直流电动机的反接制动课程设计报告书

合集下载

1.3直流电动机的起动、反转和制动

1.3直流电动机的起动、反转和制动

教案(首页)授课班级机电高职1002授课日期课题序号 1.3 授课形式讲授授课时数 2 课题名称直流电动机的起动、反转和制动教学目标1. 了解直流电动机启动时存在的问题。

2.掌握直流电动机常用的启动方法。

3.掌握直流电动机的反转方法。

4.熟悉直流电动机的制动方法。

5.学会直流电动机常用启动、反转和制动方法的操作。

教学重点1、直流电动机常用的启动、反转和制动的方法。

2、直流电动机常用启动、反转和制动方法的操作。

教学难点1、直流电动机常用的启动、反转和制动的方法。

2、直流电动机常用启动、反转和制动方法的操作。

教材内容更新、补充及删减无课外作业见教案教学后记送审记录盐城生物工程高等职业技术学校课堂时间安排和板书设计复习5导入5新授60练习15小结5一、直流电动机的起动1、起动条件2、起动方法(1)电枢回路串电阻起动(2)降压起动二、直流电动机的反转三、直流电动机的制动1、能耗制动2、反接制动(1)倒拉反接制动(2)电枢电源反接制动3、回馈制动课堂教学安排课题序号 1.3 课题名称直流电动机的起动、反转和制动第1 页共8 页导入新授使用一台电动机时,首先碰到的问题是怎样把它启动起来。

要使电动机启动的过程达到最优,主要应考虑以下几个方面的问题:启动电流Ist的大小;启动转矩Tst的大小;启动设备是否简单等。

电动机驱动的生产机械,常常需要改变运动方向,例如起重机、刨床、轧钢机等,这就需要电动机能快速地正反转。

某些生产机械除了需要电动机提供驱动力矩外,还要电动机在必要时,提供制动的力矩,以便限制转速或快速停车。

例如电车下坡和刹车时,起重机下放重物时,机床反向运动开始时,都需要电动机进行制动。

因此掌握直流电动机启动、反转和制动的方法,对电气技术人员是很重要的。

一、直流电动机的启动直流电动机从接入电源开始,转速由零上升到某一稳定转速为止的过程称为启动过程或启动。

1.启动条件当电动机启动瞬间,n=0,Ea=0,此时电动机中流过的电流叫启动电流Ist,对应的电磁转矩叫启动转矩Tst。

直流电动机课程设计

直流电动机课程设计

直流电动机课程设计一、课程目标知识目标:1. 理解直流电动机的基本原理,掌握其构造和分类;2. 掌握直流电动机的启动、调速和制动方法;3. 了解直流电动机在实际应用中的优缺点及改进措施。

技能目标:1. 能够正确组装和拆卸直流电动机,并进行简单的故障排查;2. 能够运用所学知识,完成对直流电动机启动、调速和制动的实际操作;3. 能够分析直流电动机在实际应用中的问题,并提出合理的解决方案。

情感态度价值观目标:1. 培养学生对物理学科的兴趣,激发学习热情;2. 培养学生的团队合作意识,学会与他人共同解决问题;3. 培养学生的创新思维,敢于提出不同的观点和看法;4. 增强学生对我国电动机产业的了解,树立民族自豪感。

本课程针对八年级学生,结合课程性质、学生特点和教学要求,将目标分解为具体的学习成果。

在教学过程中,注重理论与实践相结合,提高学生的实践操作能力。

同时,关注学生情感态度的培养,使他们在掌握知识技能的同时,形成正确的价值观。

为后续的教学设计和评估提供明确依据。

二、教学内容1. 直流电动机的基本原理与构造- 课本章节:第三章第三节- 内容:磁场对电流的作用、直流电动机的构造与分类2. 直流电动机的工作原理与启动方法- 课本章节:第三章第四节- 内容:直流电动机的工作原理、启动方法(直接启动、降压启动)3. 直流电动机的调速与制动- 课本章节:第三章第五节- 内容:调速方法(变电阻调速、变电压调速、变频调速)、制动方法(能耗制动、反接制动)4. 直流电动机在实际应用中的优缺点及改进措施- 课本章节:第三章第六节- 内容:直流电动机在实际应用中的优点与局限、改进措施(如采用无刷直流电动机)5. 直流电动机的组装与故障排查- 课本章节:第三章实验- 内容:组装与拆卸直流电动机、观察电动机运行状态,进行简单故障排查教学内容按照以上大纲进行安排,共计5个部分,每部分的教学时间为2课时。

在教学过程中,注重理论与实践相结合,让学生在掌握理论知识的基础上,提高实践操作能力。

电机及拖动课程设计 他励直流电动机的回馈制动

电机及拖动课程设计 他励直流电动机的回馈制动

第一章直流电动机工作原理(a)(b)图1-1直流电动机工作原理示意图图1.1是一台直流电机的最简单模型。

N和S是一对固定的磁极,可以是电磁铁,也可以是永久磁铁。

磁极之间有一个可以转动的铁质圆柱体,称为电枢铁心。

铁心表面固定一个用绝缘导体构成的电枢线圈abed,线圈的两端分别接到相互绝缘的两个半圆形铜片(换向片)上,它们的组合在一起称为换向器,在每个半圆铜片上又分别放置一个固定不动而与之滑动接触的电刷A和B,线圈abed通过换向器和电刷接通外电路。

将外部直流电源加于电刷A(正极)和B(负极)上,则线圈abed中流过电流,在导体ab中,电流由a指向b,在导体ed中,电流由e指向d。

导体ab和ed分别处于N、S 极磁场中,受到电磁力的作用。

用左手定则可知导体ab和ed均受到电磁力的作用,且形成的转矩逆时针方向旋转,如图1T(a)所示。

当电枢旋转180°,导体ed转到N极下,ab转到S极下,如图1-1(b)所示,由于电流仍从电刷A流入,使ed中的电流变为由d 流向c,而ab中的电流由b流向a,从电刷B流出,用左手定则判别可知,电磁转矩的方向仍是逆时针方同。

由此可见,加于直流电动机的直流电源,借助于换向器和电刷的作用,使直流电动机电枢线圈中流过的电流,方向是交变的,从而使电枢产生的电磁转矩的方向恒定不变,确保直流电动机朝确定的方向连续旋转。

这就是直流电动机的基本工作原理。

第二章直流电动机的分类根据励磁方式的不同,直流电机可以分为他励、并励、串励和复励四种。

他励电机电路圏①并励电机电路图3图2-1直流电动机按励磁方式的分类图3-0他励直流电动机的固有特性其中:n ——C ①EP -R —CC ①2ET称为理想空载转称为机械特性的斜率,大小反映软特性与硬特性;RT 称为负载时的转速降。

CC ①E T由于电枢电路电阻Ra 很小,所以机械特性的斜率很小,硬度很大,固有特性为硬特An 二B T二第三章他励直流电动机的机械特性在他励电动机中,Ua ,Ra ,If 保持不变时,电动机的转速n 与电磁转矩T 之间的关系称为他励电动机的机械特性。

直流电动机的回馈制动

直流电动机的回馈制动

直流电动机的回馈制动过程仿真实验报告班级:学号:姓名:完成时间:一、仿真内容及目的(1.5分)1)了解回馈制动的方法、原理以及电机制动过程中的电枢电流、转速、转矩随着时间的变化,以及转矩和转速之间的关系;2)了解回馈制动中电机状态的改变。

二、仿真要求及要点描述(2.5分)(1) 根据电机学中所学到的知识,对电车下坡过程进行动态分析;(2) 建立电机的工作特性方程,并且求解电枢电流、电机转速、电磁转矩等变量的表达式;(3) 建立MATLAB 的m 文件,编写程序,求解微分方程以及各个变量的值,并且通过屏幕动态的呈现出整个过程相关变量的变化规律;(4) 对整个仿真过程进行总结。

三、基本知识及仿真方法描述(3分)直流电动机的制动措施主要有三种:1、能耗制动:将由机械能转化的电能消耗掉。

2、反接制动:制动时使电机的电枢极性反接。

3、回馈制动:将由机械能转化的电能回馈给电网。

本次采用编写MATLAB 仿真程序研究直流电动机回馈制动过程。

当串励直流电机驱动的电车下坡时,如果不加制动,则机车的转速会越来越高而达到危险高速。

此时如果把串励改为他励,有其他电源供给适量的励磁电流,电枢仍接在电网上,则当转速高于某一数值时,电枢电动势a E U >,于是电机将进入发电机状态;此时电磁转矩将起制动作用,限制转速继续上升。

由于此法是把下坡时机车位能的变化转换为电能而回馈给电网,故称为回馈制动。

基于回馈制动的思路和原理,我们对如下的问题建立模型,并且利用MA TLAB 进行仿真。

问题描述如下:假设有一电车正在下坡运行,实时机械角速度Ω=100rad/s ,电枢电阻0.5a R ohm =,电机的系数 1.53/T C Nm A Φ=,转动惯量21.0J kgm =。

电枢电压220a U V =,假设电车下坡的过程中重力加给它的负载转矩恒定为100L T Nm =,采用回馈制动的方式分析其制动过程。

问题分析:电车在平地行驶或上坡时,负载转矩L T 阻碍电车前往行驶。

并励直流电动机反接制动控制电路

并励直流电动机反接制动控制电路

并励直流电动机反接制动控制电路一、电路图图24-1二、实训所需电器元件代号名称型号数量备注QS 低压断路器DZ108-20(1.6A-2.5A) 1FU1 熔断器RT18-32-3P 1 装熔芯3A FU2 熔断器RT18-32-3P 1 装熔芯2A KM1~KM4 交流接触器LC1-D0610M5N 4 线圈AC220V KZ1 直流接触器LP1-K0901MD 1KT1 通电时间继电器JSZ3A-B(0~60S)/220V 1 时间继电器方座PF-083A 1SB1 按钮开关LAY16(红) 1SB4 按钮开关LAY16(绿) 1R2~R4 电阻75Ω/75W 3VD1 二极管IN5408 1M 并励直流电动机WDJ15 1反接制动是利用改变电枢两端电压极性或改变励磁电流的方向,来改变电磁转矩方向,形成制动力矩,迫使电动机迅速停转。

并励直流电动机的反接制动是把正在运行的电动机的电枢绕组突然反接来实现的。

采用反接制动时应该注意以下两点:一是电枢绕组突然反接的瞬间,会在电枢绕组中产生很大的反向电流,易使换向器和电刷产生强烈火花而损伤,故必须在电枢回路中串入附加电阻以限制电枢电流,附加电阻的大小可取近似等于电枢的电阻值;二是当电动机转速等于零时,应及时准确可靠地断开电枢回路的电源,以防止电动机反转。

该控制电路的动作原理图如图24-1。

线路工作原理如下:分别接通直流220V电源及交流220V电源,励磁绕组得电励磁。

先打开电源开关QS,然后按下正向按钮SB4,接触器KM3线圈得电吸合,其主触头闭合,直流电动机电枢回路串入电阻R2减压起动。

KM3的常开触头(9-18)吸合,时间继电器KT1线圈得电,经过一定时间的延时以后,KT1延时闭合触点闭合,接触器KM4得电吸合,切除电阻R2,直流电动机进入正常运行。

由于起动时电动机的反电势等于零,电压继电器KZ1不会动作,所以接触器KM1不会动作;当电动机建立反电势后,电压继电器KZ1吸合,其常开触头闭合为反接制动作好准备。

直流电机的能耗制动和反接制动

直流电机的能耗制动和反接制动

制动方式①自然停车②机械制动③电气制动能耗制动反接制动回馈制动电动状态:T n T ⎧⎨⎪⎩⎪⇒与同方向,为拖动性质第一象限:正向电动状态第三象限:反向电动状态能量关系:电能机械能制动状态:T n T ⇒与反方向,为制动性质机械特性位于第二、四象限能量关系:机械能电能1.方法及原理电动状态能耗制动状态励磁不变,把电动机的电枢脱离电网,再经过一个电阻R 使电路闭合。

U +-电动ME a +-I anTI fS制动R BI aBT=+U I R E a a a ,0,Φ=Φ==+N a U R R R 2=Φ-+Φ=-βe N a e T Nn UC R R C C T T 机械特性曲线经过原点,变得更陡了2能耗制动停车过程原先工作于A 点n =n A ,工作点变为BT <0,在T 与T L 的共同作用下,系统很快减速沿BO 段下移至n =0CB若电动机带位能性负载,稳定工作点电动机状态工作点n n 0AT LT emR a制动瞬间工作点电动机拖动反抗性负载,电机停转。

=-+=-Φ+a Aa e N A a I E R R C n R R反抗性负载:系统可靠停车,不会重新起动位能性负载:沿BO 段下移至n =0后,会继续下移,直至到达新的平衡点C ,转速此时为负数,稳速下放。

改变制动电阻R 的大小可以改变能耗制动特性曲线的斜率。

R 越大,下放负载的稳定速度越大。

但电枢电流较大,对电机存在危险。

=+≤=max (2~2.5)I E R RI I a aa N制动电阻:(2~2.5)≥-R E I R aNa选择制动电阻的原则是一、反接制动(电源反接制动直流电动机的反接制动)U +-电动ME a +-I anTI fS制动R fI aT开关S 投向“电动”侧时,电枢接正极电压,电机处于电动状态。

进行制动时,开关投向“制动”侧,电枢回路串入制动电阻后,接上极性相反的电源电压。

机械特性为:20=-Φ-+Φ=--βNe N af e T Nn U C R R C C T n T 机械特性经过-n 0点,且变得更陡+a R RCBnn 0R aA0T L T em-T L-n 0D电源反接制动停车过程原先工作于A 点n =n A ,工作点变为BT <0,在T 与T L 的共同作用下,系统很快减速沿BC 段下移至C 点=--+=-+Φ+a Aa e N A a I U E R R U C n R R在C 点必须切断电源,并投入机械制动,否则:反抗性负载:会继续下移,直至到达新的平衡点D ,电机反转;位能性负载:会继续下移至新的平衡点E ,电机反转速度超过理想空载转速E直流电动机的反接制动+a R RCBnn 0R aA0T L T em-T L-n 0DE直流电动机的反接制动=++≤=max (2~2.5)I U E R R I I a aa fN制动电阻:(2~2.5)≥+-R U E I R f aNa 选择制动电阻的原则是负载作用下电机反向旋转(下放重物)1倒拉反转反接制动直流电动机的反接制动只适用于位能性负载。

直流他励电动机的反接制动方法分析

直流他励电动机的反接制动方法分析

直流他励电动机的反接制动方法分析摘要:直流他励电动机是一种常见的电机类型,其制动方式有多种,其中反接制动是一种常用的方法。

本文从工作原理、影响因素以及应用场景几个方面对反接制动进行了深入的分析研究,为读者提供了详尽全面的参考。

关键词:直流他励电动机,反接制动,工作原理,影响因素,应用场景正文:一、引言直流他励电动机是目前应用广泛的电动机类型之一,其可以直接控制转速和转矩,因此在工业和民用领域中被广泛应用。

制动是直流他励电动机工作过程中不可或缺的一个环节,常见的制动方式包括机械制动、电磁制动、反接制动等。

本文主要介绍反接制动这一制动方法。

二、反接制动的工作原理反接制动是指将电动机的电源反向接入,使电动机产生反向转矩,以达到制动目的。

具体实现方法是切断电动机的励磁电源,同时反接电源,在电极间建立反向电动势,使电机的转矩产生反向,从而使转子减速或停转。

三、影响因素反接制动的效果受多种因素影响,主要包括电源电压、电动机转速和转子惯量等。

在实际应用中,需要根据不同的工况和要求选择合适的反接制动参数,以达到最佳的制动效果,避免电机因反接制动而受到不必要的损害。

四、应用场景反接制动被广泛应用于直流他励电动机的制动过程中,并且在一些特殊场合也可以作为紧急制动的手段。

例如,当机械制动失灵或者需要快速制动时,反接制动可以提供紧急制动的功能,保障人员和设备的安全。

五、结论反接制动是一种简单有效的制动方法,可以满足直流他励电动机在制动时的需求。

在使用反接制动时,需要注意参数的选择和反向电源的接入,以达到最佳的制动效果,同时也需要保障电机和设备的安全。

六、反接制动的优缺点反接制动是一种在直流他励电动机制动的过程中广泛应用的制动方法。

它的优点是操作简单,制动效果比机械制动和电磁制动更为明显。

同时,反接制动不仅可以实现正常制动,还可以作为一种紧急制动的手段,在机械制动失灵等情况下保证人员和设备的安全。

然而,反接制动的使用也存在一些缺点。

直流电动机的回馈制动

直流电动机的回馈制动

直流电动机的回馈制动过程仿真实验报告班级:学号:姓名:完成时间:一、仿真内容及目的(1.5分)1)了解回馈制动的方法、原理以及电机制动过程中的电枢电流、转速、转矩随着时间的变化,以及转矩和转速之间的关系;2)了解回馈制动中电机状态的改变。

二、仿真要求及要点描述(2.5分)(1) 根据电机学中所学到的知识,对电车下坡过程进行动态分析;(2) 建立电机的工作特性方程,并且求解电枢电流、电机转速、电磁转矩等变量的表达式;(3) 建立MATLAB 的m 文件,编写程序,求解微分方程以及各个变量的值,并且通过屏幕动态的呈现出整个过程相关变量的变化规律;(4) 对整个仿真过程进行总结。

三、基本知识及仿真方法描述(3分)直流电动机的制动措施主要有三种:1、能耗制动:将由机械能转化的电能消耗掉。

2、反接制动:制动时使电机的电枢极性反接。

3、回馈制动:将由机械能转化的电能回馈给电网。

本次采用编写MATLAB 仿真程序研究直流电动机回馈制动过程。

当串励直流电机驱动的电车下坡时,如果不加制动,则机车的转速会越来越高而达到危险高速。

此时如果把串励改为他励,有其他电源供给适量的励磁电流,电枢仍接在电网上,则当转速高于某一数值时,电枢电动势a E U >,于是电机将进入发电机状态;此时电磁转矩将起制动作用,限制转速继续上升。

由于此法是把下坡时机车位能的变化转换为电能而回馈给电网,故称为回馈制动。

基于回馈制动的思路和原理,我们对如下的问题建立模型,并且利用MA TLAB 进行仿真。

问题描述如下:假设有一电车正在下坡运行,实时机械角速度Ω=100rad/s ,电枢电阻0.5a R ohm =,电机的系数 1.53/T C Nm A Φ=,转动惯量21.0J kgm =。

电枢电压220a U V =,假设电车下坡的过程中重力加给它的负载转矩恒定为100L T Nm =,采用回馈制动的方式分析其制动过程。

问题分析:电车在平地行驶或上坡时,负载转矩L T 阻碍电车前往行驶。

他励直流电动机反接制动原理

他励直流电动机反接制动原理

他励直流电动机反接制动原理直流电动机是现在使用最广泛的电动机之一,它具有卓越的性能和可靠性,因此被广泛应用于各种领域。

其中,反接制动是直流电动机中一个非常重要的制动方式,下面我们将围绕“他励直流电动机反接制动原理”展开讲解,希望能够帮助大家更好地理解直流电动机的运作。

步骤一:反接制动的原理直流电动机的反接制动原理是利用电动机的磁场产生惯性制动,从而起到使电机落速的作用。

电源直接通过电枢反向供电磁通方向相反,因此磁场方向要和电枢电流反向,我们称为反向磁通。

步骤二:实施反接制动的方案当电机启动时,将电机的绕组励磁。

想要实施反接制动,需要将电机的两端绕组A、B相的接线交换,即来回换接。

这时,电源电压与电机旋转速度的方向不同,接通电源时,磁通方向与电枢电流方向相反。

步骤三:应用范围反接制动广泛应用于电动机制动领域,尤其适合于那些速度较大,需要迅速停止的应用场景,如一些快速运动的机器、设备等。

反接制动采用的是电机自身的电势,因此制动过程不会过分依赖于外部电源,从而保证了制动的精度和可靠性。

步骤四:反接制动的优点和不足反接制动不需要外部设备,其实施和调试都比较简单,同时也能够提供很好的制动效果。

另外,反接制动也能够在紧急情况下使电机迅速停止。

不过,反接制动存在一些缺点。

首先,如果反接制动时间过长,电枢容易发生超温现象,降低电机寿命。

其次,反接制动后电机可能产生电压过高的现象,需要制动电阻降低电机转矩。

总之,反接制动是一种非常重要的制动方式。

我们应该认真学习和应用反接制动的原理和方案,从而更好地掌握电机运作的技能和实操能力。

电机实验报告

电机实验报告

实验一直流他励电动机机械特性一.实验目的了解直流电动机的各种运转状态时的机械特性二.预习要点1.改变他励直流电动机械特性有哪些方法?2.他励直流电动机在什么情况下,从电动机运行状态进入回馈制动状态?他励直流电动机回馈制动时,能量传递关系,电动势平衡方程式及机械特性又是什么情况?3.他励直流电动机反接制动时,能量传递关系,电动势平衡方程式及机械特性。

三.实验项目1.直流他励电动机机械特性。

2.回馈制动特性3. 自由停车及能耗制动。

4.反接制动。

四.实验设备及仪器1.NMEL系列电机系统教学实验台主控制屏。

2.电机导轨及转速表(MMEL-13)3.三相可调电阻900Ω(NMEL-03)4.三相可调电阻90Ω(NMEL-04)5.波形测试及开关板(NMEL-05B)6、直流电压、电流、毫安表(NMEL-06)7.电机起动箱(NMEL-09)五.实验方法及步骤1.直流他励电动机机械特性及回馈制动特性接线图如图1-1图中直流电压表V1为220V可调直流稳压电源(电枢电源)自带,V2为MEL-06上直流电压表,量程为300V;直流电流表mA1、A1分别为直流励磁及220V可调直流稳压电源自带毫安表、安培表;mA2、A2分别选用量程为200mA、5A的毫安表、安培表(NMEL-06)R1选用1800Ω欧姆电阻(NMEL-03两只900Ω电阻相串联)R2选用180欧姆电阻(NMEL-04中两90欧姆电阻相串联)R3选用3000Ω磁场调节电阻(NMEL-09)R4选用2250Ω电阻(用NMEL-03中两只900Ω电阻相并联再加上两只900Ω电阻相串联)开关S1、S2选用NMEL-05中的双刀双掷开关。

M为直流他励电动机M03,请抄写电机铭牌上的参数并填入下表中:U N I N n N P N220 V 1.1 A 1600 r/min 185 WG为直流发电机M12,请抄写电机铭牌上的参数并填入下表中:U N I N n N P N220 V 0.55 A 1500 r/min 80 W图1-1直流他励电动机机械特性实验线路图按图1-1接线,在开启电源前,检查开关、电阻的设置;(1)开关S1合向“1”端,S2合向“2”端。

直流电动机起动、制动控制线路课程思政教学设计

直流电动机起动、制动控制线路课程思政教学设计

直流电动机起动、制动控制线路课程思政教学设计摘要:一、直流电动机起动、制动控制线路概述1.直流电动机起动、制动控制线路的基本原理2.直流电动机起动、制动控制线路的基本组成部分二、直流电动机起动控制线路设计与应用1.直接起动控制线路2.降压起动控制线路3.星角起动控制线路三、直流电动机制动控制线路设计与应用1.再生制动控制线路2.能耗制动控制线路3.反接制动控制线路四、起动、制动控制线路故障诊断与排除1.起动故障诊断与排除2.制动故障诊断与排除五、课程思政教学设计实践与反思1.教学目标设定2.教学内容安排3.教学方法选择4.教学效果评估与反思正文:一、直流电动机起动、制动控制线路概述直流电动机起动、制动控制线路是电气工程领域中重要的组成部分,其基本原理是根据电动机的特性,通过合理的电路设计实现电动机的正常起动、制动及运行控制。

直流电动机起动、制动控制线路的基本组成部分包括控制器、开关设备、保护装置等。

二、直流电动机起动控制线路设计与应用1.直接起动控制线路:直接起动控制线路是最简单的直流电动机起动方式,只需将电源直接连接到电动机即可。

但这种方式存在启动电流大、易损坏电动机等缺点,适用于小功率电动机。

2.降压起动控制线路:降压起动控制线路通过降低电源电压实现电动机的起动,具有启动电流小、电动机不易损坏等优点。

适用于中大功率电动机。

3.星角起动控制线路:星角起动控制线路通过改变电动机的接线方式实现起动,具有启动电流小、电动机性能稳定等优点。

适用于大功率电动机。

三、直流电动机制动控制线路设计与应用1.再生制动控制线路:再生制动控制线路通过将电动机的制动能量回馈到电源,实现制动控制。

具有制动效果好、能量利用率高等优点。

2.能耗制动控制线路:能耗制动控制线路通过将电动机的制动能量消耗在电阻上,实现制动控制。

具有制动稳定性好、设备简单等优点。

3.反接制动控制线路:反接制动控制线路通过改变电动机的供电方向实现制动控制,具有制动效果明显、制动稳定性好等优点。

直流电动机的回馈制动

直流电动机的回馈制动
行转速可能超过理想空载转速进入第二象限电压反接制动带位能性负载进入第四象限直流电动机的电力拖动发生在动态过程中的回馈制动过程有以下两种情况
第2章 直流电动机的电力拖动
2.4.3 回馈制动
电动状态下运行的电动机,在某种条件下会出现n n0情况, 此时 Ea U ,I a 反向,Tem 反向,由驱动变为制动。从能量方向看, 电机处于发电状态——回馈制动状态。 回馈制动时的机械特性方 程与电动状态时相同。
3. 直流电动机的反转方法
教学难点: 电压反接制动机械特性及制动四象限特点 作 业: P92: 2.31
稳定运行有 两种情况:
当电车下 坡时,运 行转速可 能超过理 想空载转 速,进入第 二象限
A
n n0
Tem
电压反 接制动 带位能 性负载 进入第 四象限
0 TL
TL
B
n0
第2章 直流电动机的电力拖动
发生在动态过程中的回馈制动过程有以下两种情况: 1、降压调速时产 生的回馈制动
2、增磁调速时产 生的回馈制动
2.4.4 直流电动机的反转
Tem CT I a
一、改变励磁电流方向(很少采用) 励磁绕组电感较大,切换励磁绕组时将产生较大自感电动势, 击穿绝缘,故很少采用。
二、改变电枢电流方向(常用)
第2章 直流电动机的电力拖动
小 结
教学重点: 1. 他励直流电动机的制动方法及其制动过程
2. 掌握制动电阻的计算
n
n01
B
nA
U 2 Φ1
nA
制动过程为 线段 Bn02
n02
nC
A
C
U2
制动过程为 线段Bn02
n02 nC
C

直流电动机的工作原理、接线及调试

直流电动机的工作原理、接线及调试

直流电动机的工作原理、接线及调试直流电动机的工作原理、接线及调试从化技工学校学科电工实习课程教案用纸(首页JA-1)审批签字教Z2-22型并励直流电动直流电动机的工作原理、接线及调试授课授课时数授课时间授课班级教学目的重点和难点复习提问10机电高级方讲授法、示范操作、手把手指导机,可调直流法具电源1.掌握判别直流电动机各种绕组的方法2.掌握调整直流电动机中性位的调整及通电试车方法。

重点:直流电动机的通电试车方法难点:直流电动机中性位的调整1、202*A型龙门刨床应如何调试直流系统?作业写出实习报告教学内容方法过程附记复习提问5分钟引入新课一、实习课题:直流电动机的工作原理、接线及调试【板书】二、实习目的:1.掌握判别直流电动机各种绕组的方法2.掌握调整直流电动机中性位的调整及通电试车方法。

三、工具耗材:Z2-22型直流电动机、万用表、转速表等四、教学过程【复习提问】1、202*A 型龙门刨床应如何调试直流系统?【入门指导】一、直流电机的结构及工作原理1.直流电机的基本结构直流电机主要由定子和转子两部分组成。

定子包括主磁极、换向极、电刷装置、机座、端盖等。

其中主磁极的作用是产生主磁极磁场;换向极的作用是产生换向磁场,改善直流电机的换向。

转子又称为电枢,包括电枢铁心、电枢绕组、换向器、风扇、转轴等。

直流电机常做成电枢旋转形式。

直流电动机的结构如图43所示。

1页教案附页(JA-2)附记根据实物讲解演示教学内容方法过程2.直流电动机的基本原理直流电动机其基本工作原理是通电导体在磁场内会受到电磁力的作用而使电枢旋转。

通过换向器,使直流电动机获得单方向的电磁转矩;通过换向片使处于磁极下不同位置的电枢导体串联起来,使其电磁转矩相叠加而获得几乎恒定不变的电磁转矩。

3.直流电机的分类按照励磁方式不同,直流电机可分为他励、并励、串励及复励等四大类。

其中,直流电动机各种励磁方式的接线原理图如图4-4所示。

结合实物讲授并加以演示2页教案附页(JA-2)附记布置实训任务并讲清楚相关操作规程及操作要点教学内容方法过程【实习训练】【实习步骤】1、判别直流电动机的电枢绕组、并励绕组及串励绕组1)看编号,接线端子上都有字母,电枢端子是S1、H2,并励绕组是B1、B2,串励绕组是C1、C2。

他励直流电动机的反接制动(电机与拖动课程设计报告)

他励直流电动机的反接制动(电机与拖动课程设计报告)

他励直流电动机的反接制动(电机与拖动课程设计报告)直流电动机反接制动是将励磁电动机接入反接电路中,以减小负载拉力,延长电动机励磁时间,达到在负荷改变前有充分的制动力的一种电控制方法。

此种制动法适用于轻载轻负荷,机电一体的拖紧机床,减少机械制动时的浪费动作,从而实现高效拖紧制动功能。

一般来说,直流电动机反接制动电路分为两个部分:反接电阻和恒流源。

反接电阻决定反接电流,而恒流源则确保当励磁电流发生变化的时候反接电流也不会有变化,并维持电动机的反接制动效果。

虽然反接电流不是很大,但反而可以延长拖动的时间,避免旋转电动机的突变,从而得到一个稳定的制动。

相对于机械制动,反接制动的优点有:1.反接制动方式是一种电脉冲制动方式,在低速和高速运行条件下均可以提供良好的制动效果;2. 励磁电流产生的热损伤极小,而且热量释放速度较快;3. 使用反接制动,电机在使负载在静止状态下不会受到突变的影响,从而达到更稳定的运行效果;4. 电动机反接制动仅仅需要控制设备,比传统机械制动更加简便,同时可以大大减少设备维护和保养的费用。

此外,使用反接制动的另一个优点是可以提高机器的工作精度。

首先,通过反接制动可以有效减少励磁电流;其次,由于刹车后有足够的时间来调整把手和扳手,从而更好地控制机器的速度,从而获得更高的工作精度。

总之,反接制动是一种由电脉冲控制的电动机制动技术,能够在低速、高速情况下都提供良好的制动效果。

它主要用于轻载量和低负荷方面的拖紧设备,使用恒流源和反接电阻组成反接制动电路。

使用反接制动可以有效减小励磁电流,减少热损伤,延长电动机的寿命。

而且,还可以在负荷变化前充分制动,使机器精度提高,节省维护和保养费用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 综述直流电动机是将直流电能转换为机械能的电动机。

因其优良的起动、调速和制动性能而在电力拖动中得到广泛应用。

直流电动机按励磁方式分为他励、并励、串励和复励四种。

直流电动机有三种制动状态:能耗制动、反接制动(电压反向反接和电动势反向反接)和回馈制动。

本文在直流电动机的结构与工作原理的基础上,给出了电机制动的定义,对电机制动的方法进行了简单介绍,并着重介绍了他励直流电动机反接制动的工作原理、特点及使用条件。

2 直流电动机的制动2.1 制动的定义制动,就是让电动机产生一个与转子转向相反的电磁转矩,以使电力拖动系统迅速停机或稳定放下重物。

这时电机所处的状态称为制动状态,这时的电磁转矩为制动转矩。

2.2 制动的目的在生产过程中,经常需要采取一些措施使电动机尽快停转,或者从某高速降到某低速运转,或者限制位能性负载在某一转速下稳定运转,这就是电动机的制动问题。

2.3 制动的分类实现制动有两种方法,机械制动和电磁制动。

电磁制动是使电机在制动时使电机产生与其旋转方向相反的电磁转矩,其特点是制动转矩大,操作控制方便。

现代通用电机的电磁制动类型有能耗制动、反接制动和回馈制动。

2.4 各种制动的特点1)反接制动:设备简单,制动迅速,准确性差,制动冲击力强。

2)能耗制动:制动准确度高,需直流电源,设备投入费用高。

3)回馈制动:经济性好,将负载的机械能转换为电能反送电网,但应用范围不广。

电容制动对高速、低速运转的电动机均能迅速制动,能量损耗小设备简单,一般用语10KW以下的小容量电动机,可适用于制动频繁的场合。

3 直流电动机反接制动的工作原理以他励直流电动机为例。

他励电动机反接制动的特点是使Ua与E的作用方向变为一致,共同产生电枢电流Ia ,于是由动能转换而来的电功率EIa和由电源输入的电功率UaIa一起消耗在电枢电路中。

具体实现的方法有两种,分别用于不同的场合。

3.1 电压反向反接制动——迅速停机3.1.1 制动原理制动前后的电路如图3-1所示。

与电动状态相比,电压反向反接制动时,将电枢电压反向,并在电枢电路内串联一制动电阻Rb。

当系统因惯性继续沿原来方向旋转时,因磁场方向不变,E的方向不变,但因Ua 反向,Ua与E的作用方向变成一致,一起使Ua反向,使得T也反向成为制动转矩,转速迅速下降至零。

当转速降至零时,E=0,应立即将电枢与电源断开,否则电机将反向起动。

(a)电动状态(b)制动状态图3-1 反接制动迅速停机时的电路图3.1.2 机械特性上述制动过程也可以通过机械特性来说明。

电动状态时的机械特性如图3-2的特性1,n 与T 的关系为n=ΦE a C U -2ΦT E aC C R T电压反向反接制动时,n 与T 的关系为n=-(ΦE a C U -2ΦT E aC C R T)机械特性如图3-2中特性2。

设电动机拖动的是反抗性恒转矩负载,负载特性如图3.2中的特性3制动前,系统工作在机械特性1与负载转矩3的交点a 上面。

制动瞬间,因机械惯性,转速来不及变化,工作点由a 点平移到能耗制动特性的b 点。

这时T 反向,成为制动转矩,制动过程开始。

在T 和T L 的共同作用下,转速n 迅速下降,工作点沿特性2由b点移至O 点。

这时n=0,应立即断开电源,使制动过程结束。

否则电动机将反向起动,到d 点去反向稳定运行。

图3-2 反接制动迅速停机过程3.1.3 特性分析电压反向反接制动的过程效果与制动电阻R b 大小有关。

R b 小,则制动瞬间I a 大,T 大,制动过程短暂,停机快。

但制动过程中的最大电枢电流,即工作于b 点时的电枢电流I ab 不得超过I m ax =(1.5~2.0)I aN 。

由图3-1(b)可知,只考虑绝对值时b a b z ab R R E U I ++= 式中,E b =E a 。

由此求得电压反向反接制动的制动电阻为R b m axI E U ba +≥-R a3.1.4 适用场合设备简单,操作方便,制动转矩平均值较大,制动强烈,但能量损耗大,适用于要求快速停车的拖动系统,对于要求快速并立即反转的系统更为理想。

3.2 电动势反向反接制动——下放重物3.2.1 制动原理制动前后的电路如图4-1所示。

制动时,电枢电压不反向,只在电枢电路中串。

联一个适当的制动电阻Rb(a)电动状态(b)制动状态图4-1 反接制动下放重物的电路图3.2.2 机械特性上述制动过程也可以通过机械特性来说明。

反接制动时,U=Ua ,R=Ra+Rb,机械特性方程变为n=ΦEaCU-2ΦTEbaCCRR T若电动机拖动位能性恒转矩负载,如图4-2所示。

制动前,系统工作在固有特性1与负载特性3的交点a上。

制动瞬间,工作点由a平移到人为特性上的b点。

由于T< TL,n下降,工作点沿人为特性2由b点向c点移动。

当工作点到达c点时,T= TL,系统重新稳定运行。

这时n反向,电动机处在制动运行状态稳定下放重物。

在这种情况下制动运行时,由于n反向,E也随之反向,由图4-1(b)可以看出,这时E与Ua 的作用方向也变成一致,但Ia和T的方向不变,T与n方向相反,成为制动转矩,与负载转矩保持平衡,稳定下放重物。

所以这种反接制动称为电动势反向的反接制动运行。

图4-2 反接制动下放重物过程3.2.3 特性分析电动势反向反接制动的效果与制动电阻Rb 的大小有关。

Rb大,特性2的斜率小,转速低,下放重物慢。

由图4.1(b)可知,在d点运行时,只取各量的绝对值,而不考虑其正、负,则Ra + Rb=)(nCUTCIEUEaTaddaΦ+Φ=+可见,若要以转速n下放负载转矩为TL的重物时,制动电阻应为Rb = )(nCUTTCEaLTΦ+-Φ-Ra忽略T,则Rb = )(nCUTCEaLTΦ+Φ-Ra3.2.4 适用场合设备简单,操作方便,电枢回路串联电阻较大,机械特性较软,转速稳定性差,能量损耗大,适用于低速匀速下放重物。

4 反接制动制动电阻的计算一台Z4系列的他励电动机,PN=11KW,UaN=440V,IaN=31A,nN=1480r/min,I m ax =62A,TL=120N·M,T忽略不计。

4.1 电枢电阻的计算R a =aN aN N aN I I P U -=2.74Ω;4.2 相关参数的计算 E=aNN I P =354V ; C E Φ=N n E =0.239; C T Φ=π260C E Φ=2.28 T N =π260NN n P =71N ·M 4.3 迅速停机T L =120N ·mI a =φT L C T =52.63A E=U a -R a I a =295.79VR b =m axI E U b a +-R a =9.13Ω4.4 下放重物(以800r/min 下放重物)R b =)(n C U T C E a LT Φ+Φ-R a =12.34Ω该电阻值大于0.89Ω,满足要求。

5 结论电动机被停止后还有一定的旋转惯性,在要求停止准确的设备就要采用制动方式使电机停止后迅速静止。

较常用的有:1)能耗制动。

2)反接制动。

3)回馈制动。

每种制动之间都有其优点和缺点。

利用每种方法之间的差别选择一种最优方法进行那个制动,对工作效率,工厂经济效益都有着相当了影响。

本文仅对他励直流电动机的反接制动进行分析解释。

反接制动设备简单,制动迅速,准确性差,制动冲击力强。

利用其工作原理可以延伸到现实生活中的工作、工程当中去。

了解直流电动机的反接制动原理,会在一些方面使工作具有更有利的一面,在工程经济效益上有更有利的位置。

6 心得体会本设计不仅是会前面所学的指示的一种检验,而且也是对自己能力的一种提高。

下面是对课程设计的过程做一个简单的总结。

第一,题目确定之后,资料是最重要的,查资料是做课程设计的前期准备工作,好的开端相当成功了一半。

到图书馆,资料室,上网寻找自己所需要的资料。

要一一记录下来以备后用。

第二,通过上面的过程,积累了不少的有用资源,对题目有了大概的了解,然后对题目进行更透彻的分析。

第三,有了明确的研究方向,就该动手实现了。

通过本次设计,对原先学的知识又有了一定的新认识,温习了所学过的知识,温故而知新。

但在设计过程中,遇到了很多的问题,但最后通过和同学的交流一一得到解决。

在这次设计中使我们的同学关系很进一步了,同学之间互相帮助,有上面不懂的大家在一起商量,听听不同的看法对我们对知识的了解有进一步的提高。

在这个课程设计过程中我懂得了许多东西,也培养了我鼓励工作的能力,树立了自己对工作能力的信心,相信会对今后的学习工作有非常重要的影响。

而且大大提高了自己的动手能力,是我充分体会到了在创造过程中的探索的艰难和成功的喜悦。

虽然这个课题还不是很完善,但在设过程中所学到的东西是这次设计的最大收益和财富,使我终身受益。

参考文献[1] 唐介主编.电机与拖动. 北京:高等教育出版社,2007[2] 李忠文主编.实用电机控制电路. 北京:化学工程出版社,2003[3] 张明达主编.电力拖动控制系统. 北京:冶金工业出版社,1983[4] 杨兴姚主编.电动机调速的原理及系统. 北京:水利电力出版社,1979[5] 陈伯时主编.电力拖动控制系统. 北京:机械工业出版社,1984。

相关文档
最新文档