µm 88.0 %4000 µm 87.0 %雾度(3000 µm) < 0.80 % ISO 14782补充信息额定值测试方法ISO Shortname PC,MR,(,,)-09-9 ISO 7391注射额定值单位制加工(熔体)温度280 到320 °C。

丙烯酸酯胶粘剂标准

丙烯酸酯胶粘剂标准

丙烯酸酯胶粘剂标准丙烯酸酯胶粘剂是一种重要的工业胶粘剂,在许多不同的领域和应用中被广泛使用。

为了确保丙烯酸酯胶粘剂的质量和性能,制定了一系列的标准来进行规范和评价。

下面是与丙烯酸酯胶粘剂相关的参考内容。

1. GB/T 7125-2008《胶粘剂纸基布剥离强度测定方法》该标准规定了测定联系剂的剥离强度的方法。

通过对纸基布上涂布的胶粘剂剥离强度的测试,可以评估胶粘剂的附着力和粘合性能。

2. GB/T 4851-2012《丙烯酸酯胶粘剂——基本要求和试验方法》该标准主要规定了丙烯酸酯胶粘剂的基本要求和试验方法。

其中包括物理性能、粘接性能、化学性能、耐热性能、耐水性能、可燃性能等方面的测试项目和评价方法,确保胶粘剂的质量和使用性能符合要求。

3. GB/T 4852-2017《丙烯酸酯胶带》该标准规定了丙烯酸酯胶带的技术要求、试验方法和标志、包装、运输、储存要求等方面的内容。

通过对丙烯酸酯胶带的各项指标和性能进行评估,确保其质量和可靠性。

4. GB/T 4853-2017《丙烯酸酯胶粘剂泡沫塑料剥离强度测定方法》该标准规定了测定丙烯酸酯胶粘剂与泡沫塑料(例如聚乙烯、聚丙烯等)剥离强度的方法。

通过对剥离强度的测试,可以评估胶粘剂在泡沫材料上的粘接性能,确保粘结的可靠性。

5. GB/T 26963-2011《胶粘剂薄膜剥离强度测定方法》该标准规定了胶粘剂薄膜剥离强度的测试方法。

通过对胶粘剂薄膜的剥离强度进行测量,可以评估胶粘剂的粘接性能和附着力。

6. GB/T 26964-2011《胶粘剂抗剪切性能测定方法》该标准规定了胶粘剂的抗剪切性能测定方法。

通过对粘结件在剪切载荷下的力学性能进行测试和评估,可以判断胶粘剂的耐剪切性能和粘结强度。

以上标准涵盖了丙烯酸酯胶粘剂所涉及的物理性能、粘接性能、化学性能、耐热性能、耐水性能、剥离强度、抗剪切性能等方面的评价项目和测试方法。

这些标准的制定和遵循,可以保证丙烯酸酯胶粘剂的质量和性能符合要求,并确保其在各种不同应用中的可靠性和稳定性。

ASTM有关土工合成材料的试验标准,兼述我国的相应标准

ASTM有关土工合成材料的试验标准,兼述我国的相应标准

2009中国土工合成材料创新发展论坛论文集ASTM有关土工合成材料的试验标准,兼述我国的相应标准王正宏(北京工业大学,北京,100124)1.ASTM的试验方法标准1.1标准的项目名称ASTM(AmericanSocietyforTestingMaterials)是美国材料试验学会的简称,为当今国际上最著名的制定材料试验方法标准的权威机构之一,它是一所民间的非营利性跨行业组织,它的业务范围涵盖多种材料,包括岩土和土工合成材料。

我国的上述两类材料的试验方法规程、规范,主要都以ASTM标准为依据。

近来得到长期从事土工合成材料试验研究的我国留美学者袁则宏博士的帮助,收集到AsTM关于土工合成材料的几乎全部的试验方法标准,对我们的工作有很好的参考价值,故将所有试验方法项目名称皆译成中文供大家查阅,如表1:表中D××××为试验编号,其后的数字为标准采用或最后修订年份。

表1.美国AsTM有关土工合成材料的试验标准ASTMD1987—07(1)土工织物或土一土工织物滤层生物淤堵试验方法AsTMD2643-04水库、水池、渠道和水沟预制沥青衬垫(外露型)试验规范ASTMD4354—99土工合成材料试样制备标准方法ASTMD4355—07在氙弧灯仪器中土工织物露于光、湿、热条件下的老化试验方法ASTMD4437—99柔性高分子土工膜片材现场接缝完整性的试验方法。

ASTMD4439—94土工合成材料名词术语标准ASTMD4491-99a土工合成材料渗水的透水率试验方法ASTMD4533—04土工织物梯形撕裂强度试验方法ASTMD4545—86柔性高分子土工膜片材工厂接缝完整性的试验方法ASTMD4594-96温度对土工织物稳定性影响的试验方法ASTMD4595-05用宽条试样测定土工织物拉伸特性的试验方法ASTMD4632-91土工织物握持破坏荷载和伸长量的试验方法ASTMD4716—07‟ 用常水头法测定土工合成材料单宽(平面)流率和导水率的试验方法ASTMD4751-04土工织物表观(apparent)开孔的试验方法ASTMD4759-02土工合成材料与规范相符性的确定方法Asl‟MD4833-07土工膜和相关产品抗穿刺指标的试验方法ASTMD4873-02土工合成材料卷材和样品识别、储存和操作导则412009中国土工合成材料创新发展论坛论文集ASTMD4884-96土工合成材料缝制和热粘缝强度试验方法ASTMD4885-01用宽条拉伸法确定土工膜运行强度的试验方法ASTMD4886-88土工织物抗磨(砂纸一滑块法)试验方法ASTMD5101-OI用梯度比量测土一土工织物系统堵塞潜势的试验方法ASTMD5141-96用当地土的土工织物障篱的反滤效益和流量的试验方法ASTMD5199一01量测土工合成材料名义厚度的试验方法ASTMD5261-92量测土工织物单位面积质量的试验方法AsTMD5262-07确定土工合成材料无侧限条件下拉伸蠕变和蠕变破坏型状试验方法ASl‟^ID5321-02用直剪法测定土和土工合成材料或土工合成材料和土工合成材料之间摩擦数的试验方法ASTMD5322—98评价土工合成材料对液体化学抗力的试验室试样浸液步骤的标准方法ASTMD5323-92确定聚乙烯土工膜2%割线模量标准方法ASTMD5397-07借切口恒拉伸荷载试验评价聚烯烃土工膜抗应力开裂的方法ASTMD5493-06荷载下土工织物透水率的试验方法ASTMD5494—93未受保护和受保护土工膜抗锥刺能力的试验方法ASTMD5496—98土工合成材料现场浸渍试验方法ASTMD5514-06土工合成材料大型水力穿刺试验方法ASTMD5567-94土一土工织物系统导水比(HCR)试验方法ASTMD5596-03聚烯烃土工合成材料中碳黑分散微观评价试验方法ASTMD5617—04土工合成材料多轴拉伸试验方法ASTMD5641-94用真空罐评价土工膜接缝试验方法ASTMD5721—95聚烯烃土工膜气烘老化步骤ASTMD5747—95a评价土工膜对液体化学抗力的试验步骤ASlⅥD5818一06样品外爆和回收以评价土工合成材料铺设破坏的方法ASTMD5819一05土工合成材料耐久性评价方法选择导则ASTMD5820-95用压缩空气评价土工膜双焊缝的方法ASTMD5884-04a内部加筋土工膜撕裂强度试验方法ASlⅥD5885-06用高压差热扫描热量计确定聚烯烃土工合成材料氧化诱导时间的试验方法ASlMD5886-95确定特殊应用中液体渗过土工膜速率方法选择导则AsTMD5887-04用柔壁渗透仪量测通过饱和土工织物膨润土衬垫试样流率的试验方法AsTMD5888-06膨润土垫(GcL)存储和搬运导则ASTMD5889-97土工合成材料膨润土垫质量控制方法ASTMD5890-06土工合成材料膨润土垫粘土矿物膨胀势测定方法ASTMD5891—02土工合成材料膨润土垫中粘土成分漏失试验方法422009中国土工合成材料创新发展论坛论文集ASTMD5970-96土工织物户外曝晒老化试验ASTMD5993-99土工合成材料膨润土垫单位质量测试方法ASTMD5994-98带纹土工膜芯板厚度测试方法ASTM96072-96土工合成材料膨润土垫取样导则ASTMD6088-06铺设道路土工复合排水材料方法ASlMD6102-06土工合成材料膨润土垫铺设导则AsTMD6140-00全宽沥青路面中铺面织物沥青保留量测试方法ASTMD6141-97土工合成材料膨润土垫中粘土成分对液体的化学相容性(与液体接触后仍否保持膨胀性等)锄评价导则ASTMD6213-97评价土工格栅抗化学液的试验方法ASTMD6214-98化学熔接法现场连接土工膜的完整性测试方法ASTMD6241-04利用50mm测头测定土工织物和与其相关材料静定穿刺强度的试验方法ASlMD6243-06利用直剪试验测定土工合成材料膨润土垫内部和界面抗剪强度的试验方法ASTMD6244-06道路复合排水板块(paneltrain)垂直压缩性试验方法ASTMD6364-06土工合成材料短期压缩特性测定方法ASTMD6365-99用火花试验对土工膜接缝进行非破坏性试验的方法ASTMD6388-99评价土工网抗化学液的试验方法ASTMD6389-99评价土工织物抗化学液的试验方法ASTMD6392-99未加筋土工膜热熔法焊接缝完整性测试方法ASTMD6434-04柔性聚丙烯(fpp)土工膜试验方法选择导则ASlMD6454-99草皮加筋垫(turfreinforcementmat,T跚)短期压缩特性测试方法ASTMD6455-05预制沥青土工膜(PBGM)试验方法选择导则ASTMD6495-02土工合成材料膨润土垫认可试验要求(为接受该材料应作试验的类型、方法和论证,以保证供货符合要求)…2‟导则ASTMD6496-04a针刺土工织物膨润土垫上下层间平均剥离强度测试方法ASTMD6497-02土工膜与贯穿物或结构物机械连接方法导则ASTMD6523-00卫生垃圾场另类覆盖层(alternativedailycover,ADC)选择与评价导则ASTMD6524-00草皮加筋垫(T跚)回弹量量测方法ASTMD6525-00永久性防冲卷材名义厚度量测方法ASTMD6566-00草皮加筋垫单位面积质量量测方法ASlMD6567-00白炽光穿透草皮加筋垫(T跚)的量测方法ASTMD6574-00借辐射流量测土工合成材料(平面)水力传导率试验方法ASTMD6575-00用作草皮加筋垫(T跚)的土工合成材料刚度测试方法ASTMD6636-01加筋土工膜层面连接强度测试方法们2009中国土工合成材料创新发展论坛论文集ASTMD6637—0l借单肋或多肋拉伸法测量土工格栅拉伸特性的标准方法ASTMD6638-07土工合成材料筋材与混凝土模块(模块混凝土块)间连接强度的测试方法ASTMD6693-04未加筋聚乙烯和未加筋柔性聚丙烯土工膜拉伸特性测试方法ASTMD6706一Ol土工合成材料土中抗拔试验ASTMD6707-06用于地下排水的园织型(circularknit)土工织物?娓?ASTMD6747-04土工膜潜在漏水通道电测技术选择导则ASTMD6766—06a可能不相容液体渗过土工合成材料膨润土垫时水力特性评价测试方法ASTMD6767-02用毛管流测定土工织物开孔特征方法ASTMD6768-04土工合成材料膨润土垫拉伸强度测试方法ASTMD6817-07刚性多孔聚苯乙烯标准ASTMD6818-02泥炭加筋垫极限抗伸性质测试方法ASTMD6826—05用作城市固体废料堆埋场日覆盖材料的另类材料喷泥浆、泡沫和当地土料规范ASTMD6916-06c混凝土模块(加筋土挡墙用)间抗剪强度的测定方法ASTMD6917-03排水带(PvD)试验方法选用导则ASTMD6918一03排水带弯曲状态下的测试方法ASTMD6992-03利用分级等温法按时间一温度曲线迭加进行土工合成材料加速蠕变和蠕变破坏的试验方法ASTMD7001一06用于路旁排水和其它大流量设施的土工复合材料标准规格ASTMD7002-03用水盂(waterpuddle)系统确定外露土工膜的漏水部位方法ASTMD7003—03加筋土工膜条带拉伸试验方法ASTMD7004-03加筋土工膜握持拉伸试验方法ASTMD7005-03土工复合材料粘结(层间粘结)强度测试方法ASTMD7006-03土工膜超声波测试方法ASTMD7007-03被水或土覆盖的土工膜渗漏位置的电测方法ASTMD7008一03另类(有别于传统的土覆盖)他‟日覆盖土工合成材料规范ASTMD7056-07预制沥青土工膜接缝拉伸剪切强度测试方法ASTMI)7106-05EPDM(乙烯/丙烯/-烯共聚物)土工膜测试方法选用导则ASTMD7176—06未加筋PVC(聚氯乙烯)土工膜应用于淹埋状态规范ASTMD7177-05双焊道土工膜气道法检验规范ASTMD7178-06作为无纺土工织物补充渗滤特性的缩颈数“m”的检测方法AsTMD7179-07确定土工网破坏力的试验方法ASTMD7180-05岩土工程中泡沫塑料(EPS)应用导则AsTMD7238-06利用萤光UV凝聚仪探测未加筋聚烯烃土工膜曝露效应的试验方法ASTMD7239-06公路中应用的混合式铺面蓐垫规范442009中国土工合成材料刨新发展论坛论文集AsTMD7240-06通过电容技术(导电土工膜火花试验)测定与导电层紧密接触的无绝缘层土工膜渗漏部位的方法ASTMD7272-06利用预制条带粘接土工膜接缝整体性检测方法ASTMD7274-06a预制沥青土工膜(B锄)矿物稳定剂含量测试方法ASlⅥD7275-07沥青土工膜(BGM)拉伸特性试验方法ASTMD7406-07土工合成材料产品在恒压下的蠕变试验方法ASTMD7407-07确定土工膜通气量的试验方法注:(1)“D”后面的数字为标准的编号;其后的数字为原采用年份,或最后修订的年份。

NFT460202185译文2

NFT460202185译文2

NFT460202185译文21985年12月硫化橡胶或热塑橡胶 . 液体对橡胶作用的测定E(英语):硫化橡胶或热塑橡胶液体对橡胶作用的测定D(德语):硫化橡胶或热塑橡胶液体对橡胶作用的测定法国标准1985年11月20日经法国标准化协会(AFNOR)会长批准,从1985年12月20日起生效。

替代1967年5月的同名标准。

符合性自颁布之日起,本标准不等同于ISO 1817-1985国际标准。

分析本标准叙述了能衡量硫化橡胶或热塑橡胶在接触一种液体后体积、质量和尺寸变化以及这些橡胶的物理特性突然改变的方法。

术语国际技术术语:硫化橡胶、热塑橡胶、物理实验、浸润方法、试剂、尺寸稳固性、化学耐久性、拉力实验、硬度实验。

更换与1967年5月颁布的同名标准相比,增加了参照试剂的新介绍和范畴。

更正由法国标准化协会发行,巴黎拉德芳丝大街7号欧洲大厦,92049—:(1)42 91 55 55Afnor 85669 afnor 1985 第一次印刷85-12前言自公布之日起,本标准不等同于ISO 1817国际标准。

本标准不再采纳ISO标准中提出的表面变化,而是就进行浸润和干燥后质量、体积和尺寸变化的确定单独辟出一个章节进行描述。

本标准也不使用试剂F(线链在C12与C18之间的石蜡和1-甲基萘80%和20%V/V),此试剂也不再作为商用石油代表性产品在法国使用。

一种试剂与硫化橡胶或热塑橡胶接触后通常会同时产生两种反应:a)橡胶对试剂的吸取;b)橡胶的可溶成分溶解于试剂中。

依照(a)或(b)占主导地位的不同,结果可能是体积增大,即常说的“膨胀”,或体积减小,即常说的“收缩”。

还可能产生第三种反应:c)试剂对橡胶的发生在聚合时期或在某些成分上某种化学反应。

除了体积和尺寸的变化,这些不同的反应可能明显阻碍硫化橡胶或热塑橡胶的物理特性,应通过浸润在试剂中之前和之后分别进行的测量来确定其变化;当使用挥发性试剂的情形下,建议在浸润并通过挥发去除试剂使其干燥后也进行测定。

二苯甲烷双马来酰亚胺二元芳香胺环氧固化体系的力学性能及热学性能研究

二苯甲烷双马来酰亚胺二元芳香胺环氧固化体系的力学性能及热学性能研究

二苯甲烷双马来酰亚胺二元芳香胺环氧固化体系的力学性能及热学性能研究二苯甲烷双马来酰亚胺(BMI)是一种高性能的树脂材料,常用于复合材料中,其具有优异的力学性能和热学性能。

本研究旨在探究BMI和二元芳香胺环氧树脂固化体系的力学性能及热学性能,为其在工程领域中的应用提供参考。

首先我们通过将BMI和二元芳香胺环氧树脂按照一定的比例混合,然后在一定的温度和时间下进行固化,得到了固化体系样品。

接下来我们对这些样品进行了力学性能和热学性能的测试。

力学性能测试主要包括拉伸性能、弯曲性能和硬度测试。

拉伸性能测试是通过拉伸试样来测定材料的抗拉强度和断裂伸长率,弯曲性能测试是通过三点弯曲试样来测定材料的抗弯强度和弹性模量,硬度测试是通过硬度计来测试材料的硬度值。

热学性能测试主要包括热重分析(TGA)、热膨胀系数测试和热导率测试。

热重分析是通过加热试样来测定材料的热分解温度和热分解残留率,热膨胀系数测试是通过热膨胀仪来测定材料的线性热膨胀系数,热导率测试是通过热导率仪来测定材料的热导率。

经过测试,我们得到了BMI和二元芳香胺环氧树脂固化体系的力学性能数据和热学性能数据。

在力学性能方面,该固化体系具有良好的拉伸强度和弯曲强度,且硬度适中,符合工程材料的要求。

在热学性能方面,该固化体系具有良好的热稳定性和热膨胀性能,且热导率适中,适用于高温环境下的工程应用。

综合以上数据,我们可以得出结论:BMI和二元芳香胺环氧树脂固化体系在力学性能和热学性能上均表现出良好的性能,适用于工程领域中的复合材料应用。

不过在实际应用中,我们还需要进一步考虑其成本、加工性能和环境友好性等因素,以实现其在工程领域中的广泛应用。

本研究对BMI和二元芳香胺环氧树脂固化体系的力学性能及热学性能进行了深入研究,为其在工程领域中的应用提供了重要的参考价值。

希望本研究能够为相关领域的科研工作者和工程技术人员提供有益的信息,推动该固化体系的进一步研究和应用。

PC2858物性

PC2858物性

中粘度,FDA认可,食品级。

医疗产品及一般用品,HB以及V-2级 PC 2858 德国拜耳物性表资料由长城塑胶提供T e L 1 3 6 8 6 6 5 8 5 1 7 PC 2858 德国拜耳公司物性数据①原料描述部分规格级别:注塑级外观颜色:---用途概述:---备注说明:特性:中粘度,FDA认可,食品级。

医疗产品及一般用品,HB以及V-2级②原料技术数据性能项目试验条件[状态]测试方法测试数据数据单位基本性能熔体流动速率(体积)300℃,1.2kg ISO 1133 9.5 cm3/mm 熔体流动速率(质量)300℃,1.2kg ISO 1133 10 g/10min吸水性饱和值23℃,SaturationISO 62 0.30 %吸湿性23℃/50℃相对温度ISO 62 0.12 %密度--- ISO 1183 1200 KG/m3物理性能折射系数--- ISO 489 1.586 --- 雾度(透明材料)3mm ISO 14782 <0.8 % 透光率(透明材料)1mm DIN 5036-1 89 % 透光率(透明材料)2mm DIN 5036-1 89 % 透光率(透明材料)3mm DIN 5036-1 88 % 透光率(透明材料)4mm DIN 5036-1 87 %机械性能拉伸模量1mm/min ISO 527 2400 MPa 屈服应力50mm/min ISO 527 65 MPa 屈服应变50mm/min ISO 527 6.0 %名义断裂拉伸应变50mm/min ISO 527 >50 %拉伸蠕变模量1h ISO 899-1 2200 MPa 拉伸蠕变模量1000h ISO 899-1 1900 MPa CHARPY冲击强度23℃ISO 179-1eU N KJ/m2 CHARPY冲击强度-30℃ISO 179-1eU N KJ/m2 IZOD缺口冲击强度23℃ISO 180-4A 85 KJ/m2 IZOD缺口冲击强度-30℃ISO 180-4A 12 KJ/m2电气性能最大穿透力23℃/2mm ISO 6603-2 5400 N 最大穿透力-30℃/2mm ISO 6603-2 6400 N穿透能量23℃/2mm ISO 6603-2 60 J穿透能量-30℃/2mm ISO 6603-2 65 J相对介电常数100Hz IEC 60250 3.1 --- 相对介电常数1MHz IEC 60250 3.0 --- 损耗因素100Hz IEC 60250 5 10-4损耗因素1MHz IEC 60093 90 10-4体积电阻率--- IEC 60093 1014Ω.m 表面电阻率--- IEC 60093 1016Ω介电强度1mm IEC 60243-1 32 kv/mm抗电弧径迹性溶液A/SolutionAIEC 60112 275等级/Rating加工性能成型收缩率流动方向垂直流动方向---ISO 1133ISO 11330.6-0.80.6-0.8%%热性能辉光金属丝试验温度1.0mmIEC60695-2-12850 ℃辉光金属丝试验温度1.5mmIEC60695-2-12850 ℃辉光金属丝试验温度2.0mmIEC60695-2-12850 ℃辉光金属丝试验温度3.0mmIEC60695-2-12900 ℃玻璃化温度10℃/min ISO 11357-2 148 ℃热变化温度 1.80MPa ISO 75-2 125 ℃热变化温度0.45MPa ISO 75-2 137 ℃维卡软化温度50N,50℃/h ISO 306 144 ℃热膨胀系数23-55℃ISO 11359-2 0.6 10-4/℃可烧性厚度mm黄卡UL 94(ISO1210)(ISO10351)V-2/0.81(V-2/1.5)(HB/2.5)(HB/3.0)类别/Class 熔体温度--- ISO 294 300 ℃模具温度--- ISO 294 80 ℃其它性能粘度系数--- ISO 1628-4 59 cm3/g 注射速度--- ISO 294 200 mm/s 氧指数--- IEC 4589-2 28 %1:防火(阻燃)级PC德国拜耳PC 6485 半透明(1.5mm )防火V0 德国拜耳PC 6555,6225 透明防火德国拜耳PC 6717,6557 防火抗紫外线(抗UV)德国拜耳PC 9415,9351 玻纤增强防火V0日本帝人PC LN-1250G,LN-2250Y防火V0台湾奇美PC PC-110V PC-122V 阻燃级防火V0日本三菱PC FPR3500 高阻燃防火(0.75mm防火V0) 基础创新塑料PC SP7602,SP7604 防火V0 超高流动基础创新塑料PC 940,945 防火V0 半透明基础创新塑料PC 940A, 945A 防火V0 透明中粘度基础创新塑料PC 943A 防火V0 透明中粘度抗紫外线基础创新塑料PC 953,953A 防火V0 高粘度抗紫外线基础创新塑料PC 500R,503R 玻纤增强防火V0基础创新塑料PC 3412ECR,3412R 玻纤增强防火V0基础创新塑料PC 3413R,3414R 玻纤增强防火V0基础创新塑料PC EXL9330,EXL9112R 防火V0 超韧耐寒2:抗紫外线(抗UV)PC德国拜耳PC 2407,2607 高流动,抗紫外线德国拜耳PC 2807 中粘度抗紫外线德国拜耳PC 2207 极低粘度,流动性极差,抗紫外线德国拜耳PC 3113,3107 高粘度挤塑吹塑及注塑成型,抗紫外线台湾奇美PC PC-110U,PC-122U 抗紫外线,耐候级日本三菱PC S-3000VR,S-2000VR 抗紫外线耐候性改良基础创新塑料PC 103R,243R 抗紫外线基础创新塑料PC HF1130,123R 高流动紫外\尺寸稳定耐热3:食品级(FDA认可)级PC德国拜耳PC 2456,2458 高流动食品级德国拜耳PC 2856,2858 中粘度(FDA)食品级德国拜耳PC 3206,3108,3208 , 3105, 3103 高分子量挤塑成型耐冲击FDA 水触稳定德国拜耳PC WB1239,1239 5加仑水桶料台湾奇美PC PC-110 食品级,日本三菱PC S-3000R,S-2000R FDA 中粘度基础创新塑料PC 144R,124R 食品级基础创新塑料PC HF1140 高流动食品级耐热基础创新塑料PC PK2870 食品级,包装用料,5加仑水桶料4:普通级PC德国拜耳PC 2405,2605 2805 热稳耐冲无色德国拜耳PC 2865 透明阻燃(6mm防火V0)德国拜耳PC 3105 高粘度,瓷白开关专用料日本帝人PC L-1250Y,L-1225Y 高透明,注塑级台湾奇美PC PC-115,PC-122 高流动基础创新塑料PC 121R,141R,241R 低粘度高流动5:特殊级PC日本帝人PC K-1300 吹瓶级挤塑吹塑及注塑成型日本帝人PC ML-1105,ML-4110ZHP 光扩散半透明PC LED灯管日本帝人PC ML-3110ZHP,ML-3120ZHP 光扩散半透明PC LED灯泡德国拜耳PC 1800,1803 耐高温PC 180度德国拜耳PC APEC 2097 高温PC德国拜耳PC APEC 1745 高温PC德国拜耳PC 3103GEF-75 红外线穿透PC德国拜耳PC 2405 450601 红外线穿透PC德国拜耳PC 8025,8035,8345 玻纤增强级PC日本三菱PC EFD8000,EFD2110U 光扩散半透明PC LED灯泡日本三菱PC EFD2140VUR,EFD2230U 光扩散半透明PC LED灯管日本出光PC LC1700 LC1500 导光板专用日本出光PC URZ2501 URZ2502 背光板专用基础创新塑料PC HF1110 高流动耐热基础创新塑料PC FL900,FL920 耐高温抗蠕变抗冲击基础创新塑料PC FL930 耐高温抗蠕变抗冲击抗UV 基础创新塑料PC EXL1414,EXL1132T 超韧耐寒基础创新塑料PC LS2,LS3 光学级汽车灯专用料基础创新塑料PC DL-4020,DL-4030 铁氟龙合金,低磨耗基础创新塑料PC DMX9455 光扩散磨砂级遮光LED灯泡基础创新塑料PC DMX2415 磨砂级防刮伤美国液氮PC DC1004,DC1006 碳纤维增强导电日本帝人PC AD-5503 高透明超高流动手机护套专用PC日本帝人PC ML-1005 光扩散半透明PC LED灯管用日本帝人PC ML-3110ZHP 光扩散半透明PC LED灯泡日本帝人PC ML-3120ZHP 光扩散半透明PC LED灯泡日本三菱系列PC日本三菱PC FPR3500 高阻燃防火(0.75mm防火V0)日本三菱PC S-3000VR 抗紫外线耐候性改良高流动日本三菱PC S-2000VR 抗紫外线耐候性改良日本三菱PC S-2000R 食品级FDA认证中粘度日本三菱PC S-3000R 食品级PC FDA日本三菱PC EFD8000 光扩散半透明PC 防火V0 LED灯泡日本三菱PC EFD2110U 光扩散半透明PC 抗紫外线LED灯泡用日本三菱PC EFD2140VUR 光扩散半透明PC LED灯管日本三菱PC EFD2230U 光扩散半透明PC LED灯管台湾奇美系列PC台湾奇美PC PC-110 食品级台湾奇美PC PC-110V 阻燃级防火V0台湾奇美PC PC-122V 阻燃高流动级防火V0台湾奇美PC PC-110U 抗紫外线,耐候级台湾奇美PC PC-122U 高流动抗紫外线,耐候级PC6:日本出光系列PC日本出光PC LC1700 导光板专用日本出光PC LC1500 导光板专用日本出光PC URZ2501 背光板专用日本出光PC URZ2502 背光板专用美国液氮PC DC-1004 20%碳纤纤增导电PC美国液氮PC DC-1006 30%碳纤纤增导电PC分类:防静电PC,导电PC,加纤防火PC,抗紫外线耐候PC,食品级PC,透明PC,半透明PC,光扩散PC, 吹瓶级PC,耐高温PC,抗(UV)PC通用级PC,耐候级PC,耐寒级PC,增韧级PC,光学级PC,防火级PC,阻燃级PC。

土工合成材料现行有效国家标准目录

土工合成材料现行有效国家标准目录
GB/T 18887-2002
土工合成材料 机织/非织造复合土工布
2003-03-01实施
30
GB/T 19274-2003
土工合成材料 塑料土工格室
2004-02-01实施
31
GB/T 19470-2004
土工合成材料 塑料土工网
2004-10-01实施
32
GB/T 19978-2005
土工布及其有关产品 刺破强力的测定
17
GB/T 17636-1998
土工布及其有关产品 抗磨损性能的测定 砂布/滑块法
1999-03-01实施
18
GB/T 17637-1998
土工布及其有关产品 拉伸蠕变和拉伸蠕变断裂性能的测定
1999-03-01实施
19
GB/T 17638-1998
土工合成材料 短纤针刺非织造土工布
1999-03-01实施
1999-03-01实施
23
GB/T 17642-2008
土工合成材料 非织造布复合土工膜
2009-06-01实施,代替GB/T 17642-1998
24
GB/T 17643-1998
土工合成材料 聚乙烯土工膜
1999-03-01实施
25
GB/T 17688-1999
土工合成材料 聚氯乙烯土工膜
1999-07-01实施
11
GB/T 17630-1998
土工布及其有关产品 动态穿孔试验 落锥法
1999-03-01实施
12
GB/T 17631-1998
土工布及其有关产品 抗氧化性能的试验方法
1999-03-01实施
13
GB/T 17632-1998

土工合成材料试验检测标准及方法

土工合成材料试验检测标准及方法

土工合成材料试验检测标准及方法1 适用范围适用于玻璃纤维土工格栅、土工网垫。

2 试验目的为了测定玻璃纤维土工格栅的网眼目数、网眼尺寸、断裂强度及断裂伸长率,土工网垫的尺寸及偏差、拉伸强度。

3 试验依据《玻璃纤维土工格栅拉伸夹具》 JT/T 818-2011《玻璃纤维土工格栅》GB/T 21825-2008《土工合成材料塑料三维土工网垫》GB/T 18744-2002《土工合成材料宽条拉伸试验方法》 GB/T 15788-20174 检验人员检验人员均为持证上岗人员。

5 试验设备钢直尺:精度0.5mm、拉伸试验机(配套夹具、等速伸长型(CRE)试验机、引伸计、蒸馏水、非离子润湿剂、裁剪工具:如剪刀等)。

6 调湿及试验环境温度(23±2)℃相对湿度 50%±10%7 试样7.1网眼目数、尺寸:从整卷玻璃纤维土工格栅上沿经向裁下约2m长的整幅布段作为试样,试样不需要调湿取。

7.2断裂强度、断裂伸长率:试样为长350mm的单组经纱或纬纱。

7.2.1每个样品至少测定5个经向试样和5个纬向试样,任何两个试样都不应属于同一根经纱或纬纱。

7.3土工网垫:剪取1m长试样两块,在每组试样上的塑料三维土工网垫上沿网垫的纵横走向剪取长200mm,宽50mm试样各三块进行试验,夹具间距为100mm。

8.试验方法和计算结果8.1 玻璃纤维土工格栅8.1.1 网眼目数试验步骤8.1.1.1将试样自然平铺在平整的台面上。

将钢直尺的零点标线与纱线右侧边缘相重合,以测定的起始纱线的右侧边缘至下-组纱线的右侧边缘为一孔 ,计数从起始位置至约1000 mm处纱线右测边缘距离内的孔数,并读出这段距离的长度,精确至1 mm。

移动钢直尺至另-位置,不包含已测量的部位。

重复上述测量。

8.1.1.2计算结果按式(A. 1)计算网眼目数:N= 25.4×n/a ................... A.1 )式中:N-玻璃纤维土工格栅的网眼目数;n测量长度内计数的孔数;a创量长度,单位为毫米(mm)。

土工合成材料标准

土工合成材料标准

土工合成材料标准
土工合成材料国家标准是土木工程应用的合成材料对保障人身健康和生命财产安全、国家安全、生态环境安全以及满足经济社会管理基本需要的技术要求,制定的国家标准。

土工合成材料是以人工合成的聚合物(如塑料、化纤、合成橡胶等)为原料,制成各种类型的产品,置于土体内部、表面或各种土体之间,发挥加强或保护土体的作用。

土工合成材料应具有足够的耐久性和机械强度,以承受工程负荷和外界环境的影响;具有良好的化学稳定性,能够抵抗酸碱腐蚀和生物侵蚀;生产过程应符合相关工艺规范,以确保产品的质量和稳定性。

根据用途和性能,土工合成材料可以分为土工布、土工膜、土工格栅等多种类型。

此外,不同类型的产品有不同的执行标准,例如塑料扁丝编织土工布执行GB/T 17690-1999标准,裂膜丝机织土工布执行GB/T 17641-1998标准等。

制造土工合成材料的聚合物主要有聚乙烯(PE)、聚酯(PET)、聚酰胺(PER)、聚丙烯(PP)和聚氯乙烯(PVC)、氯化聚乙烯(CPE)、聚苯乙烯(EPS)等。

如需了解更多关于土工合成材料标准的信息,建议咨询土木工程专家或查阅相关文献资料。

美国EPA标准—8325

美国EPA标准—8325

CD-ROM 8325 - 1Revision 0December 1996METHOD 8325SOLVENT EXTRACTABLE NONVOLATILE COMPOUNDS BY HIGH PERFORMANCE LIQUID CHROMATOGRAPHY/PARTICLE BEAM/MASS SPECTROMETRY (HPLC/PB/MS)1.0SCOPE AND APPLICATION1.1This method describes the use of high performance liquid chromatography (HPLC),coupled with particle beam (PB) mass spectrometry (MS), for the determination of benzidines and nitrogen-containing pesticides in water and wastewater. The following compounds can be determined by this method:Compound CAS No.aBenzidine 92-87-5Benzoylprop ethyl 33878-50-1Carbaryl 63-25-2o-Chlorophenyl thiourea 5344-82-13,3'-Dichlorobenzidine 91-94-13,3'-Dimethoxybenzidine 119-90-43,3'-Dimethylbenzidine 612-82-8Diuron 330-54-1Linuron (Lorox)330-55-2Monuron 150-68-5Rotenone 83-79-4Siduron1982-49-6Chemical Abstract Service Registry Numbera 1.2The method also may be appropriate for the analysis of benzidines and nitrogen-containing pesticides in non-aqueous matrices. The method may be applicable to other compounds that can be extracted from a sample with methylene chloride and are amenable to separation on a reverse phase liquid chromatography column and transferable to the mass spectrometer with a particle beam interface.1.3Preliminary investigation indicates that the following compounds also may be amenable to this method: Aldicarb sulfone, Carbofuran, Methiocarb, Methomyl (Lannate), Mexacarbate (Zectran), and N-(1-Naphthyl)thiourea. Ethylene thiourea and o-Chlorophenyl thiourea have been successfully analyzed by HPLC/PB/MS, but have not been successfully extracted from a water matrix.1.4Tables 4 - 6 present method detection limits (MDLs) for the target compounds, ranging from 2 to 25 µg/L. The MDLs are compound- and matrix-dependent.1.5This method is restricted to use by, or under the supervision of, analysts experienced in the use of HPLC and skilled in the interpretation of particle beam mass spectrometry. Each analyst must demonstrate the ability to generate acceptable results with this method.2.0SUMMARY OF METHOD2.1The target compounds for this method must be extracted from the sample matrix prior to analysis.2.1.1Benzidines and nitrogen-containing pesticides are extracted from aqueousmatrices at a neutral pH with methylene chloride, using a separatory funnel (Method 3510), a continuous liquid-liquid extractor (Method 3520), or other suitable technique.2.1.2Solid samples are extracted using Methods 3540 (Soxhlet), 3541 (AutomatedSoxhlet), 3550 (Ultrasonic extraction), or other suitable technique.2.2An aliquot of the sample extract is introduced into the HPLC instrument and a gradient elution program is used to chromatographically separate the target analytes, using reverse-phase liquid chromatography.2.3Once separated, the analytes are transferred to the mass spectrometer via a particle beam HPLC/MS interface. Quantitation is performed using an external standard approach.2.4An optional internal standard quantitation procedure is included for samples which contain coeluting compounds or where matrix interferences preclude the use of the external standard procedure.2.5The use of ultraviolet/visible (UV/VIS) detection is an appropriate option for the analysis of routine samples, whose general composition has been previously determined.3.0INTERFERENCES3.1Refer to Methods 3500 and 8000 for general discussions of interferences with the sample extraction and chromatographic separation procedures.3.2Although this method relies on mass spectrometric detection, which can distinguish between chromatographically co-eluting compounds on the basis of their masses, co-elution of two or more compounds will adversely affect method performance. When two compounds coelute, the transport efficiency of both compounds through the particle beam interface generally improves, and the ion abundances observed in the mass spectrometer increase. The degree of signal enhancement by coelution is compound-dependent.3.2.1This coelution effect invalidates the calibration curve and, if not recognized, willresult in incorrect quantitative measurements. Procedures are given in this method to check for co-eluting compounds, and must be followed to preclude inaccurate measurements.3.2.2An optional internal standard calibration procedure has been included for use ininstances of severe co-elution or matrix interferences.3.3 A major source of potential contamination is HPLC columns which may contain silicon compounds and other contaminants that could prevent the determination of method analytes. Generally, contaminants will be leached from the columns into mobile phase and produce a variable background. Figure 1 shows unacceptable background contamination from a column with stationary phase bleed.CD-ROM8325 - 2Revision 0December 1996CD-ROM 8325 - 3Revision 0December 19963.4Contamination may occur when a sample containing low analyte concentrations is analyzed immediately after a sample containing relatively high analyte concentrations. After analysis of a sample containing high analyte concentrations, one or more method blanks should be analyzed.Normally, with HPLC, this is not a problem unless the sample concentrations are at the percent level.4.0APPARATUS AND MATERIALS4.1High performance liquid chromatograph (HPLC) - An analytical system with programmable solvent delivery system and all necessary accessories including 5 µL injection loop,analytical columns, purging gases, etc. The solvent delivery system must be capable, at a minimum,of handling a binary solvent system, and must be able to accurately deliver flow rates between 0.20- 0.40 mL/min. Pulse dampening is recommended, but not required. The chromatographic system must be able to be interfaced with a mass spectrometer (MS). An autoinjector is recommended and should be capable of accurately delivering 1 - 10 µL injections without affecting the chromatography.4.1.1HPLC Columns - An analytical column is needed, and a guard column is highlyrecommended.4.1.1.1Analytical Column - Reverse phase column, C chemically bonded to184-10 µm silica particles, 150 - 200 mm x 2 mm, (Waters C-18 Novapak or equivalent).Residual acidic sites should be blocked (endcapped) with methyl or other non-polargroups and the stationary phase must be bonded to the solid support to minimize columnbleed. Select a column that exhibits minimal bleeding. New columns must beconditioned overnight before use by pumping a 75 - 100% v/v acetonitrile:water solutionthrough the column at a rate of about 0.05 mL/min. Other packings and column sizesmay be used if appropriate performance can be achieved.4.1.1.2Guard Column - Packing similar to that used in analytical column.4.1.2HPLC/MS interface - The particle beam HPLC/MS interface must reduce the ionsource pressure to a level compatible with the generation of classical electron ionization (EI)mass spectra, i.e., about 1 x 10 - 1 x 10Torr, while delivering sufficient quantities of analytes -4 -6to the conventional EI source to meet sensitivity, accuracy, and precision requirements. The concentrations of background components with masses greater than 62 Daltons should be reduced to levels that do not produce ions greater than a relative abundance of 10% in the mass spectra of the analytes.4.2Mass spectrometer system - The mass spectrometer must be capable of electron ionization at a nominal electron energy of 70 eV. The spectrometer should be capable of scanning from 45 to 500 amu in 1.5 seconds or less (including scan overhead). The spectrometer should produce a mass spectrum that meets the criteria in Table 1 when 500 ng or less of DFTPPO are introduced into the HPLC.4.3Data system - A computer system must be interfaced to the mass spectrometer, and must be capable of the continuous acquisition and storage on machine-readable media of all mass spectra obtained throughout the duration of the chromatographic program. The computer software must be capable of searching any HPLC/MS data file for ions of a specified mass and plotting such abundance data versus time or scan number.4.4Volumetric flasks - Class A, in various sizes, for preparation of standards.CD-ROM 8325 - 4Revision 0December 19964.5Vials - 10-mL amber glass vials with polytetrafluororethylene (PTFE)-lined screw caps or crimp tops.4.6 Analytical balance - capable of weighing 0.0001 g.4.7Extract filtration apparatus4.7.1Syringe - 10-mL, with Luer-Lok fitting.4.7.2Syringe filter assembly, disposable - 0.45 µm pore size PTFE filter in filterassembly with Luer-Lok fitting (Gelman Acrodisc, or equivalent).5.0REAGENTS5.1Reagent grade chemicals shall be used in all tests. Unless otherwise indicated, it is intended that all reagents shall conform to the specifications of the Committee on Analytical Reagents of the American Chemical Society, where such specifications are available. Other grades may be used, provided it is first ascertained that the reagent is of sufficiently high purity to permit its use without lessening the accuracy of the determination.5.2Organic-free reagent water - All references to water in this method refer to organic-free reagent water, as defined in Chapter One.5.3Solvents - All solvents must be HPLC-grade or equivalent.5.3.1Acetonitrile, CH CN 35.3.2Methanol, CH OH 35.3.3Ammonium acetate, NH OOCCH , (0.01M in water).435.4Mobile phase - Two mobile phase solutions are needed, and are designated Solvent A and Solvent B. Degas both solvents in an ultrasonic bath under reduced pressure and maintain by purging with a low flow of helium.5.4.1Solvent A is a water:acetonitrile solution (75/25, v/v) containing ammoniumacetate at a concentration of 0.01M.5.4.2Solvent B is 100 % acetonitrile.5.5Stock standard solutions - Stock solutions may be prepared from pure standard materials or purchased as certified solutions. Commercially-prepared stock standards may be used at any concentration if they are certified by the manufacturer.5.5.1Prepare stock standard solutions by accurately weighing 0.0100 g of pure materialin a volumetric flask. Dilute to known volume in a volumetric flask. If compound purity is certified at 96% or greater, the weight may be used without correction to calculate the concentration of the stock standard. Commercially-prepared stock standards may be used at any concentration if they are certified by the manufacturer or by an independent source.CD-ROM 8325 - 5Revision 0December 19965.5.1.1Dissolve benzidines and nitrogen-containing pesticides in methanol,acetonitrile, or organic-free reagent water.5.5.1.2Certain analytes, such as 3,3'-dimethoxybenzidine, may require dilutionin 50% (v/v) acetonitrile:water or methanol:water solution.5.5.1.3Benzidines may be used for calibration purposes in the free base or acidchlorides forms. However, the concentration of the standard should be calculated as thefree base.5.5.2Transfer the stock standard solutions into amber bottles with PTFE-linedscrew-caps or crimp tops. Store at -10E C or less and protect from light. Stock standard solutions should be checked frequently for signs of degradation or evaporation, especially just prior to preparing calibration standards from them.5.6Surrogate spiking solution - The recommended surrogates are benzidine-D ,8caffeine-N , 3,3'-dichlorobenzidine-D , and bis(perfluorophenyl)-phenylphosphine oxide. Prepare 152 6a solution of the surrogates in methanol or acetonitrile at a concentration of 5 mg/mL of each. Other surrogates may be included in this solution as needed. (A 10-µL aliquot of this solution added to 1L of water gives a concentration of 50 µg/L of each surrogate). Store the surrogate spiking solution in an amber vial in a freezer at -10E C or less.5.7MS performance check solution - Prepare a 100 ng/µL solution of DFTPPO in acetonitrile.Store this solution in an amber vial in a freezer at -10E C or less.5.8Calibration solutionsThis method describes two types of calibration procedures that may be applied to the target compounds: external standard calibration, and internal standard calibration. Each procedure requires separate calibration standards. In addition, the performance characteristics of the HPLC/PB/MS system indicate that it may be necessary to employ a second order regression for calibration purposes, unless a very narrow calibration range is chosen. See Method 8000 for additional information on non-linear calibration techniques.5.8.1For external standard calibration, prepare calibration standards for all targetcompounds and surrogates in acetonitrile. DFTPPO may be added to one or more calibration solutions to verify MS tune (see Sec. 7.3). Store these solutions in amber vials at -10E C or less. Check these solutions at least quarterly for signs of deterioration.5.8.2Internal standard calibration requires the use of suitable internal standards (seeMethod 8000). Ideally, stable, isotopically-labeled, analogs of the target compounds should be used. These labeled compounds are included in the calibration standards and must also be added to each sample extract immediately prior to analysis. Prepare the calibration standards in a fashion similar to that for external standard calibration, but include each internal standard in each of the calibration standards.The concentration of the internal standards should be 50 - 100 times the lowestconcentration of the unlabeled target compounds. In addition, the concentration of the internal standards does not vary with the concentrations of the target compounds, but is held constant.Store these solutions in amber vials at -10E C or less. Check these solutions at least quarterly for signs of deterioration.5.9Internal standard spiking solution - This solution is required when internal standard quantitation is used. Prepare a solution containing each of the internal standards that will be used for quantitation of target compounds (see Sec. 5.8.2) in methanol. The concentration of this solution must be such that a 1-µL volume of the spiking solution added to a 1-mL final extract will result in a concentration of each internal standard that is equal to the concentration of the internal standard in the calibration standards in Sec. 5.8.2. Store this solution in an amber vial at -10E C or less. Check this solution at least quarterly for signs of deterioration. This solution is not necessary if only external standard calibration will be used.5.10Sodium chloride, NaCl - granular, used during sample extraction.6.0SAMPLE COLLECTION, PRESERVATION, AND HANDLING6.1See the introductory material to this chapter, Organic Analytes, Sec. 4.1.6.2Samples should be extracted within 7 days and analyzed within 30 days of extraction. Extracts should be stored in amber vials at -10E C or less.7.0PROCEDURE7.1Samples may be extracted by Method 3510 (separatory funnel), Method 3520 (continuous extractor), Method 3535 (solid-phrase extraction), or other appropriate technique. Prior to extraction, add a 10-µL aliquot of the surrogate spiking solution and 100 g of sodium chloride to the sample, and adjust the pH of the sample to 7.0. Samples of other matrices should be extracted by an appropriate sample preparation technique. The concentration of surrogates in the sample should be 20-50 times the method detection limit. Concentrate the extract to 1 mL, and exchange the solvent to methanol, following the procedures in the extraction method.7.2Establish chromatographic, particle beam interface, and mass spectrometer conditions, using the following conditions as guidance.Mobile phase purge:Helium at 30 mL/min, continuousMobile phase flow rate:0.25 - 0.3 mL/min through the columnGradient elution:Hold for 1 min at 25% acetonitrile (Solvent A), thenprogram linearly to about 70% acetonitrile (60%Solvent B) in 29 min. Start data acquisitionimmediately.Desolvation chamber temperature:45 - 80E CIon source temperature:250 - 290E CElectron energy:70 eVScan range:62 to 465 amu, at #1.5 sec/scan NOTE:Post-column addition is an option that improves system precision and, thereby, may improve sensitivity. Post-column flow rates depend on the requirements ofthe interface and may range from 0.1 to 0.7 mL/min of acetonitrile. Maintain aminimum of 30% acetonitrile in the interface.Analyte-specific chromatographic conditions are also shown in Table 2. (The particle beam interface conditions will depend on the type of nebulizer).CD-ROM8325 - 6Revision 0December 19967.2.1The analyst should follow the manufacturer's recommended conditions for theirinterface's optimum performance. The interface is usually optimized during initial installation by flow injection with caffeine or benzidine, and should utilize a mobile phase of acetonitrile/water (50/50, v/v). Major maintenance may require re-optimization.7.2.2Fine tune the interface by making a series of injections into the HPLC column ofa medium concentration calibration standard and adjusting the operating conditions (Sec. 7.2)until optimum sensitivity and precision are obtained for the maximum number of target compounds.7.3Initial calibration7.3.1Once the operating conditions have been established, calibrate the MS mass andabundance scales using DFTPPO to meet the recommended criteria in Table 1.7.3.2Inject a medium concentration standard containing DFTPPO, or separately injectinto the HPLC a 5-µL aliquot of the 100 ng/µL DFTPPO solution and acquire a mass spectrum.Use HPLC conditions that produce a narrow (at least ten scans per peak) symmetrical peak.If the spectrum does not meet the criteria (Table 1), the MS ion source must be retuned and adjusted to meet all criteria before proceeding with calibration. An average spectrum across the HPLC peak may be used to evaluate the performance of the system.Manual (not automated) ion source tuning procedures specified by the manufacturer should be employed during tuning. Mass calibration should be accomplished while an acetonitrile/water (50/50, v/v) mixture is pumped through the HPLC column and the optimized particle beam interface. For optimum long-term stability and precision, interface and ion source parameters should be set near the center of a broad signal plateau rather than at the peak of a sharp maximum (sharp maxima exhibit short-term variations with particle beam interfaces and gradient elution conditions).7.3.3System performance criteria for the medium concentration standard - Evaluatethe stored HPLC/MS data with the data system software and verify that the HPLC/PB/MS system meets the following performance criteria.7.3.3.1HPLC performance - 3,3'-dimethylbenzidine and3,3'-dimethoxybenzidine should be separated by a valley whose height is less than 25%of the average peak height of these two compounds. If the valley between them exceeds25%, modify the gradient. If this fails, the HPLC column requires maintenance. SeeSec. 7.4.6.7.3.3.2Peak tailing - Examine a total ion chromatogram and examine thedegree of peak tailing. Severe tailing indicates a major problem and systemmaintenance is required to correct the problem. See Sec. 7.4.67.3.3.3MS sensitivity - The signal-to-noise ratio for any compound's spectrumshould be at least 3:1.7.3.3.4Column bleed - Figure 1 shows an unacceptable chromatogram withcolumn bleed. Figure 2 shows an acceptable ion chromatogram. Figure 3 is the massspectrum of dimethyloctadecyl-silanol, a common stationary phase bleed product. Ifunacceptable column bleed is present, the column must be changed or conditioned toproduce an acceptable background.CD-ROM8325 - 7Revision 0December 19967.3.3.5Coeluting compounds - Compounds which coelute cannot be measuredaccurately because of carrier effects in the particle beam interface. Peaks must beexamined carefully for coeluting substances and if coeluting compounds are present atgreater than 10% of the concentration of the target compound, either conditions must beadjusted to resolve the components, or internal standard calibration must be used.7.3.4Once optimized, the same instrument operating conditions must be used for theanalysis of all calibration standards, samples, blanks, etc.7.3.5Once all the performance criteria are met, inject a 5-µL aliquot of each of theother calibration standards using the same HPLC/MS conditions.7.3.5.1The general method of calibration is a second order regression ofintegrated ion abundances of the quantitation ions (Table 3) as a function of amountinjected. For second order regression, a sufficient number of calibration points must beobtained to accurately determine the equation of the curve. (See Method 8000 for theappropriate number of standards to be employed for a non-linear calibration). Non-linearcalibration models can be applied to either the external standard or the internal standardcalibration approaches described here.7.3.5.2For some analytes the instrument response may be linear over a narrowconcentration range. In these instances, an average calibration factor (externalstandard) or average response factor (internal standard) may be employed for samplequantitation (see Method 8000).7.3.6If a linear calibration model is used, calculate the mean calibration factor orresponse factor for each analyte, including the surrogates, as described in Method 8000.Calculate the standard deviation (SD) and the relative standard deviation (RSD) as well. The RSD of an analyte or surrogate must be less than or equal to 20%, if the linear model is to be applied. Otherwise, proceed as described in Method 8000.7.4Calibration verificationPrior to sample analysis, verify the MS tune and initial calibration at the beginning of each 8-hour analysis shift using the following procedure:7.4.1Inject a 5-µL aliquot of the DFTPPO solution or a mid-level calibration standardcontaining 500 ng of DFTPPO, and acquire a mass spectrum that includes data for m/z 62-465. If the spectrum does not meet the criteria in Table 1, the MS must be retuned to meet the criteria before proceeding with the continuing calibration check.7.4.2Inject a 5-µL aliquot of a medium concentration calibration solution and analyzewith the same conditions used during the initial calibration.7.4.3Demonstrate acceptable performance for the criteria shown in Sec. 7.3.3.7.4.4Using the initial calibration (either linear or non-linear, external standard or internalstandard), calculate the concentrations in the medium concentration calibration solution and compare the results to the known values in the calibration solution. If calculated concentrations deviate by more than 20% from known values, adjust the instrument and inject the standard again. If the calibration cannot be verified with the second injection, then a new CD-ROM8325 - 8Revision 0December 1996initial calibration must be performed after taking corrective actions such as those described in Sec. 7.9.7.5Sample Analysis7.5.1The column should be conditioned overnight before each use by pumping aacetonitrile:water (70% v/v) solution through it at a rate of about 0.05 mL/min.7.5.2Filter the extract through a 0.45 µm filter. If internal standard calibration isemployed, add 10 µL of the internal standard spiking solution to the 1-mL final extract immediately before injection.7.5.3Analyze a 5-µL aliquot of the extract, using the operating conditions establishedin Secs. 7.2 and 7.3.7.6Qualitative identificationThe qualitative identification of compounds determined by this method is based on retention time and on comparison of the sample mass spectrum, after background correction, with characteristic ions in a reference mass spectrum. The reference mass spectrum must be generated by the laboratory using the conditions of this method. The characteristic ions from the reference mass spectrum are defined as the three ions of greatest relative intensity, or any ions over 30% relative intensity, if less than three such ions occur in the reference spectrum. Compounds are identified when the following criteria are met.7.6.1The intensities of the characteristic ions of a compound must maximize in thesame scan or within one scan of each other. Selection of a peak by a data system target compound search routine where the search is based on the presence of a target chromatographic peak containing ions specific for the target compound at a compound-specific retention time will be accepted as meeting this criterion.7.6.2The retention time of the sample component is within ± 10% of the retention timeof the standard.7.6.3The relative intensities of the characteristic ions agree within 20% of the relativeintensities of these ions in the reference spectrum. (Example: For an ion with an abundance of 50% in the reference spectrum, the corresponding abundance in a sample spectrum can range between 30% and 70%.)7.6.4Structural isomers that produce very similar mass spectra should be identified asindividual isomers if they have sufficiently different HPLC retention times. Sufficient GC resolution is achieved if the height of the valley between two isomer peaks is less than 25% of the sum of the two peak heights. Otherwise, structural isomers are identified as isomeric pairs.7.6.5Identification is hampered when sample components are not resolvedchromatographically and produce mass spectra containing ions contributed by more than one analyte. When HPLC peaks obviously represent more than one sample component (i.e., a broadened peak with shoulder(s) or a valley between two or more maxima), appropriate selection of analyte spectra and background spectra is important.CD-ROM8325 - 9Revision 0December 19967.6.6Examination of extracted ion current profiles of appropriate ions can aid in theselection of spectra, and in qualitative identification of compounds. When analytes coelute(i.e., only one chromatographic peak is apparent), the identification criteria may be met, buteach analyte spectrum will contain extraneous ions contributed by the coeluting compound.7.7Quantitative Analysis7.7.1Complete chromatographic resolution is necessary for accurate and precisemeasurements of analyte concentrations. Compounds which coelute cannot be measured accurately because of carrier effects in the particle beam interface. Peaks must be examined carefully for coeluting substances and if coeluting compounds are present at greater than 10% of the concentration of the target compound, either conditions must be adjusted to resolve the components, or the results for the target compound must be flagged as potentially positively biased.7.7.2Calculate the concentration of each analyte, using either the external standardor internal standard calibration. See Method 8000 for the specific equations to be employed for either the non-linear or linear calibration models.7.7.3If the response for any quantitation ion exceeds the initial calibration range of theHPLC/PB/MS system, the sample extract must be diluted and reanalyzed. When internal standard calibration is employed, additional internal standard must be added to the diluted extract to maintain the same concentration as in the calibration standards.7.8HPLC-UV/VIS Detection (optional)7.8.1Prepare calibration solutions as outlined in Sec. 5.8.7.8.2Inject 5 µL of each calibration solution onto the HPLC, using the chromatographicconditions outlined in Secs. 7.2.1 and 7.2.2. Integrate the area under the full chromatographic peak at the optimum wavelength (or at 230 nm if that option is not available) for each target compound at each concentration.7.8.3The retention time of the chromatographic peak is an important criterion foranalyte identification. Therefore, the ratio of the retention time of the sample analyte to the standard analyte should be 1.0 ± 0.1.7.8.4Calculate calibration factors or response factors as described in Method 8000,for either external standard or internal standard calibration, and evaluate the calibration linearity as described in Method 8000.7.8.5Verify the calibration at the beginning of each 8-hour analytical shift, as describedabove.7.8.6Once the calibration has been verified, inject a 5-µL aliquot of the sample extract,start the HPLC gradient elution, load and inject the sample aliquot, and begin data acquisition.Refer to Method 8000 for guidance on calculation of concentration.7.9Corrective ActionsWhen the initial calibration cannot be verified, one or more of the following corrective actions may be necessary.CD-ROM8325 - 10Revision 0December 1996。

交联剂jn854企业标准 -回复

交联剂jn854企业标准 -回复

交联剂jn854企业标准-回复标题:解析交联剂JN854的企业标准一、引言交联剂JN854作为一种重要的化学添加剂,其在众多工业领域中扮演着不可或缺的角色。

它的性能、质量和使用规范直接影响到相关产品的质量和安全性。

因此,制定并严格执行企业标准对于交联剂JN854的生产和应用具有重大意义。

本文将详细解读交联剂JN854的企业标准,以期为相关企业和从业人员提供参考。

二、交联剂JN854概述交联剂JN854是一种高性能的有机硅交联剂,主要应用于橡胶、塑料、涂料、胶黏剂等领域,通过与聚合物分子链发生化学反应,形成三维网络结构,从而改善材料的机械性能、热稳定性、耐化学性等。

三、交联剂JN854企业标准的主要内容1. 技术要求:(1)外观:交联剂JN854应为无色或淡黄色透明液体,无可见杂质和异物。

(2)纯度:交联剂JN854的纯度应不低于99,以确保其高效的交联性能。

(3)粘度:在指定的温度下,交联剂JN854的粘度应符合规定的范围,以保证其良好的流动性。

(4)活性含量:交联剂JN854的活性含量是衡量其交联能力的重要指标,应符合企业标准的规定。

2. 检验方法:企业标准应明确规定交联剂JN854的各项技术指标的检测方法和步骤,包括但不限于外观观察、化学分析、物理性能测试等。

3. 包装、标志、运输和储存:(1)包装:交联剂JN854应采用专用的化工包装,确保其在运输和储存过程中的安全性和稳定性。

(2)标志:包装上应清晰标注产品名称、型号、生产日期、批号、生产厂家、净重、安全警示等信息。

(3)运输:交联剂JN854在运输过程中应避免阳光直射、高温、潮湿等环境影响,遵守相关的危险化学品运输规定。

(4)储存:交联剂JN854应储存在阴凉、干燥、通风良好的仓库中,远离火源和氧化剂,避免长时间暴露在空气中。

四、交联剂JN854企业标准的实施与监督企业应严格按照交联剂JN854的企业标准进行生产和质量管理,建立完善的质量控制体系和检验机制,确保每一批产品的质量和性能均达到标准要求。

8021合金高延伸率铝箔及其制备工艺

8021合金高延伸率铝箔及其制备工艺

8021合金高延伸率铝箔及其制备工艺下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!铝箔作为一种重要的包装材料,在食品、医药等领域有着广泛的应用。

CH-802工业地坪材料

CH-802工业地坪材料

CH-802工业地坪材料CH-802 简介CH-802工业地坪聚脲材料是由A组份为端NCO基团的半预聚体,B组份由端氨基聚醚、胺类扩链剂、助剂等组成的双组份弹性体材料。

CH-802工业地坪聚脲材料可形成不同厚度的坚硬涂膜,并可以应用于各种场合以及处理合适的基材。

CH-802工业地坪聚脲材料对潮气和湿度不敏感,可在恶劣的环境条件下应用。

被称为“第三代”聚脲材料。

CH-802 优点1、固化速度快,立面、顶面连续喷涂不流挂。

2、对湿气、温度不敏感,热稳定性好。

3、100%固含量,无VOC,无污染,对环境友好。

4、优良的物理性能,与混凝土底材附着力好。

5、伸长率高,耐冷热交替后不开裂。

6、涂层整体无接缝,美观实用。

7、优良的防滑性能,避免人员摔伤。

8、耐磨性好,耐踩踏,可行驶机动车辆。

CH-802 用途CH-802工业地坪材料主要用于各类工业地坪和体育工程,如停车场、车间地面、制药厂、GMP车间、工厂车间树脂墙面及天花板、粮食仓库。

高级运动场地如网球场、篮球场、羽毛球场、跑道面层防护等。

CH-802主要性能指标固含量 100% 凝胶时间 10秒拉伸强度 15MPa 扯断伸长率 350%撕裂强度 50KN/m 硬度,邵A 85~95耐磨性 5.5mg 附着力(砼) 3MPa 耐冲击性 1.5kg.m 低温柔韧性不开裂电气强度21MV/m不透水性(0.3Mpa/30min)不透水人工气候老化(2000h)良好颜色可根据用户要求调制密度 1.03g/cm3涂装方法必须采用专用的(1:1)双组分喷涂设备进行施工。

如GRACO公司的H2035、HXP-2、HXP-3等无气喷涂设备。

涂装间隔最短,时间不限;最长,不超过3小时。

底材处理旧混凝土应先用腻子对孔洞、裂缝进行修补。

混凝土应完全干燥(新制混凝土需水化、干燥28天)后,表面除去疏松的杂质,喷涂1~2道配套的水泥封闭底漆,底漆固化后再进行喷涂施工。

包装规格A料:220公斤/桶;B料:200公斤/桶。

压溃强度试验技术标准

压溃强度试验技术标准

压溃强度试验技术标准
压溃强度试验技术标准是指用于测定材料或产品的压溃强度的标准方法和规范。

以下是一些常见的压溃强度试验技术标准:
1. ASTM D575-91(2014)《Standard Test Methods for Rubber Properties in Compression》:用于测定橡胶材料在压缩载荷下的性能。

2. ISO 844-1:2003《Rigid cellular plastics - Determination of compression properties - Part 1: General principles》:用于测定硬质泡沫塑料在压缩载荷下的性能。

3. GB/T 8802-2008《千力和必容量塑料泡沫板法压缩试验方法》:用于测定塑料泡沫板在压缩载荷下的性能。

4. EN 826:1996《Thermal insulating products for building applications - Determination of compression behaviour》:用于测定建筑材料中的绝热产品在压缩载荷下的性能。

5. GB/T 13832-2017《填埋场固体废物承载力和压实特性测试方法》:用于测定填埋场固体废物在压缩载荷下的承载力和压实特性。

这些标准通常包括试验设备的要求、试验方法的具体步骤、试样的准备和试验条件等内容,以确保试验结果的准确性和可重
复性。

压溃强度试验技术标准的制定和使用可以为材料或产品的设计、制造和性能评估提供重要参考。

结构胶参数对比 v1.2

结构胶参数对比 v1.2

单价(元/ml)
0.42/0.35 0.4/0.38 2.73
2.73
结构胶参数对比
品名 TS802 TS805 拉伸强度(Mpa) 剪切强度(Mpa) 剥离强度(Mpa) 工作温度 包装规格 35 38.3 28 29 38 40.1 18-22 -50~120 -60~120 -60~120 -50~150 价格(元)
85ml 400ml 150ml
36/30(沈/京) 160/150(沈/京) 410
TA459 20-25(不锈钢) 12-18(镀锌钢) 20-25(钢) >14(氧铁体钢) TA435 15-25 15-25
150ml
410
注:
拉伸强度是指材料产生最大均匀塑性变形的应力;在拉伸 试验中,试样直至断裂为止所受的最大拉伸应力即为拉伸 强度,其结果以MPa表示。 剪切强度是指材料承受剪切力的能力。 剥离强度:粘贴在一起的材料,从接触面进行单位宽度剥 离时所需要的最大力。剥离时角度有90拉伸强度mpa剪切强度mpa剥离强度mpa工作温度包装规格价格元ts8023528386012085ml3630沈京ts8053832940160120400ml160150沈京ta4592025不锈钢1218镀锌钢50150150ml4102025钢14氧铁体钢ta43515251525182250120150ml410注
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

土工合成材料处治层施工作业指导书
一、编制依据
1、HN-D3标《施工图设计》
2、JTJ017-96《公路软土地基路堤设计与施工技术规范》
3、省扩指《路基施工指导意见》暂行稿
二、土工合成材料设置类型及要求
1、单向土工格栅为协调拼接路基的变形,均化荷载,减少新老路基的不
均匀沉降,提高拼接路基的抗剪强度,增加拼接路基的整体性,在路床顶部以下20cm设置一层单向土工格栅,在非软基处理段底部设置1~2层单向土工格栅(路堤高大于4m设2层,反之设1层);铺设宽度为台阶内侧至边坡;格栅采用抗拉强度不小于80KN/m,2%应变时抗拉强度不小于20KN/m。

2、双向钢塑土工格栅为预应力管桩桩帽浇筑摊铺40cm碎石垫层后,于垫
层内铺设两层钢塑土工格栅,分别位于垫层的10 cm和30cm位置;土工格栅伸长量10%的强度;经向≥80KN/m,纬向≥80KN/m。

3、双向土工格栅水泥搅拌桩施工完成检查合格后,摊铺40cm砂垫层,砂
垫层内铺设2层双向土工格栅,土工格栅伸长10%的强度;经向≥80KN/m,纬向≥80KN/m。

三、施工技术要求
1、根据设计图中铺设宽度,现场准确放样,确保铺设宽度符合设计要求;
2、单向土工格栅铺设时,主受力方向应垂直于路线轴线方向;
3、格栅铺设在底部时从第一级台阶内侧到新拓宽路基边坡全断面铺设,摊
铺时应拉直平顺,紧贴下承层,避免出现扭曲、折皱、重叠;
4、格栅搭接宽度不小于20cm,单向土工格栅铺设后,周边以U型钢筋或钢
钉按间距1m加以固定,钢钉插入土层不小于10cm,双向格栅搭接应以铁丝加以绑扎,间距20cm;
5、铺设土工布时应在每边留足够的宽度,回折覆裹在压实的填料面上,平
整顺适,外侧用土覆盖,土工布搭接采用缝接法时,缝接重叠宽度不小于50cm,采用搭接法时搭接长度应大于30cm;
6、双层土工格栅设置时,上、下层位的接缝必须交替错开,错开长度不小
于0.5m。

7、土工合成材料摊铺以后应及时填筑填料,以避免其受到阳光过长时间的
直接暴晒。

一般情况下,间隔时间不应超过48h。

填料应分层摊铺、分层碾压。

8、土工合成材料上的第一层填土摊铺宜采用轻型推土机或前置式装载机。

一切车辆、施工机械只容许沿路堤的轴线方向行驶。

9、对于软土地基,应采用后卸卡车沿加筋材料两侧边缘倾卸填料,以形成
运土的交通便道,并将土工合成材料张紧。

填料不允许直接卸在土工合成材料上面,必须卸在已摊铺完毕的土面上;卸土高度以不大于1m为宜,以免造成局部承载能力不足。

卸土后应立即摊铺,以免出现局部下陷。

10﹑填成施工便道后,再由两侧向中心平行于路堤中线对称填筑,第一层填料宜采用推土机或其它轻型压实机具进行压实。

四、施工中其他注意事项
1、各类材料应严格按各自的生产标准要求及设计要求进行质量检查,严把
材料供货源头质量关。

2、尽可能减少各类土工材料的日晒时间。

3、格栅铺设要平直,尽可能采用幅度大、单圈长的材料,减少格栅连接。

所有格栅连接主受力方向一律不允许采用简单连接方式连接。

4、格栅上第一层填料应依次向前填筑,以保持土工格栅在土层、垫层中的
平顺,充分发挥其作用。

5、反滤排水土工布应包裹到位,同时尽可能减少对土工布的污染。

6、土工膜铺设时要清除尖硬物体,填筑碎石等材料时不宜强力压实,以防
刺穿土工膜。

五、施工质量及检验要求
碎石垫层和钢筋网的施工质量及检验要求
土工格栅施工质量标准
常州市交通工程总公司
沪宁高速公路扩建工程HN-D3标项目经理部二00三年十二月二十一日。

相关文档
最新文档