统计学第11章习题

合集下载

贾俊平《统计学》章节题库-第十一章至第十二章(圣才出品)

贾俊平《统计学》章节题库-第十一章至第十二章(圣才出品)
2 / 88
圣才电子书 十万种考研考证电子书、题库视频学习平台

5.根据下面的散点图,可以判断两个变量之间存在( )。
A.正线性相关关系 B.负线性相关关系 C.非线性关系 D.函数关系 【答案】B 【解析】在线性相关中,若两个变量的变动方向相反,一个变量的数值增加,另一个变 量的数值随之减少,或一个变量的数值减少,另一个变量的数值随之增加,则称为负线性相 关关系。
1 / 88
圣才电子书 十万种考研考证电子书、题库视频学习平台

3.下面的假定中,哪个属于相关分析中的假定( )。 A.两个变量之间是非线性关系 B.两个变量都是随机变量 C.自变量是随机变量,因变量不是随机变量 D.一个变量的数值增大,另一个变量的数值也应增大 【答案】B 【解析】在进行相关分析时,对总体主要有以下两个假定:①两个变量之间是线性关系; ②两个变量都是随机变量。
【答案】C 【解析】在线性相关中,若两个变量的变动方向相反,一个变量的数值增加,另一个变
5 / 88
圣才电子书 十万种考研考证电子书、题库视频学习平台

量的数值随之减少,或一个变量的数值减少,另一个变量的数值随之增加,即 x 值增大时 y 值随之变小,或 x 值变小时 y 值随之增大,则称为负相关。
12.如果相关系数 r=0,则表明两个变量之间( )。 A.相关程度很低 B.不存在任何关系 C.不存在线性相关关系 D.存在非线性相关关系 【答案】C 【解析】相关系数是根据样本数据计算的度量两个变量之间线性关系强度的统计量。如 果相关系数 r=0,说明两个变量之间不存在线性相关关系。
13.设产品产量与产品单位成本之间的线性相关系数为-0.87,这说明二者之间存在着 ( )。
2.下面的各问题中,哪个不是相关分析要解决的问题( )。 A.判断变量之间是否存在关系 B.判断一个变量数值的变化对另一个变量的影响 C.描述变量之间的关系强度 D.判断样本所反映的变量之间的关系能否代表总体变量之间的关系 【答案】B 【解析】相关分析就是对两个变量之间线性关系的描述与度量,它主要解决的问题包括: ①变量之间是否存在关系;②如果存在关系,它们之间是什么样的关系;③变量之间的关系 强度如何;④样本所反映的变量之间的关系能否代表总体变量之间的关系。

统计学人教版第五版7,8,10,11,13,14章课后题答案

统计学人教版第五版7,8,10,11,13,14章课后题答案

统计学复习笔记第七章 参数估计一、 思考题1. 解释估计量和估计值在参数估计中,用来估计总体参数的统计量称为估计量。

估计量也是随机变量。

如样本均值,样本比例、样本方差等。

根据一个具体的样本计算出来的估计量的数值称为估计值。

2. 简述评价估计量好坏的标准(1)无偏性:是指估计量抽样分布的期望值等于被估计的总体参数。

(2)有效性:是指估计量的方差尽可能小。

对同一总体参数的两个无偏估计量,有更小方差的估计量更有效。

(3)一致性:是指随着样本量的增大,点估计量的值越来越接近被估总体的参数。

3. 怎样理解置信区间在区间估计中,由样本统计量所构造的总体参数的估计区间称为置信区间。

置信区间的论述是由区间和置信度两部分组成。

有些新闻媒体报道一些调查结果只给出百分比和误差(即置信区间),并不说明置信度,也不给出被调查的人数,这是不负责的表现。

因为降低置信度可以使置信区间变窄(显得“精确”),有误导读者之嫌。

在公布调查结果时给出被调查人数是负责任的表现。

这样则可以由此推算出置信度(由后面给出的公式),反之亦然。

4. 解释95%的置信区间的含义是什么置信区间95%仅仅描述用来构造该区间上下界的统计量(是随机的)覆盖总体参数的概率。

也就是说,无穷次重复抽样所得到的所有区间中有95%(的区间)包含参数。

不要认为由某一样本数据得到总体参数的某一个95%置信区间,就以为该区间以0.95的概率覆盖总体参数。

5. 简述样本量与置信水平、总体方差、估计误差的关系。

1. 估计总体均值时样本量n 为2. 样本量n 与置信水平1-α、总体方差、估计误差E 之间的关系为 其中: 2222α2222)(E z n σα=n z E σα2=▪ 与置信水平成正比,在其他条件不变的情况下,置信水平越大,所需要的样本量越大;▪ 与总体方差成正比,总体的差异越大,所要求的样本量也越大;▪ 与与总体方差成正比,样本量与估计误差的平方成反比,即可以接受的估计误差的平方越大,所需的样本量越小。

管理统计学习题参考答案第十一章

管理统计学习题参考答案第十一章

十一章1. 解:回归分析是确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法,运用十分广泛。

回归分析按照涉及的变量的多少,分为一元回归和多元回归分析;在线性回归中,按照因变量的多少,可分为简单回归分析和多重回归分析;按照自变量和因变量之间的关系类型,可分为线性回归分析和非线性回归分析。

如果在回归分析中,只包括一个自变量和一个因变量,且二者的关系可用一条直线近似表示,这种回归分析称为一元线性回归分析。

如果回归分析中包括两个或两个以上的自变量,且自变量之间存在线性相关,则称为多元线性回归分析。

相关分析,相关分析是研究现象之间是否存在某种依存关系,并对具体有依存关系的现象探讨其相关方向以及相关程度,是研究随机变量之间的相关关系的一种统计方法。

相关分析和回归分析是研究客观现象之间数量联系的重要统计方法。

既可以从描述统计的角度,也可以从推断统计的角度来说明。

所谓相关分析,就是用一个指标来表明现象间相互依存关系的密切程度。

所谓回归分析,就是根据相关关系的具体形态,选择一个合适的数学模型,来近似地表达变量间的平均变化关系。

它们具有共同的研究对象,在具体应用时,相关分析需要依靠回归分析来表明现象数量相关的具体形式,而回归分析则需要依靠相关分析来表明现象数量变化的相关程度。

只有当变量之间存在着高度相关时,进行回归分析寻求其相关的具体形式才有意义。

由于相关分析不能指出变量间相互关系的具体形式,所以回归分析要对具有相关关系的变量之间的数量联系进行测定,从而为估算和预测提供了一个重要的方法。

在有关管理问题的定量分析中,推断统计加具有更加广泛的应用价值。

需要指出的是,相关分析和回归分析只是定量分析的手段。

通过相关与回归分析,虽然可以从数量上反映现象之间的联系形式及其密切程度,但是现象内在联系的判断和因果关系的确定,必须以有关学科的理论为指导,结合专业知识和实际经验进行分析研究,才能正确解决。

因此,在应用时要把定性分析和定量分析结合起来,在定性分析的基础上开展定量分析。

医学统计学 -第11章 两变量关联性分析

医学统计学  -第11章  两变量关联性分析
r无度量单位 -1 ≤r≤ 1 r 值为正:正相关
为负:负相关 |r|=1:完全相关
❖ r的正负号表示线性相关的方向 ❖ r绝对值的大小表示线性相关的密切程度,越接近±1, 其线性密切程度越高;越接近0,线性密切程度越低
例11.2 计算例11.1中基础代谢Y与体重X之间样本 相关系数。
由例11-1得
三、相关系数的统计推断
(一)假设检验方法: 查表法
按自由度υ=n-2查r界值表,如果样本相关系数r大于界值,
则具有统计学意义,线性相关关系存在
t检验法
tr
r0 sr
υ=n-2
sr
1 r2 n2
例11-3 继例11-2中算得r=0.964后,试检验相 关是否具有统计学意义
H0 : 0 ,H1 : 0 , =0.05
(x x)2 1144.5771 (y y)2 4645447.0121 (x x)(y y) 70303.2329
r
(x x)(y y)
(x x)2 (y y)2
70303.2329
1144.5771 4645447.0121
0.964
即基础代谢与体重之间的相关系数为0.964,呈正相关, 说明基础代谢随体重的增加而升高
查表法
本例 n=14,r=0.964,按υ=14-2=12,查r界值表,得 r0.05,12=0.532
因此P<0.05,即相关系数有统计学意义,可以认 为基础代谢与体重之间存在线性正相关,且相关系 数为0.964
t检验法
本例 n=14,r=0.964,代入公式
t 0.964 12.559 1 0.9642 14 2
正相关(positive correlation) 散点呈直线变化趋势 Y随X的增加而有增加的趋势 当散点全部在一条直线上时, 为完全正相关

统计学-第11章一元线性回归学习指导

统计学-第11章一元线性回归学习指导

第11章一元线性回归(相关与回归)学习指导一、本章基本知识梳理基本知识点含义或公式相关关系 客观现象之间确实存在的、但在数量表现上不是严格对应的依存关系。

函数关系 客观现象之间确实存在的、而且数量表现上是严格对应的依存关系。

因果关系有相关关系的现象中能够明确其中一种现象(变量)是引起另一种现象(变量)变化的原因,另一种现象是这种现象变化的结果。

起影响作用的现象(变量)称为“自变量”;而受自变量影响发生变动的现象(变量)称为“因变量”。

因果关系∊相关关系,但相关关系中还包括互为因果关系的情况。

相关关系的种类 按涉及变量多少分为单相关、复相关;按相关方向分为正相关、负相关;按相关形态分为线性相关、非线性相关等。

线性(直线) 相关系数 简称相关系数,反映具有直线相关关系的两个变量关系的密切程度。

()()∑∑∑∑∑∑∑---==2222y yn x xn yx xy n SS S r yx xy相关系数的 显著性检验 ——t 检验 ()().2;,212:0:,0:020221Hn t t Hn t t rn r t HH,拒绝不能拒绝检验统计量-〉-〈--=≠=ααρρ回归方程中的 参数β0和β1为回归直线的截距、起始值,表示在没有自变量x 的影响(即x =0)时,其他各种因素对因变量y 的平均影响;β1为回归系数、斜率,表示自变量x 每变动一个单位,因变量y 的平均变动量。

β1的最小平方估计:∑∑∑∑∑⎪⎭⎫ ⎝⎛--=221x x n yx xy nβ估计标准误差反映因变量实际值与其估计值之间的平均差异程度,表明其估计值对实际值的代表性强弱。

其值越大,实际值与估计值之间的平均差异程度越大,估计值的代表性越差。

()代替。

用大样本条件下,分母可;n n yyS e 2ˆ2--=∑总离差平方和S S T反映因变量的n 个观察值与其均值的总离差。

回归离差平方和S S R 反映自变量x 的变化对因变量y 取值变化的影响;或者说,是由于x 与y 之间的线性关系引起的y 取值的变化,也称为可解释的平方和。

统计学(第六版)贾俊平-课后习题及答案

统计学(第六版)贾俊平-课后习题及答案

目录第一章P10 (1)第二章P34 (2)第三章P66 (3)第四章P94 (8)第七章P176 (11)第八章P212 (15)第10 章P258 (17)第11 章P291 (21)第13 章P348 (26)第14 章P376 (30)第一章P10一、思考题1.1什么是统计学?1.2解释描述统计和推断统计。

1.3统计数据可分为哪几种类型?不同类型的数据各有什么特点?1.4解释分类数据、顺序数据和数值型数据的含义。

1.5举例说明总体、样本、参数、统计量、变量这几个概念。

1.6变量可分为哪几类?1.7举例说明离散型变量和连续型变量。

1.8请举出统计应用的几个例子。

1.9请举出应用统计的几个领域。

1.1 指出下面变量的类型:(1)年龄(2)性别(3)汽车产量(4)员工对企业某项改革措施的态度(赞成、中立、反对)(5)购买商品时的支付方式(现金、信用卡、支票)(1)数值型变量。

(2)分类变量。

(3)离散型变量。

(4)顺序变量。

(5)分类变量。

1.2 某研究部门准备抽取 2000 个职工家庭推断该城市所有职工家庭的年人均收入。

要求:(1)描述总体和样本。

(2)指出参数和统计量。

(1)总体是该市所有职工家庭的集合;样本是抽中的 2000 个职工家庭的集合。

(2)参数是该市所有职工家庭的年人均收入;统计量是抽中的 2000 个职工家庭的年人均收入。

1.3 一家研究机构从 IT 从业者中随机抽取 1000 人作为样本进行调查,其中 60%的人回答他们的月收入在5000 元以上,50%的人回答他们的消费支付方式是用信用卡。

回答下列问题:(1)这一研究的总体是什么?(2)月收入是分类变量、顺序变量还是数值型变量?(3)消费支付方式是分类变量、顺序变量还是数值型变量?(4)这一研究涉及截面数据还是时间序列数据?(1)总体是所有 IT 从业者的集合。

(2)数值型变量。

(3)分类变量。

(4)截面数据。

1.4 一项调查表明,消费者每月在网上购物的平均花费是 200 元,他们选择在网上购物的主要原因是“价格便宜”。

统计学教案习题11多元线性回归与logistic回归

统计学教案习题11多元线性回归与logistic回归

第十一章 多元线性回归与logistic 回归一、教学大纲要求(一)掌握内容1.多元线性回归分析的概念:多元线性回归、偏回归系数、残差。

2.多元线性回归的分析步骤:多元线性回归中偏回归系数及常数项的求法、多元线性回归的应用。

3.多元线性回归分析中的假设检验:建立假设、计算检验统计量、确定P 值下结论。

4.logistic 回归模型结构:模型结构、发病概率比数、比数比。

5.logistic 回归参数估计方法。

6.logistic 回归筛选自变量:似然比检验统计量的计算公式;筛选自变量的方法。

(二)熟悉内容 常用统计软件(SPSS 及SAS )多元线性回归分析方法:数据准备、操作步骤与结果输出。

(三)了解内容 标准化偏回归系数的解释意义。

二、教学内容精要(一) 多元线性回归分析的概念将直线回归分析方法加以推广,用回归方程定量地刻画一个应变量Y 与多个自变量X 间的线形依存关系,称为多元线形回归(multiple linear regression ),简称多元回归(multiple regression )基本形式:01122ˆk kY b b X b X b X =+++⋅⋅⋅+ 式中Y ˆ为各自变量取某定值条件下应变量均数的估计值,1X ,2X ,…,k X 为自变量,k 为自变量个数,0b 为回归方程常数项,也称为截距,其意义同直线回归,1b ,2b ,…, k b 称为偏回归系数(partial regression coefficient ),j b 表示在除j X 以外的自变量固定条件下,j X 每改变一个单位后Y 的平均改变量。

(二) 多元线性回归的分析步骤Y ˆ是与一组自变量1X ,2X ,…,kX 相对应的变量Y 的平均估计值。

多元回归方程中的回归系数1b ,2b ,…, k b 可用最小二乘法求得,也就是求出能使估计值Yˆ和实际观察值Y 的残差平方和22)ˆ(∑∑-=Y Y e i 为最小值的一组回归系数1b ,2b ,…, k b 值。

第11章 多重线性回归分析思考与练习参考答案

第11章 多重线性回归分析思考与练习参考答案

第11章多重线性回归分析思考与练习参考答案一、最佳选择题1.逐步回归分析中,若增加自变量的个数,则(D)。

A.回归平方和与残差平方和均增大B.回归平方和与残差平方和均减小C.总平方和与回归平方和均增大D.回归平方和增大,残差平方和减小E.总平方和与回归平方和均减小2.下面关于自变量筛选的统计学标准中错误的是(E)。

A.残差平方和(SS残差)缩小B.确定系数(R)增大2C.残差的均方(MS残差)缩小D.调整确定系数(Rad)增大2E.Cp统计量增大3.多重线性回归分析中,能直接反映自变量解释因变量变异百分比的指标为(C)。

A.复相关系数B.简单相关系数C.确定系数D.偏回归系数E.偏相关系数4.多重线性回归分析中的共线性是指(E)。

A.Y关于各个自变量的回归系数相同B.Y关于各个自变量的回归系数与截距都相同C.Y变量与各个自变量的相关系数相同D.Y与自变量间有较高的复相关E.自变量间有较高的相关性5.多重线性回归分析中,若对某一自变量的值加上一个不为零的常数K,则有(D)。

A.截距和该偏回归系数值均不变B.该偏回归系数值为原有偏回归系数值的K 倍C.该偏回归系数值会改变,但无规律D.截距改变,但所有偏回归系数值均不改变E.所有偏回归系数值均不会改变二、思考题1.多重线性回归分析的用途有哪些?答:多重线性回归在生物医学研究中有广泛的应用,归纳起来,可以包括以下几个方面:定量地建立一个反应变量与多个解释变量之间的线性关系,筛选危险因素,通过较易测量的变量估计不易测量的变量,通过解释变量预测反应变量,通过反应变量控制解释变量。

2.多重线性回归模型中偏回归系数的含义是什么?答:偏回归系数的含义是:在控制其他自变量的水平不变的情况下,该自变量每改变一个单位,反应变量平均改变的单位数。

3.请解释用于多重线性回归参数估计的最小二乘法的含义。

答:最小二乘法的含义是:残差的平方和达到最小。

4.如何判断和处理多重共线性?答:如果自变量之间存在较强的相关,则存在多重共线性。

贾俊平的《统计学》(第7版)学习辅导书(11-14章)【圣才出品】

贾俊平的《统计学》(第7版)学习辅导书(11-14章)【圣才出品】

2.在线性回归分析中,残差平方和 SSE 相对总平方和 SST 越小意味着( )。[武汉 大学 2015 研]
A.线性关系越不显著 B.随机误差产生的影响相对越小,模型越有效 C.线性关系之外的其它因素的影响相对越大 D.统计软件中的 F 值越小 【答案】B 【解析】在线性回归分析中,残差平方和 SSE 相对总平方和 SST 越小,则回归平方和 SSR 相对总平方和越大,F 检验统计量的值越大;从而线性关系越显著,线性关系之外的其他因
D.等于自变量的平方根
【答案】C
【解析】回归分析中的估计标准误差是度量各实际观测点在直线周围的散布状况的一个
统计量,它是均方残差(MSE)的平方根,用 se 来表示,其计算公式为:
se
yi yˆi 2 SSE MSE
n2
n2

4.产量(X,台)与单位产品成本(Y,元/台)之间的回归方程为Y=248-2.6X,下列 解释合理的是( )。[对外经济贸易大学 2015 研]
3 / 158
圣才电子书 十万种考研考证电子书、题库视频学习平台

7.在回归分析中,残差平方和 SSE 反映了 y 的总变差中( )。[浙江工商大学 2011 研、安徽财经大学 2012 样题]
A.除了 x 对 y 的线性影响之外的其他因素对 y 变差的影响 B.由于 x 与 y 之间的线性关系引起的 y 的变化部分 C.由于 x 与 y 之间的非线性关系引起的 y 的变化部分 D.由于 y 的变化引起的 x 的误差 【答案】A 【解析】残差平方和或误差平方和是除了 x 对 y 的线性影响之外的其他因素对 y 变差的 作用,是不能由回归直线来解释的 yi 变差部分,记为 SSE。
10.欲调查两变量(X 和 Y)的相互关系,收集一份数据作线性相关分析,经计算得到 样本相关系数 r=0.38,可以说( )。[中山大学 2011 研]

统计学习题 第十一章 非参数检验

统计学习题 第十一章  非参数检验

第十一章非参数检验第一节符号检验符号检验的方法·符号检验的特点和作用第二节配对符号秩检验配对符号秩检验的方法·配对符号秩检验的效力第三节秩和检验秩和检验的方法·秩和检验的近似第四节游程检验游程的概念·游程检验的方法·差符号游程检验第五节累计频数检验累计频数检验的方法·累计频数检验的应用一、填空1.非参数检验,泛指“对分布类型已知的总体进行参数检验”()的所有检验方法。

2.符号检验的零假设就是配对观察结果的差平均起来等于()。

3.理论研究表明,对于配对样本非正态分布的差值d,()是最佳检验。

4.秩和检验检验统计量U是U1和U2中较()的一个。

5.秩尺度之统计量的均值和标准差只取决于()。

6.()常被用作经验分布与理论分布的比较。

7.绝对值相等的值,应将它们的秩()。

8.符号检验,在分布自由检验中称为()。

9.符号检验和配对符号秩检验,都只适用于()样本。

10.数据序列ABBABAAABABBABBAAAAAB的总游程数是()二、单项选择1.下列检验中,不属于非参数统计的方法的是()。

A总体是否服从正态分布 B 总体的方差是否为某一个值C 样本的取得是否具有随机性D 两组随机变量之间是否相互独立2.下列情况中,最适合非参数统计的方法是()。

A反映两个大学新生成绩的差别B 反映两个大学新生家庭人均收入的差别C 反映两个大学三年级学生对就业前景的看法差别D反映两个大学在校生消费水平的差别3.不属于非参数检验的是()。

A符号检验B游程检验C累计频数检验 D F检验4.在累计频数检验中,卡方的自由度为()。

A n1B 2C n2D n1+n25.配对符号秩检验的效力( )。

A 小于符号检验B 大于t 检验C 介于符号检验与t 检验之间D 无法与符号检验及t 检验比较 6.如果我们说非参数检验的效力是80%,下列哪种解释正确。

( )A 如果用参数检验需要100个数据,那么在同等的检验效力下,非参数检验只要80个数据;B 如果用非参数检验需要100个数据,那么在同等的检验效力下,参数检验只要80个数据;C 如果用参数检验需要100个数据,那么在同等的检验效力下,非参数检验只要20个数据;D 如果用非参数检验需要100个数据,那么在同等的检验效力下,参数检验只要20个数据;7.对于秩和检验,U 1、U 2和n 1、 n 2的关系是( )。

贾俊平《统计学》配套题库 【课后习题】详解 第11章~第12章【圣才出品】

贾俊平《统计学》配套题库  【课后习题】详解  第11章~第12章【圣才出品】

第11章一元线性回归一、思考题1.解释相关关系的含义,说明相关关系的特点。

答:变量之间存在的不确定的数量关系,称为相关关系。

相关关系的特点:一个变量的取值不能由另一个变量唯一确定,当变量x取某个值时,变量y的取值可能有几个。

对这种关系不确定的变量是不能用函数关系进行描述的。

2.相关分析主要解决哪些问题?答:相关分析就是对两个变量之间线性关系的描述与度量,它要解决的问题包括:(1)变量之间是否存在关系;(2)如果存在关系,它们之间是什么样的关系;(3)变量之间的关系强度如何;(4)样本所反映的变量之间的关系能否代表总体变量之间的关系。

3.相关分析中有哪些基本假定?答:在进行相关分析时,对总体主要有以下两个假定:(1)两个变量之间是线性关系;(2)两个变量都是随机变量。

4.简述相关系数的性质。

答:相关系数是根据样本数据计算的度量两个变量之间线性关系强度的统计量。

若相关系数是根据总体全部数据计算的,称为总体相关系数,记为ρ;若是根据样本数据计算的,则称为样本相关系数,记为r 。

相关系数的性质:(1)r 的取值范围在-1~+1之间,即-1≤r ≤1。

若0<r ≤1,表明x 与y 之间存在正线性相关关系;若-1≤r <0,表明x 与y 之间存在负线性相关关系;若r =+1,表明x 与y 之间为完全正线性相关关系;若r =-1,表明x 与y 之间为完全负线性相关关系。

可见当|r |=1时,y 的取值完全依赖于x ,二者之间即为函数关系;当r =0时,说明y 的取值与x 无关,即二者之间不存在线性相关关系。

(2)r 具有对称性。

x 与y 之间的相关系数xy r 和y 与x 之间的相关系数yx r 相等,即xy r =yx r 。

(3)r 数值大小与x 和y 的原点及尺度无关。

改变x 和y 的数据原点及计量尺度,并不改变r 数值大小。

(4)r 仅仅是x 与y 之间线性关系的一个度量,它不能用于描述非线性关系。

统计学(贾5)课后练答案(11-14章)

统计学(贾5)课后练答案(11-14章)

第11章 一元线性回归分析11.1(1)散点图(略),产量与生产费用之间正的线性相关关系。

(2)920232.0=r(3) 检验统计量2281.24222.142=>=αt t ,拒绝原假设,相关系数显著。

11.2 (1)散点图(略)。

(2) 8621.0=r11.3 (1)0ˆβ表示当0=x 时y 的期望值。

(2)1ˆβ表示x 每变动一个单位y 平均下降0.5个单位。

(3) 7)(=y E 11.4 (1)%902=R (2)1=e s11.5 一家物流公司的管理人员想研究货物的运输距离和运输时间的关系,为此,他抽出了公司最近10(1)绘制运送距离和运送时间的散点图,判断二者之间的关系形态: (2)计算线性相关系数,说明两个变量之间的关系强度。

(3)利用最小二乘法求出估计的回归方程,并解释回归系数的实际意义。

(2)x 运送距离(km )y 运送时间(天)x 运送距离(km )Pearson 相关性 1.949(**) 显著性(双侧)0.000 N10 10 y 运送时间(天)Pearson 相关性 .949(**) 1显著性(双侧) 0.000 N**. 在 .01 水平(双侧)上显著相关。

有很强的线性关系。

(3)模型非标准化系数标准化系数t显著性B标准误Beta1 (常量)0.118 0.355 0.333 0.748 x 运送距离(km )a. 因变量: y 运送时间(天)回归系数的含义:每公里增加0.004天。

(1)人均GDP作自变量,人均消费水平作因变量,绘制散点图,并说明二者之间的关系形态。

(2)计算两个变量之间的线性相关系数,说明两个变量之间的关系强度。

(3)利用最小二乘法求出估计的回归方程,并解释回归系数的实际意义。

(4)计算判定系数,并解释其意义。

(5)检验回归方程线性关系的显著性(a=0.05)。

(6)如果某地区的人均GDP 为5 000元,预测其人均消费水平。

CH11

CH11
表 11-14 编号 1 2 3 4 5 10 名正常成年男性的血浆清蛋白含量及血红蛋白含量检测结果 血浆清蛋 白含量(x) 35.5 36.5 38.5 37.5 36.5 血红蛋白含 量(y) 119.5 120.5 127.5 126.5 120.5 编号 6 7 8 9 10 血浆清蛋 白含量(x) 35.4 34.5 34.2 34.6 33.5 血红蛋白 含量(y) 118.5 110.5 109.2 108.5 105.3
思考与练习
7. 思考题 (1)Pearson积矩相关系数 经检验无统计学意义,是否 积矩相关系数r经检验无统计学意义 积矩相关系数 经检验无统计学意义, 意味着两变量间一定无关系? 意味着两变量间一定无关系? 答:对满足二元正态分布的随机样本,若直接计算 Pearson积矩相关系数且经检验无统计学意义,并不意味着 两变量间一定无关系,若两者之间是非线性关系的话,其 Pearson积矩相关系数也会无统计学意义,因此在确定两变 量间有无线性关系时应先绘出散点图进行直观考察后再作 出判断. (2)Pearson积矩相关系数 经检验有统计学意义,P值 积矩相关系数r经检验有统计学意义 积矩相关系数 经检验有统计学意义, 值 很小,是否意味着两变量间一定有很强的线性关系? 很小,是否意味着两变量间一定有很强的线性关系? 答:Pearson积矩相关系数r经检验有统计学意义,且P值 很小,并不意味着两变量间一定有很强的线性关系.参看 本章第一节线性相关应用中应注意的问题中的2,3,4,5 点.
χ2 χ2 +n
关于 Pearson 列联系数是否为零的检验等价于 Pearson χ 2 检验.
思考与练习
1.对某省 8 个地区水质的碘含量及其甲状腺肿的患病率作了调查后得到表 11-13 的数据,试问不同地区的甲状腺肿的患病率高低与本地区水质的碘含量有无关联?

曾五一《统计学概论》课后习题(统计综合评价)【圣才出品】

曾五一《统计学概论》课后习题(统计综合评价)【圣才出品】
A.(1)(2) B.(2)(3)(4) C.(1)(3) D.(1)(3)(4) 【答案】C 【解析】所谓正指标,就是指指标数值越大就越好的指标。所谓逆指标,就是指标数值 越小就越好的指标。(2)(4)属于逆指标。流动资产周转次数属于正指标。
5.功效系数法是用以( )。 A.确定指标的阈值 B.消除评价指标丌同量纲的影响
三、判断题 1.要迚行综合评价,必须先根据研究的目的建立评价指标体系。( ) 【答案】√ 【解析】统计综合评价是对所研究的对象及其组成部分的数量规模大小、水平高低、速 度快慢、质变程度及内部协调状况做出定量的、综合的评判。要迚行综合评价,必须先根据 研究的目的建立评价指标体系。
2.综合评价是对客观对象从丌同的侧面、丌同的角度迚行全面的分析不评价,故它完 全地消除了主观因素的影响。( )
圣才电子书 十万种考研考证电子书、题库视频学习平台

第 11 章 统计综合评价
一、单项选择题 1.由于各评价指标的( )丌同,故必须迚行同度量处理。 A.计算方法 B.计量单位 C.计算口徂 D.计算范围 【答案】B 【解析】综合评价需要运用由多个指标组成的指标体系,而这些指标性质丌同,计量单 位往往也丌一样,因而必须先确定各单项指标的评价标准,对数据迚行同度量处理。
2.因为各个评价指标对评价对象的( )丌同,所以对各个评价指标分别赋予丌同 的权重。
A.作用强度 B.相对强度 C.影响程度 D.概括能力 【答案】A
3.以下指标:(1)产值利润率、(2)物耗率、(3)增加值率、(4)流动资产周转天数,
1 / 10
圣才电子书

都是逆指标的有( )。
4.资产负债率、万元产值消耗能源比率和物耗率皆为逆指标。( ) 【答案】× 【解析】所谓正指标,就是指指标数值越大就越好的指标。所谓逆指标,就是指标数值 越小就越好的指标。资产负债率和物耗率属于逆指标,而万元产值消耗能源比率为正指标。

统计学人教版第五版7,8,10,11,13,14章课后题答案

统计学人教版第五版7,8,10,11,13,14章课后题答案

统计学人教版第五版7,8,10,11,13,14章课后题答案第七章 参数估计7.1 (1)79.0405===nx σσ (2)由于1-α=95% α=5% 96.12=αZ所以 估计误差55.140596.12≈⨯=nZ σα7.2 (1)14.24915===nx σσ (2)因为96.12=αZ 所以20.4491596.12≈⨯=nZ σα(3)μ的置信区间为20.41202±=±nZ x σα7.3 由于96.12=αZ 104560=x 85414=σ n=100所以μ的95%置信区间为14.167411045601008541496.11045602±=⨯±=±nZ x σα7.4(1)μ的90%置信区间为97.18110012645.1812±=⨯±=±n s Z x α(2)μ的95%置信区间为35.2811001296.1812±=⨯±=±n s Z x α(3)μ的99%置信区间为096.3811001258.2812±=⨯±=±n s Z x α7.5 (1)89.025605.396.1252±=⨯±=±nZ x σα(2)416.66.1197589.23326.26.1192±=⨯±=±n s Z x α(3)283.0419.332974.0645.1419.32±=⨯±=±n s Z x α7.6 (1)035.25389001550096.189002±=⨯±=±nZ x σα(2)650.16589003550096.189002±=⨯±=±nZ x σα(3)028.139890035500645.189002±=⨯±=±n s Z x α(4)583.196890035500326.289002±=⨯±=±n s Z x α7.7 317.31==∑i x nx ()609.1113612=--=∑=i ix x n s 90%置信区间为441.0317.336609.1645.1317.32±=⨯±=±n s Z x α95%置信区间为526.0317.336609.196.1317.32±=⨯±=±n s Z x α99%置信区间为6908.0317.336609.1576.2317.32±=⨯±=±n s Z x α7.8 101==∑i x nx ()464.311812=--=∑=i ix x n s 所以95%置信区间为()896.2108464.33646.21012±=⨯±=±-n s t x n α7.9 375.91==∑i x n x 由于()131.2)15(025.012==-t t n α ()113.4112=--=∑x x n s i 所以95%置信区间为()191.2375.916113.4131.2375.912±=⨯±=±-n s t x n α7.10 (1)63.05.1493693.196.15.1492±=⨯±=±n s Z x α(2)中心极限定理 7.11 (1)132.10150665011=⨯==∑i x nx ()641.188.131491112=⨯=--=∑x x n s i 455.032.10150641.196.132.1012±=⨯±=±n s Z x α(2)由于9.05045==p 所以 合格率的95%置信区间为()083.09.0501.09.096.19.012±=⨯⨯±=-±n p p Z p α7.12 由于128.161==∑i x n x ()745.3)24(005.012==-t t n α ()8706.0112=--=∑x x n s i所以99%置信区间为653.028.161258706.0745.328.161)1(2±=⨯±=-±n s n t x α 7.13 7396.1)17()1(05.02==-t n t α 556.131==∑i x nx ()800.7112=--=∑x x n s i所以90%置信区间为198.3556.13188.77396.1556.13)1(2±=⨯±=-±n s n t x α 7.14(1)()194.051.04449.051.0576.251.012±=⨯⨯±=-±n p p Z p α(2)()0435.082.030018.082.096.182.012±=⨯⨯±=-±n p p Z p α(3)()024.048.0115052.048.0645.148.012±=⨯⨯±=-±n p p Z p α7.15(1)90%置信区间为()049.023.020077.023.0645.123.012±=⨯⨯±=-±n p p Z p α(2)95%置信区间为()058.023.020077.023.096.123.012±=⨯⨯±=-±n p p Z p α7.16 89.1652001000576.222222222=⨯=⎪⎪⎭⎫ ⎝⎛=⇒=E Z n nZ E σδαα所以n 为166 7.17(1)()13.25302.06.04.0054.2122222=⨯⨯=-⎪⎪⎭⎫⎝⎛=E Z n ππα 所以n 为254 (2)()0625.15004.05.05.096.1122222=⨯⨯=-⎪⎪⎭⎫⎝⎛=E Z n ππα 所以n 为151(3)()89.26705.045.055.0645.1122222=⨯⨯=-⎪⎪⎭⎫⎝⎛=E Z n ππα 所以n 为268 7.18(1)64.05032==p (2)()46.611.02.08.096.1122222=⨯⨯=-⎪⎪⎭⎫⎝⎛=E Z n ππα 所以n 为62 7.19(1)()()339.661501205.022=-=-χχαn()()930.331501295.0221=-=--χχαn ()()2212222211ααχσχ--≤≤-s n s n所以()()40.272.1293.33492339.66491122122≤≤⇒⨯≤≤⨯⇒-≤≤--σσχσχααs n s n(2)()()6848.231151205.022=-=-χχαn()()5706.61151295.0221=-=--χχαn()()043.0015.002.05.61470602.06848.23141122122≤≤⇒⨯≤≤⨯⇒-≤≤--σσχσχααs n s n (3)()()6706.321221205.022=-=-χχαn()()5913.111221295.0221=-=--χχαn ()()725.4185.24315913.112131706.36211122122≤≤⇒⨯≤≤⨯⇒-≤≤--σσχσχααs n s n 7.20(1)15.71==∑i x n x ()4767.0112=--=∑x x n s i ()()0228.1911012025.022=-=-χχαn ()()7004.211012975.0221=-=--χχαn ()()87.0328.04767.07004.294767.00228.1991122122≤≤⇒⨯≤≤⨯⇒-≤≤--σσχσχααs n s n(2)()()326.3253.1822.17004.29822.10228.1991122122≤≤⇒⨯≤≤⨯⇒-≤≤--σσχσχααs n s n7.21 2)1()1(212222112-+-+-=n n s n s n s p=442.981910268.9613≈⨯+⨯ (1)21μμ-的90%置信区间为: 212122111)2()(n n s n n t x x p+-+±-α=⨯⨯±442.98729.18.971141+ =9411.78.9± (2)21μμ-的95%置信区间为: 212122111)2()(n n s n n t x x p+-+±-α=⨯⨯±442.9893.028.971141+ =13.698.9± (3)21μμ-的99%置信区间为: ⨯⨯±442.98609.828.971141+=40.1138.9± 7.22(1)2122121221)(n s n s z x x +±-α=36.096.12⨯±=176.12±(2)2)1()1(212222112-+-+-=n n s n s n s p=18209169⨯+⨯=18212122111)2()(n n s n n t x x p+-+±-α=5118.122⨯⨯±=8.932± (3)1)(1)()(222221212122122121-+-+=n n s n n s n s n s ν=17.78 2122121221)(t )(n s n s x x +±-να=6.31.22⨯±=98.32±(4)048.2)28(t 025.0=2)1()1(212222112-+-+-=n n s n s n s p=18.714 212122111)2()(n n s n n t x x p+-+±-α=20110114.71848.022+⨯⨯± =3.432±(5)1)(1)()(222221212122122121-+-+=n n s n n s n s n s ν1919.61)20201016(222++==20.05 086.2)(t =να2122121221)(t )(n s n s x x +±-να=1.61086.22+⨯±=64.332± 7.23(1)47d = 1)(2--=∑n d ds id =48332=917.6(2)n s n t d )1(d -±α=185.447± 7.24 6216.2)1(2=-n t α 11=d ,53197.6=d s d μ的置信区间为:ns n t d )1(d 2-±α=1053197.66216.211⨯±=4152.511±7.25(1)222111221)1()1()(p n p p n p p z p -+-±-α=25076.03.02506.04.0645.11.0⨯+⨯⨯±=0698.01.0± (2)222111221)1()1()(p n p p n p p z p -+-±-α=25076.03.02506.04.096.11.0⨯+⨯⨯±=0831.01.0± 7.26 241609.01=s 076457.02=s)1,1(21--n n F α=)20,20(025.0F =2.464 )20,20(975.0F =0.40576212221222122221αασσ-≤≤F s s F s s 40576.0986.9446.2986.92221≤≤σσ 611.240528.42221≤≤σσ7.27 222)1()(Ez n ππα-==2204.098.002.096.1⨯⨯=47.06 所以 n =487.282222)(E z n σα==2222012096.1⨯=138.30所以 n =139第8章 假设检验二、练习题(说明:为了便于查找书后正态分布表,本答案中,正态分布的分位点均采用了下侧分位点。

张厚粲《现代心理与教育统计学》(第3版)配套题库[课后习题](非参数检验)

张厚粲《现代心理与教育统计学》(第3版)配套题库[课后习题](非参数检验)

第11章 非参数检验1.什么是非参数检验?与参数方法比较,它有哪些特点?答:非参数检验指对总体分布形式所知甚少,需要对未知分布函数的形式及其他特征进行假设检验。

常见的非参数检验有符号检验、秩和检验、中数检验等。

非参数检验相对参数检验不需要严格的前提假设,特别是关于分布正态性假设,所以也称为自由分布检验;特别适用于等级/名义型资料,对这类数据参数方法无法直接检验;特别适用于小样本的探索性/预备研究;其优点是计算简便,直观,易于掌握,检验速度较快;缺点是对资料的信息利用少,方法的效能和完善性都不及参数检验2.符号检验法的基本思想是什么?答:符号检验(sign test )以正负符号作为资料的一种非参数检验程序。

它是一种简单的非参数检验方法,适用于检验两个配对样本分布的差异,与参数检验中配对样本差异显著性t 检验相对应。

符号检验法也是将中数作为集中趋势的量度,虚无假设是配对资料差值来自中位数为零的总体。

具体而言,它是将两样本每对数据之差(i i X Y )用正负号表示,若两样本没有显著性差异,则正差值与负差值应大致各占一半。

在实际中,当碰到无法用数字去描述的问题时,符号检验法就是一种简单而有效的检验方法。

3.秩和检验的基本思想是什么?答:“秩和”(the sum of ranks)即秩次的和或者等级之和。

这一方法首先由维尔克松(Wilcoxon )提出,叫维尔克松两样本检验法,后来曼—惠特尼(Mann —Whitney )将其应用到两样本容量不等(12n n ≠)的情况,因而又称做曼—惠特尼维尔克松秩和检验(Mann-Whitney —Wilcoxon rank sum test ),曼—惠特尼U 检验。

(1)秩统计量(rank statistics )的统计定义是:如果将样本数据记为1X ,…,n X ,相应的顺序统计量记为,若j ,则称i R j =为i X 在样本中的“秩”(rank ),就是秩统计量,又称为“秩次统计量”(rank orderstatistics )。

医学统计学第10、11、12章-课后习题

医学统计学第10、11、12章-课后习题

1. 以下检验方法属参数法的是()。

A、t检验7. 下列统计分析方法属于非参数检验的是()。

A、Wilcoxon单样本秩和检验7. 下列统计分析方法属于参数检验的是()。

B、完全随机设计的方差分析8. 关于统计分析方法的选择,下列说法错误的是()。

D、对于定量变量自然是选择它所对应的那些统计方法如t检验、方差分析或检验等3. 关于参数检验和非参数检验的说法错误的是()。

D、多数非参数检验方法简便,易于理解且检验效能高4. 对于配对比较的秩和检验,其检验假设为()。

C、样本的差数来自中位数为0的总体1. 两小样本比较作假设检验首先考虑()。

D、资料符合t检验还是秩和检验三组比较的秩和检验,样本例数均为5,确定5. P值应查()。

B、H界值表9. 高血压临床试验分为试验组和对照组,分析考虑治疗0周、2周、4周、6周、8周血压的动态变化和改善情况,为了直观显示出两组血压平均变动情况,宜选用的统计图是()。

B、线图符合4. t检验条件的数值变量资料如果采用秩和检验,则()。

B、第二类错误增大2. 在进行两样本比较的秩和检验时,以下无效假设正确的是()。

B、H0:两样本对应的总体分布相同9. 某研究者打算比较1995-2010年之间两种疾病的死亡率的变化速度,其统计图宜采用()。

A、半对数线图3. 配对比较的秩和检验的基本思想是--- 如果检验假设成立,则对样本来说()。

D、正秩和和负秩和的绝对值不会相差很大6. 当观察性研究设计和完全随机设计的数据分析时,不可能选择的统计分析方法是()。

D、配对t检验10. 欲用统计图表示某市1980年和1990年不同性别高血压的患病情况,应用()。

A、复式条图5. 欲比较三种药物治疗效果有无差别,如果治疗效果为有序分类变量,宜采用()。

A、Wilcoxon秩和检验3. 成组设计两样本比较的秩和检验,检验统计量T通常为()。

B、样本量较小组对应的秩和秩和检验和1. t检验相比,其优点是()。

10-11章商务统计学课后答案

10-11章商务统计学课后答案
-25.5054
32.87613
X Variable 1
-7.71326
0.586705
-13.1467
3.44E-06
-9.10059
-6.32592
-9.10059
-6.32592
X Variable 2
9.866809
0.28724
34.35036
4.59E-09
9.187593
10.54602
课后答案
第十章
一、单项选择题
AADBBCCADC
二、多项选择题
ABCE、BCE、ABE、BC、ACDE、
三、判断题
×√√××
六、计算题
1、(1)散点图如下:
从散点图中,我们可以看出,家庭月收入与月食品支出之间是正相关关系
(2)
城市序号
家庭月收入x
月食品支出y
xy
x2
y2
1
38
12
456
1444
144
DCBBDABBDB
二、多项选择题
BD、BE、ADE、CD、ABD、
三、判断题
√××××
五、计算题
1、将12个数值相加除以12即可:410.17亿元
2、第一季度的间隔相同,采用首尾折半法
下半年的间隔期不同:
全年职工平均:
3、时点数据间隔连续,采用首尾折半方法:
4、(1)时点数据间隔连续,采用首尾折半方法:
253829.3
293.0264
9.77E-09
残差
10
8662.336
866.2336
总计
11
262491.7
Coefficients
标准误差

贾俊平《统计学》复习笔记课后习题详解及典型题详解 第11章~第12章【圣才出品】

贾俊平《统计学》复习笔记课后习题详解及典型题详解  第11章~第12章【圣才出品】
3 / 97
圣才电子书 十万种考研考证电子书、题库视频学习平台
4 / 97
圣才电子书 十万种考研考证电子书、题库视频学习平台

图 11-1 不同形态的散点图
(4)相关系数
通过散点图可以判断两个变量之间有无相关关系,并对变量间的关系形态作出大致的描
有所差异。样本相关系数是总体相关系数的一致估计量。样本相关系数记为 r,其计算公式
为:
r
n xy x y
n x2 ( x)2 n y2 ( y)2
按照上述计算公式计算的相关系数也称为线性相关系数,或 Pearson 相关系数。 ②相关系数的性质 a.r 的取值范围在-1~+1 之间,即-1≤r≤1。若 0<r≤1,表明 x 与 y 之间存在正 线性相关关系;若-1≤r<0,表明 x 与 y 之间存在负线性相关关系;若 r=+1,表明 x 与
5 / 97
圣才电子书 十万种考研考证电子书、题库视频学习平台

y 之间为完全正线性相关关系;若 r=-1,表明 x 与 y 之间为完全负线性相关关系。可见当 |r|=1 时,y 的取值完全依赖于 x,二者之间即为函数关系;当 r=0 时,说明 y 的取值与 x 无关,即二者之间不存在线性相关关系。|r|→1 说明两个变量之间的线性关系越强;|r|→0 说明两个变量之间的线性关系越弱。
b.r 具有对称性。x 与 r 之间的相关系数 rxy 和 y 与 x 之间的相关系数 ryx 相等,即 rxy =ryx。
c.r 数值大小与 x 和 y 的原点及尺度无关。改变 x 和 y 的数据原点及计量尺度,并不 改变 r 的数值大小。
述,但不能准确反映变量之间的关系强度。需要计算相关系数来准确度量两个变量之间的关
系强度。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

单项选择题:
1、下列各项中属于指数的是:
(A) 人均粮食产量 (B )平均价格 (C )发展速度 (D )人口数
2、指数按其所表明的经济指标性质不同,分为:
(A) 个体指数和总指数 (B )数量指标指数和质量指标指

(C )定基指数和环比指数
(D )平均指数和总指数
4、以某一固定时期作分母而计算出来的指数是:
(A )环比指数 (B )定基指数 (C) 数量指标指数 (D )质量指标指数 5、某百货公司今年与去年相比,所有商品的价格平均提高了 10%,销售量平均下降了
10%,则商品销售额(
)
A 、上升
B 、下降
C 、保持不变
D 、可能上升也可能下降 6、某企业销售额增长了 5%,销售价格下降了
3%,则销售量: (A )增长8% ( B )增长% (C )增长%
(D )增长%
7、在编制综合指数时,要求指数中分子和分母的权数必须是(
)
A 、同一时期的
B 、不同时期的
C 、基期的
D 、报告期的 8、编制单位成本指数
时,同度量因素一般应采用:
(A )报告期销售量(B )基期销售量 (C )基期销售价格 (D )报告期销售价格
9、
q 1p 0
q 0 p 0 表示:
(A) 由于价格变动引起的产值增减数 (B) 由于价格变动引起的产量增减数 (C) 由于产量变动引起的价格增减数 (D)
由于产量变动引起的产值增减数
3、指数按对象范围不同,可分为:
(A )个体指数和总指数
(C )定基指数和环比指数 (B) 数量指标指数和质量指标指数 (D )平均指数和综合指数
10、按照个体指数和报告期销售额计算的价格指数是(
11、最常用的加权调和平均数是:
k
P
(B )
P o q o (A )
kq
k q P o q o
P o q o
1 P o q o k q
(C
k
p
P o q o
P0
1
P o q o k p
k
P
(D )
P
1
P4 k
P
12、在指数体系中,总量指数与各因素指数之间的数量关系是(

A 、总量指数等于各因素指数之和
B 、总量指数等于各因素指数之差
C 、总量指数等于各因素指数之积
D 、总量指数等于各因素指数之商
13、消费价格指数反映了( )
A 、 城乡商品零售价格的变动趋势和程度
B 、 城乡居民购买生活消费品价格的变动趋势和程度
C 、 城乡居民购买服务项目价格的变动趋势和程度
D 、 城乡居民购买生活消费品和服务项目价格的变动趋势和程度
、计算题
1、某百货商场报告年的商品零售额为 420万元,报告年比基年增加了 30万元, 零
售物价上涨%,试计算该商场商品零售额变动中由于零售价格和零售量变动 的影响程度和影响的绝对额。

A 、综合指数 C 、总平均数指数
B 、加权调和平均指数 D 、加权算术平均指数
2、某超市对A、B、C三地开通了购物直通车,超市每天都会记录乘坐直通车的顾客的
人次和消费额,下表中的数据为星期一和星期日的统计数据
(1)计算人均消费额和人次的加权综合指数; (2)用指数体系分析顾客总消费量
答案
一单选题
1-5 C B A B B 11-13 D C D
二、计算题
该商场商品零售额比基年提高了 %,总零售额增加30万元
(2)零售物价变动对零售额影响:
p 0q 1 401.94万元
p 0q 0
420 401.94 18.08万元
零售量对零售额的影响:
P °q 1 401・
94
P o q 。

390
6-10 C A A D D
P o q o
pg 420万 元 1.0769

P °q 。

420 30 390万元
P4
P °q
1.045
pg 420万元
(3)综上
万元=万元+万元。

报告年零售价格也上升了,由于零售价上升使得零售额增加了 %,
增加的绝对额为万元;
2、解:(1)人均消费额用派氏指数计算,可得:
日购物人次指数用拉氏指数计算,可得:
23o 7o 15o 12o
34o 89 64360
12396% iq=
P o q o
18o 7o 12o 12o
28o 89
123.96 /u
5192o
P4 Pq P o q 1
(2)总消费额指数为
P o q o
P o q 1
P o q o
829oo
6436。

=6436。

5192o
=%
顾客总消费额增长量为
P o q i
P o q 。

401.94 390 11.914万 元
皿1
P 1q 1 P o q 1 P o q o
P o q 1
P o q o
即=*
P o q o )
pg
P o qJ (
P o q 1
P o q o ), 30
所以,报告年零售量 加的绝对额为万元;
上升, 由于零售量的上升使得零售额增加了 3%,增
lp=
P o q 1
23o 1oo 15o 15o 34o 11o
23o 7o 15o 12o 34o 89
829oo 6436o
128.81%
7
( p1q1 p0q0 ) ( p1q1 p0q1) ( p0q1 p0q0)
=18540+12440 =30980(元)
综上,周日与周一相比,人均消费额的增加使总消费额增长了%,绝对增加了18540 元;
人次增多使总消费额增长了%,绝对增长了12440 元。

相关文档
最新文档