塑性成型工艺讲解

合集下载

材料成型工艺基础金属塑性成形

材料成型工艺基础金属塑性成形

材料成型工艺基础:金属塑性成形1. 引言金属塑性成形是制造业中常见的一种材料成型工艺。

通过对金属材料施加力量,使其在一定的温度和应变条件下发生塑性变形,从而得到所需形状和尺寸的制品。

这种成形工艺广泛应用于汽车、航空航天、机械制造等领域。

本文将介绍金属塑性成形的基本概念、工艺流程以及常见的金属塑性成形方法。

2. 基本概念2.1 金属塑性成形的定义金属塑性成形是指将金属材料通过施加力量,在一定的温度和应变条件下,使其发生塑性变形,从而得到所需形状和尺寸的工艺过程。

2.2 塑性变形的基本概念塑性变形是指材料在一定的应力作用下,在超过其屈服点之后发生的可逆性变形。

在这种变形中,金属材料的原子结构会发生改变,从而改变了材料的形状和尺寸。

3. 工艺流程金属塑性成形的工艺流程主要包括以下几个步骤:3.1 原材料准备在金属塑性成形工艺中,首先需要准备好所需的金属原材料。

原材料的选择需要满足产品的要求,包括材料的强度、韧性、耐蚀性等。

3.2 材料加热在金属塑性成形之前,通常需要将金属材料进行加热。

加热可以使金属材料达到一定的塑性状态,更容易发生塑性变形。

加热的温度和时间需要根据不同的金属材料和成形要求进行调整。

3.3 成型工艺金属塑性成形的成型工艺包括以下几种常见方法:3.3.1 锻造锻造是一种利用压力将金属材料塑性变形成形的方法。

在锻造过程中,金属材料会经过压缩、拉伸、冷却等多个步骤,最终得到所需的形状。

3.3.2 拉伸拉伸是将金属材料放在拉伸机上,通过施加力量使其发生塑性变形的方法。

通过拉伸可以改变金属材料的形状和尺寸。

3.3.3 深冲深冲是将金属材料放在冲压机上,通过模具对材料进行冲压,使其发生塑性变形的方法。

通过调整模具的形状和尺寸,可以得到不同形状和尺寸的制品。

3.4 后处理在金属塑性成形完成之后,通常需要进行一些后处理工艺。

包括去除表面的氧化物、清洗、退火等。

后处理的目的是提高产品的表面质量和性能。

4. 常见的金属塑性成形方法4.1 冷镦成形冷镦成形是一种将金属材料通过冷镦机进行挤压、拉伸、弯曲等操作,使其发生塑性变形的方法。

wwei材料成形技术(塑性)1

wwei材料成形技术(塑性)1

二、金属塑性成形的基本生产方式 1、轧制:金属毛坯在两个轧辊之间受压变形而形成各 种产品的成形工艺,图6-1。 2、挤压:金属毛坯在挤压模内受压被挤出模孔而变形 的成形工艺,图6-3。 3、拉拔:将金属坯料拉过拉拔模的模孔而变形的成形 工艺,图6-5。 4、自由锻:金属毛坯在上下砥铁间受冲击或压力而变 形的成形工艺,图6-7(a)。 5、模锻:金属坯料在既有一定形状的锻模模膛内受击 力或压力而变形的成形工艺,图6-7(b) 。
塑性愈大、变形抗力愈小,材料的可锻性愈好
4、可锻性的影响因素
(1)化学成分 A、碳钢中碳和杂质元素的影响
C、H、P(冷脆)、S (热脆) B、合金元素的影响
塑性降低,变形抗力提高。
(2)内部组织
单相组织(纯金属或者固溶体)比多相组织塑性好。 细晶组织比粗晶组织好; 等轴晶比柱状晶好。 面心立方结构的可锻性最好,体心立方结构次之, 而密排六方结构可锻性最差。
冲击力和压力
锻压是锻造与冲压的总称。
★锻造:在加压设备及工(模)具作用下,使坯料、铸锭产生局 部或全部的塑性变形,以获得一定几何尺寸、形状和质量的锻件 的加工方法。锻造通常是在高温(再结晶温度以上)下成形的,
因此也称为金属热变形或热锻。
★锻造特点:1、压密或焊合铸态金属组 织中的缩孔、缩松、空隙、气泡和裂纹。 2、细化晶粒和破碎夹杂物,从而获得一 定的锻造流线组织。因此,与铸态金属 相比,其性能得到了极大的改善。 3、主要用于生产各种重要的、承受重载荷的机器零件或毛坯。 如机床的主轴和齿轮、内燃机的连杆、起重机的吊钩等。 4、高温下金属表面的氧化和冷却收缩等各方面的原因,锻件精度 不高、表面质量不好,加之锻件结构工艺性的制约。
2、晶粒和分布在晶界上的非金属夹杂物ห้องสมุดไป่ตู้沿变形方向被拉长, 但是拉长的晶粒可经再结晶又变成等轴细粒状,而这些夹杂物不能 改变,就以细长线条状保留下来,形成了所谓的纤维组织。 纤维组织的化学稳定性很高,只有经过锻压才能改变其分布方向, 用热处理是不能消除或改变纤维组织形态的。 纤维组织使金属的力学性能具有明显的方向性。

(完整word版)塑性成形方法

(完整word版)塑性成形方法

第五节其它塑性成形方法随着工业的不断发展,人们对金属塑性成形加工生产提出了越来越高的要求,不仅要求生产各种毛坯,而且要求能直接生产出更多的具有较高精度与质量的成品零件.其它塑性成形方法在生产实践中也得到了迅速发展和广泛的应用,例如挤压、拉拔、辊轧、精密模锻、精密冲裁等。

一、挤压挤压:指对挤压模具中的金属锭坯施加强大的压力作用,使其发生塑性变形从挤压模具的模口中流出,或充满凸、凹模型腔,而获得所需形状与尺寸制品的塑性成形方法.挤压法的特点:(1)三向压应力状态,能充分提高金属坯料的塑性,不仅有铜、铝等塑性好的非铁金属,而且碳钢、合金结构钢、不锈钢及工业纯铁等也可以采用挤压工艺成形。

在一定变形量下,某些高碳钢、轴承钢、甚至高速钢等也可以进行挤压成形。

对于要进行轧制或锻造的塑性较差的材料,如钨和钼等,为了改善其组织和性能,也可采用挤压法对锭坯进行开坯。

(2)挤压法可以生产出断面极其复杂的或具有深孔、薄壁以及变断面的零件。

(3)可以实现少、无屑加工,一般尺寸精度为IT8~IT9,表面粗糙度为Ra3。

2~0。

4μ m,从而(4)挤压变形后零件内部的纤维组织连续,基本沿零件外形分布而不被切断,从而提高了金属的力学性能.(5)材料利用率、生产率高;生产方便灵活,易于实现生产过程的自动化.挤压方法的分类:1.根据金属流动方向和凸模运动方向的不同可分为以下四种方式:(1)正挤压金属流动方向与凸模运动方向相同,如图2—69所示。

(2)反挤压金属流动方向与凸模运动方向相反,如图2—70所示.(3)复合挤压金属坯料的一部分流动方向与凸模运动方向相同,另一部分流动方向与凸模运动方向相反,如图2—71所示。

(4)径向挤压金属流动方向与凸模运动方向成90°角,如图2—72所示。

图2-69 正挤压图2—70 反挤压图2—71 复合挤压图2-72 径向挤压2.按照挤压时金属坯料所处的温度不同,可分为热挤压、温挤压和冷挤压三种方式:(1)热挤压变形温度高于金属材料的再结晶温度。

塑性成形第14章塑性加工工艺(轧制挤压)

塑性成形第14章塑性加工工艺(轧制挤压)
用立辊对宽度进行压缩。 3. 冷带钢生产 厚度:0.1~3mm,宽度为100~2000mm 优点:轧制速度高(可达40m/s以上),道次压下率大,产
品表面光洁、板形平直、尺寸精度高和机械性能好。 工艺特点: (1)加工温度低,产生加工硬化,需要中间退火。 (2)采用工艺冷却和润滑 (3)张力轧制
管材轧制
(1)压下量
h h0 h1 h 2R(1 cos)
咬入角 entering angle
D R
O
(2)变形区长度
l2 R2 (R h )2 2
h0
a
A
C
B
l
h1
l Rh (h2 ) Rh 4
b1
b0
tg
R
Rh ( h)
h R
2
h 2R
(3)延伸系数 λ=L1/L0
(4)压下率Biblioteka 表面夹杂暴露在钢材表面上的非金属物质称为 (1)钢坯带来的表面非金属夹杂物。 表面夹杂,一 般呈点状、块状和条状 (2)在加热或轧制过程中,偶然有非金 分布,其颜色有暗红、淡黄、灰白等, 属夹杂韧(如加热炉的耐火材料及炉 机械的粘结在型钢表面上,夹杂脱落 渣等),炉附在钢坯表面上,轧制时 后出现一定深度的凹坑,其大小、形 被压入钢材,冷却经矫直后部分脱落 状无一定规律。
名。例工、槽、角钢的腿长、腿短、腰 (2)切深孔切人太深,造成腿长无法消除。 厚、腰薄及一腿长,一腿短。
斜轧穿孔生产管材
板带材轧制
特点:宽厚比(B/H)大 规格:中厚板(中板4~20mm,厚板20~60mm,
特厚板60mm以上) 薄板和带材(0.2~4mm) 极薄带材和箔材(0.001~0.2mm) 技术要求: 尺寸精度、板形、表面光洁度、性能

《塑性成形工艺基础》课件

《塑性成形工艺基础》课件

模具的构成
模具由上模、下模和导向部件等组成,用于实现金属材料的塑性成形。
模具的工艺要求
模具设计需要考虑材料选择、温度控制、表面处理等多个方面的要求。
模具设计的方法
模具设计需要考虑产品形状、材料流动和成型工艺等因素,采用综合方法进行设计。
塑性成形加工工艺
塑性成形加工的流程 塑性成形加工的工艺参数与选择 塑性成形加工的质量控制
应用范围
塑性成形工艺广泛应用于汽车、航空航天、家电等领域,是现代工业的重要组成部分。
塑性变形的基本原理
1 金属的结构和性质
金属材料由多个晶格组 成,塑性变形是晶格滑 移和晶格形变的结果。
2 冷变形与热变形
冷变形在室温下进行, 热变形在高温下进行, 两者具有不同的变形特 点。
3 塑性变形的分类
塑性变形可分为压力加 工、拉伸加工、弯曲加 工和精密成型等多种类 型。
《塑性成形工艺基础》 PPT课件
本课程将介绍塑性成形工艺的基本原理、过程和模具设计,以及该工艺的发 展趋势。让我们一起探索这个令人着迷的领域!
背景介绍
塑性成形工艺的定义
塑性成形是通过施加压力,使金属材料在保持连续性的情况下发生塑性变形的一种制造工艺。
发展历程
塑性成形工艺自古已有,经历了手工操作、机械压力成形到现代数控技术的发展。
塑性成形的基本过程
1
拉伸加工
2
通过拉伸使金属材料变薄或变长,常
见的工艺有拉延、拉具的精细控制实现复杂零件的 成形,如注塑、挤压等。
压力加工
通过施加压力使金属在模具中变形, 包括冲压、锻造等工艺。
弯曲加工
通过施加力使金属材料弯曲或折弯, 常见的工艺有折弯、卷弯等。
塑性成形模具设计

《塑性成形工艺》PPT课件

《塑性成形工艺》PPT课件

轴类锻件结构
第二节 自由锻
2、尽量减少辅助结构 不设计加强筋、凸台
(a)工艺性差的结构 (b)工艺性好的结构
盘类锻件结构
第二节 自由锻
3、不能有空间曲线
(a)工艺性差的结构 (b)工艺性好的结构
杆类锻件结构
第二节 自由锻
4、复杂零件可设计成简单零件的组合
(a)工艺性差的结构
(b)工艺性好的结构
加工余量。 (2)锻造公差 在实际生产中,由于各种因素的影响,锻件的实
际尺寸不可能达到锻件的公称尺寸,允许有一定限度的误差,叫做锻 造公差。
(3)余块 为了简化锻件外形或根据锻造工艺需要,在零件的某 些地方添加一部分大于余量的金属,这部分附加的金属叫做锻造余块, 简称余块。
第二节 自由锻
第二节 自由锻
材料 钢材 工业纯铜
再结晶温度 480~600 200~270
热锻温度 1250~800 800~600
第一节 压力加工基本原理
锻造比
在塑性成形时,常用锻造比(Y)来表示变形程度 。锻造比的计算公式与变形方式有关,通常用变形 前后的截面比、长度比或高度比来表示:

拔长
y拔=A0/A1=L1/L0

第十三章 压力加工
第一节 压力加工基本原理 第二节 自由锻 第三节 模锻 第四节 板料冲压
第十三章 压力加工
压力加工:使金属坯料在外力作用下产生 塑性变形,以
获得所需形状、尺寸和机械性能的原材料、毛坯和零件的加 工方法。
机械性能高
特点 节省金属
易实现机械化和自动化,生产效率 高
第一节 压力加工基本原理
第一节 压力加工基本原理
三、金属的变形规律
1、体积不变定律: • 由于塑性变形时金属密度的变化很小,可认为

塑性成形工艺技术

塑性成形工艺技术

塑性成形工艺技术塑性成形工艺技术是一种利用热塑性材料在加热软化状态下,通过模具施加一定的力量,在特定的温度和压力条件下,使材料变形成为所需形状的一种工艺技术。

塑性成形工艺技术广泛应用于制造业领域中,如汽车制造、电器制造、日用品制造等。

塑性成形工艺技术的主要流程包括原料选择、加热、成形和冷却等几个步骤。

首先,需要选择适合的热塑性材料作为原料,这些材料具有良好的可塑性和可加工性。

接下来,通过加热使得材料软化,并将其放置在模具中。

在施加一定的压力下,材料逐渐变形成为所需的形状。

最后,冷却过程会使得材料固化并保持所需形状。

塑性成形工艺技术的主要优点是可以制造出复杂的形状和细节,且成本较低。

相对于其他成形工艺,塑性成形工艺技术不需要使用复杂的模具,并且可以一次性制造出整个产品,节省了制造和加工的时间和成本。

此外,塑性成形工艺技术还可以在材料中添加颜色、纹路等特殊效果,使得产品更加美观。

塑性成形工艺技术的应用非常广泛。

在汽车制造中,塑性成形工艺技术可以用于制造车身覆盖件、内饰件等。

在电器制造中,可以用于制造外壳、面板等部件。

在日用品制造中,常常使用塑性成形工艺技术制造塑料杯、碗、筷子等。

当然,塑性成形工艺技术也存在一些限制。

首先,只能使用热塑性材料进行成形,热固性材料无法应用该工艺。

其次,对于一些较大尺寸的产品,可能需要较大的设备和工艺,并且成形过程可能需要较长的时间。

此外,塑性成形工艺技术中还可能出现一些质量问题,如表面缺陷、壁厚不均等。

总结来说,塑性成形工艺技术是一种应用广泛、效率高且成本低的制造工艺。

它不仅可以制造出复杂的形状和细节,还可以满足产品的外观要求。

随着技术的不断进步,塑性成形工艺技术将会在制造业中发挥越来越重要的作用。

材料的塑性成形工艺

材料的塑性成形工艺

材料的塑性成形工艺引言塑性成形是一种常见的材料加工工艺,通过施加力量使材料发生形变,以获得所需的形状和尺寸。

塑性成形工艺包括冷拔、冷加工、锻造、挤压、拉伸等多种方法。

本文将介绍几种常见的材料塑性成形工艺及其特点。

一、冷拔1.1 工艺流程冷拔是一种拉伸加工的方法,主要用于金属材料。

其工艺流程包括以下几个步骤:1.选材:选择合适的原材料进行冷拔加工。

2.加热:将材料加热至适当的温度,以提高其塑性。

3.均质化处理:通过变形和退火等处理方法,使材料组织更加均匀。

4.拉拔:将材料拉伸至所需的形状和尺寸。

5.精整:通过切割、修整等方法,使成品达到要求的尺寸。

1.2 特点冷拔工艺具有以下特点:•成品尺寸精度高,表面质量好。

•可加工各种材料,包括金属和非金属材料。

•可以提高材料的强度和硬度。

二、冷加工2.1 工艺流程冷加工是一种在常温下进行的成形加工方法,常用于金属材料。

其工艺流程包括以下几个步骤:1.选材:选择合适的原材料进行冷加工。

2.切削:通过刀具对材料进行切削加工。

3.成型:通过冷加工设备对材料进行压制、弯曲、卷曲等成型操作。

4.精整:通过修整、研磨等方法,使成品达到要求的尺寸和表面质量。

2.2 特点冷加工具有以下特点:•成品尺寸精度高,表面质量好。

•可以加工多种材料,包括金属和非金属材料。

•部件形状复杂度高,适用于精密加工要求较高的产品。

三、锻造3.1 工艺流程锻造是一种通过施加压力将材料压制成所需形状的工艺方法。

其工艺流程包括以下几个步骤:1.选材:选择合适的原材料进行锻造。

2.加热:将材料加热至适当的温度,以提高其塑性。

3.锻造:通过锻造设备施加压力,将材料压制成所需形状。

4.精整:通过修整、热处理等方法,使成品达到要求的尺寸和性能。

3.2 特点锻造具有以下特点:•可以加工各种金属材料,包括高温合金和非金属材料。

•成品强度高,韧性好。

•高生产效率,适用于大批量生产。

四、挤压4.1 工艺流程挤压是一种将材料挤压成所需截面形状的塑性成形工艺。

塑性成形原理知识点

塑性成形原理知识点

塑性成形原理知识点塑性成形是一种利用金属材料的塑性变形能力,在一定的条件下通过压力使金属材料发生塑性变形,从而获得所需形状的加工方法。

塑性成形技术是金属加工工艺中的重要分支,广泛应用于汽车、航空、航天、电子、家电、建筑等工业领域。

1.塑性变形:在塑性成形过程中,金属材料通过外力作用下的塑性变形使其形状发生改变。

塑性变形是金属材料中原子的相对位置发生改变而引起的宏观形变,其主要表现为材料的延伸、压缩、弯曲等。

塑性变形是金属材料的塑性性质所决定的,不同材料的塑性性能不同。

2.应力-应变关系:金属材料受到外力作用时,材料内部会产生应力,应力与应变之间存在一定的关系。

在塑性成形过程中,材料会发生塑性变形,使其产生应变。

应力-应变关系是描述材料塑性变形过程中应力和应变之间关系的数学模型,常用的模型有胡克定律模型和流变模型。

3.材料流动:塑性成形过程中,材料会发生流动从而获得所需的形状。

材料流动是指塑性材料在外力作用下,发生内部原子的相对位移和重新组合,从而使整个材料的结构发生变化。

材料流动是实现塑性成形的关键,其流动性能决定了成形工艺的可行性和成品质量。

4.成形工艺:塑性成形工艺是金属材料经过一系列工艺操作,通过压力使其发生塑性变形,最终获得所需形状的过程。

常见的塑性成形工艺包括冲压、拉伸、挤压、压铸、滚压等。

不同工艺适用于不同形状的零件,根据材料的性质和零件的要求选择合适的成形工艺。

5.工艺过程控制:塑性成形过程中,需要对各个环节进行控制以确保成品质量。

工艺过程控制包括工艺参数的选择、设备的调整、模具结构的设计等。

在塑性成形过程中,要控制好温度、应力、应变速率等因素,以避免过大的变形应力引起材料的断裂或变形过大导致零件尺寸偏差。

塑性成形技术不仅可以实现复杂形状的制造,而且可以提高材料的强度和刚度,降低材料的质量,节省原材料和能源。

因此,塑性成形技术在现代工业生产中具有重要的地位和应用价值。

塑性成形工艺(挤压与拉拔)

塑性成形工艺(挤压与拉拔)
(2)将锭坯表面的氧化物、油污等集聚 到锭坯的中心部位。
(3)进入制品内部,形成中心缩尾。
随着挤压过程进一步进行,径向流动 的金属无法满足中心部位的短缺,于是在 制品中心尾部出现了漏斗状的空缺,即中 空缩尾。
B、环形缩尾
(1)随着挤压过程进行,堆积在挤压 垫与挤压筒角落部位中的带有各种缺陷 和污物的金属会越来越多。
变形(见图2-2)。其变形指数——用填
充系数λc 来表示:
λc =F0 / Fp
(2-1)
2.1.1.2挤压力的变化规律
随着挤压杆的向前移动,挤压力呈直
线上升。
图2-2 填充挤压时金属的变形
2.1.1.3金属受力分析(见图2-3) 图2-3 填充挤压阶段锭坯的受力状态
随着填充过程中锭坯直径增大,在锭 坯的表面层出现了阻碍其自由增大的周 向附加拉应力。
e、挤压速度v 挤压速度快,死区小;
f、金属的变形抗力σs 金属变形抗力 大,死区大;
g、 模孔位置 在多孔模挤压时,模 孔靠近挤压筒内壁,死区减小。
(4)死区的作用:
可阻碍锭坯表面的杂质、氧化物、偏析 瘤、灰尘及表面缺陷进入变形区压缩锥 而流入制品表面,提高制品表面质量。
B 、后端难变形区 产生原因:挤压垫的冷却和摩擦作用。
难点:挤压时的应力与变形分析,挤压缩 尾的产生机理,反向挤压时的挤压力变化 分析,反向挤压时的缩尾、纺锤体核组织、 粗晶芯与粗晶环 。
重要概念:填充系数,挤压比,难变形 区,死区,挤压缩尾,纺锤体核组织, 粗晶芯,变形区压缩锥。
目的和要求:掌握挤压过程三个阶段的 含义、挤压力的变化规律;填充系数的 意义及其对制品质量的影响;挤压时金 属的变形流动特点;挤压缩尾的概念及 产生原因。

二篇金属的塑性成形工艺

二篇金属的塑性成形工艺
利用此定律,调整某个方向流动阻力,改变金属在某些方向的流动量→成形合理。
<图6-10)最小阻力定律示意图
在镦粗中,此定律也称——最小周边法则
二、塑性变形前后体积不变的假设
弹性变形——考虑体积变化
塑性变形——假设体积不变<由于金属材料连续,且致密,体积变化很微小,可忽略)
此假设+最小阻力定律——成形时金属流动模型
落料——被分离的部分为成品,而周边是废料
冲孔——被分离的部分为废料,而周边是成品
如:平面垫圈:制取外形——落料
制取内孔——冲孔
1.冲裁变形过程
冲裁件质量、冲裁模结构与冲裁时板料变形过程关系密切,
其过程分三个阶段
<1)弹性变形阶段<图8-1)
冲头接触板料后,继续向下运动的初始阶段,使板料产生弹性压缩、拉伸与弯曲等变形,板料中应力迅速增大。此时,凸模下的材料略有弯曲,凹模上的材料则向上翘,间隙↑→弯曲、上翘↑SixE2yXPq5
§6-1塑性变形理论及假设
一、最小阻力定律
金属塑性成形问题实质,金属塑性流动,影响金属流动的因素十分复杂<定量很困难)。应用最小阻力定律——定性分析<质点流动方向)p1EanqFDPw
最小阻力定律——受外力作用,金属发生塑性变形时,如果金属颗粒在几个方向上都可移动,那么金属颗粒就沿着阻力最小的方向移动。DXDiTa9E3d
[注]按变形的模膛数:单膛锻模<如齿轮坯)
多膛锻模<图7-7)
§7-3锤上模锻成形工艺设计
模锻生产的工艺规程包括:制订锻件图、计算坯料尺寸、确定模锻工步<选模膛)、选择设备及安排修整工序等。
最主要是锻件图的制定和模锻工步的确定
一、模锻锻件图的制定

机械制造基础-塑性成形

机械制造基础-塑性成形

机械制造基础-塑性成形引言塑性成形是机械制造中常用的一种方法,通过对金属材料施加压力,使其发生塑性变形,从而得到所需的形状和尺寸。

塑性成形广泛应用于汽车制造、航空航天、建筑等领域。

本文将介绍塑性成形的基本原理、常见的塑性成形工艺以及其在实际生产中的应用。

塑性成形的基本原理塑性成形是通过施加力量使金属材料发生塑性变形的一种加工方法。

金属材料在受到外力作用下会发生原子间的位移和形变,从而改变其晶体结构和形状。

塑性成形的基本原理可以归结为以下几个方面:1.塑性变形特性:金属材料具有较高的延展性和塑性,可以在外力作用下进行塑性变形,而不断变形后回弹至初始形状。

这种特性使得金属材料适合进行塑性成形加工。

2.金属的流动性:金属材料具有较好的流动性,即在塑性变形过程中,金属材料可以顺应应力分布的变化,在不同部位形成不同的变形形状。

这种流动性使得金属材料能够通过塑性成形加工来实现复杂的形状和结构。

3.应力与应变的关系:金属材料在受到外力作用下,会引起其内部产生应力,从而引起形变。

应力与应变之间的关系可以通过应力-应变曲线来表示,该曲线可以描述金属材料在不同应力下的塑性变形特性。

常见的塑性成形工艺塑性成形工艺根据其加工原理和特点的不同,可以分为压力成形和非压力成形两大类。

压力成形是通过施加压力使金属材料发生塑性变形的一种成形方式。

常见的压力成形工艺包括冲压、压铸、锻造等。

1.冲压:冲压是通过将金属材料放置在冲压模具中,并施加较大的冲击力使金属材料在模具中发生塑性变形。

冲压工艺可以实现高质量的金属零件加工,并能够高效率地进行批量生产。

2.压铸:压铸是通过将熔化的金属材料注入到压铸模具中,并施加高压将金属材料填充至模具中的空腔中,然后冷却固化,最终得到所需的零件形状。

压铸工艺适用于制造复杂形状的零件,可以获得高度精密的产品。

3.锻造:锻造是通过施加压力使金属材料发生塑性变形的一种成形方式。

锻造工艺分为冷锻和热锻两种。

精选塑性成形的特点与基本生产方式

精选塑性成形的特点与基本生产方式
2). 弯曲时容易出现的问题
②裂纹 板料越厚,内弯曲半径越小,拉应力越大,越容易弯裂。故变形程度不能过大,rmin=(0.25~1)t 。 弯曲线与材料的纤维线垂直时, 允许的rmin较小;若弯曲线与纤维线平行(重合)时, 则易开裂。
2). 弯曲时容易出锻造:生产各种重要的,承受重载荷的零件毛坯,如:机床主轴、齿轮、炮筒、枪管、起重机吊钩等。冲压:加工板料、垫圈、铆钉、支架、合页等。轧制、拉拔、挤压:板材、管材和线材。
1. 冷变形强化(加工硬化): 冷变形时,随着变形程度的增加,金属材料的强度、硬度↑,塑性和韧性↓。 利弊:提高强度,但塑性下降,进一步加工造成困难,需中间退火处理。 纯金属、A体不锈钢、形变铝合金的强化,用冷轧、冷挤、冷拔或冷冲压加工。
(二).锤上模锻
(1)锤上模锻设备:锤上模锻所用设备有蒸汽—空气锤、高速锤等。(2)锻模结构:锤上模锻所用的锻模都由上模和下模组成。如图所示。
(2)锻模结构
1-锤头 2-上模 3-飞边槽 4-下模 5-模垫 6、7、10-紧固楔铁 8-分模面 9-模膛
(3)设计模锻斜度 外壁斜度:5~7 0 内壁斜度:7~12 0
(4)设计模锻圆角 外圆角:r = 1.5~12mm 内圆角:R=(2~3)r
例:绘制齿轮坯模锻件图
零件图
确定分模面
确定加工余量
设计模锻斜度
3.胎模锻的种类
(1)扣模:来生产长杆,非回转体锻件。(2)套筒模:锻模为圆筒形,生产齿轮、法兰、盘等。(4)合模:由上模和下模组成。
精密模锻 play
锻压生产线 play
塑性成形作业一1.自由锻和模锻的特点和应用范围有什么不同?2.预锻模膛和终锻模膛的作用是什么?二者在结 构上有何区别?

金属塑性成形工艺基础培训讲座

金属塑性成形工艺基础培训讲座
塑性成形方法包括:锻造、冲压、挤压、拉拔、弯曲、旋压等。
塑性成形工艺的特点包括:生产效率高、材料利用率高、产品质量好等。
塑性成形分类
锻造:通过锤击、压力机等设备将 金属材料变形成所需形状
冲压:利用模具将金属材料冲压成 所需形状
挤压:通过挤压机将金属材料挤压 成所需形状
拉拔:通过拉拔机将金属材料拉拔 成所需形状
飞机制造:广泛应用于飞机机身、机翼、发动机等部件的制造 火箭制造:应用于火箭发动机、燃料箱、推进器等部件的制造 卫星制造:应用于卫星外壳、太阳能电池板、天线等部件的制造 空间站制造:应用于空间站外壳、太阳能电池板、对接口等部件的制造
能源领域的应用
风力发电:叶片、塔筒等部件的制造
水力发电:水轮机、水泵等部件的制 造
04
金属塑性成形设备
自由锻设备
自由锻设备可以生产各种形 状和尺寸的金属零件
自由锻设备是一种用于金属 塑性成形的设备
自由锻设备的主要优点是生 产效率高、产品质量好
自由锻设备的主要缺点是设 备投资大、生产成本高
模锻设备
模锻设备类型:包括模锻锤、模 锻压力机、模锻液压机等
模锻设备应用:广泛应用于汽车、 航空航天、船舶、机械制造等领 域
弯曲:通过弯曲机将金属材料弯曲 成所需形状
旋压:通过旋压机将金属材料旋压 成所需形状
03
金属塑性成形工艺
自由锻工艺
自由锻是一种利 用锻锤、压力机 等设备,将金属 坯料锻造成所需 形状的工艺。
自由锻工艺可以 生产出各种形状 复杂的锻件,如 齿轮、轴类、连 杆等。
自由锻工艺的优 点是生产效率高, 可以生产出高质 量的锻件。
应用领域:汽车、航空航天、机 械制造、电子等行业
添加标题

塑性成形重要知识点总结

塑性成形重要知识点总结

塑性成形重要知识点总结塑性成形是一种通过应变作用将金属材料变形为所需形状的加工方法,也是金属加工领域中的一种重要工艺。

以下是塑性成形的重要知识点总结。

1.塑性成形的原理塑性成形是通过施加外力使金属材料发生塑性变形,使其形状和尺寸发生改变。

塑性成形的原理包括应力与应变关系、材料的流动规律和力学模型等。

2.塑性成形的分类塑性成形可以根据加工过程的不同进行分类,主要包括拉伸、压缩、挤压、弯曲、冲压等。

不同的成形方法适用于不同的材料和形状要求。

3.塑性成形的设备塑性成形通常需要使用专门的设备进行加工,包括拉伸机、压力机、挤压机、弯曲机、冲床等。

这些设备提供必要的力量和变形条件,使金属材料发生塑性变形。

4.金属材料的选择不同的金属材料具有不同的塑性特性,因此在塑性成形中需要根据不同的应用需求选择合适的材料。

常用的金属材料包括钢、铝、铜、镁等。

5.塑性成形的加工方法塑性成形的加工方法非常多样,包括冲压、拉伸、挤压、压铸、锻造等。

不同的加工方法适用于不同的材料和形状要求,可以实现复杂的金属成形。

6.塑性成形的工艺参数塑性成形的工艺参数对成形质量和效率具有重要影响。

常见的工艺参数包括温度、应变速率、应力等。

合理的工艺参数可以提高成形质量和生产效率。

7.塑性成形的变形行为塑性成形过程中金属材料的变形行为是研究的重点之一、金属材料的变形行为包括弹性变形、塑性变形和弹变回复等,通常通过应力-应变曲线来描述。

8.塑性成形的缺陷与控制塑性成形过程中可能发生一些缺陷,如裂纹、皱纹、细化等。

为了控制这些缺陷,需要采取合适的工艺和工艺措施,如加热、模具设计优化等。

9.塑性成形的优点与局限塑性成形具有成本低、加工效率高、灵活性好等优点,可以制造出复杂的金属零件。

然而,塑性成形也存在一些局限性,如对材料性能有一定要求、成形限制等。

10.塑性成形的应用领域塑性成形广泛应用于各个领域,如汽车制造、航空航天、电子、家电等。

不仅可以生产大批量的零部件,还可以满足不同产品的形状和性能要求。

第六章金属塑性成形工艺理论基础

第六章金属塑性成形工艺理论基础
2)金属板料经冷变形强化,获得一定的几何形 状后,结构轻巧,强度和刚度较高。
3)冲压件尺寸精度高,质量稳定,互换性好, 一般不需机械加工即可作零件使用。 4)冲压生产操作简单,生产率高,便于实现机 械化和自动化。
5)可以冲压形状复杂的零件,废料少。
6)冲压模具结构复杂,精度要求高,制造费用 高,只适用于大批量生产。
坯料在锻造过程中,除与上下抵铁或其它辅 助工具接触的部分表面外,都是自由表面,变形 不受限制,锻件的形状和尺寸靠锻工的技术来保 证,所用设备与工具通用性强。
自由锻主要用于单件、小批生产,也是生产 大型锻件的唯一方法。
1) 自由锻设备
空气锤 它由电动机直接驱动,打击速度快,锤击能量小,适
用于小型锻件;65~750Kg
挤压成形是使坯料在外力作用下,使模具内的金属坯 料产生定向塑性变形,并通过模具上的孔型,而获得 具有一定形状和尺寸的零件的加工方法。
图6-3 挤压
挤压的优点:
1)可提高成形零件的尺寸精度,并减小表面粗糙 度。 2)具有较高的生产率,并可提高材料的利用率。 3)提高零件的力学性能。 4)挤压可生产形状复杂的管材、型材及零件。
3)精整工序:修整锻件的最后尺寸和形状,消除表面的不 平和歪扭,使锻件达到图纸要求的工序。如修整鼓形、平 整端面、校直弯曲。
3)自由锻的特点
优点:
1)自由锻使用工具简单,不需要造价昂贵的模具;
2)可锻造各种重量的锻件,对大型锻件,它是唯一方法
3)由于自由锻的每次锻击坯料只产生局部变形,变形金属 的流动阻力也小,故同重量的锻件,自由锻比模锻所需的 设备吨位小。
实例:
当采用棒料直接经切削加工制造螺钉时,螺钉头部与 杆部的纤维被切断,不能连贯起来,受力时产生的切应力 顺着纤维方向,故螺钉的承载能力较弱(如图示 )。

塑性成形第17章塑性加工工艺(新技术

塑性成形第17章塑性加工工艺(新技术
塑性加工工艺
塑性加工新技术及发展趋势
塑性加工的一般情况
塑性加工过程是在外力(载荷)和一定的加载方式、 加载速度、约束条件、几何形状、接触摩擦条件、温 度场等作用下对材料进行“力”处理和“热处理”的 过程,使材料发生所希望的几何形状的变化(成形) 与组织性能的变化。
塑性加工具有高效、优质、低耗等特点,是材料加工 和零部件制造的重要手段。据粗略估计,有75%的零 件毛坯和50%的精加工零件是采用塑性成形的方式完 成的。
塑性加工新技术
柔性快速制造技术:无模多点成形和数控渐进 成形,借助于高度可调整的基本体群构成离散 的上、下工具表面,代替传统的上、下模具进 行板材的曲面成形;
复合材料塑性成形技术:双金属复合、铝塑复 合板、管、叠层材料成形;
复合加工方式的技术:连续挤压、连续铸挤、 连铸连轧和连续铸轧等。
新能源的利用---- 激光
改变超声波强度,可改变坯料变形阻力和设备载荷,大 幅度提高产品的质量和材料成形极限;
管材、线材和棒材的拉拔成形、板材拉深成形都可以引 入超声波,形成塑性成形新技术,成为一些特殊新材料 的有效加工途径。
功率超声波成形
柔性成形技术
以软介质(主要是各种液体)代替半边刚性模具, 减小模具制造成本;
显著地提高材料的抗疲劳和抗应力腐蚀等性能,
激光冲击成形原理
吸收层:黑漆、石墨、铝箔 约束层:水、树脂、硅胶
单次激光冲击下板料的典型成形截面
新能源的利用----电磁场力
利用金属材料在交变电磁场中产生感生电流(涡流), 感生电流又受到电磁场的作用力,当电磁压力达到材料 的屈服强度时,金属材料将发生塑性变形;
凹模的高覆模性, 可控性好:单脉冲冲压变形可控在0.035mm,最大变形可控在若
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

目录第1章工艺分析......................................................... - 1 - 1.1设计任务书 ........................................................ - 1 - 1.2结构形状 .......................................................... - 1 - 1.3尺寸精度与粗糙度 .................................................. - 1 - 1.4 10钢材料性能 ..................................................... - 2 - 1.5工序 .............................................................. - 2 - 第2章生产方案制定..................................................... - 3 - 第3章模具类型与结构形式............................................... - 4 - 3.1 送料方式:........................................................ - 4 - 3.2 定位方式.......................................................... - 4 -3.2.1 横向定位方式.................................................. - 4 -3.2.2 纵向定位装置.................................................. - 4 - 3.3 出料方式.......................................................... - 5 - 3.4卸料方式 .......................................................... - 5 - 3.5推件装置 .......................................................... - 5 - 3.6导向装置 .......................................................... - 5 - 第4章工艺计算......................................................... - 6 -4.1排样设计 .......................................................... - 6 -4.1.1.方案一直排式................................................. - 6 -4.1.2 方案二多排................................................... - 9 - 4.2压力中心的确定 ................................................... - 10 - 4.3冲压力与压力机的选择 ............................................. - 11 -4.3.1冲裁力的计算.................................................. - 11 -4.3.2压力机的选取.................................................. - 12 - 4.4刃口尺寸的计算 .................................................. - 12 -摘要本次课程设计对简单的冲裁件的设计。

在次设计中,我们成功的完成了本次课程设计任务。

本次设计过程包括对材料性能的分析、生产方案的制定、模具类型及结构的选择、排样的设计,冲压力的计算及刃口的设计等。

综合运用和巩固冲压工艺及有关课程的基本理论和专业知识,培养我们从事冲压工艺设计的初步能力,为后续毕业设计和实际工作打下良好基础。

学习冲压工艺的一般方法,了解和掌握冲压工艺的设计过程和计算方法,培养正确的设计思想,计算,分析问题和解决问题的能力。

通过本次设计,我们还学会运用标准、规范、手册、图册和查阅有关技术资料等,培养工艺设计的基本技能。

在设计中培养学生养成认真负责、踏实细致的工作作风和严谨的科学态度,强化质量意识和时间观念,培养良好的职业习惯。

本次设计大致按一下步骤设计:零件的工艺性分析,生产方案的确定,确定模具类型与结构形式,工艺计算。

冲裁件按照IT14级计算,凹、凸模按照分别加工,冲裁件剪断面的粗糙度可以选择Ra12.5μm。

该冲裁件需要大批量生产且结构简单,故采用级进模自动送料方式生产。

横向定位方式采用挡料板,无侧压装置,纵向定位方式采用固定挡料销、始用挡料销和导正销。

卸料方式采用固定卸料方式,出料方式采用下出料方式,推件装置采用刚性推件装置。

导向方式采用导柱和导套排样方式采用多排方式。

落料凹模刃口尺寸φ33.8125+0.0250mm,凸模φ33.5665-0.0160mm冲孔凸模尺寸φ18.135-0.0450mm, φ4.09-0.0080mm,凹模φ18.318+0.0180mm,φ44.336+0.0120mm,孔心距17±0.0375mm,压力中心坐标(0.179,0),压力机的型号为JH21-25开式固定台压力机。

设计的不足:多排冲裁时,冲裁完一边时,需要将条料翻转,需要重新定位送进关键词级进模;凸模;凹模;冲孔;落料铜陵学院课程设计第1章工艺分析1.1设计任务书产品:零件三批量:大批量材料:10钢厚度:2mm图1-1 冲裁零件图1.2结构形状该冲裁件为圆环形,结构简单,左右对称,尺寸较小,无悬臂。

因为其上冲孔最小直径为4mm,尺寸较小故采用有导向凸模冲孔。

查表1-1可得4mm>0.35t,孔到边缘的最小距离为2mm=1t。

故适合冲裁。

1.3尺寸精度与粗糙度因为此冲裁件结构简单,精度要求不高,故采用经济精度,一般为IT12~IT14。

这里选选IT12级精度,使用普通冲裁即可达到零件图样要求。

粗糙度要求也不高,故选Ra12.5μm较合适。

第三组塑性成型工艺(冲压)表1-2公差等级表查公差表1-2得Φ4+0.180 Φ18+0.18φ34-0.251.4 10钢材料性能屈服极限σb=335MP 屈服强度σs=205MP 剪切强度τb=255~333MP10钢塑性好,韧性很好,易冷热加工成型,正火或冷加工后切削加工性能好。

故适合冲裁。

1.5工序冲孔、落料铜陵学院课程设计第2章生产方案制定该工件包括落料、冲孔两个基本工序,可以有三种工艺方案。

方案一:先冲孔,后落料。

采用单工序模生产。

方案二:冲孔﹣落料级进冲压。

采用级进模生产。

方案三:落料﹣冲孔复合冲压。

采用复合模生产。

表2-1单工序模、级进模和复合模的特点比较综上所述:由于该冲裁件结构简单,大批量生产,生产精度不算高,故采用方案二,级进模较适合。

第三组塑性成型工艺(冲压)第3章模具类型与结构形式3.1 送料方式:有自动、半自动及手动送料方式三种。

因为冲裁件是大批量生产,要保证生产率和安全性,选用自动送料方式。

又因为级进模生产中材料要求为条料或卷料,辊轴自动送料装置能用于很薄的条、带、卷料的送料,保证材料全长被利用。

故采用辊轴自动送料送料装置。

3.2 定位方式3.2.1 横向定位方式(1)导料板:在固定卸料式冲模和级进冲裁模中,条料的横向定位使用导料板。

(2)导料销:在复合冲裁模上,通常采用导料销进行导料(3)侧压装置:自动送料的模具不宜采用侧压装置。

由于采用级进模生产,采用自动送料方式,所以横向定位采用导料板定位。

3.2.2 纵向定位装置有固定挡料销、活动挡料销、回带式挡料装置、始用挡料装置、定位板和定位销。

导正销和侧刃定距。

(1)固定挡料销:主要用在落料模与顺装复合模上。

如果模具为弹性卸料方式,卸料板上要开辟小孔,以防止卸料板与挡料销碰撞。

(2)活动挡料销:通常安装在倒装落料模或倒装复合模的弹压卸料版上。

(3)回带式挡料装置,每次送料必须用搭边撞击挡料销,因此板料不能太薄,一般不应小于0.8mm且软铝板也不适用侧刃定距:对材料利用率较低。

(4)始用挡料装置:每增加一个工位就需要增加一个始用挡料装置,使操作方便(5)定位板和定位销:定位销和定位板一般用于快料,单个毛坯和工序件的定位所以选固定挡料销、始用挡料装置和导正销。

(6)导正销:定位精度高,多用于连续模中。

(7)侧刃定距:侧刃是用来切去条料旁侧少量材料而达到挡料的目的,条料边缘处会出现毛刺。

综上所述,采用固定挡料销作为条料的纵向定位,始用导料装置进行首件定位,导正销来提高精度。

故采用固定挡料销、始用导料装置和导正销。

,铜陵学院课程设计3.3 出料方式下出料。

级进模下出料方式比较安全,适用起来比较方便,便于收集落料件和冲孔废料。

3.4卸料方式有固定卸料装置,和弹性卸料装置。

固定卸料装置:卸料力大,卸料可靠。

因此,适合冲裁板料较厚(大于0.5mm)、平面度要求不很高的冲裁件。

弹性卸料装置:卸料力较小,但它既起卸料作用又起压料作用,所得冲裁件质量较好,平面度较高。

因此,质量要求较高的冲裁件或薄板冲裁(t<1.5mm)宜采用弹压卸料置。

所以选用固定卸料装置。

3.5推件装置有刚性和弹性两种。

刚性推件装置:推件力大,工作可靠,应用十分广泛弹性推件装置,用于板料较薄且平直度要求较高的冲裁件。

对于该冲裁件,宜选用刚性推件装置。

3.6导向装置方案一:导板式导向,导板导向装置分为固定导板和弹压导板两种。

方案二:导柱导套式导向装置,(1)采用中间导柱模架,导柱分布在矩形凹模的对称中心线上,两个导柱的直径不同,可避免上模与下模装错而发生啃模事件。

适用于单工序模和工位少的级进模。

(2)采用后侧导柱模架,其优点是工作面敞开,适用大件边缘冲裁,其缺点是刚性与安全性最差,工作不稳定,常用于小型冲模。

(3)采用对角导柱模架,导柱分布在举行凹模的对角线上,既可以横向送料又可以纵向送料。

相关文档
最新文档