高三数学专题复习--极坐标与参数方程

合集下载

高考专题复习--极坐标与参数方程(极品课件系列).ppt

高考专题复习--极坐标与参数方程(极品课件系列).ppt

3.极坐标方程研究两曲线的位置关系

5.(江苏省南通市
2008-2009)求直线
x y
1 1
2t,(t 2t
为参数)被圆
x
y
3cos 3 sin
,
(α为参数)截得的弦长.
分析:把参数方程转化为普通方程来判断位 置关系,利用圆心距与半径求出弦长。
4.两曲线的位置关系

6.(08
海南、宁夏理)已知曲线
3 S x y 的最大值.
5.极坐标方程与参数方程混合
例 10.(2008 南通四县市)已知曲线 C 的极坐标方程
是 4cos .以极点为平面直角坐标系的原点,极
轴为 x 轴的正半轴,建立平面直角坐标系,直线 l 的
参数方程是:x
2 t 1
2
,求直线 l 与曲线 C 相交
y
2t 2
所成的弦的弦长.
5(江苏省泰兴市2007—2008学年第一学期高三调研)
已知直线 l 经过点 P(1,1) ,倾斜角 ,
6
(1)写出直线 l 的参数方程; (2)设 l 与圆 x 2 y 2 4 相交与两点 A, B ,求点 P
到 A, B 两点的距离之积.
6(盐城市 2007/2008 学年度高三第三次调研考试)
本课的重点:(1)参数方程与 普通方程的互化;一般要求是把参数 方程化为普通方程;较高要求是利用 设参求曲线的轨迹方程或研究某些最 值问题;(2)极坐标与直角坐标的 互化。
重点方法:<1>消参的种种方法; <2>极坐标方程化为直角坐标方程的 方法;<3>设参的方法。
坐标系与参数方程在高考中根据我省的情况是 选考内容,是10分的解答题之一,与不等式选讲和 几何证明等三个选修模块进行三选一解答,知识相 对比较独立,与其他章节联系不大,容易拿分。根 据不同的几何问题可以建立不同的坐标系,坐标系 选取的恰当与否关系着解决平面内的点的坐标和线 的方程的难易以及它们位置关系的数据确立。有些 问题用极坐标系解答比较简单,而有些问题如果我 们引入一个参数就可以使问题容易入手解答,计算 简便。高考出现的题目往往是求曲线的极坐标方程、 参数方程以及极坐标方程、参数方程与普通方程间 的相互转化,并用极坐标方程、参数方程研究有关 的距离问题,交点问题和位置关系的判定。

极坐标与参数方程

极坐标与参数方程

极坐标与参数方程极坐标和参数方程是解析几何中的两种常见的坐标系统。

它们在描述曲线、曲面和图形等数学问题中具有重要的应用。

本文将就极坐标和参数方程的定义、特点以及应用做详细介绍。

一、极坐标1.1 定义极坐标是用一个有序的有序对(r, θ)来表示平面上的点P。

其中r表示点P到原点的距离,θ表示点P与X轴正半轴的夹角。

极坐标可以看做是极径和极角的一种表示方式。

1.2 特点极坐标的主要特点在于其描述了点P与原点之间的极径和极角关系,而不是点的直角坐标。

极坐标有助于描述某些特殊的图形特征,如圆、扇形和螺旋线等。

1.3 转换关系极坐标与直角坐标之间存在一定的转换关系。

对于平面上一点P(x,y),其转换为极坐标(r,θ)的关系如下:r = √(x² + y²)θ = arctan(y/x)二、参数方程2.1 定义参数方程又称参数表示法,是用参数的形式描述平面上点的坐标。

对于平面上点P,可以使用一组参数t来表示其坐标(x,y),即P(x(t),y(t))。

参数方程可以看做是x和y的函数表达。

2.2 特点参数方程的主要特点在于可以通过参数的变化来描述点的轨迹和运动规律。

参数方程常用于描述曲线、线段和曲面等几何形体,同时也在物理学和工程学中广泛应用。

2.3 转换关系直角坐标和参数方程之间也存在转换关系。

对于平面上一点P(x,y),其对应的参数方程为:x = x(t)y = y(t)三、极坐标与参数方程的应用3.1 几何图形的描述极坐标和参数方程可以更直观地描述某些几何图形。

比如,圆的极坐标方程为(r,θ) = (a, θ),其中a为半径;直线可用参数方程表示,利用参数t可以描述直线的起点、终点和运动方向。

3.2 物理学中的应用极坐标和参数方程在物理学中有着广泛的应用。

例如,带电粒子在磁场中的运动可通过参数方程来描述;振动系统中的物体位置随时间的变化也可以通过参数方程来表示。

3.3 工程学中的应用工程学中常常需要处理复杂的曲线和曲面。

参数方程与极坐标(精华版)

参数方程与极坐标(精华版)

参数方程与极坐标(精华版)y y tsin注意:倾角为的直线,斜率为tan,所以tan=tan,即tcos=tsin,所以cos=sin,即=45,即直线与x轴或y轴夹45角。

Eg:已知直线L过点(1,2)且与x轴夹45角,求直线L的方程。

解:设直线L的参数方程为x=1+tcos45,y=2+tsin45,即x=1+t/2,y=2+t/2,将y=mx+b代入得到m=1,b=3/2,即直线L的方程为y=x+3/2.四、极坐标1、定义:在平面直角坐标系中,点P到原点O的距离r和OP与x轴正半轴的夹角唯一确定点P的位置,称(r,)为点P的极坐标,r为极径,为极角,记作P(r,)。

2、极坐标与直角坐标的转换x=r cos,y=r sinr2=x2+y2,tan=y/x3、常见曲线的极坐标方程1)圆:r=a2)半直线:=0或=3)双曲线:r=a sec或r=a cosec4)椭圆:r=a bcos或r=a sin5)心形线:r=a(1+cos)6)阿基米德螺线:r=a+b7)对数螺线:r=a e b8)伯努利双曲线:r2=a2 sec29)费马螺线:r=2a sin(/2)10)旋轮线:r=a或r=a sin(n)/sin(n为正整数)总结:极坐标的方程形式比较简单,但是不同曲线的极坐标方程需要记忆,转换成直角坐标系方程需要用到三角函数的知识。

P点的有向距离在点P两侧t的符号相反,可以通过直线的参数方程来表示。

其中,t代表有向距离的几何意义。

需要注意的是,t的符号相对于点P,正负在P点两侧,且|PP|=|t|。

直线参数方程可以有多种变式,比如y=y+tsinα和x=x+at,y=y+bt,但此时t的几何意义不是有向距离。

只有当t前面系数的平方和为1时,t的几何意义才是有向距离。

因此,可以将直线参数方程整理为x=x+a2+b2t,XXX,让a2+b2t作为t,这样t的几何意义就是有向距离了。

例如,对于直线x=-1+3t,y=2-4t,可以求其倾斜角。

极坐标与参数方程题型讲义-2022届高三数学一轮复习

极坐标与参数方程题型讲义-2022届高三数学一轮复习

极坐标与参数方程题型汇总题型一.直线参数方程t 的几何意义1.经过点P (x 0,y 0),倾斜角为α的直线l 的参数方程为为参数)t t y y t x x (sin cos 00⎩⎨⎧+=+=αα若A ,B 为直线l 上两点,其对应的参数分别为t 1,t 2,线段AB 的中点为M ,点M 所对应的参数为t 0,则以下结论在解题中经常用到: (1)t 0=t 1+t 22;(2)|PM |=|t 0|=t 1+t 22;(3)|AB |=|t 2-t 1|; (4)|PA |·|PB |=|t 1·t 2|(5)⎪⎩⎪⎨⎧>+<-+=-=+=+0,0,4)(212121212212121t t t t t t t t t t t t t t PB PA 当当(注:记住常见的形式,P 是定点,A 、B 是直线与曲线的交点,P 、A 、B 三点在直线上) 【特别提醒】直线的参数方程中,参数t 的系数的平方和为1时,t 才有几何意义且其几何意义为:|t |是直线上任一点M (x ,y )到M 0(x 0,y 0)的距离,即|M 0M |=|t |. 直线与圆锥曲线相交,交点对应的参数分别为12,t t ,则弦长12l t t =-; 2.解题思路第一步:曲线化成普通方程,直线化成参数方程第二步:将直线的参数方程代入曲线的普通方程,整理成关于t 的一元二次方程:02=++c bt at第三步:韦达定理:a ct t a b t t =-=+2121,第四步:选择公式代入计算。

1.以直角坐标系的原点O 为极点,x 轴的非负半轴为极轴建立极坐标系,已知曲线C 的极坐标方程为ρsin 2θ=4cos θ.(1)求曲线C的直角坐标方程;(2)若直线l的参数方程为(t为参数),设点P(1,1),直线l与曲线C相交于A,B两点,求|P A|+|PB|的值.2.在直角坐标系xOy中,直线l过点P(0,1)且斜率为1,以O为极点,x轴的非负半轴为极轴的极坐标系中,曲线C的极坐标方程为ρ=2sinθ+2cosθ.(Ⅰ)求直线l的参数方程与曲线C的直角坐标方程;(Ⅱ)若直线l与曲线C的交点为A、B,求|P A|+|PB|的值.3.在直角坐标系xOy中,直线l的参数方程为(t为参数).以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C的极坐标方程为ρsin2θ﹣2cosθ=0.(1)写出直线l的普通方程及曲线C的直角坐标方程;(2)已知点P(0,1),点Q(,0),直线l过点Q且曲线C相交于A,B两点,设线段AB的中点为M,求|PM|的值.4.已知曲线C的极坐标方程是ρ=2cosθ,以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,直线L的参数方程是(t为参数).(1)求曲线C的直角坐标方程和直线L的普通方程;(2)设点P(m,0),若直线L与曲线C交于A,B两点,且|P A|•|PB|=1,求实数m的值.5.在平面直角坐标系中,直线的参数方程为(为参数),曲线的参数方程为(为参数),以坐标原点为极点,轴非负半轴为极轴建立极坐标系.(1)求的极坐标方程;(2)设点,直线与曲线相交于点,求的值.6.在平面直角坐标系中,以原点为极点,以轴非负半轴为极轴建立极坐标系,已知曲线的极坐标方程为,直线的极坐标方程为.(Ⅰ)写出曲线和直线的直角坐标方程;(Ⅱ)设直线过点与曲线交于不同两点,的中点为,与的交点为,求.7.在平面直角坐标系中,直线的参数方程为(其中为参数).现以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)写出直线普通方程和曲线的直角坐标方程;(2)过点,且与直线平行的直线交于两点,求.8.在平面直角坐标系中,直线过点,且倾斜角为,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(Ⅰ)写出直线的参数方程及曲线的直角坐标方程;(Ⅱ)若直线与曲线交于,两点,且弦的中点为,求的值.9.在直角坐标系中,过点的直线的参数方程为(为参数),以坐标原点为极点,以轴正半轴为极轴建立极坐标系,曲线的极坐标方程为,曲线的极坐标方程为.(1)若点的直角坐标为,求直线及曲线的直角坐标方程;(2)若点在上,直线与交于两点,求的值.10.在平面直角坐标系中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为,直线的参数方程为(为参数),其中,直线与曲线相交于,两点.(1)求曲线的直角坐标方程;(2)若点满足,求的值.11.在平面直角坐标系xOy中,点P(0,−1),直线l的参数方程为{x=tcosαy=−1+tsinα(t为参数),以坐标原点为极点,以x轴的正半轴为极轴,建立极坐标系,曲线C的极坐标方程为ρ+ρcos2θ= 8sinθ.(1)求曲线C的直角坐标方程;(2)若直线l与曲线C相交于不同的两点A,B,M是线段AB的中点,当|PM|=409时,求sinα的值.12.在直角坐标系xOy 中,曲线C 1的参数方程为{x =1−√22t y =1+√22t(t 为参数),以坐标原点为极点,以x 轴正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρsin 2θ=4cosθ. (1)求曲线C 1的普通方程与曲线C 2的直角坐标方程;(2)若C 1与C 2交于A,B 两点,点P 的极坐标为(√2,π4),求1|PA|+1|PB|的值.题型二.极径的应用:一直线与两曲线分别相交,求交点间的距离(1)思路:一般采用直线极坐标与曲线极坐标联系方程求出2个交点的极坐标,利用极径相减即可,|=AB |B A 2B A B A 4)(||ρρρρρρ-+=-(2)过原点,倾斜角为α的直线的极坐标方程为:)(R ∈=ραθ 1.在平面直角坐标系中,直线l 的参数方程是(t 为参数),以坐标原点为极点,x 轴的正半轴为板轴,建立极坐标系,已知曲线C 的极坐标方程为ρ2cos 2θ+ρ2sin 2θ﹣2ρsin θ﹣3=0.(1)求直线l 的极坐标方程;(2)若直线l 与曲线C 相交于A ,B 两点,求AB 的长.2.已知曲线,是曲线上的动点,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,以极点为中心,将点绕点逆时针旋转得到点,设点的轨迹方程为曲线.(Ⅰ)求曲线,的极坐标方程;(Ⅱ)射线与曲线,分别交于,两点,定点,求的面积.3.在平面直角坐标系xOy中,曲线C1的参数方程为{x=2+2cosφy=2sinφ(φ为参数).以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=4sinθ.(1)求C1的普通方程和C2的直角坐标方程;(2)已知直线C3的极坐标方程为θ=α(0<α<π,ρ∈R),A是C3与C1的交点,B是C1与C2的交点,且A,B均异于原点O,|AB|=4√2,求a的值.4.在平面直角坐标系xOy 中,曲线C 的参数方程为{x =2+√3cosαy =√3sinα(α为参数),直线l 的参数方程为{x =tcosβy =tsinβ(t 为参数,0≤β<π),以坐标原点O 为极点,x 轴的非负半轴为极轴建立极坐标系.(1)求曲线C 的极坐标方程;(2)已知直线l 与曲线C 相交于A 、B 两点,且|OA |−|OB |=2,求β.5.在直角坐标系xOy 中,直线l 的参数方程为{x =34+√3t y =a +√3t(t 为参数),圆C 的标准方程为(x −3)2+(y −3)2=4.以坐标原点为极点,x 轴正半轴为极轴建立极坐标系. (1)求直线l 和圆C 的极坐标方程;(2)若射线θ=π3与l 的交点为M ,与圆C 的交点为A ,B ,且点M 恰好为线段AB 的中点,求a 的值.题型三.距离、最值、取值范围 (一)与圆有关的题型1.圆与直线的位置关系(圆与直线的交点个数问题)----利用圆心到直线的距离与半径比较 相离,无交点;:r d >个交点;相切,1:r d =个交点;相交,2:r d < 用圆心(x 0,y 0)到直线Ax+By+C=0的距离2200BA C By Ax d +++=,算出d ,在与半径比较。

高中数学极坐标与参数方程知识点

高中数学极坐标与参数方程知识点

高中数学极坐标与参数方程知识点知识点参数方程的定义:如果曲线上任意一点的坐标x、y都是某个变数t的函数,且对于每个允许值的t,由方程组所确定的点M(x,y)都在这条曲线上,那么方程组就叫做曲线的参数方程,联系x、y之间关系的变数叫做参变数,简称参数.常见曲线的参数方程:1.过定点(x,y),倾角为α的直线:x = x + tcosαy = y + tsinα其中参数t是以定点P(x,y)为起点,对应于t点M(x,y)为终点的有向线段PM的数量,又称为点P与点M间的有向距离.2.中心在(x,y),半径等于r的圆:x = x + rcosθy = y + rsinθθ为参数)3.中心在原点,焦点在x轴(或y轴)上的椭圆:x = acosθ 或x = bcosθθ为参数)(或)y = bsinθ 或y = asinθ4.中心在原点,焦点在x轴(或y轴)上的双曲线:x = asecθ 或x = btanθθ为参数)(或)y = btanθ 或y = asecθ5.顶点在原点,焦点在x轴正半轴上的抛物线:x = 2pt^2t为参数,p>0)y = 2pt直线的参数方程和参数的几何意义:过定点P(x,y),倾斜角为α的直线的参数方程是x = x + tcosαy = y + tsinα其中参数t是以定点P(x,y)为起点,对应于t点M(x,y)为终点的有向线段PM的数量。

根据t的几何意义,可以得出结论:设AB是直线上任意两点,它们对应的参数分别为t_A和t_B,则AB = t_B - t_A = (t_B - t_A)^2 - 4t_A*t_B。

极坐标系是在平面内取一个定点O作为极点,引一条射线Ox作为极轴,再选一个长度单位和角度的正方向。

对于平面内的任意一点M,用ρ表示线段OM的长度,θ表示从Ox 到OM的角,ρ叫做点M的极径,θ叫做点M的极角,有序数对(ρ,θ)就叫做点M的极坐标。

这样建立的坐标系叫做极坐标系。

高三数学总复习优秀ppt课件(第51讲)极坐标与参数方程(48页)

高三数学总复习优秀ppt课件(第51讲)极坐标与参数方程(48页)

基础知识
极坐标与直角坐标的互化
2 2 2 r x y , x r cos q , y y r sin q . tan q ( x 0). x r 0, 0 ≤q 2π. 通常,将直角坐标化为极坐标时,
经典例题
例 1 在极坐标系中,已知圆 C 的圆心坐标为 C (2,
思路分析
例 3 将下列参数方程化为普通方程,并指出 它表示的曲线: x t, (1) (t 为参数) ;思路 1:应用代入消元. y 2t 2
x 3cos q, p q [0, ]; 思路 2:应用加减消元. (2) 2 y 3sin q a 1 x ( t ), 2 t (3) (t 为参数,a 0,b 0) . y b (t 1 ) 2 t
2
(1)求圆 C1、C2 圆心之间的距离;
(2)求过点 C1 且与直线 l 垂直的直线的极坐标方程.
思路分析
例 2 已知圆 C1 的极坐标方程为 ρ = 2cosθ,圆 C2
p 的极坐标方程为 ρ -4ρcos ( θ- )-1 = 0,直线 l 3 的极坐标方程 ρcosθ-ρsinθ = 4.
心 C2 (1 ,3) .所以 C1C2 = 3 ,即圆 C1 与 C2 圆
心之间的距离为 3 . (2)直线 l 的直角坐标方程是 x y 4 0 . 所以过 C1 与 l 垂直的直线方程是 x y 1 0 . 化为极坐标方程为 r cosq r sinq 1 0 , 即 r cos(q π ) 2 .
过程解析
π 解 将圆心 C (2, ) 化成直角坐标为 . (, 1 3 ) 3 半径 R= 5 , 故圆 C 的直角坐标方程为

(完整版)极坐标与参数方程知识点、题型总结(最新整理)

(完整版)极坐标与参数方程知识点、题型总结(最新整理)

(完整版)极坐标与参数⽅程知识点、题型总结(最新整理)极坐标与参数⽅程知识点、题型总结⼀、伸缩变换:点是平⾯直⾓坐标系中的任意⼀点,在变换),(y x P 的作⽤下,点对应到点,称伸缩变换>?='>?=').0(,y y 0),(x,x :µµλλ?),(y x P ),(y x P '''⼀、1、极坐标定义:M 是平⾯上⼀点,表⽰OM 的长度,是,则有序实数实ρθMOx ∠数对,叫极径,叫极⾓;⼀般地,,。

,点P 的直⾓坐标、(,)ρθρθ[0,2)θπ∈0ρ≥极坐标分别为(x ,y )和(ρ,θ)2、直⾓坐标极坐标 2、极坐标直⾓坐标?cos sin x y ρθρθ=??=??222tan (0)x y y x xρθ?=+??=≠?3、求直线和圆的极坐标⽅程:⽅法⼀、先求出直⾓坐标⽅程,再把它化为极坐标⽅程⽅法⼆、(1)若直线过点M(ρ0,θ0),且极轴到此直线的⾓为α,则它的⽅程为:ρsin(θ-α)=ρ0sin(θ0-α)(2)若圆⼼为M (ρ0,θ0),半径为r 的圆⽅程为ρ2-2ρ0ρcos(θ-θ0)+ρ02-r 2=0⼆、参数⽅程:(⼀).参数⽅程的概念:在平⾯直⾓坐标系中,如果曲线上任意⼀点的坐标都是某个变数的函数并且对于的每⼀个允许值,由这个⽅程所确y x ,t ?==),(),(t g y t f x t 定的点都在这条曲线上,那么这个⽅程就叫做这条曲线的参数⽅程,联系变数),(y x M 的变数叫做参变数,简称参数。

相对于参数⽅程⽽⾔,直接给出点的坐标间关系的y x ,t ⽅程叫做普通⽅程。

(⼆).常见曲线的参数⽅程如下:直线的标准参数⽅程1、过定点(x 0,y 0),倾⾓为α的直线:(t 为参数)ααsin cos 00t y y t x x +=+=(1)其中参数t 的⼏何意义:点P (x 0,y 0),点M 对应的参数为t ,则PM =|t|(2)直线上对应的参数是。

高三数学专项训练:极坐标与参数方程(附答案)

高三数学专项训练:极坐标与参数方程(附答案)

x 中,⊙ 的参数方程为cos ,( 为参数), xOy O过点 0, 2 且倾斜角为 的直线 与⊙ 交于 , 两点.l O AB Ptl,( 为参数),设 与 的交点为 ,当 变化时, 的轨迹为曲线 . m l l P k P Cm y , k(1)写出 的普通方程: C(2)以坐标原点为极点, 轴正半轴为极轴建立极坐标系,设l : (co s s in ) , 为 与 M lxC3 cosx 3、(2016 全国 I I I 卷高考)在直角坐标系s in1坐 标 原 点 为 极 点 , 以 x 轴 的 正 半 轴 为 极 轴 ,, 建 立 极 坐 标 系 , 曲 线) 2 2 . 41(II )设点 P 在 上,点 Q 在 上,求|P Q |的最小值及此时 P 的直角坐标.4、(成都市 2018 届高三第二次诊断)在平面直角坐标系xOy 中,曲线C 的参数方程为x.在以坐标原点O 为极点,轴的正半轴为极轴的极坐标2s ins in ( ) 5 2 0 ,直线的极坐标方程为 . 44(1)求直线的直角坐标方程与曲线C 的普通方程;5、(成都市 2018 届高三第三次诊断)在极坐标系中,曲线C 的极坐标方程是 ,直线l 的2 s in 在直线l 上.以极点为坐标原点 O ,极轴为 x 轴的4正半轴,建立平面直角坐标系,且两坐标系取相同的单位长度.(I )求曲线C 及直线l 的直角坐标方程; (Ⅱ)若直线l 与曲线C 相交于不同的两点 A,求 Q A Q B 的值.6、(达州市 2017 届高三第一次诊断)在平面直角坐标系中,以原点为极点,x 轴的非负半轴为极轴2tx 2建立极坐标系,直线l 的参数方程为.t 2y 2 t2 2(1)若l 的参数方程中的t1 1(0, 2) l (2)若点 P, 和曲线C 交于 两点,求.7、(德阳市 2018 届高三二诊考试)在平面直角坐标系xOy 中,直线l : (t 为参数),以坐标原点为极点, 轴正半轴为极轴,建立极坐标系,曲线C :x.0,0l与直线 和曲线C 的交点分别为点M 和点 N (异于点O ), 2 O N 求 的最大值.O M8、(广元市 2018 届高三第一次高考适应性统考)在平面直角坐标系x Oy4cos a 2(a 为参数),以O 为极点,以x 轴的非负半轴为极轴的极坐标系中,直线 的极坐标方y程为 ( ) .R 6C(2)设直线 与曲线 相交于 , 两点,求的值.ABC A B 轴为极轴建立极坐标系,已知直线 l 的极坐标方程为 3 c os s inC3 0 , 的极坐标方程为.4s in( ) 6(I )求直线 l 和 的普通方程;C (II )直线 l 与 有两个公共点 A 、B ,定点 P (2, 3) ,求|||| 的值.C 10、(绵阳市 2018 届高三第一次诊断)在直角坐标系中,曲线C 的参数方程是yx(1)求曲线C 的极坐标方程;C, AOB与曲线 分别交于异于原点的 A B 两点,求 的面积.(2)设l, ,若631211、(南充市 2018 届高三第二次高考适应性考试)在直角坐标系xOy 中,曲线C 的参数方程为1:1 ,以坐标原点O 为极点,以 轴正半轴y1x22 2(Ⅰ)求曲线C 的普通方程和曲线C 的极坐标方程;12C C,与曲线 , 分别交于 A B 两点,求61 212、(仁寿县 2018 届高三上学期零诊)在平面直角坐标系xoy 中 ,圆 C 的参数方程为l3)=7. 43 t 2 (t 为参数),以坐标原 1224 c os(3(1)求圆C 的直角坐标方程; 2(2)若 P(x, y )是直线l 与圆面 4cos( )的公共点,求 3x y的取值范围.32 0( PQ (1)求点 的轨迹C 的直角坐标方程;3 (2)若C 上点 M 处的切线斜率的取值范围是,求点 M 横坐标的取值范围. 315、(雅安市 2018 届高三下学期三诊)在直角坐标系中,已知圆 的圆心坐标为(2,0) ,半径为CXCl(2)点 的极坐标为 1,,直线 与圆 相交于 , ,求 PAC 的值.P l A B 235 cos16、(宜宾市 2018 届高三第一次诊断)在直角坐标系 中,曲线C 的参数方程为xOy 5 s iny(其中参数 ).xCx 1 t c os (2)直线l 的参数方程为(其中参数 , 是常数),直线l 与曲线 交于t RC y点,且 ,求直线l 的斜率.AB2 3 l2t , x 2 y 4 t的极坐标方程为 4cos .(1)写出直线 l 普通方程和曲线 C 的直角坐标方程;(2)过点 M (1,0) 且与直线 平行的直线 交 于 A , B 两点,求| AB | .l l C 在平面直角坐标系中,以坐标原点为极点, 轴x si n 2 cos ( 0) ,过点 的正半轴为极轴建立极坐标系,已知曲线 的极坐标方程为 a a2x 2 ( 为 t参数),直线 与曲线 相交于 两点. 的直线 的参数方程为2 y 42 (1)写出曲线 的直角坐标方程和直线 的普通方程; 2 PA PB AB 求 的值 (2)若 ,. a 1、解答:的参数方程为的普通方程为 22yl : x 0 与e O有两个交点,当| 0 0 2 |t an2 ,由直线l 与e O时,设直线l 的方程为 y x1 两个交点有,得 ,∴或,综上时,点P 坐标为 (0,0)ly 22A22为 y, 1 1 2 2③2 2k 2(1 k )x 2 2kx 1 0 2 2 ,∴,∴得121222y ④2xk 代入④得 x y 2y 0 .当点 P(0,0) 时满足方程 x y 2y 0 ,∴ AB 中点的 P2 2 2 2 y22 2 的 轨 迹 方 程 是 x, 即 xy2 22 2 2 222 2 22B (y 0 ,故点 P 的参数方程为 ,则22 2 2 2y s in2 2 0).2、【解析】⑴将参数方程转化为一般方程l : y k x 2 112k① ②消 可得: 4k x 2 y 2 即 的轨迹方程为 4 ;P ⑵将参数方程转化为一般方程……③Cl3422x 2y2 c os解得 5y.5s in c os 10 0.4c oss in ,可得直线的直角坐标方程为y , 2 3 c osx x 2 y 2 将曲线C 的参数方程C12 4(2)设Q(2 3cos ,2s in ) (0 ).(4 2, ) 化为直角坐标为(4, 4).4则 M.2s in( ) 103 cos s in 103.225s in ( ) 1,即 当 3 6∴点 M 到直线的距离的最大值为6 25、.316C242 2 t ) (2 2 22 2121 21121 121 2,4. s in c os2由得:2,所以 x 2 y 2 y ,所以曲线C 的直角坐标方程为: x .224 2s in, s in c oss in s in cos 2O N所以,4 4 23由于0 ,所以当时, 取得最大值:.2844cos a 2得曲线 的普通方程:C所以曲线 的极坐标方程为: 4 c os 12 C 2(2)设 , 两点的极坐标方程分别为( , ),( , ) ,661224 c os 12 0 的两根2是 C2∴ 2 3, 12121 29、解:(I )直线 l 的普通方程为: 3 3 0, ·································································· 1 分x y因为圆 的极坐标方程为, C 63 1所以 2 4( s i n cos ) , ··············································································· 3 分2 2所以圆 的普通方程 22 3 0 ;·························································· 4 分 C x 2 y 2 x y (II )直线 l : 3 3 0的参数方程为: x y3 y 3 t2代入圆 的普通方程 22 3 0 消去 x 、y 整理得: x 2 y 2 x y 2 9 17 0 , ··········································································································· 6 分t t | | | ,| | | |,··························································································· 7 分PB tPA t 1 2|| PA | | PB |||| t | | t ||| t t | (t t ) ······························································· 8 分2 12122 12219 417 13 .··································································································· 10 分2 10、解:(Ⅰ)将 C 的参数方程化为普通方程为(x -3) +(y -4) =25,2 2 22.(Ⅱ)把 代入 6 c os 8s in ,得,6 1∴ . ……………………………………………………………6 分A66 c os 8s in32∴ . ……………………………………………………………8 分B31s in AOB2 1 21225 3. 4211、解:(Ⅰ)由2.3yx 2所以曲线 的普通方程为C 2.13 c os1 s i n 1,得到,化简得到曲线把 x,代入22的极坐标方程为2 cos.C 2(Ⅱ)依题意可设 A,曲线C 的极坐标方程为 2.2 261211代入C 的极坐标方程得 2 2,解得 .621.622.12)=7.根据 ρcosθ=x ,ρsinθ=y 可得:﹣y+x=7. 即直线 l 的直角坐标方程为 x.---------------------------5 分(θ 为参数),其圆心为(﹣1,2),半径r=4.----6 分5 2.---------------------8 分2∴ AB 的最小值为圆心到直线的距离 d ﹣r ,即 AB min4 c os( )13、【解析】(1)∵圆C 的极坐标方程为323 14 c os ( cos )∴ , 322又∵ 2222∴圆C 的普通方程为 x 22(2)设 z,y 2x 2 3y 0 (x 1) (y 3) 4 ,22 2 2 ∴圆C 的圆心是(1, 3)3 t2 3x y 得 z t , 代入 z 12,圆C 的半径是 ,2 3,即 x y 的取值范围是∴,∴.……10 分 2 0 14、解:(1)由,得22设,,1 1x 2 yx 2x 2, y 2y则 x ,122111 1得22,∴221,0 为圆心,1半径的半圆,如图所示,,设点处切线 的倾斜角为 lM设253 由l 斜率范围, …………7 分3 3 63 而,∴,∴ ,26 3 22M , 所以,点 横坐标的取值范围是 . …………10 分22,,化简得圆 的极坐标方程:,:由l 得 ,y1l 的极坐标方程为.4(1,0), (2)由 PP22 t x2直线 的参数的标准方程可写成2y 1 t2 2 2t 2) (1 t) 2 ,2 2 2 2,,.3 5 cosx Q 16、解: (1)5 s iny 的普通方程 x 22x 1t c osQ1 直线l 的普通方程 y k xy3k 0 k k 122 t ,217、(1)由2y 4 t2 又由 4cos 得 4cos ,则 的直角坐标方程为 0 . ··············5 分2C x 2 y 22 t , x2 (2) 过点 M ( 1,0) 且与直线 平行的直线 的参数方程为l l 2 y t .2 将其代入 4 0 得 2 23 0 ,则 t t,x 2 y 2 x tt 1 2 所以| AB ||t t | (t t ) 4t t14 . ······················································10 分2 1212(1)由 整理得= ,,(2)将直线 的参数方程代入曲线 的直角坐标方程 = 得,.设两点对应的参数分别为,则有∵=,即=,解得或者(舍去),。

高三数学专题复习--极坐标与参数方程

高三数学专题复习--极坐标与参数方程

五、考点练习:
1
在极坐标系中,已知
A2,π6
,B2,-π6
,求

A,B
两点
间的距离.
2.将参数方程xy==1-+24+co4ssitn,t(t 为参数,0≤t≤π )化为普通方程,并
说明方程表示的曲线.
3
将方程x=
t+1, (t 为参数)化为普通方程.
y=1-2 t
2、高考出现的题型:
(1)、求曲线的极坐标方程、参数方程; (2)、极坐标方程、参数方程与普通方程间的相互转化; (3)、解决与极坐标方程、参数方程研究有关的距离、 最值、交点等问题。
三、(1)
x y
= =
x0 y0
+ t cos + t sin
a a
, (t
为参数
)
类似地 过原点倾斜角为a的直线l的参数方程为:
解:(1)曲线C化为直角坐标方程为
x1 2 +(y
2
3) =1

它表示圆心为C(1, 3 ),半径r=1的圆。
∵ d = co 1(+
3) 2 = 2 >1,
∴点O在圆的外部,
当动点与O、C三点在同一直线上时,动点到原点O的距离最小。
d ∴
= d r =2-1=1,
m in
即圆心C上动点到原点O的距离最小值为1。
链接高考2014
以直角坐标系的原点为极点,轴非负半轴为极轴,在两种坐标系
中取相同单位的长度. 已知直线L的方程为

曲线C的参数方程为
,点M是曲线C上的一动点.
(Ⅰ)求线段OM的中点P的轨迹方程;
(Ⅱ) 求曲线C上的点到直线L的距离的最小值.

高中数学极坐标与参数方程知识汇编及高考题型汇总

高中数学极坐标与参数方程知识汇编及高考题型汇总

高中数学极坐标与参数方程知识点汇编及题型汇总编者:邬小军【知识汇编】参数方程:直线参数方程:00cos ()sin x x t t y y t θθ=+⎧⎨=+⎩为参数00(,)x y 为直线上的定点,t 为直线上任一点(,)x y 到定点00(,)x y 的数量;圆锥曲线参数方程:圆的参数方程:cos ()sin x a r y b r θθθ=+⎧⎨=+⎩为参数(a,b)为圆心,r 为半径; 椭圆22221x y a b+=的参数方程是cos ()sin x a y b θθθ=⎧⎨=⎩为参数; 双曲线2222-1x y a b =的参数方程是sec ()tan x a y b φθφ=⎧⎨=⎩为参数; 抛物线22y px =的参数方程是22()2x pt t y pt⎧=⎨=⎩为参数 极坐标与直角坐标互化公式:若以直角坐标系的原点为极点,x 轴正半轴为极轴建立坐标系,点P 的极坐标为(,)ρθ,直角坐标为(,)x y ,则cos x ρθ=,sin y ρθ=,222x y ρ=+,tan yx θ=。

【题型1】参数方程和极坐标基本概念1.点M的直角坐标是(-,则点M 的极坐标为(C )A .(2,)3πB .(2,)3π-C .2(2,)3πD .(2,2),()3k k Z ππ+∈2.圆5cos ρθθ=-的圆心坐标是(A )A .4(5,)3π--B .(5,)3π-C .(5,)3πD .5(5,)3π- 3.已知P 为半圆C :(θ为参数,πθ≤≤0)上的点,点A 的坐标为(1,0),O 为坐标原点,点M 在射线OP 上,线段OM 与C 的弧的长度均为3π。

1)以O 为极点,x 轴的正半轴为极轴建立极坐标系,求点M 的极坐标; 2)求直线AM 的参数方程。

解:1)由已知,M 点的极角为3π,且M 点的极径等于3π,故点M 的极坐标为(3π,3π).2)M点的直角坐标为(6π,A (0,1),故直线AM 的参数方程为1(1)6x t y π⎧=+-⎪⎪⎨⎪⎪⎩(t为参数)4.已知曲线C的参数方程为⎪⎩⎪⎨⎧+=+=ααsin 51cos 52y x (α为参数),以直角坐标系原点为极点,Ox 轴正半轴为极轴建立极坐标系。

高考文科数学复习专题-极坐标与参数方程

高考文科数学复习专题-极坐标与参数方程

1.曲线的极坐标方程.(1)极坐标系:一般地,在平面上取一个定点O,自点O引一条射线Ox,同时确定一个长度单位和计算角度的正方向(通常取逆时针方向为正方向),这样就建立了一个极坐标系.其中,点O 称为极点,射线Ox称为极轴.(2)极坐标(ρ,θ)的含义:设M是平面上任一点,ρ表示OM的长度,θ表示以射线Ox为始边,射线OM为终边所成的角.那么,有序数对(ρ,θ)称为点M的极坐标.明显,每一个有序实数对(ρ,θ),确定一个点的位置.其中ρ称为点M的极径,θ称为点M的极角.极坐标系和直角坐标系的最大区分在于:在直角坐标系中,平面上的点与有序数对之间的对应关系是一一对应的,而在极坐标系中,对于给定的有序数对(ρ,θ),可以确定平面上的一点,但是平面内的一点的极坐标却不是唯一的.(3)曲线的极坐标方程:一般地,在极坐标系中,假如平面曲线C上的随意一点的极坐标满意方程f(ρ,θ)=0,并且坐标适合方程f(ρ,θ)=0的点都在曲线C上,那么方程f(ρ,θ)=0叫做曲线C的极坐标方程.2.直线的极坐标方程.(1)过极点且与极轴成φ0角的直线方程是θ=φ0和θ=π-φ0,如下图所示.(2)与极轴垂直且与极轴交于点(a,0)的直线的极坐标方程是ρcos θ=a,如下图所示.(3)与极轴平行且在x轴的上方,与x轴的距离为a的直线的极坐标方程为ρsin θ=a,如下图所示.3.圆的极坐标方程.(1)以极点为圆心,半径为r的圆的方程为ρ=r,如图1所示.(2)圆心在极轴上且过极点,半径为r的圆的方程为ρ=2rcos_θ,如图2所示.(3)圆心在过极点且与极轴成π2的射线上,过极点且半径为r的圆的方程为ρ2rsin_θ,如图3所示.4.极坐标与直角坐标的互化.若极点在原点且极轴为x 轴的正半轴,则平面内随意一点M 的极坐标M(ρ,θ)化为平面直角坐标M(x ,y)的公式如下:⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ或者ρ=x 2+y 2,tan θ=y x ,其中要结合点所在的象限确定角θ的值.1.曲线的参数方程的定义.在平面直角坐标系中,假如曲线上随意一点的坐标x ,y 都是某个变数t 的函数,即⎩⎪⎨⎪⎧x =f (t ),y =g (t ),并且对于t 的每一个允许值,由方程组所确定的点M(x ,y)都在这条曲线上,那么方程组就叫做这条曲线的参数方程,联系x ,y 之间关系的变数t 叫做参变数,简称参数.2.常见曲线的参数方程.(1)过定点P(x 0,y 0),倾斜角为α的直线:⎩⎪⎨⎪⎧x =x 0+tcos α,y =y 0+tsin α(t 为参数), 其中参数t 是以定点P(x 0,y 0)为起点,点M(x ,y)为终点的有向线段PM 的数量,又称为点P 与点M 间的有向距离.依据t 的几何意义,有以下结论:①设A ,B 是直线上随意两点,它们对应的参数分别为t A 和t B ,则|AB|=|t B -t A |=(t B +t A )2-4t A ·t B ;②线段AB 的中点所对应的参数值等于t A +t B2.(2)中心在P(x 0,y 0),半径等于r 的圆:⎩⎪⎨⎪⎧x =x 0+rcos θ,y =y 0+rsin θ(θ为参数) (3)中心在原点,焦点在x 轴(或y 轴)上的椭圆:⎩⎪⎨⎪⎧x =acos θ,y =bsin θ(θ为参数)⎝ ⎛⎭⎪⎫或⎩⎪⎨⎪⎧x =bcos θ,y =asin θ. 中心在点P(x 0,y 0),焦点在平行于x 轴的直线上的椭圆的参数方程为⎩⎪⎨⎪⎧x =x 0+acos α,y =y 0+bsin α(α为参数).(4)中心在原点,焦点在x 轴(或y 轴)上的双曲线:⎩⎪⎨⎪⎧x =asec θ,y =btan θ(θ为参数)⎝ ⎛⎭⎪⎫或⎩⎪⎨⎪⎧x =btan θ,y =asec θ. (5)顶点在原点,焦点在x 轴的正半轴上的抛物线:⎩⎪⎨⎪⎧x =2p ,y =2p(t 为参数,p>0). 注:sec θ=1cos θ.3.参数方程化为一般方程.由参数方程化为一般方程就是要消去参数,消参数时经常采纳代入消元法、加减消元法、乘除消元法、三角代换法,消参数时要留意参数的取值范围对x ,y 的限制.1.已知点A 的极坐标为⎝⎛⎭⎪⎫4,5π3,则点A 的直角坐标是(2,-23).2.把点P 的直角坐标(6,-2)化为极坐标,结果为⎝ ⎛⎭⎪⎫22,-π6.3.曲线的极坐标方程ρ=4sin θ化为直角坐标方程为x 2+(y -2)2=4.4.以极坐标系中的点⎝ ⎛⎭⎪⎫1,π6为圆心、1为半径的圆的极坐标方程是ρ=2cos ⎝⎛⎭⎪⎫θ-π6.5.在平面直角坐标系xOy 中,若直线l :⎩⎪⎨⎪⎧x =t ,y =t -a (t 为参数)过椭圆C :⎩⎪⎨⎪⎧x =3cos θ,y =2sin θ(θ为参数)的右顶点,则常数a 的值为3.解析:由直线l :⎩⎪⎨⎪⎧x =t ,y =t -a ,得y =x -a.由椭圆C :⎩⎪⎨⎪⎧x =3cos θ,y =2sin θ,得x 29=y24=1.所以椭圆C 的右顶点为(3,0).因为直线l 过椭圆的右顶点,所以0=3-a ,即a =3.一、选择题1.在平面直角坐标系xOy 中,点P 的直角坐标为(1,-3).若以原点O 为极点,x 轴正半轴为极轴建立极坐标系,则点P 的极坐标可以是(C )A.⎝ ⎛⎭⎪⎫1,-π3B.⎝ ⎛⎭⎪⎫2,4π3C.⎝ ⎛⎭⎪⎫2,-π3D.⎝⎛⎭⎪⎫2,-4π3 2.若圆的方程为⎩⎪⎨⎪⎧x =2cos θ,y =2sin θ(θ为参数),直线的方程为⎩⎪⎨⎪⎧x =t +1,y =t -1(t 为参数),则直线与圆的位置关系是(B )A .相离B .相交C .相切D .不能确定3.以平面直角坐标系的原点为极点,x 轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位,已知直线l 的参数方程是⎩⎪⎨⎪⎧x =t +1,y =t -3(t 为参数),圆C 的极坐标方程是ρ=4cosθ,则直线l 被圆C 截得的弦长为(D )A.14 B .214 C. 2 D .2 2解析:由题意可得直线和圆的方程分别为x -y -4=0,x 2+y 2=4x ,所以圆心C(2,0),半径r =2,圆心(2,0)到直线l 的距离d =2,由半径,圆心距,半弦长构成直角三角形,解得弦长为2 2.4.已知动直线l 平分圆C :(x -2)2+(y -1)2=1,则直线l 与圆O :⎩⎪⎨⎪⎧x =3cos θ,y =3sin θ(θ为参数)的位置关系是(A )A .相交B .相切C .相离D .过圆心解析:动直线l 平分圆C :(x -2)2+(y -1)2=1,即圆心(2,1)在直线l 上,又圆O :⎩⎪⎨⎪⎧x =3cos θ,y =3sin θ的一般方程为x 2+y 2=9且22+12<9,故点(2,1)在圆O 内,则直线l 与圆O 的位置关系是相交.二、填空题5.在平面直角坐标系xOy 中,已知曲线C 的参数方程是⎩⎪⎨⎪⎧y =sin θ-2,x =cos θ(θ是参数),若以O 为极点,x 轴的正半轴为极轴,则曲线C 的极坐标方程可写为ρ2+4ρsin_θ+3=0.解析:在平面直角坐标系xOy 中,⎩⎪⎨⎪⎧y =sin θ-2,x =cos θ(θ是参数),∴⎩⎪⎨⎪⎧y +2=sin θ,x =cos θ.依据sin 2θ+cos 2θ=1,可得x 2+(y +2)2=1,即x 2+y 2+4y +3=0.∴曲线C 的极坐标方程为ρ2+4ρsin θ+3=0.6.在平面直角坐标系中圆C 的参数方程为⎩⎪⎨⎪⎧x =2cos θ,y =2+2sin θ(θ为参数),以原点O 为极点,以x 轴的正半轴为极轴建立极坐标系,则圆C 的圆心的极坐标为⎝⎛⎭⎪⎫2,π2.三、解答题7.求极点到直线2ρ=1sin ⎝⎛⎭⎪⎫θ+π4(ρ∈R)的距离.解析:由2ρ=1sin ⎝ ⎛⎭⎪⎫θ+π4⇒ρsin θ+ρcos θ=1⇒x +y =1,故d =|0+0-1|12+12=22. 8.极坐标系中,A 为曲线ρ2+2ρcos θ-3=0上的动点,B 为直线ρcos θ+ρsin θ-7=0上的动点,求|AB|的最小值.9.(2015·大连模拟)曲线C 1的参数方程为⎩⎪⎨⎪⎧x =cos θ,y =sin θ(θ为参数),将曲线C 1上全部点的横坐标伸长为原来的2倍,纵坐标伸长为原来的3倍,得到曲线C 2.以平面直角坐标系xOy 的原点O 为极点,x 轴的正半轴为极轴,取相同的单位长度建立极坐标系,已知直线l :ρ(cos θ-2sin θ)=6.(1)求曲线C 2和直线l 的一般方程;(2)P 为曲线C 2上随意一点,求点P 到直线l 的距离的最值.解析:(1)由题意可得C 2的参数方程为⎩⎨⎧x =2cos θ,y =3sin θ(θ为参数),即C 2:x 24+y23=1,直线l :ρ(cos θ-2sin θ)=6化为直角坐标方程为x -2y -6=0.(2)设点P(2cos θ,3sin θ),由点到直线的距离公式得点P 到直线l 的距离为 d =|2cos θ-23sin θ-6|5=⎪⎪⎪⎪⎪⎪6+4⎝ ⎛⎭⎪⎫32sin θ-12cos θ5=⎪⎪⎪⎪⎪⎪6+4sin ⎝⎛⎭⎪⎫θ-π65=55⎣⎢⎡⎦⎥⎤6+4sin ⎝⎛⎭⎪⎫θ-π6. 所以255≤d ≤25,故点P 到直线l 的距离的最大值为25,最小值为255.10.已知在直角坐标系xOy 中,曲线C 的参数方程为⎩⎪⎨⎪⎧x =1+4cos θ,y =2+4sin θ(θ为参数),直线l经过定点P(3,5),倾斜角为π3.(1)写出直线l 的参数方程和曲线C 的标准方程.(2)设直线l 与曲线C 相交于A ,B 两点,求|PA|·|PB|的值.解析:(1)由曲线C 的参数方程⎩⎪⎨⎪⎧x =1+4cos θ,y =2+4sin θ(θ为参数),得一般方程为(x -1)2+(y -2)2=16,即x 2+y 2-2x -4y =11=0.直线l 经过定点P(3,5),倾斜角为π3,直线的参数方程为⎩⎪⎨⎪⎧x =3+12t ,y =5+32t (t 是参数).(2)将直线的参数方程代入x 2+y 2-2x -4y -11=0,整理,得t 2+(2+33)t -3=0,设方程的两根分别为t 1,t 2,则t 1t 2=-3,因为直线l 与曲线C 相交于A ,B 两点,所以|PA|·|PB|=|t 1t 2|=3.。

高考数学笔记 极坐标与参数方程

高考数学笔记 极坐标与参数方程



∴ C1 与 C2 的交点的极坐标分别为(
2, ), (2, ) .
4
2
才哥数学
题型四:距离问题
例 1:已知曲线 C 的极坐标方程是 6 cos ,以极点为平面直角坐标系的原点,极轴为 x 轴的正半
x 1 t cos
轴,建立平面直角坐标系,直线 l 的参数方程是
y t sin
x

y

4 5
5cos t 5sin t
消去参数 t
,化为普通方程
(x

4)2

(y
5)2

25


C1

x2

y2

8x
10 y
16

0
,将
x

y


cos sin
代入
x2

y2

8x
10 y
16

0
得,
2 8 cos 10 sin 16 0 ,
方法二,直线方程为 y x 4 ,圆心到直线 y x 4 的距离为 d 1 | AB | 2 1 1 2
2,
2
例 3 已知曲线 C 的极坐标方程是 2 cos ,若以极点为平面直角坐标系的原点,极轴为 x 轴的正半

轴且取相同的单位长度,建立平面直角坐标系,则直线
x 2 cos t

2:已知曲线
C1
:

y

1

sin
t
x 4 cos
(t
为参数),
C2

极坐标和参数方程知识点总结

极坐标和参数方程知识点总结

极坐标和参数方程知识点总结在数学的广阔天地中,极坐标和参数方程是两个独具特色且非常有用的工具。

它们为我们解决各类几何和物理问题提供了新的视角和方法。

接下来,让我们一同深入探索极坐标和参数方程的奥秘。

一、极坐标极坐标是一种用距离和角度来表示平面上点的位置的坐标系统。

在极坐标系中,一个点由极径和极角来确定。

1、极坐标的定义极径:表示点到极点(通常是坐标原点)的距离,用符号ρ 表示。

极角:表示极径与极轴(通常是 x 轴正半轴)所成的角,用符号θ 表示。

2、极坐标与直角坐标的转换(1)直角坐标转极坐标极径ρ =√(x²+ y²)极角θ = arctan(y / x) (需要根据点所在的象限确定θ 的取值)(2)极坐标转直角坐标x =ρ cosθy =ρ sinθ3、常见的极坐标曲线(1)圆圆心在极点,半径为 a 的圆的极坐标方程:ρ = a圆心在点(a, 0),半径为 a 的圆的极坐标方程:ρ =2a cosθ(2)直线过极点且与极轴夹角为α 的直线的极坐标方程:θ =α过点(a, 0) 且垂直于极轴的直线的极坐标方程:ρ cosθ = a4、极坐标的应用在物理学中,描述物体的平面运动轨迹,如圆周运动,极坐标常常能使问题简化。

二、参数方程参数方程是通过引入参数来表示曲线或曲面的方程。

1、参数方程的定义对于平面曲线,如果曲线上任意一点的坐标 x 和 y 都可以表示为某个变量 t 的函数,即 x = f(t),y = g(t),那么我们称这两个方程为该曲线的参数方程,t 称为参数。

2、参数方程的常见形式(1)直线的参数方程若直线过点(x₀, y₀),倾斜角为α,则直线的参数方程为:x = x₀+ t cosαy = y₀+t sinα (t 为参数)(2)圆的参数方程圆心在点(a, b),半径为 r 的圆的参数方程为:x = a +r cosθy = b +r sinθ (θ 为参数)(3)椭圆的参数方程焦点在 x 轴上的椭圆 x²/ a²+ y²/ b²= 1 的参数方程为:x =a cosθy =b sinθ (θ 为参数)3、参数的几何意义在直线的参数方程中,参数 t 通常具有几何意义,如表示直线上动点到定点的距离。

高三数学极坐标与参数方程一轮复习讲义

高三数学极坐标与参数方程一轮复习讲义

4
2
4
这就是点Q的轨迹方程.
化为直角坐标方程为(x 2 )2 ( y 2 )2 1 .
8
8 16
因此点Q的轨迹是以(1 ,3 )为圆心,1 为半径的圆.
44
4
7
直角坐标与极坐标互化要注意互化的前提 若要判断曲线的形状;可先将极坐标方程化为 直角坐标方程;再判断 在直角坐标系中;求曲线 的轨迹方程的方法有直译法;定义法;动点转移 法 在极坐标系中;求曲线的极坐标方程;这几种 方法仍然是适用的
专题八 自选模块
1. 极 坐 标 与 直 角 坐 标 的 互 化
1 互 化 的 前 提 :
①极点与直角坐标系的原点重合;
② 极 轴 与 x轴 的 正 方 向 重 合 ; ③两种坐标系中取相同的长度单位.
2互



x
y
cos sin
2 , t a n
x2 y2 y ,x
x
. 0
2 .1 圆 心 在 ( x 0, y 0 ), 半 径 为 r的 圆 的 参 数 方 程 为 :
5
1以 极 点 为 原 点 , 极 轴 为 x轴 的 正 半 轴 , 建 立 直 角
坐 标 系 , 则 点 A的 直 角 坐 标 为 ( 2,0 ), 直 线 l的 直 角 坐 标 方
程 为 x y 2 m 0 .因 为 A到 直 线 l的 距 离 d |
1 m 3, 所 以 m 2.
8
【变式训练】(2011 5月名校创新试卷)如图,在极坐标系中,
已知曲线C1:
2cos (0
2
),O1
1, 0,
C2:
4cos (0
2
),O2

2023届高三数学一轮复习——极坐标与参数方程+课件

2023届高三数学一轮复习——极坐标与参数方程+课件

x=x0+tcos α, y=y0+tsin α
(t 为参数).
y
M(x,y)
注意:直线参数方程中
参数t的绝对值等于直 线上动点M到定点M0的
距离 |t|=|M0M|
M0(x0,y0)
O
M0M te
x
13
· 知识点y 回顾: B
· A
M(x,y)
·· M0(x0,y0)
O
x
设A,B为直线上任意两点,它们所对应的参 数值分别为t1,t2.
知识与内容 <1>一、聚焦重点:曲线的极坐标方程.
二、破解难点:参数方程与普通方程的互化 . 三、廓清疑点:参数方程的应用.
<2>(1)曲线的参数方程与普通方程的互化、极坐 标方程与直角坐标方程互化需注意等价性.
(2)参数思想、转化思想 . (3)类比已有知识,注重新旧知识的整合与循
环上升.
当堂检测:
y
再将 C 化成极坐标方程,
C
O
x
得( ρcosθ-1)2 + ( ρsinθ- 3 )2=5.
化简,得 ρ2-4ρcos(θ- π )-1=0, 3
此即为所求的圆 C 的方程.
题型一 极坐标、参数方程、直角坐标互化
例 1 在极坐标系中,已知圆 C 的圆心坐标为 C (2,
π ),半径 R= 5 ,求圆 C 的极坐标方程. P
(θ 为参数)和曲线 C2:ρ=1 上,则 AB 的最
3 小值为________.
解析 ∵C1:(x-3)2+(y-4)2=1,C2:x2+y2=1, ∴两圆心之间的距离为 d= 32+42=5. ∵A∈曲线 C1,B∈曲线 C2, ∴ABmin=5-2=3.

高考专题复习极坐标与参数方程极品课件系列.ppt

高考专题复习极坐标与参数方程极品课件系列.ppt
到直线距离为 2,|PQ|的最小值为 2-1=1
1.直接求解
例 1.在极坐标系中,过圆 =6cos 的圆心,且垂
直于极轴的直线的极坐标方程
分析:把极坐标方程化为普通方程求出直线, 再得到极坐标方程。
例 2.(08 广东卷理 13)已知曲线 C1,C2 的极坐标
方 程 分 别 为 cos 3 ,
其中参数的几何意义为: θ为圆心角
4.椭圆 x2 y2 1(a b 0) 的参数方程为: a2 b2
x
y
a b
cos sin
(为参数)
考点一:参数方程,极坐标方程和直角坐标方程 的互化
1. 求 直 线
x
1
4 5
t
y
1
3 5
t

t为参数
)被曲线
2 cos( ) 所截的弦长.
4
3.极坐标方程研究两曲线的位置关系

5.(江苏省南通市
2008-2009)求直线
x y
1 1
2t,(t 2t
为参数)被圆
x
y
3cos 3 sin
,
(α为参数)截得的弦长.
分析:把参数方程转化为普通方程来判断位 置关系,利用圆心距与半径求出弦长。
4.两曲线的位置关系

6.(08
海南、宁夏理)已知曲线
2.A、B 两点的中点所对应的参数为 t A tB , 2
若点 M0 是线段 AB 的中点,则 tA+tB=0,反之亦然。
2.圆x2+y2=r2(r>0)的参数方程:
x
y
r r
cos sin
(为参数)
3.圆(x-a)2+(y-b)2=r2的参数方程:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

五、考点练习:
1
在极坐标系中,已知
A2,π6
,B2,-π6
,求

A,B
两点
间的距离.
2.将参数方程xy==1-+24+co4ssitn,t(t 为参数,0≤t≤π )化为普通方程,并
说明方程表示的曲线.
3
将方程x=
t+1, (t 为参数)化为普通方程.
y=1-2 t
ρ2=x2+y2,
(2)由坐标变换公式 tan
θ=xy(x≠0),
得 ρ= (- 3)2+(-1)2=2 2,
tan
θ=- 62=-3
3 .
∵点 M 在第四象限,ρ>0,
∴最小正角 θ=116π.
因此,点 M 的极坐标是2

2,116π.
答案:(1)(-4,4 3)

(2)2

2,116π
它表示的曲线是以(1,-2)为圆心,4 为半径(t 为参数)化为普通方程.
y=1-2 t
解析:由 x= t+1≥1,有 t=x-1,代入 y=1-2 t 得 y=-2x+3(x≥1),这是以(1,1)为端点的一条射线(包括端点).
点评:将参数方程化为普通方程时,很容易改变变量 的取值范围,从而使得两种方程所表示的曲线不一致, 因此在解题时一定要验证普通方程与参数方程的等价性.

表示以(0,2)为圆心,以2为半径的圆,故所求最小值为圆心(0,2)到 直线l 的距离减去半径,设所求最小距离为d,则
.因此曲线c上的点到直线l的距离的最小值为
.
小结:
本专题考查的内容一般是直线、圆、椭 圆的三种方程互化;利用参数方程、极坐标 方程的意义优化交点坐标的求解、线段长度、 角度的计算等,难度一般不太大,同学们要 树立信心拿满分。
A3,π2
,B3,π6
,求:

(1)A、B 两点间的距离; (2)△AOB 的面积;
(3)直线 AB 与极轴正方向所成的角.
解析:如右图所示:∵OA=OB=3,∠AOB= π2
-π 6
=π 3

∴△AOB 为正三角形. (1)A,B 两点间的距离为 3.
(2)△ (3)直
A线OABB的与面极积轴S正=方12×向3所×成3s的in角60为°π=-9 4π63= . 5π 6 .
意一点,它的直角坐标是(x,y),极坐标是 , ) 。
如右图。
1、极坐标化为直角坐标公式为:
x = cos, y = sin
2、直角坐标化为极坐标公式为:
2 =
x2
+
y2,
tan
极=坐y标,与x直角0坐标的互化公式为
x
不作特殊说明时,我们x=认ρc为osθ,y=____根___据_,点所在的象限
谢谢指导! 再见!
方程为
. (5分)
链接高考2014
以直角坐标系的原点为极点,轴非负半轴为极轴,在两种坐标系
中取相同单位的长度. 已知直线L的方程为

曲线C的参数方程为
,点M是曲线C上的一动点.
(Ⅰ)求线段OM的中点P的轨迹方程; (Ⅱ) 求曲线C上的点到直线L的距离的最小值.
解:
(Ⅱ)直线l的普通方程为
,曲线c的普通方程为
考点二:灵活应用参数方程和参数的意义.
分析:根据参数的意义,只要知道了θ的度数,就能求出动点P的坐标。
(2)依题可得,koc =
3
,即直线OC的倾斜角为

3
∵点P在曲线C上,
∴终边为OP在圆心C上的θ
=

+3

代入方程得:P( 1 , 3 )。
22
考点三:灵活应用极坐标方程和极坐标的意义.

3.已知两点的极坐标
小结
1、参数方程化为普通方程的基本方法是:代入法、三 角法、整体消元法。 注意:变量X、Y的范围保持一致。
2、极坐标与普通方程的互化公式,
点M
直角坐标(x.y)
极坐标(ρ ,θ ) (ρ ≧0)
互化公式
在一般情况下,由tanθ 确定角时,可根据点M所在的象限
取θ∈[0,2π)的最小正角.
3、熟记基本曲线的极坐标与普通方程
化为直角坐标形式是________;

(2)把点 M 的直角坐标( 6,- 2)化成极坐标(ρ ≥0,0≤θ <2
∵π点)是M__在__第__四__象.限,ρ>0,
∴最小正角 θ=116π.
因此,点 M 的极坐标是2

2,116π.
答案:(1)(-4,4
3)

(2)2

2,116π

链接高考2014
以直角坐标系的原点为极点,轴非负半轴为极轴,在两种坐标系
中取相同单位的长度. 已知直线L的方程为

曲线C的参数方程为
,点M是曲线C上的一动点.
(Ⅰ)求线段OM的中点P的轨迹方程;
(Ⅱ) 求曲线C上的点到直线L的距离的最小值.
[解析](Ⅰ)设中点p的坐标为(x,y),依据中点公式有
( 为参数),这是点p轨迹的参数方程,消参得点p的直角坐标
最小正角.
ρ2=________,tanθ=yx(x≠0).
小结
以上是“坐标系与参数方程”的基本知识 和方法,要求: 1、大家熟记基本曲线的极坐标方程和普通方程。 2、掌握和灵活应用参数方程与普通方程的互化 方法,极坐标方程与普通方程互化方法解决相 关问题。
考点一 参数方程与普通方程的互化
例 1 化下列曲线的参数方程为普通方程,并指出它是什么曲线.
专题 坐标系与参数方程 (选修4—4)
梅县区松源中学 黄友新、何庆平
2016.5
应掌握知识点: (1)记住常见的参数方程、极坐标方程。 (2)会进行参数方程、极坐标方程与直角坐标方 程的互化;
应掌握基本方法: (1)消参的三种基本方法; (2)极坐标方程与直角坐标方程互化的方法
1、高考全国卷中 “坐标系与参数方程” 在第23题,分值为10分,知识相对比较独立, 难度中等,容易拿分。
x=1+2 (1)
y=3-4
t, (t
t
为参数);(2)
x

y
= =
s in s in
+ cos cos

为参数).
解析:(1)∵x= (2)1∵+ x= 2 cots, θ+sinθ= 2sinθ+π 4 ,
∴x≥1 且 2 t∴ =xx∈- [-1. 2, 2]. 消参方法是: 整体法 ∵-4 t=-2又 x+x22= ,1+2sin θcosθ,
2、高考出现的题型:
(1)、求曲线的极坐标方程、参数方程; (2)、极坐标方程、参数方程与普通方程间的相互转化; (3)、解决与极坐标方程、参数方程研究有关的距离、 最值、交点等问题。
三、(1)
x y
= =
x0 y0
+ t cos + t sin
a a
, (t
为参数
)
类似地 过原点倾斜角为a的直线l的参数方程为:

考点二:灵活应用参数方程和参数的意义.
x = 1 + cos
2.设方程 y =
,(θ 为参数).表示的曲
3 + sin
线为 C, (1)求曲线 C 上的动点到原点 O 的距离的最小

(2)点 P 为曲线 C 上的动点,当|OP|最小时(O 为坐标原点),求点 P 的坐标。
考点二:灵活应用参数方程和参数的意义.
解:(1)曲线C化为直角坐标方程为
x1 2 +(y
2
3) =1

它表示圆心为C(1, 3 ),半径r=1的圆。
∵ d = co 1(+
3) 2 = 2 >1,
∴点O在圆的外部,
当动点与O、C三点在同一直线上时,动点到原点O的距离最小。
d ∴
= d r =2-1=1,
m in
即圆心C上动点到原点O的距离最小值为1。
2、圆心为C(a,b),半径为r的圆(x-a)2+(y-b)2=r2的
参数方程是:
x

y
= =
a b
+ +
r r
cos sin
(为参数)
θ 的几何意义为以圆心C为中心的圆心角
类似地
圆心在原点的圆x2+y2=r2(r>0)的参数方程为

x y
= =
r r
cos sin
(为参数)
3、焦点在X轴上椭圆 的参数方程为:
x2 a2
+
y2 b2
= 1(a

b

0)
类似地
三、(2)普通方程和参数方程互化的基本方法
1、参数方程 化为 普通方程 代入(消参)法、整体(消参)法 代数或三角恒等式(消参)法、
2、普通方程 化为 参数方程
第1 点是 我们 要着 重掌 握的!
适当引入参数,将方程中变数x,y写成与参数t有
五、考点练习:
1
在极坐标系中,已知
A2,π6
,B2,-π6
,求

A,B
两点
间的距离.
解. 析:解法一 如图所示,

∠AOB

π 3
,又
OA

OB

2,
∴ △ ABO 为等边三角形.∴ AB 的长度为 2.
解法二 将点 A 化为直角坐标为( 3,1),点 B 化为直角坐标( 3,-1). ∴A、B 两点间的距离 d= 3- 32+[1-(-1)]2=2.
2 将参数方程xy==1-+24+co4ssitn,t(t 为参数,0≤t≤π )化为普通方程,并
相关文档
最新文档