粗糙集理论及其应用精品PPT课件
粗糙集理论优质获奖课件
若rij=1, 且 i≠j, 则rji=0
对M2中1所 在位置,M 中相应位置 都是1
假如两 假如顶
点之
点xi
间有边, 到xj有边,
一定
xj
13
4、等价关系
等价关系旳定义:设R是非空集合A上旳关系,假如满足 ⑴ R是自反旳; ⑵ R是对称旳; ⑶ R是传递旳; 则称R是A上旳等价关系。
21
内容提要
一、概述 二、知识分类 三、知识旳约简 四、决策表旳约简 五、粗糙集旳扩展模型 六、粗糙集旳试验系统 七、粒度计算简介
22
一、 概述
现实生活中有许多模糊现象并不能简朴地 用真、假值来表达﹐怎样表达和处理这些现 象就成为一种研究领域。早在1923年谓词逻 辑旳创始人G.Frege就提出了模糊(Vague)一 词,他把它归结到边界线上,也就是说在全 域上存在某些个体既不能在其某个子集上分 类,也不能在该子集旳补集上分类。
自反性 反自反性 对称性 反对称性 传递性
12
关系性质旳三种等价条件
体 现 式
关系 矩阵
关系图
自反性 IAR
主对角 线元素 全是1
每个顶 点都有 环
反自反性 R∩IA=
主对角线 元素全是 0
每个顶点 都没有环
对称性 R=R1
反对称性 R∩R1 IA
传递性 RRR
矩阵是对称 矩阵
假如 两个 顶
定义 假如一种集合满足下列条件之一: (1)集合非空, 且它旳元素都是有序对 (2)集合是空集 则称该集合为一种二元关系, 简称为关系,记作R. 如<x,y>∈R, 可记作 xRy;假如<x,y>R, 则记作xRy
实例:R={<1,2>,<a,b>}, S={<1,2>,a,b}. R是二元关系, 当a, b不是有序对时,S不是二元关系 根据上面旳记法,能够写1R2, aRb, aSb等.
第七章粗糙集理论
12
• (3)不可分辨关系
– 在粗糙集中,论域U中的对象可用多种信息(知识)来描述。当两个不同 的对象由相同的属性来描述时,这两个对象在该系统中被归于同一类, 它们的关系称之为不可分辨关系。即对于任一属性子集 B⊆R ,如果对象 xi,xj∊U ,∀ r∊B ,当且仅当 f(xi,r)=f(xj,r) 时,xi 和xj 是不可分辨的,简 记为Ind(B)。不可分辨关系称为等价关系。 – 例如:只用黑白两种颜色把空间中的一些物体划分成两类: { 黑色物体} 、 { 白色物体},那么同为黑色的物体就是不可分辨的,因为描述它们特征 属性的信息是相同的,都是黑色。如果引入方、圆的属性,可将物体进 一步划分为4 类:{黑色方物体}、{黑色圆物体}、{白色方物体}、{白色 圆物体}。这时,如果有两个同为黑色方物体,则它们还是不可分辨的。 – 不可分辨关系这一概念在 RS 中十分重要,它反映了我们对世界观察的不 精确性。 – 另一方面,不可分辨关系反映了论域知识的颗粒性。知识库中的知识越 多,知识的颗粒度就越小,随着新知识不断加入到知识库中,粒度会不 断减小,直致将每个对象区分开来。但知识库中的知识粒度越小,则导 致信息量增大,存储知识库的费用越高。
第八届中国粗糙集与软计算学术会议 , 2008 年 8 月 22 5 日至 8 月 24日在河南省新乡市召开中国
粗糙集的理论及应用的文章 主要发表在以下杂志
国际: 1.Information Sciences 2.Fuzzy sets and systems 3.International Journal of Computer and Information Sciences 4.Communication of the ACM 5.Computational Intelligence 6.Journal of computer and system sciences 国内: 1.模式识别与人工智能 2.软件学报 3.科学通报 4.计算机科学 5.计算机学报 6.模糊系统与数学 7.计算机应用与软件 8.计算机研究与发展 9.计算技术与自动化
粗糙集方法与应用
辽宁省物流航运管理系统工程重点实验室
2.2 不精确范畴、近似与粗糙集
上近似和下近似 X关于R的上近似(Upper Approximation)定义为: R X a U : a R X
R ( x ) 是所有与X相交非空的等价类[a]R的并集,是那些 可能属于X的对象组成的最小集合。
粗糙集(Rough Sets)理论是由波兰数学家Pawlak Z 于1982年提出的。 粗糙集方法是基于一个机构(或一组机构)关于现实的 大量数据信息,以对观察和测量所得数据进行分类的能 力为基础,从中发现、推理知识和分辨系统的某些特点、 过程、对象等的一种方法。 经过二十多年的发展以及研究的深入,粗糙集方法在理 论和实际应用上都取得了长足的发展。在知识发现、数 据挖掘、模式识别、故障检测、医疗诊断等领域得到了 广泛应用。
辽宁省物流航运管理系统工程重点实验室
2.1 知识与不可分辨关系
不可分辨关系是物种由属性集P表达时,论域U中的等价 关系。U|ind(P)表示由等价关系ind(P)划分的所有等价类, 且将其定义为与等价关系P的族相关的知识,称为P基本 知识。同时,也将U|ind(P)记为U|P,ind(P)的等价类称为 关系P的基本概念或基本范畴。
辽宁省物流航运管理系统工程重点实验室
1.2 粗糙集的应用及与其他领域的结合
三、粗糙集与其他相关理论和领域 粗糙集与模糊集、证据理论的关系 粗糙集和神经网络 粗糙集与遗传算法 粗糙集与支持向量 粗糙集与自动控制
辽宁省物流航运管理系统工程重点实验室
二、粗糙集基本理论
2.1 知识与不可分辨关系
2.2不精确范畴、近似与粗糙集
上近似和下近似 当集合X能表示成基本等价类组成的并集时,则称集合X 是R可精确定义的,称作R精确集;否则,集合X是R不可 精确定义的,称作R非精确集或R粗糙集。对于粗糙集可 近似利用两个精确集,即下近似和上近似来描述。 X关于R的下近似(Lower Approximation)定义为: R X a U : a R X R X 是由那些根据已有知识判断肯定属于X的对象所组成 的最大的集合。
浙江大学研究生《人工智能引论》课件--第六讲 粗糙集理论及其应用.ppt
2019年8月23
感谢你的观看
1
Outline
Rough sets理论的快速入门方法 Rough sets理论的发展概述 Rough sets理论的基本原理 计算举例 课后研读论文
2019年8月23
“模糊集”(Fuzzy Sets) 1965年美国数学家L. A. Zadeh首次提出 无法解决G. Frege提出的“含糊”问题 未给出计算含糊元素数目的数学公式
……
2019年8月23
感谢你的观看
6
粗糙集理论的提出(续2)
“粗糙集”(Rough Sets)
1982年波兰数学家Z. Pawlak首次提出 将边界线区域定义为“上近似集”与“下近似集”的差
2019年8月23
感谢你的观看
10
粗糙集理论的发展历程(续2)
1993和1994年,分别在加拿大、美国召开第二、三届 国际粗糙集与知识发现(或软计算)研讨会。
1995年,Pawlak等人在《ACM Communications》上 发表“Rough sets”,极大地扩大了该理论的国际影响。
评价某一分类(属性)的重要性
剔除冗余属性
数据集的降维
发现数据模式
挖掘决策规则
在其它领域的应用
金融商业
……
2019年8月23
感谢你的观看
18
6.3 粗糙集理论的基本原理
6.3.1 基本概念 “知识”的定义
使用等价关系集R对离散表示的空间U进行 划分,知识就是R对U划分的结果。
理论、Dempster-Shafer证据理论的关系和互补 粒度计算:粗糙集理论是其重要组成之一 高效算法:导出规则的增量式算法、简约的启发式
粗糙集理论及其应用研究
粗糙集理论的核心内容
知识的约简与核
知识的约简: 通过删除不重 要的知识,保 留关键信息
核的概念:核 是知识的最小 表示,包含所 有必要信息
核的性质:核 具有独立性、 完备性和最小 性
核的求取方法: 基于信息熵、 信息增益等方 法进行求取
0
0
0
0
1
2
3
4
决策表的简化
决策表:用于描述决策问题的表格 简化目标:减少决策表的规模,提高决策效率 简化方法:合并条件属性,删除冗余属性 简化效果:提高决策表的可读性和可理解性,降低决策复杂度
粗糙集理论在聚类分析中的应用:利用粗糙集理论处理不确定和不完整的数据,提高聚类 分析的准确性和效率。
聚类分析在数据挖掘中的应用:可以帮助发现数据中的模式和趋势,为决策提供支持。
粗糙集理论在其他领域的应用
决策支持系统
粗糙集理论可以帮助决策者 处理不确定性和模糊性
粗糙集理论在决策支持系统 中的应用
粗糙集理论可以提高决策支 持系统的准确性和效率
粗糙集理论在决策支持系统 中的实际应用案例分析
智能控制
粗糙集理论在模糊控制中的 应用
粗糙集理论在智能控制中的 应用
粗糙集理论在神经网络控制 中的应用
粗糙集理论在自适应控制中 的应用
模式识别
粗糙集理论在模式 识别中的应用
粗糙集理论在图像 识别中的应用
粗糙集理论在语音 识别中的应用
粗糙集理论在生物 信息学中的应用
添加标题
添加标题
ห้องสมุดไป่ตู้添加标题
添加标题
机器学习
粗糙集理论在机器学习中的应用 粗糙集理论在数据挖掘中的应用 粗糙集理论在模式识别中的应用 粗糙集理论在自然语言处理中的应用
粗糙集基本知识PPT课件
21
差别矩阵
U\A a b c d e u1 1 0 2 1 0 u2 0 0 1 2 1 u3 2 0 2 1 0 u4 0 0 2 2 2 u5 1 1 2 1 0
u1 u2 u3 u4 u5
3
Y
Y
Y
NY
8,9,15
N
N
N
Y
NY N
4
Y
Y
Y
NY
10,11,12,14
N
N
Y
Y
YY N
5
Y
Y
Y
NY
YY
13
N
N
Y
N
N
6
Y
Y
Y
NY
YY
16
Y
N
N
Y
N
7
N
Y
Y
NY
NY
17
Y
N
Y
N
N
8
N
N
N
YY
NN
9
N
N
N
YY
YN
实例集 10 群居 N 会飞 N 产卵 Y 肺呼吸NY 鸟类Y N
肺呼吸 热血动物 食物 鸟类
13
约简理论
主要思想:保持分类能力不变的条件下, 删除冗余的、不必要的属性或属性值,达 到知识简化的目的。
14
示例:一种动物是否是鸟类
实例集 群居 会飞 产卵 肺哺呼乳吸 会游鸟泳类
实例集
群居 会飞 产卵 肺呼吸 鸟类
1
N
Y
Y
NY
粗糙集理论方法及其应用ppt课件
粗糙集概念示意图
粗糙集理论方法及其应用 病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程
2 粗粗糙糙集集理理论论思思想想
粗糙集理论方法及其应用 病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程
2.3 粗糙近似
定义 给定一个知识表示系统 S (U, A,V, f ) , P A,X U ,x U ,集合 X 关于 I 的下近似、 上近似、负区及边界区分别为
apr (X ) {x U : I(x) X} p
aprP (X ) {x U : I(x) X }
neg p ( X ) {x U : I (x) X }
2.2 不可分辨关系 (Indiscribility relation)
❖ 不可分辨关系是一个等 价关系(自反 的、对称 的、传递的)。
❖ 包含对象x的等价类 记为I(x)。等价类与知 识粒度的表达相对应, 它是粗糙集主要概念, 如近似、依赖及约简等, 定义的基础
粗糙集理论方法及其应用 病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程
决策属性(D)
U
a1
a2
a3
d
n1
High
Low
Low
Low
n2
Medium
High
Low
High
n3
High
High
High
High
粗糙集理论方法及其应用 病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程
第五讲:粗糙集(Rough Set)
第三节粗糙集(Rough Set,RS)如果我们将研究对象看成是现象,那么我们可以将这些现象分类。
现象被分为确定现象与不确定现象。
不确定现象有分为随机现象,模糊现象和信息不全的粗糙现象。
如下所示:⎧⎪⎪⎧⎪⎪⎨⎪⎪⎨⎪⎪⎪⎪⎩⎩∈确定现象随机现象,0-1律,多种可能性满足分布规律。
现象不确定现象模糊现象,律属度Î(0,1),不是非此即彼。
粗糙现象,研究那些因为信息不充分而导致的不确定性相对于前两种现象的处理,粗糙现象是基于不完全的信息或知识去处理不分明的现象,因此需要基于观测或者测量到的部分信息对数据进行分类,这就需要与概率统计和模糊数学不同的处理手段,这就是粗糙集理论。
直观地讲,粗糙集是基于一系列既不知道多了还是少了,也不知道有用还是没用的不确定、不完整乃至于部分信息相互矛盾的1数据或者描述来对数据进行分析、推测未知信息。
下面我们对粗糙集的基本特征、以及数学符号进行简述。
1.粗糙集的特点粗糙集的特点是利用不精确、不确定、部分真实的信息来得到易于处理、鲁棒性强、成本低廉的决策方案。
因此更适合于解决某些现实系统,比如,中医诊断,统计报表的综合处理等。
粗糙集的另一个重要特点就是它只依赖于数据本身,不需要样本之外的先验知识或者附加信息,因此挑选出来的决策属性可以避免主观性,有英雄不问出身的意味。
用粗糙集来处理的数据类型包括确定性的、非确定性的、不精确的、不完整的、多变量的、数值的、非数值的。
粗糙集使用上、下近似来刻画不确定性,使得边界有了清晰的数学意义并且降低了算法设计的随意性。
3.粗糙集的基本概念粗糙集要涉及论域U(这与模糊系统相似),还要涉及属性集合R C D=(这被认为是知识,或者知识库)。
当然,也要有属性值域V,以及信息函数f:U R V⨯→的。
因此,一个信息系统S可以表示为一个四元组{}=。
在不混淆的情况下,简记为(,)S U R V f,,,=,S U R23 也称为知识库。
等价关系(通常用来代替分类)是不可或缺的概念,根据等价关系可以划论域中样本为等价类。
《粗糙集理论简介》课件
05
粗糙集的应用实例
数据挖掘中的粗糙集应用
分类
利用粗糙集理论对数据进行分类,通过确定数据的属性重要性和 类别关系,实现高效准确的分类。
聚类
通过粗糙集理论,可以发现数据中的相似性和差异性,从而将数 据分成不同的聚类。
关联规则挖掘
利用粗糙集理论,可以发现数据集中项之间的有趣关系和关联规 则。
机器学习中的粗糙集应用
粗糙集的补运算
总结词
粗糙集的补运算是指求一个集合的所有 可能补集的运算。
VS
详细描述
补运算在粗糙集理论中用于确定一个集合 的所有可能补集。补集是指不属于该集合 的所有元素组成的集合。通过补运算,我 们可以了解一个集合之外的所有可能性, 这在处理不确定性和模糊性时非常重要。
04
粗糙集的扩展理论
决策粗糙集
多维粗糙集
多维粗糙集是粗糙集理论在多维空间下的扩展,它考虑了多个属性或特征对数据 分类的影响。多维粗糙集可以更准确地描述多维数据的分类和聚类问题,因此在 处理多特征和多属性问题时具有更大的优势。
多维粗糙集的主要概念包括多维下近似、多维上近似、多维边界等,通过这些概 念可以度量多维数据的不确定性,从而为多维分类和聚类提供支持。
决策分析
粗糙集理论可以用于决策支持系 统,通过建立决策模型来分析不 确定性和模糊性条件下的最优决 策。
知识获取
粗糙集理论可以用于从数据中提 取隐含的知识和规则,尤其在处 理不完整和不精确信息时具有显 著效果。
02
粗糙集的基本概念
知识的分类
知识表达
通过数据表中的属性值来表达知识,将对象进 行分类。
概率粗糙集
概率粗糙集是粗糙集理论在概率框架下的扩展,它引入了 概率测度的概念,用于描述数据的不确定性。概率粗糙集 可以更准确地描述数据的不确定性和随机性,因此在处理 不确定性和随机性问题时具有更大的灵活性。
粗糙集理论及其应用ppt课件
12
(3)模糊集合的提出 1965年,美国Zadeh教授首次提出个体x与集合S的 关系——x以一定的程度属于S。
13
模糊集虽然解决了边界域元素的“亦此亦彼”的 现象,但: 未给出计算含糊元素数目的数学公式 未给出描述含糊元素隶属度的形式化方法 隶属度函数本身不确定
14
粗糙集运用集合论中的“等价关系(不可区分关 系)”,将边界线区域定义为“上相似集”与“ 下相似集”的差集 在“真”、“假”二值之间的“含糊度”可计算 给出了含糊元素数目的计算公式
9
自然界中大部分事物所呈现的信息都是: 不完整的、不精确的、模糊的、含糊不清的 经典集合论和逻辑方法无法准确的描述和解决这 些问题。 粗糙集理论的提出,主要是为了描述并处理“含 糊”信息
10
(1)经典集合 特点:集合的边界没有宽度 每个元素要么属于 S ,要么不属于,具有 确定性。
11
(2)“含糊”问题的提出 1904年,谓词逻辑创始人G. Frege 首次提出将含糊 性归结到“边界线区域” 在论域上存在一些个体,既不能被分到某一子集 上,也不能被分到该子集的补集上。
有 力地推动了国际粗糙集理论与应用的深入研究。 1992年,在波兰召开了第一届国际粗糙集理论研讨会,有 15篇论文发表在1993年第18卷的 《Foundation of computingand decision sciences》上。 1995年,Pawlak等人在《ACM Communications》上发表 “Rough sets”,极大地扩大了该理论的国际影响。
7
随机性 不 确 定 性 模糊性 不完整性 不稳定性 不一致性
主要的特性
……
8
随机性:由于条件不能决定结果而表现出来的不 确定性,反映了因果律的问题。解决随机性问题 的典型数学方法是概率论。 模糊性:由于概念外延边界的不清晰而表现出的 不确定性,反映了排中律的问题。解决模糊性的 典型数学方法是模糊集理论。
粗糙集理论及其应用
2017/6/28
4
粗糙集发展历程
1996~1999年,分别在日本、美国、美国、日本召开了 第4-7届粗糙集理论国际研讨会。 2001~2002,中国分别在重庆、苏州召开第一、二届粗 糙集与软计算学术会议。 2001年至今,每年召开CRSSC。 2003年,在重庆召开粗糙集与软计算国际研讨会。 2004年,在瑞典召开RSCTC国际会议(偶数年会) 。 2005年,在加拿大召开RSFDGrC国际会议(奇数年会)。 2006年至今,每年召开RSKT。 ……
2017/6/28
X2 = {u | Flu(u) = no}
= {u1, u4, u5, u8}
RX2 = {u1, u4}
R X2 = {u1, u4, u5, u8, u6, u7}
27
近似精度 & 分类质量
设S = {U, A, V, f}为一信息系统,且XU, PA,则 S上X的近似精度为: P ( X ) card ( P X ) P ( X ) P ( X ) card ( P X )
6
2017/6/28
misty
not icy
Hale Waihona Puke nightno22
等价关系示例:
可知, U = {1, 2, 3, 4, 5, 6} R = 2{ weather, road, time, accident } 若P = {weather, road},则 [x] IND(P) = [x] IND{weather} [x] INP{road} = { {1, 3, 6}, {2, 5}, {4} }{ {1, 2, 4}, {3, 5, 6}} = { {1}, {2}, {4}, {3, 6}, {5} }
粗糙集理论的基本概念课件
解的不完全程度。
学习交流PPT
14
例2.6 给定一个知识库K=(U,S)和知识库中一 个等价关系RIND(K),它导出的等价类如下: Y1={x1,x4,x8},Y2={x2,x5,x7}, Y3={x3}, Y4={x6}。 其中,论域U={x1,x2,…,x8}。
试计算下列集合的R-近似精度和粗糙度, 其中,
R ( X ) { X | ( x U ) ([x]R X )} U{Y | ( Y U / R ) (Y X )}, (2.2)
R ( X ) { X | ( x U ) ([x]R I X )}
U{Y | ( Y U / R ) (Y I X )}, (2.3)
学习交流PPT
9
学习交流PPT
10
( 9) R (~ X ) ~ R ( X )。 ( 1 0) R (~ X ) ~ R ( X )。
(1 1) R ( R ( X )) R ( R ( X )) R ( X ).
(1 2 ) R ( R ( X )) R ( R ( X )) R ( X ).
我们通常用等价关系或关系来表示分类及知
识。因此知识也可以定义为,设R是U上的
一个等价关系,U/R ={X1, X2,…, Xn} 表示
R产生的分类,称为关于U的一个知识。
通常情形下,我们在问题求解的过程中,
处理的不是论域U上的单一划分(知识或分
类),而是论域U上的一簇划分,这导致了
知识库的概念。 学习交流PPT
我们用IND(K)={IND(P)| ≠P S}表示知识库K=(U,S)中所有等价关系, 他对于集合的交运算是封闭的。任意有限个P-基本范畴的并,称为P-范畴;知识 库K=(U,S)中所有的范畴称为K-范畴。
数据仓库与数据挖掘PPT第9章 粗糙集理论
如果再考虑是否能去掉大小属性呢?这个时候知识系统就变为:
A/(R-R1-R3)=A/R2={{x1,x2},{x5,x8},{x3,x4,x6,x7}}。同样考虑“稳定”在 知识系统A/R2中的上下近似分别为:{x1,x2}和{x1,x2,x5,x8},已经和原 来知识系统中的上下近似不一样了,同样考虑“不稳定”的近似表示也 变化了,所以删除属性“大小”是对知识表示有影响的故而不能去掉。
• 目前,粗糙集理论已经广泛的应用于知识发现、数据挖掘、智能 决策、电子控制等多个领域。
9.1.2 粗糙集理论的特点
粗糙集理论是一种数据分析工具。 粗糙集理论不需要先验知识。 粗糙集理论是一种软计算方法。
9.1.3 粗糙集理论在数据挖掘中的应用
在数据预处理过程中,粗糙集理论可以用于对特征更 准确的提取 在数据准备过程中,利用粗糙集理论的数据约简特性, 对数据集进行降维操作。 在数据挖掘阶段,可将粗糙集理论用于分类规则的发 现。 在解释与评估过程中,粗糙集理论可用于对所得到的 结果进行统计评估。
假设有8个积木构成了一个集合A: A={x1,x2,x3,x4,x5,x6,x7,x8},
每个积木块都有颜色属性,按照颜色的不同,我们能够把这 堆积木分成 R1={红,黄,兰}三个大类:
红颜色的积木构成集合X1={x1,x2,x6}, 黄颜色的积木构成集合X2={x3,x4}, 兰颜色的Slowinski主编的《Intelligence decision support: handbook of applications and advances of rough sets theory》 的出版,奠定了粗糙集理论的基础,有力地推动了国际粗糙 集理论与应用的深入研究。
同样的讨论对于“形状”属性也一样,它是不能去掉的。 最后我们得到化简后的知识库R2,R3,从而能得到下面的决策规则:
概述粗糙集方法与应用
粗糙集的基础理论
1.2 粗糙集的特点
作为一种软计算方法, 作为一种软计算方法, 粗糙集理论与其他处理不确定和不精 确问题理论的最显著的区别是它无需提供 问题所需处理的数据集合之外的任何先验 信息,如统计学中的概率分布、 信息,如统计学中的概率分布、模糊集理 论中的隶属度等, 论中的隶属度等,所以对问题的不确定性 的描述或处理可以说是比较客观的。 的描述或处理可以说是比较客观的。
上一页 下一页 返回本章首页
粗糙集的基础理论
1.2 粗糙集的特点
RS方法已被成功地应用于机器学习、 方法已被成功地应用于机器学习、 方法已被成功地应用于机器学习 知识获取、决策分析、知识发现、模式识别、 知识获取、决策分析、知识发现、模式识别、 专家系统和决策支持系统等领域。 专家系统和决策支持系统等领域。有趣的结 果已激励各个领域的专家研究RST及它的应 果已激励各个领域的专家研究RST及它的应 用。 它的成功是由于具有如下特征: 它的成功是由于具有如下特征:发现最 小知识表示;不修正不一致性, 小知识表示;不修正不一致性,将生成的不 一致规则划分为确定性规则和可能性规则; 一致规则划分为确定性规则和可能性规则; 约简冗余的属性,且约简算法较为简单。 约简冗余的属性,且约简算法较为简单。
粗糙集的基础理论
粗糙集方法与应用
粗糙集的基础理论 粗糙集的扩展理论
变精度粗糙集理论 基于优势关系的粗糙集理论
粗糙集与其它方法的杂合
粗糙集与模糊集的杂合 粗糙集与神经网络的杂合
开始 上一页
下一页
返回目录 返回本章首页
粗糙集的基础理论
1. 粗糙集概述
1.1 软技术产生的时代背景和意义
随着Internet和数据库技术的迅猛发展和广泛应用, 和数据库技术的迅猛发展和广泛应用, 随着 和数据库技术的迅猛发展和广泛应用 数据库中存储的数据量以惊人的速度在增加, 数据库中存储的数据量以惊人的速度在增加,庞大的数据 量渗透到社会生活和生产的各个领域, 量渗透到社会生活和生产的各个领域,其结果导致传统的 统计技术及数据管理工具不再适用于分析这些巨量的数据 海量的数据被描述为“丰富的数据,贫乏的知识” 集。海量的数据被描述为“丰富的数据,贫乏的知识”。 人们需要采用自动化程度更高、 人们需要采用自动化程度更高、效率更高的数据处理方法 来处理大量数据,并提供有用的知识。从金融业到制造业, 来处理大量数据,并提供有用的知识。从金融业到制造业, 越来越多的公司正依赖于巨量数据的分析获得竞争优势, 越来越多的公司正依赖于巨量数据的分析获得竞争优势, 知识已成为社会生活和生产的第一推动力。 知识已成为社会生活和生产的第一推动力。为了帮助人们 智能化地分析海量数据,自动地分析一些事例, 智能化地分析海量数据,自动地分析一些事例,出现了新 一代的技术和工具, 一代的技术和工具,这些技术和工具主要用于数据挖掘 (data mining,DM)和知识发现 , )和知识发现(Knowledge discovery in database,KDD)领域。 如粗糙集理论、 领域。 , 领域 如粗糙集理论、 模糊集理论、灰色系统、 模糊集理论、灰返回本章首页
粗糙集理论及其应用 共43页PPT资料共45页
15、机会是不守纪律的。——雨果
1、最灵繁的人也看不见自己的背脊。——非洲 2、最困难的事情就是认识自己。——希腊 3、有勇气承担命运这才是英雄好汉。——黑塞 4、与肝胆人共事,无字句处读书。——周恩来 5、阅读使人充实,会谈使人敏捷,写作使人精确。——培根
粗糙集理论及其应用 共43页 PPT资料
11、战争满足了,或曾经满足过人的 好斗的 本能, 但它同 时还满 足了人 对掠夺 ,破坏 以及残 酷的纪 律和专 制力的 欲望。 ——查·埃利奥 特 12、不应把纪律仅仅看成教育的手段 。纪律 是教育 过程的 结果, 首先是 学生集 体表现 在一切 生活领 域—— 生产、 日常生 活、学 校、文 化等领 域中努 力的结 果。— —马卡 连柯(名 言网)