北师大版七年级(上)数学半期考试试卷

合集下载

北师大版七年级上册数学期中考试试卷及答案

北师大版七年级上册数学期中考试试卷及答案

北师大版七年级上册数学期中考试试题2022年一、单选题1.12-的相反数是( ) A .2- B .12 C .0 D .2 2.在227,3π,1.62,0四个数中,有理数的个数为( ) A .4 B .3 C .2 D .13.电视剧《西游记》中,孙悟空的“金箍棒”飞速旋转,形成一个圆面,是属于( ) A .点动成线 B .线动成面 C .面动成体 D .以上都不对 4.下列图形经过折叠不能围成棱柱的是( )A .B .C .D . 5.预计到2025年,中国5G 用户将超过460 000 000,将460 000 000用科学记数法表示为( )A .94.610⨯B .74610⨯C .84.610⨯D .90.4610⨯ 6.下列说法错误的是( )A .15ab -的系数是15-B .235x y 的系数是15 C .224a b 的次数是4 D .42242a a b b -+的次数是47.用一个平面截六棱柱,截面的形状不可能是( )A .等腰三角形B .梯形C .五边形D .九边形 8.有理数a ,b 在数轴上的位置如图所示,那么下列式子成立的是( )A .0a b +>B .0ab <C .a b >D .0ab >9.若m 、n 满足21(2)0m n ++-=,则n m 的值等于( )A .-1B .1C .-2D .1410.古希腊著名的毕达哥拉斯学派把1、3、6、10…这样的数称为“三角形数”,而把1、4、9、16…这样的数称为“正方形数”.从图7中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是( )A .13310=+B .25916=+C .361521=+D .491831=+二、填空题11.月球表面白天的温度是零上126℃,记作126+℃,夜间平均温度是零下150℃,则记作______.12.比较大小:7-_____3-(填“>”,“<”或“=”).13.新冠肺炎疫情期间,某单位买单价为20元的温度计a 个,单价为3元的口罩b 个,共花钱__元.14.若要使得图中平面展开图折叠成正方体后,相对面上的两个数之和相等,则a b c ++的值为______.15.如图所示的是从不同方向观察一个圆柱体得到的形状图,由图中数据计算此圆柱体的侧面积为________(结果保留π)16.若20m =,按下列程序计算,最后得出的结果是________.17.在学习绝对值后,我们知道,在数轴上分别表示有理数a 、b 的A 、B 两点之间的距离等于||-a b .现请根据绝对值的意义并结合数轴解答以下问题:满足1|27|x x -++=的x 的值为___________.三、解答题18.计算.(1)()121821---;(2)42112(3)6⎡⎤--⨯--⎣⎦.19.用简便方法计算:(1)4571961236⎛⎫⎛⎫--÷- ⎪ ⎪⎝⎭⎝⎭; (2)356(6)36⨯-.20.在数轴上表示下列各数:2153,|3|,2,0,,222⎛⎫----+ ⎪⎝⎭,并用“<”将它们连接起来.21.已知a ,b 互为相反数,且0a ≠,c ,d 互为倒数,2m =,求()21m a b cdm --++-的值.22.如图,是一个由小正方体搭成的几何体从上面看得到的平面图形,小正方形中的数字表示该位置上的小正方体的个数.请你画出从它的正面和左面看所得到的平面图形.23.已知a 、b 均为有理数,现定义一种新的运算,规定:25a b a ab ⊗=+-,例如2111115⊗=+⨯-,求:(1)()-36⊗的值;(2)()32---592⎡⎤⎛⎫⎡⎤⊗⊗ ⎪⎢⎥⎣⎦⎝⎭⎣⎦的值24.一辆汽车沿着一条南北方向的公路来回行驶.某一天早晨从A 地出发,晚上到达B 地.约定向北为正,向南为负,当天记录如下:(单位:千米)-180,+200,-110,-60,+160,-68(1)若每千米耗油0.3升,问小明家的汽车这一天共耗油多少升?(2)B 地在A 地的哪个方向?它们相距多少千米?(3)汽车从A 出发后,在整个行驶过程中,有多少次再次经过出发地A ?请计算说明理由.25.先阅读并填空,再解答问题. 我们知道111122=-⨯,1112323=-⨯,1113434=-⨯, 那么145=⨯ ______,120182019=⨯ ______. 利用上述式子中的规律计算: (1)1111111126122030425672+++++++; (2)111124466820162018++++⨯⨯⨯⨯.26.如图,将一个边长为1的正方形纸片分割成7个部分,部分②是下部分②面积的一半,部分②是部分②面积的一半,依次类推.(1)阴影部分的面积是多少?(2)受此启发,你能求出611112482++++的值吗?参考答案1.B【解析】【分析】根据相反数的定义直接进行求解即可.【详解】由12-的相反数是12;故选:B.【点睛】本题主要考查相反数,熟练掌握求一个数的相反数是解题的关键.2.B【解析】【分析】根据有理数的定义,即可解答.【详解】在227,3π,1.62,0四个数中,有理数为227,1.62,0,共3个,故选:B.【点睛】整数和分数统称为有理数,无限不循环小数由于不能化成分数,因而不属于有理数.3.B【解析】【分析】根据“线动成面”的意义得出答案.【详解】解:孙悟空的“金箍棒”飞速旋转,形成一个圆面,是属于线动成面,故选:B.【点睛】本题考查点、线、面、体之间的关系,理解“点动成线、线动成面,面动成体”是解决问题的关键.4.D【解析】【分析】根据题意由平面图形的折叠及棱柱的展开图逐项进行判断即可.【详解】解:A 可以围成四棱柱,B 可以围成三棱柱,C 可以围成五棱柱,D 选项侧面上多出一个长方形,故不能围成一个三棱柱.故选:D .【点睛】本题考查立体图形的展开图,熟记常见立体图形的表面展开图的特征是解决此类问题的关键.5.C【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n 是正数;当原数的绝对值小于1时,n 是负数.【详解】460 000 000=4.6×108.故选C .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.6.B【解析】【分析】根据单项式与多项式的定义、次数与系数的概念解答即可.【详解】A 、15ab -的系数是15-,正确;B、235x y的系数是35,故B错误;C、224a b的次数是4,正确;D、42242a ab b-+的次数是4,正确,故答案为B.【点睛】本题考查了单项式和多项式的次数,系数的识别,掌握单项式与多项式的判断方法是解题的关键.7.D【解析】【分析】六棱柱有8个面,用平面去截六棱柱时最多与8个面相交得八边形,最少与三个面相交得三角形.因此截面的形状可能是:三角形、四边形、五边形、六边形、七边形、八边形.【详解】解:用平面去截一个六棱柱,得的截面可能为三角形、四边形、五边形、六边形、七边形、八边形,不可能为九边形.故选:D.【点睛】本题考查六棱柱的截面.六棱柱的截面的几种情况应熟记.8.B【解析】【分析】根据数轴可以判断a、b的正负,从而可以解答本题.【详解】解:由数轴可得,a<0<b且|a|>|b|,则a+b<0,a<b,ab<0,只有选项B正确.故选:B.【点睛】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:②正数都大于0;②负数都小于0;②正数大于一切负数;②两个负数,绝对值大的其值反而小.同时考查了数轴的特征,以及在数轴上表示数的方法,要熟练掌握,解答此题的关键是要明确:一般来说,当数轴方向朝右时,右边的数总比左边的数大.9.B【解析】【分析】先根据绝对值和偶次幂的非负性求得m 、n 的值,然后再代入解答即可.【详解】解:②()2120m n ++-=,1m +≥0,()22n -≥0, ② 1m +=0,()22n -=0,即m=-1,n=2,②()211 n m =-=.故答案为B .【点睛】本题主要考查了绝对值和偶次幂的非负性以及乘方运算,运用绝对值和偶次幂的非负性确定m 、n 的值是解答本题的关键.10.C【解析】【分析】根据给定的部分“三角形数”和“正方形数”找出“三角形数”可看成从1开始几个连续自然数的和以及“正方形数”可看成某个自然数的平方,依此规律逐一分析四个选项中的三个数是否符合该规律,由此即可得出结论.【详解】解:A 、13不是正方形数,不合题意;B 、9和16不是三角形数,不合题意;C 、36=62=(5+1)2,n=5;两个三角形的数分别是:1+2+3+4+5=15;1+2+3+4+5+6=21;故C 符合题意;D 、18和31不是三角形数,不合题意;故选:C .【点睛】本题考查了规律型中数字的变化类,根据给定的部分“三角形数”和“正方形数”找出“三角形数”和“正方形数”的特点是解题的关键.11.-150②【解析】【分析】此题主要用正负数来表示具有意义相反的两种量:零上温度记为正,则零下温度就记为负,直接得出结论即可.【详解】解:零下150②,记作-150②.故答案为:-150②.【点睛】本题主要考查正负数的意义,正数与负数表示意义相反的两种量,看清规定哪一个为正,则和它意义相反的就为负.12.<【解析】【分析】两个负数比较,绝对值大的反而小,依此即可求解.【详解】解:②|-7|=7,|-3|=3,7>3,②-7<-3.故答案为:<.【点睛】本题考查了负数大小比较,任意两个数都可以比较大小.正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负数比较,绝对值大的反而小.13.(20a+3b)【解析】【分析】先表示出温度计的钱数,再表示出口罩的钱数,相加即可得出答案.【详解】解:单价为20元的温度计a 个,单价为3元的口罩b 个,∴温度计的钱数为20a 元,口罩的钱数为3b 元∴共花钱()203a b +元.故答案为:()203a b +.【点睛】本题主要考查列代数式的知识点,解决问题的关键是读懂题意,找到所求的量的等量关系,注意:书写代数式的时候,数字应写在字母的前面.此题基础题,比较简单.14.12【解析】【分析】利用正方体及其表面展开图的特点,根据相对面上的两个数之和相等,列出方程求出a 、b 、c 的值,从而得到a+b+c 的值.【详解】解:这是一个正方体的平面展开图,共有六个面,可知a 与b 相对,c 与一2相对,3与2相对,②相对面上两个数之和相等,②a+b=c -2=3+2,②a+b=5,c=7,②a+b+c=12.故答案为:12.【点睛】本题考查了正方体相对两个面.注意正方体的空间图形,从相对面入手,分析及解答问题.15.6π【解析】【分析】根据主视图确定出圆柱体的底面直径与高,然后根据圆柱体的侧面积公式列式计算即可得解.【详解】解:②圆柱的底面直径为2,高为3,②侧面积= 2•π×3=6π..故答案为:6π.【点睛】本题考查了立体图形的三视图和学生的空间想象能力,圆柱体的侧面积公式,根据主视图判断出圆柱体的底面直径与高是解题的关键.16.21【解析】【分析】根据程序写出代数式,再将20m =代入代数式计算即可.【详解】由题意知:代数式为()2-2m m m ÷+=1m +,当20m =时,原式=21,故填:21 .【点睛】本题考查程序运算题,根据程序写出代数式并化简是关键.17.3或4-【解析】【分析】根据两点间的距离公式,对x 的值进行分类讨论,然后求出x ,即可解答;【详解】 解:根据题意,2|1|x x -++表示数轴上x 与1的距离与x 与2-的距离之和,当2x <-时,|(1)(2)2=1|7x x x x =---+-++,解得:4x =-;当21x -≤≤时,|(1)(2)2=1|7x x x x =--++-++,此方程无解,舍去;当1x >时,|(1)(2)2=1|7x x x x =-++-++,解得:3x =;②满足1|27|x x -++=的x 的值为:3或4-.故答案为:3或4-.【点睛】本题考查了两点之间的距离,以及绝对值的几何意义,解题的关键是熟练掌握绝对值的几何意义,正确的把绝对值进行化简.注意利用分类讨论的思想解题.18.(1)9;(2)16.【解析】【分析】(1)根据有理数的加减运算法则即可求解;(2)根据有理数的混合运算法则即可求解.【详解】解:(1)12(18)21---3021=-9=.(2)原式11(29)6=--⨯-11(7)6=--⨯-761=-+16=.【点睛】此题主要考查有理数的运算,解题的关键是熟知其运算法则.19.(1)35;(2)5416-.【解析】【分析】(1)根据乘法分配律即可求解;(2)根据351673636=-,再利用乘法分配律即可求解.【详解】解:(1)原式457(36)9612⎛⎫=--⨯- ⎪⎝⎭457(36)(36)(36)9612=⨯--⨯--⨯-163021=-++35=(2)356(6)36⨯- 17(6)36⎛⎫=-⨯- ⎪⎝⎭ 1426=-+ 5416=- 【点睛】此题主要考查有理数的运算,解题的关键是熟知有理数的运算法则.20.在数轴上表示如图所示,见解析;2531203222⎛⎫-<-<-+<<<- ⎪⎝⎭. 【解析】【分析】根据数轴的三要素:原点、正方向、单位长度画出数轴,分别根据绝对值、有理数的乘方、相反数的定义等化简各数,然后在数轴上把点表示出来,再根据数轴上的数,越往右,数越大解题即可.【详解】21533,|3|=3,2,0,,=22242=⎛⎫-----+- ⎪⎝⎭ 在数轴上表示2531203222⎛⎫-<-<-+<<<- ⎪⎝⎭【点睛】本题考查数轴、利用数轴表示数、利用数轴比较大小,涉及绝对值、有理数的乘方、相反数等知识,是重要考点,难度较易,掌握相关知识是解题关键.21.3或7【解析】【分析】由题意可知a+b=0,cd=1,m=±2,然后代入所求代数式进行计算即可.【详解】解:②a,b互为相反数,②a+b=0,②c,d互为倒数,②cd=1,②|m|=2,②m=±2,当m=2时,原式=4+1+0-2=3;当m=-2时,原式=4+1+0-(-2)=7.故m2-(-1)+|a+b|-cdm的值为3或7.22.见解析.【解析】由已知条件可知,主视图有3列,每列小正方形数目分别为4,1,3;左视图有3列,每列小正方形数目分别为2,4,3,据此画出图形解题.【详解】从正面看:从左面看:【点睛】本题考查几何体的三视图画法,是重要考点,难度一般,掌握相关知识是解题关键.23.(1)-14;(2)21.【解析】【分析】(1)根据⊗的含义,以及有理数的混合运算的运算方法,求出(-3)⊗6的值是多少即可.(2)根据⊗的含义,以及有理数的混合运算的运算方法,求出[2⊗(-32)]-[(-5)⊗9]的值是多少即可.【详解】(1)(-3)⊗6,=(-3)2+(-3)×6-5,=9-18-5,=-14;(2)[2⊗(-32)]-[(-5)⊗9],=[22+2×(-32)-5]-[(-5)2+(-5)×9-5],=[4-3-5]-[25-45-5],=-4+25,=21.【点睛】此题主要考查了定义新运算,以及有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.24.(1)233.4升;(2)B地在A地的正南方,它们相距58千米;(3)4次【解析】【分析】(1)由行驶记录取绝对值相加,算出汽车行驶的总路程,再乘以每千米的耗油量即可得出结果;(2)要求出B地在A地的哪个方向,相距多少千米,只要将汽车行驶的记录相加,如果是正数,就是B在A地的正北方向;如果是负数,就是B在A的正南方向;行驶记录相加的绝对值就是A、B的距离;(3)将行驶记录逐一相加,当每次运算结果与前一次运算结果的符号相反时,汽车会再次经过出发地A.【详解】解:(1)依题意得:行驶的总路程=180+200+110+60+160+68=778(千米),778×0.3=233.4(升),所以小明家的汽车这一天共耗油233.4升;(2)因为(−180)+(+200)+(−110)+(−60)+(+160)+(−68)=−58,所以B地在A地的正南方,它们相距58千米;(3)因为0+(−180)=−180,−180+200=20,20−110=−90,−90−60=−150,−150+160=10,10−68=−58,有4次运算结果与前一次运算结果的符号相反,所以汽车有4次再次经过出发地A.【点睛】本题考查了正负数在实际生活中的应用,特别需要注意绝对值的计算.25.观察:1145-,1120182019-;(1)89;(2)2521009.【解析】【分析】观察阅读材料中的式子得出拆项法,原式利用拆项法变形,计算即可求出值.【详解】观察:1114545=-⨯,1112018201920182019=-⨯;(1)11111111 26122030425672 +++++++=1111111 ++++++ 12233456677889⨯⨯⨯⨯⨯⨯⨯=1-12+12-13+13-14+②②+1189-=1-1 9=89;(2)1111 24466820162018 ++++⨯⨯⨯⨯=1111111 () 2244620162018⨯-+-++-=111() 222018⨯-=252 1009.【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.26.(1)164;(2)6364.【解析】【分析】(1)根据题意可以写出前几部分的面积,从而可以发现各部分面积的变化规律,再根据图形可知阴影部分的面积和部分②的面积相等,从而可以解答本题;(2)根据(1)中发现的规律和题目中的式子,可以计算出相应的结果.【详解】解:(1)由题意可知,部分②面积是12,部分②面积是(12)2,部分②面积是(12)3,…,则阴影部分的面积是(12)6=164,阴影部分的面积是164;(2)原式=12+23456611111163122222264 ++++=-=.【点睛】本题考查了有理数的乘方,解题的关键是仔细观察图形并发现图形变化的规律.。

北师大版七年级上册数学期中考试试题及答案

北师大版七年级上册数学期中考试试题及答案

北师大版七年级上册数学期中考试试卷2022年一、单选题1.下图中哪个图形经过折叠后可以围成一个棱柱()A .B .C .D .2.如果收入80元记作+80元,那么支出20元记作()A .+20元B .-20元C .+100元D .-100元3.4月24日是中国航天日,1970年的这一天,我国自行设计、制造的第一颗人造地球卫星“东方红一号”成功发射,标志着中国从此进入了太空时代,它的运行轨道距地球最近点为439000米.将439000用科学记数法表示应为()A .60.43910⨯B .64.3910⨯C .54.3910⨯D .34.3910⨯4.用一个平面去截一个如图所示的正方体,截面形状不可能为()A .B .C .D .5.下面说法正确的是()A .13πx 2的系数是13B .13xy 2的次数是2C .﹣5x 2的系数是5D .3x 2的次数是26.下列运算正确的是()A .4a+3b=7abB .4xy-3xy=xyC .-2x+5x=7xD .2y-y=17.“五一”小长假期间,某公园的门票价格是:成人10元,学生5元.某旅行团有成人x 人,学生y 人,该团应付的门票为()A .(105)x y +元B .(105)y x +元C .(1515)x y +元D .15xy 元8.一天早晨的气温是﹣7℃,中午上升了11℃,晚上又下降了9℃,晚上的气温是()A .﹣5℃B .﹣6℃C .﹣7℃D .﹣8℃9.已知-5a 6b 2和7a 2nb 2是同类项,则代数式10n-2的值是()A .58B .18C .28D .3810.按如图所示的规律搭正方形:搭一个小正方形需要4根小棒,搭两个小正方形需要7根小棒,搭100个这样的小正方形需要小棒()根.A .300B .301C .302D .400二、填空题11.计算:-3+2=_____.12.从正面,左面,上面看到的几何体的形状图都一样的几何体是________(一种即可).13.数轴的单位长度为1,如果点A 表示的数是-2,那么点B 表示的数是_________.14.计算(﹣1)÷6×(﹣16)=_____.15.化简:2(a+1)-a=____16.若a-2b=3,则2a-4b-5=______.17.数a ,b 在数轴上的位置如图所示,化简a a b --的结果是__________.三、解答题18.计算:2108(2)(4)(3)-+÷---⨯-.19.化简:822(52)a b a b ++-.20.从正面、左面、上面观察如图所示的几何体,分别画出你所看到的平面图形.21.9月10日这一天下午,出租车司机小王在东西走向的幸福大道上运营,若规定向东为正,向西为负,出租车的行车里程如下:+15,-4,+13,-10,-12,+3,-13,-17(1)将最后一名乘客送到目的地,小王距离出车地点多少千米?(2)若汽车耗油量为0.2升/千米,这天下午汽车共耗油多少升?22.如图是分别从正面、左面、上面观察一个几何体得到的图形,请解答以下问题:(1)这个几何体的名称为;(2)若从正面看到的是长方形,其长为10cm ;从上面看到的是等边三角形,其边长为4cm ,求这个几何体的侧面积.23.有一道化简求值题:“当a=-2,b=-3时,求(3a 2b-2ab )-2(ab-4a 2)+(4ab-a 2b )的值.”小芳做题时,把“a=-2”错抄成了“a=2”,但她的计算结果却是正确的,小芳百思不得其解,请你先化简并求值,再帮助她解释一下原因.24.在数轴上把下列各数表示出来,并用“<”连接各数.0,|1|--,-3,112,-(-4)25.已知,一个点从数轴上的原点开始,先向左移动7个单位到达A 点,再从A 点向右移动12个单位到达B 点,把点A 到点B 的距离记为AB ,点C 是线段AB 的中点.(1)点C 表示的数是;(2)若点A以每秒2个单位的速度向左移动,同时C、B点分别以每秒1个单位、4个单位的速度向右移动,设移动时间为t秒,①点C表示的数是(用含有t的代数式表示);②当t=2秒时,求CB-AC的值;③试探索:CB-AC的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.26.先阅读下面文字,然后按要求解题.例:1+2+3+…+100=?如果一个一个顺次相加显然太麻烦,我们仔细分析这100个连续自然数的规律和特点,可以发现运用加法的运算律,是可以大大简化计算,提高计算速度的.因为1+100=2+99=3+98=…=50+51=101,所以将所给算式中各加数经过交换、结合以后,可以很快求出结果:1+2+3+4+5+…+100=(1+100)+(2+99)+(3+98)+…+(50+51)=101×=.(1)补全例题解题过程;(2)请猜想:1+2+3+4+5+6+…+(2n﹣2)+(2n﹣1)+2n=.(3)试计算:a+(a+b)+(a+2b)+(a+3b)+…+(a+99b).参考答案1.B【解析】【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.【详解】解:选项A、D缺少一个面,不能围成棱柱;选项C中折叠后底面重合,不能折成棱柱;只有B能围成三棱柱.所以B选项是正确的.【点睛】考查了展开图折叠成几何体,解题时勿忘记四棱柱的特征及正方体展开图的各种情形.2.B【解析】【详解】试题分析:具有相反意义的量是指意义相反,与值无关,收入为正,则支出为负.∵收入80元记作+80元,∴支出20元记作-20元.故选:B.考点:具有相反意义的量.3.C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【详解】解:439000=4.39×105.故选:C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.C【解析】【分析】正方体有六个面,用平面去截正方体时最多与六个面相交得六边形,最少与三个面相交得三角形,截面也不可能有弧度,因此截面形状不可能为圆.解:用一个平面无论如何去截,截面也不可能有弧度,因此截面形状不可能为圆.故选:C .【点睛】本题考查正方体的截面.正方体有六个面,截面与其六个面相交最多得六边形,不可能是七边形或多于七边的图形或其它的弧形.5.D 【解析】【分析】根据单项式的系数和次数的定义即可完成即可.【详解】解:A .13πx 2的系数是13π,故此选项错误;B .12xy 2的次数是3,故此选项错误;C .﹣5x 2的系数是﹣5,故此选项错误;D .3x 2的次数是2,正确.故答案为D .【点睛】本题考查了单项式的系数和次数,解题的关键在于掌握单项式的系数和次数的求法,即系数为单项式的数字部分,注意π为数字,这是解答本题的关键.6.B 【解析】【分析】根据整式加减法的运算法则进行计算判断即可.【详解】A 选项中,因为43a b +中两个项不是同类项,不能合并,所以A 中计算错误,不符合题意;B 选项中,因为43xy xy xy -=,所以B 中计算正确,符合题意;C 选项中,因为253x x x -+=,所以C 中计算错误,不符合题意;D 选项中,因为2y y y -=,所以D 中计算错误,不符合题意.故选B .熟记“整式加减法的运算法则”是正确解答本题的关键.7.A【解析】【分析】门票费=成人门票总价+学生门票总价.【详解】解:门票费为(10x+5y)元.故选A.【点睛】解决问题的关键是读懂题意,找到所求的量的等量关系.8.A【解析】【详解】=-+-=-℃晚上的气温71195故选A.9.C【解析】【分析】根据同类项定义,相同字母的指数相同,可得出n的值,继而可得出答案.【详解】解:∵-5a6b2和7a2nb2是同类项,∴2n=6,解得:n=3,∴10n-2=28.故选择:C.【点睛】本题考查了同类项,掌握同类项的定义是解题的关键.10.B【解析】【分析】通过归纳与总结得出规律:每增加1个正方形,火柴棒的数量增加3根,由此求出第n个图形时需要火柴的根数的代数式,然后代入求值即可.【详解】解:搭2个正方形需要4+3×1=7根火柴棒;搭3个正方形需要4+3×2=10根火柴棒;…,搭n个这样的正方形需要4+3(n﹣1)=3n+1根火柴棒;∴搭100个这样的正方形需要3×100+1=301根火柴棒;故选B.【点睛】本题考查了图形规律型:图形的变化.解题的关键是发现各个图形的联系,找出其中的规律,有一定难度,要细心观察总结.11.-1【解析】【分析】由绝对值不等的异号加减,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得0,即可求得答案.【详解】解:﹣3+2=﹣1.故答案为:﹣1.12.球(答案不唯一)【解析】【分析】根据主视图,左视图,俯视图的定义找出从正面,左面,上面看到的几何体的形状图都一样的几何体即可.【详解】解:球从正面,左面,上面看到的平面图形为全等的圆,故答案为球(答案不唯一).【点睛】本题考查三视图的有关知识,注意三视图都相同的常见的几何体有球、正方体.13.2【解析】由4,AB=点A表示的数是-2,把点A往右移动4个单位可得答案.【详解】解: 点A表示的数是-2,4,AB=∴把点A往右移动4个单位可得点B,B∴表示的数为:242,-+=故答案为:2.【点睛】本题考查的是数轴上两点之间的距离,及点的移动后对应的数的表示,掌握以上知识是解题的关键.14.1 36.【解析】【分析】由有理数的乘除法的运算法则进行计算,即可得到答案.【详解】解:原式=111()66-⨯⨯-=136;故答案为:1 36.【点睛】本题考查了有理数的乘除法混合运算,解题的关键是掌握运算法则进行解题.15.a+2##2+a【解析】【详解】解:原式=2a+2-a=a+2.故答案为:a+216.1【解析】【分析】把所求代数式转化为含有(a﹣2b)形式的代数式,然后将a﹣2b=3整体代入并求值即可.解:a-2b=3,∵2a ﹣4b ﹣5=2(a ﹣2b)-5=2×3-5=1.故答案为:1.17.-b 【解析】【分析】根据数轴可判断a <0,a−b <0,然后去绝对值即可.【详解】解:由数轴可知,a <0,a−b <0,∴()a a b a b a a b a b --=---=--+=-,故答案为-b .【点睛】本题考查了数轴与绝对值,解决此类题目的关键是判断绝对值里式子的符号,熟练运用去绝对值的法则,合并同类项的法则,是各地中考的常考点.18.-20【解析】【分析】根据有理数的运算顺序,先算乘方,再算乘除,最后算加减即得.【详解】解:原式=−10+8÷4−12=-10+2-12=-20【点睛】本题考查有理数的混合运算,按照有理数运算顺序计算是解题关键,按照乘法与除法运算法则确定符号是易错点.19.18a−2b 【解析】【分析】根据整式的运算法则,先去括号,再合并同类项即可求出答案.【详解】解:原式=8a+2b+10a−4b=18a−2b【点睛】本题考查整式的运算法则,解题的关键是熟练运用整式的运算法则,本题属于基础题型.20.见解析【解析】【分析】从正面看:共有3列,从左往右分别有1,2,1个小正方形;从左面看:共有2列,左面一列有2个,右边一列有1个小正方形;从上面看:共分3列,从左往右分别有2,1,1个小正方形.据此可画出图形.【详解】解:如图所示:【点睛】此题考查画三视图的知识;用到的知识点为:主视图,左视图,俯视图分别是从物体的正面,左面,上面看得到的图形.21.(1)小王距离出车地点西边25千米(2)这天下午汽车共耗油17.4升【解析】【详解】试题分析:(1)根据有理数的加法,直接可求解;(2)根据行车就要耗油,求其各段行驶过程的绝对值,乘以单位耗油量即可.试题解析:(1)+15-4+13-10-12+3-13-17=-25千米小王距离出车地点西边25千米(2)+15+4+13+10+12+3+13+17=87千米这天下午汽车共耗油87×0.2=17.4升22.(1)三棱柱;(2)这个几何体的侧面积为2120cm.【解析】【分析】(1)根据三视图的知识,主视图以及左视图都是长方形,俯视图为三角形,故可判断出该几何体是三棱柱;(2)侧面积为3个长方形,它的长和宽分别为10cm,4cm,计算出一个长方形的面积,乘3即可.【详解】解:(1)这个几何体是三棱柱;故答案为:三棱柱;(2)三棱柱的侧面展开图形是长方形,长方形的长是等边三角形的周长,宽是三棱柱的高,所以三棱柱侧面展开图形的面积为:()2S cm=⨯⨯=.3410120120cm.答:这个几何体的侧面积为2【点睛】本题主要考查由三视图确定几何体和求几何体的面积等相关知识,考查学生的空间想象能力.注意:棱柱的侧面都是长方形,上下底面是几边形就是几棱柱.23.2a2b+8a2,8,理由见解析【解析】【分析】先把(3a2b−2ab)−2(ab−4a2)+(4ab−a2b)去括号后合并同类项化为2a2b+8a2,再代入求值即可.无论a=−2,还是a=2,a2都等于4,代入后结果是一样的.【详解】解:(3a2b−2ab)−2(ab−4a2)+(4ab−a2b)=3a2b−2ab−2ab+8a2+4ab−a2b=2a2b+8a2当a=−2,b=−3时,原式=2×4×(−3)+8×4=8.原因:因为无论a=−2,还是a=2,a 2都等于4,代入后结果是一样的,所以计算结果是正确的.【点睛】本题考查了整式的加减-化简求值,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握法则是解本题的关键.24.见解析,-3<|1|--<0<112<-(-4).【解析】【分析】在数轴上表示出各数,从左到右用“<”连接起来即可.【详解】解:如图所示,,由图可知,-3<|1|--<0<112<-(-4).故答案为见解析,-3<|1|--<0<112<-(-4).【点睛】本题考查数轴,有理数的大小比较,熟知数轴上右边的数总比左边的大是解题的关键.25.(1)-1(2)①−1+t ;②0;③CB−AC 的值不随着时间t 的变化而改变,CB−AC 的值为0.【解析】【分析】(1)根据题意可以求得点C 表示的数;(2)①根据题意可以用代数式表示点C 运动时间t 时表示的数;②根据题意可以求得当t =2秒时,CB−AC 的值;③先判断是否变化,然后求出CB−AC 的值即可解答本题.(1)解:由题意可得,AC =12×12=6,∴点C 表示的数为:0−7+6=−1,故答案为:−1;(2)解:①由题意可得,点C移动t秒时表示的数为:−1+t,故答案为:−1+t;②当t=2时,CB−AC=[(0−7+12+4t)−(−1+t)]−[(−1+t)−(0−7−2t)]=(5+4t+1−t)−(−1+t+7+2t)=6+3t−6−3t=0;③CB−AC的值不随着时间t的变化而改变,∵CB−AC=[(0−7+12+4t)−(−1+t)]−[(−1+t)−(0−7−2t)]=(5+4t+1−t)−(−1+t+7+2t)=6+3t−6−3t=0,∴CB−AC的值不随着时间t的变化而改变,CB−AC的值为0.【点睛】点评:本题考查数轴,解答本题的关键是明确题意,找出所求问题需要的条件.26.(1)50;5050;(2)n(2n+1);(3)100a+4950b.【解析】【分析】(1)由题意可得从1到100共有100个数据,两个一组,则共有50组,由此即可补全例题的解题过程;(2)观察、分析所给式子可知,所给代数式中共包含了2n个式子,这样参照例题方法解答即可;(3)观察、分析所给式子可知,所给代数式中共包含了100个式子,再参照例题方法解答即可.【详解】解:(1)原式=1+2+3+4+5+…+100=(1+100)+(2+99)+(3+98)+…+(50+51)=101×50=5050;故答案为:50;5050;(2)原式=(1+2n)+(2+2n-1)+(3+2n-2)+…+(n+n+1)=(2n+1)+(2n+1)+(2n+1)+…+(2n+1)=(2n+1)×n=n(2n+1);故答案为:n(2n+1);(3)原式=[a+(a+99b)]+[(a+b)+(a+98b)]+…+[(a+49b)+(a+50b)]=(2a+99b)+(2a+99b)+…+(2a+99b)=50(2a+99b)=100a+4950b.【点睛】本题的解题要点是通过观察、分析得到本题的三个式子都有如下规律:(1)每个算式中都包含了偶数个式子;(2)每个算式中相邻两个式子的差是相等的;(3)每个算式中第1个和最后1个式子相加,第2个式子和倒数第2个式子相加,…,所得的和相等;这样根据上述特点即可按例题中的方法方便的计算出每个小题的结果了.。

新北师大版七年级上册数学期中考试练习试卷含答案解析(20)

新北师大版七年级上册数学期中考试练习试卷含答案解析(20)

一、选择题1. 定义运算 f (x ):f (x )=x 21+x 2,如 f (1)=121+12=12,那么 f (0)+f (1)+f (2)+f (12)+f (3)+f (13)+⋯+f (2013)+f (12013) 的值为 ( ) A . 2011.5B . 2012.5C . 2013.5D . 0.52. 下列各单项式中与单项式 −2xy 2 不是同类项的是 ( ) A . −4xy 2B . 4y 2xC . −xy 2D . −x 2y3. 如图,下列图形都是由大小一样的正方形按一定的规律组成的,其中,第①个图形中黑色正方形有 4 个,第②个图形中黑色正方形有 7 个,第③个图形中黑色正方形有 10 个,⋯⋯,按此规律,则第⑧个图形中黑色正方形的个数为 ( )A . 26B . 20C . 21D . 254. 我国倡导的“一带一路”建设将促进我国与世界上的一些国家的互利合作,根据规划“一带一路”地区覆盖总人口为 4400000000 人,这个数用科学记数法表示为 ( ) A .44×108B .4.4×108C .4.4×109D .4.4×10105. 按如图所示的运算程序,能使输出 y 值为 1 的是 ( )A . m =1,n =1B . m =1,n =0C . m =1,n =2D . m =2,n =16. 下列计算正确的是 ( ) A . 3x 2−x 2=3 B . 3a 2+2a 2=5a 4C . −0.25ab +14ab =0D . 3+x =3x7.若a−b=2,b−c=−3,则a−c等于( )A.1B.−1C.5D.−58.如图,在1000个“○”中依次填入一列数字m1,m2,m3⋯,m1000使得其中任意四个相邻“○”中所填数字之和都等于−10,已知m25=x−1,m999=−2x,则x的值为( )A.1B.−1C.2D.−29.12的相反数是( )A.2B.−2C.12D.−1210.为增加绿化面积,某小区将原来正方形地砖更换为如图所示的正八边形植草砖,更换后,图中阴影部分为植草区域,设正八边形与其内部小正方形的边长都为a,则阴影部分的面积为.A.2a2B.3a2C.4a2D.5a2二、填空题11.当x=时,代数式3−∣x+4∣有最大值,这个最大值是.12.小明做数学题时,发现√1−12=√12;√2−25=2√25;√3−310=3√310;√4−417=4√417;⋯⋯;按此规律,若√a−8b =a√8b(a,b为正整数),则a+b=.13.现有一列数:a1,a2,a3,a4,⋯,a n−1,a n(n为正整数),规定a1=2,a2−a1=4,a3−a2=6,⋯,a n−a n−1=2n(n≥2),若1a2+1a3+1a4+⋯+1a n=5041009,则n的值为.14.若x,y为实数,且∣x+2∣+(y−2)2=0,则(xy )2017的值为.15.如图所示是一个正方体的展开图,在原正方体中与平面1平行的面是,与平面5垂直的平面是.16.有理数2018的相反数是.17.如图是一个数值转换机的示意图,若输入x的值为3,y的值为−2时,则输出的结果为.三、解答题18.上午8点整汽车从甲地山发,以每小时20千米的速度在东西走向的道路上连续行驶,全部行程依次如下所示:(掉头时间忽略不计,规定向东为正,单位:千米)+5,−4,+3,−6,−2,+10,−3,−7(1) 这辆汽车最后一次行驶结束后距离甲地多远?(2) 这辆汽车共行驶多少千米?(3) 这辆汽车每次经过甲地时分别是几点几分?(直接写出答案)19.先化简,再求值:16(−6x2−2x+12)−(−13x+1),其中x=13.20.对于有理数a,b定义一种新运算,规定a☆b=a2−a∗b.(1) 求2☆(−3)的值;(2) 求[2☆(−3)]☆4的值.21.对任意一个三位数n,如果n满足各个数位上的数字互不相同,且都不为零,那么称这个数为“相异数”,将一个“相异数”n的各个数位上的数字之和记为F(n).例如n=135时,F(135)= 1+3+5=9.(1) 对于“相异数”n,若F(n)=6,请你写出一个n的值;(2) 若a,b都是“相异数”,其中a=100x+12,b=350+y(1≤x≤9,1≤y≤9,x,y都是正整数),规定:k=F(a)F(b),当F(a)+F(b)=18时,求k的最小值.22.快递员骑车从邮局出发,先向西骑行3km达到A村,继续向西骑行2km达到B村,然后向东骑行9km达到C村,最后回到邮局.(1) 以邮局为原点,向东为正方向,用1cm表示1km,画出数轴,并在该数轴上表示A,B,C三个村庄的位置;(2) C村离A村km;(3) 快递员一共骑行km.23.在下面的方阵图中,每行、每列、每条对角线上的3个数的和相等.(1) 根据图1中给出的数,对照完成图2.3−77 51−3−59−1 图10 图2(2) 试着自己找出9个不同的数,完成图3. 图3(3) 想一想图中9个数,最中间的数与其他8个数有什么关系?24.一个四位数,记千位上和百位上的数字之和为x,十位上和个位上的数字之和为y,如果x=y,那么称这个四位数为“和平数”.(1) 直接写出:最小的“和平数”是;最大的“和平数”是.(2) 一个“和平数”,十位数字为方程5x−13=3的解,千位数字与个位数字的比为2:3,百位数字比千位数字小1,求这个“和平数”.(3) 将一个“和平数”的个位上与十位上的数字交换位置,同时,将百位上与千位上的数字交换位置,称交换前后的这两个“和平数”为一组“相关和平数”.例如:1423与4132为一组“相关和平数”.请直接写出:和是3333的所有“相关和平数”.25.表二,表三,表四分别是从表一中截取的一部分.表一1234⋯2468⋯36912⋯481216⋯⋯⋯⋯⋯⋯表二1215a表三202524b表四1824cd(1) a,b,c,d的值分别为.(2) 表一中第10行,第10列中的数是.答案一、选择题 1. 【答案】B【解析】由已知得,f (0)=0,f (1)=12,f (n )=n 21+n 2,f (1n)=1n 21+1n2=11+n 2,∴f (n )+f (1n )=1,∴f (2)+f (12)=1,f (3)+f (13)=1,⋯,f (2013)+f (12013)=1, 则 原式=0+12+2012=2012.5. 【知识点】用代数式表示规律2. 【答案】D【解析】 −2xy 2 与 −x 2y 中相同字母的指数不相同,不是同类项. 【知识点】同类项3. 【答案】D【解析】设第 n 个图形中有 a n 个黑色正方形(n 为正整数), ∵a 1=4=3+1,a 2=7=2×3+1,a 3=10=3×3+1,⋯, ∴a n =3n +1(n 为正整数), ∴a 8=3×8+1=25. 【知识点】用代数式表示规律4. 【答案】C【知识点】正指数科学记数法5. 【答案】D【解析】方法一:当 m =1,n =1 时,y =2m +1=2+1=3, 当 m =1,n =0 时,y =2n −1=−1, 当 m =1,n =2 时,y =2m +1=3, 当 m =2,n =1 时,y =2n −1=1. 方法二: ∵y =1,∴ 有两种情况 {n =1,m >n m =0,n ≥m 符合题意.【知识点】简单列代数式6. 【答案】C【解析】A.系数相加字母及指数不变,故A错误;B.系数相加字母及指数不变,故B错误;C.系数相加字母及指数不变,故C正确;D.不是同类项不能合并,故D错误.【知识点】合并同类项7. 【答案】B【解析】∵a−b=2,b−c=−3,∴a−c=(a−b)+(b−c)=2−3=−1.【知识点】简单的代数式求值、添括号8. 【答案】C【知识点】用代数式表示规律9. 【答案】D【解析】12的相反数是−12.【知识点】相反数10. 【答案】A【解析】图案中间的阴影部分是正方形,面积是a2,由于原来地砖更换成正八边形,四周一个阴影部分是对角线为a的正方形的一半,它的面积用对角线积的一半来计算.a2+12×12a2×4=2a2.【知识点】列代数式二、填空题11. 【答案】−4;3【解析】∵∣x+4∣≥0,∴3−∣x+4∣≤3,当x=−4时,有最大值3.【知识点】简单的代数式求值、绝对值的几何意义12. 【答案】73【知识点】用代数式表示规律13. 【答案】2017【知识点】用代数式表示规律14. 【答案】−1【解析】∵∣x+2∣≥0,(y−2)2≥0,又∣x+2∣+(y−2)2=0,∴x+2=0,y−2=0,解得,x=−2,y=2,∴(xy )2017=(−22)2017=(−1)2017=−1.【知识点】解二元一次方程组、有理数的乘方15. 【答案】平面3;平面1,2,3,4【知识点】正方体的展开图16. 【答案】−2018【知识点】相反数17. 【答案】5【解析】把x=3,y=−2输入此程序得,[3×2+(−2)2]÷2=10÷2=5.【知识点】有理数的加减乘除乘方混合运算三、解答题18. 【答案】(1) 5+(−4)+3+(−6)+(−2)+10+(−3)+(−7)=−4.答:这辆汽车最后一次行驶结束后距离甲地4km.(2)∣+5∣+∣−4∣+∣+3∣+∣−6∣+∣−2∣+∣+10∣+∣−3∣+∣−7∣=5+4+3+6+2+10+3+7=40(km).答:这辆汽车共行驶40千米.(3) 8点48分;9点12分;9点48分【解析】(3) (5+4+3+4)÷20=0.8(小时)=48(分),故这辆汽车第一次经过甲地时是8点48分;(2+2+4)÷20=0.6(小时)=24(分),故这辆汽车第二次经过甲地时是9点12分;(6+3+3)÷20=0.6(小时)=36(分),故这辆汽车第三次经过甲地时是9点48分.【知识点】有理数加法的应用19. 【答案】 原式=−x 2−13x +2+13x −1=−x 2+1,把 x =13 代入原式:原式=−x 2+1=−(13)2+1=89. 【知识点】整式的加减运算20. 【答案】(1) 2☆(−3)=22−2×(−3)=4+6=10 . (2)[2☆(−3)]☆4=10☆4=102−10×4=100−40=60.【知识点】简单的代数式求值21. 【答案】(1) ∵F (n )=6, ∴n =123 .(2) ∵F (a )=x +1+2=x +3,F (b )=3+5+y =8+y 且 F (a )+F (b )=18, ∴x +3+8+y =18. ∴x +y =7. ∵x ,y 是正整数,∴{x =1,y =6, {x =2,y =5, {x =3,y =4, {x =4,y =3, {x =5,y =2, {x =6,y =1.∵a ,b 是相异数,∴a ≠1,a ≠2,b ≠3,b ≠5. ∴{x =3,y =4, {x =5,y =2, {x =6,y =1.∴k =F (a )F (b )=12 或 45 或 1. ∴k 的最小值为 12.【知识点】简单列代数式、二元一次方程整数解22. 【答案】(1) 如图所示: (2) 7 (3) 18 【解析】(2) 由图知 C 村庄离 A 村 4+3=7(km ),故答案为:7; (3) 邮递员一共骑行 3+2+9+4=18(km ),故答案为:18.【知识点】有理数加法的应用、数轴的概念23. 【答案】(1) 略(2) 略(3) 中间的数是其余8个数的平均数.【知识点】有理数的加法法则及计算24. 【答案】(1) 1001;9999.(2) x=2;6529.(3) 1212与2121;1221与2112;1203与2130;1230与2103.【知识点】一元一次方程的解、有理数的加法法则及计算25. 【答案】(1) 18,30,28,35(2) 100【解析】(1) 在表一中,第一行和第一列中,前一个数加1的和就是后一个数,第二行和第二列中,前一个数加2的和就是后一个数,第三行和第三列中,前一个数加3的和就是后一个数,第四行和第四列中,前一个数加4的和就是后一个数,⋯⋯,照这样的规律排列,表二中,前一个数加3的和就是后一个数,所以,a的值是:15+3=18,表三中,左边的两个数是上面的数加4就是下面的数,所以,右面的两个数应是上面的数加5就是下面的数,b的值是:25+5=30,表四中,左边的两个数是上面的数加6就是下面的数,所以,c的值应该是第4行,第7列的数,c的值是:(24÷6)×7=28,表四中,左边的两个数是上面的数加6就是下面的数,所以,d的值应该是第5行,第8列的数,d的值是:5×7=35.(2) 由(1)可知,表一中第10行,第10列中的数是100.【知识点】用代数式表示规律。

北师大版2013年七年级上册数学半期试题

北师大版2013年七年级上册数学半期试题

七年级(上)数学半期考试题(时间120分钟,满分150分)温馨提示:亲爱的同学们,经过这段时间的学习,相信你已经拥有了许多知识财富!下面这套试卷是为了展示你最近的学习效果而设计的,只要你仔细审题,认真作答,遇到困难时不要轻易放弃,就一定会有出色的表现!注意:请将选择题和填空题的答案填在后面的表格中A 卷(100分)一、选择题:本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的.1、12的相反数的绝对值是 ( ) A .12- B.2 C.-2 D. 122、下列语句中错误的是 ( )A.数字0也是单项式B.单项式-a 的系数与次数都是 1C.21xy 是二次单项式 D.-32ab 的系数是 -32 3、下列各式计算正确的是 ( ) A .2(4)16--=- B .826(16)(2)--⨯=-+⨯- C .6565445656⎛⎫÷⨯=÷⨯ ⎪⎝⎭D. 20032004(1)(1)11-+-=-+ 4、如果3,1,a b a b ==>且,那么b a +的值是 ( ) A . 4 B . 2 C . 4- D . 4或25、下列说法上正确的是 ( ) A .长方体的截面一定是长方形; B .正方体的截面一定是正方形; C .圆锥的截面一定是三角形; D .球体的截面一定是圆6、 如图,四条表示方向的射线中,表示北偏东60°的是 ( )7、若x-y 2(x y)4, -6 2(x y)x-yx y x y -+=+++则代数式的值是 ( ) A .4 B .311C -3D 22..不能确定 8、下面是小芳做的一道多项式的加减运算题,但她不小心把一滴墨水滴在了上面.⎪⎭⎫ ⎝⎛-+-22213y xy x 2222123421y y xy x -=⎪⎭⎫ ⎝⎛-+--,阴影部分即为被墨迹弄污的部分.那么被墨汁遮住的一项应是 ( ) A. xy 7- B. xy 7+ C. xy - D. xy +9、 下列说法正确的个数为 ( ) (1)过两点有且只有一条直线 (2)连接两点的线段叫做两点间的距离 (3)两点之间的所有连线中,线段最短 (4)射线比直线段一半 (5)直线AB 和直线BA 表示同一条直线A .2B .3C .4D .5 10、某电影院共有座位n 排,已知第一排的座位为m 个,后一排总是比前一排多1个,则电影院中共有座位 ( )A.mn+22n B. (1)2n n mn -+ C.mn+n D. (1)2n n mn ++二、填空题:本大题共10小题,每小题3分,共18分,把答案填写在题中横线上.11、比较大小:–π________–3.14(填=,>,<号).12、单项式2a b -的系数是___________,单项式2715x y π-的次数是________.13、在数轴上,点M 表示的数是-2,将它先向右移动4.5个单位,再向左移5个单位到达点N ,则点N 表示的数是 .14、一桶油连桶的重量为a 千克,桶重量为b 千克,如果把油平均 分成3份,每份油的重量是____________.15、如图:三角形有___________个.15题16、为了节约用水,某市规定:每户居民每月用水不超过15立方米,按每立方米1.6元收费,超过15立方米,则超过部分按每立方米2.4元收费.小明家六月份交水费33. 6元,则小明家六月份实际用水______________立方米三、图形题:本大题每小题5分,共10分.17、(本题5分)如图,这是一个由小立方块塔成的几何体的俯视图,小正方形中的数字表示该位置的小立方块的个数.请你画出它的主视图与左视图主视图 左视图2413218、(本题5分)如图:正方形的边长为a 其中有一直径为a 的圆,阴影部分面积为S .(1)用含a 的代数式表示阴影面积S ;(2)当4a cm =时,求阴影部分面积S .( 3.14)π取四、运算题:本大题共2小题,共9分,解答应写出必要的计算过程. 19、(1)(本题4分) (-61+43-125)⨯)12(-(2)(本题5分)()()[]2421315.011--⨯⨯---五、代数式运算题:本大题共2小题,每题5分,共15分,解答应写出必要的计算过程. 20、(1)(本题5分)化简 ]2)(5[)3(2222mn m mn m m mn +-----(2)(本题5分)先化简,再求值:22215{2[32(2)]}2abc a b abc ab a b ---- ,求当3,1,2=-==c b a 时的值.(3)(本题5分)若关于x y 、的代数式22(27)(291)x ax y bx x y +-+--+-的值与字母x 的取值无关,求a b -.六、解答题:本大题共3小题,每小题6分.共18分,解答应写出必要的计算过程或文字说明.21、(本题6分)如图,点P 在线段AB 上,点M N 、分别是线段AB AP 、的中点,若16AB =cm ,6BP =cm ,求线段NP 和线段MN 的长.22、(本题6分)如图,OE 为∠AOD 的角平分线,∠COD=41∠EOC ,∠COD=15°, 求:①∠EOC 的大小; ②∠AOD 的大小.AN P23、(本题6分)“十·一”黄金周期间,上海世博园风景区7天假期中每天旅游的人数变化如下表(正数表示比前一天多的人数,负数表示比前一天少的人数):(1)若9月30日的游客人数记为a,请用a的代数式表示10月2日的游客人数:万人.(2)请判断七天内游客人数最多的是日,最少的是日.(3)以9月30日的游客人数为0点,用折线统计图表示这7天的游客人数情况:(日)B 卷(50分)一、填空.(共5小题,每题4分,共20分)24、如果522)3(5x m y x n -+是关于x,y 的六次二项式,则m 、n 应满足条件____________. 25、7点20分,钟表上时针与分针所成的角是______________度26、已知多项式281468ax bx cx -+-,当3x =时值为2010,当3x =-时281468ax bx cx -++ 的值为 .27、点,A B 在直线l 上,5AB =cm ,画点C ,使点C 是在直线l 上到点A 的距离是3的点,则点C 到点B 的距离是____________cm .28、如图①中:共有1个小立方体,其中1个看得见,0个看不见;如图②中:共有8个小立方体,其中7个看得见,1个看不见;如图③中:共有27个小立方体,其中19个看得见,8个看不见;……,则第⑥个图中,看不见...的小立方体有______个.二、解答题(共30分)29、 (本题5分)已知a 、b 互为相反数,c 、d 互为倒数,m 的倒数等于它本身,则()cda b m m m ++-的值是多少?30、(本题6分)数a ,b ,c 在数轴上的位置如图所示且c a =; (1)化简2a c b b a c b a b ++----++; (2)用“<”把a ,b ,b -,c 连接起来;31、(本题9分)全世界每年都有大量土地被沙漠吞没,改造沙漠,保护土地资源已成为一项十分紧迫的任务,某地区沙漠原有面积100万公倾.为了解该地区沙漠面积的变化情况,进行了连续3年① ② ③的观察,并将每年年底的观察结果,记录如下表:(1)如果不采取措施,第4年底,该地区沙漠化面积将变成多少万公顷?(2)如果不采取措施,那么到第m 年底,该地区沙漠面积将变为多少万公顷?(3)如果第5年后采取措施,每年改造0.8万公倾沙漠,那么到第n 年该地区沙漠的面积为多少万公顷(5 n )?32、(本题10分)如图,有一个形如六边形的点阵,它的中心是一个点,算第一层,第二层每边有两个点,第三层每边有三个点,依次类推.(2)写出第n 层所对应的点数.(3)如果某一层共96个点,你知道它是第几层吗? (4)有没有一层,它的点数为100点? (5)写出n 层的六边形点阵的总点数.。

北师大版七年级上册数学期中考试试卷带答案

北师大版七年级上册数学期中考试试卷带答案

北师大版七年级上册数学期中考试试题一、单选题1.4-的倒数是( )A .14B .4C .14-D .4- 2.把890000这个数据用科学记数法表示为( )A .58.910⨯B .68.910⨯C .78.910⨯D .88.910⨯ 3.由一些大小相同的小正方体组成的几何体的俯视图如图所示,其中正方形中的数字表示在该位置上的小正方体的个数,那么,这个几何体的左视图是( )A .B .C .D . 4.下列各组单项式中,不是同类项的是( )A .3与2-B .313x y 与313x y - C .22ab c 与2acb D .2a -与25- 5.如果一个直棱柱有七个面,那么它一定是( )A .三棱柱B .四棱柱C .五棱柱D .六棱柱 6.绝对值大于2且小于5的所有整数的和是( )A .7B .-7C .0D .5 7.44-=表示的意义是( )A .4-的相反数是4B .表示4的点到原点的距离是4C .4的相反数是4-D .表示4-的点到原点的距离是48.下列计算正确的是( )A .2(1)1-=-B .3(1)1-=-C .211-= D .311-=9.如图,虚线左边的图形绕虚线旋转一周,能形成的几何体是( )A .B .C .D .10.有理数a ,b 在数轴上的对应点如图所示,则下列式子错误的是( )A .b <0B .a+b <0C .a <0D .b ﹣a <0二、填空题11.十一月某天,某地最高气温5℃,最低气温-2℃.这一天温差是________℃.12.已知单项式223x y -的系数为a ,次数为b ,则ab 的值为________.13.在22-、3(1)-、(5)-+、213⎛⎫- ⎪⎝⎭中,正数有________个.14.用“>”“<”“=”填空:(1)若0a <,则2a ________a ;(2)若0a c b <<<,则abc ________015.在数轴上,与表示3-的点距离2个单位长度的点表示的数是________.16.已知﹣17x 4my 2+23x 7yn =6x 7y 2,则m ﹣n 的值是 ___.17.用火柴棒按如图在方式搭图形,搭第n 个图形需 ___根火紫棒.三、解答题18.把下列个数填到相应的集合内.1、13、0.5、7+、0、 6.4-、9-、613、0.3、5%、26-、1.010010001…… 整数集合:{_______________…}分数集合:{_______________…}19.计算.(1)(8)4718(27)--+--(2)510.474( 1.53)166----(3)1108(2)2⎛⎫--÷-⨯- ⎪⎝⎭(4)202031312(1)468⎛⎫-+-⨯+- ⎪⎝⎭20.化简:(1)()()2237427a ab a ab -+--++(2)221123422⎛⎫⎛⎫-+--+ ⎪ ⎪⎝⎭⎝⎭x x x x21.化简求值22352(23)4m m m m ⎡⎤---+⎣⎦,其中4m =-.22.如图,小华用若干个正方形和长方形准备拼成一个长方体的展开图.拼完后,小华看来看去总觉得所拼图形似乎存在问题.(1)请你帮小华分析一下拼图是否存在问题:若有多余块,则把图中多余部分涂黑;若还缺少,则直接在原图中补全;(2)若图中的正方形边长为3 cm,长方形的长为5 cm,宽为3 cm,请直接写出修正后所折叠而成的长方体的体积是cm3.23.为筹备某项工作,甲、乙、丙三个志愿者团队走上街头做宣传工作,在筹备期间,甲队做宣传工作的时间是乙队所用时间的2倍还多5个小时,丙队所用的时间时乙队的三分之一还少10个小时,若设乙队宣传工作用了x个时,回答下列问题.(1)用含x的代数式表示甲队的工作时间为________小时,丙队的工作时间为________小时;(2)甲队比丙队多宣传的时间为多少?(3)若乙队宣传了330个小时,求甲队比丙队多宣传的时间.24.某厂的某生产合作小组每天平均组装n个某型号电子产品(每周工作五天),而实际产量与计划产量相比有出入,下表记录了某周的五个工作日每天实际产量情况(超过计划产量记为正,少于计划产量记为负).(1)用含n的代数式表示合作小组本周五天生产电子产品的总量为________个;(2)该厂实行每日计件工资制,每组装生产一个电子产品可得200元,若超额完成任务,n=时,请求出该小组这一周的工资则超过部分每个另奖55元,少生产一个扣60元,当7总额;(3)若将上面第(2)问中“实行每日计件工资制”改为“实行每周计件工资制”,其他条件不n=时,在此方式下这一周此小组的工资总额与按日计件的工资哪个多?请说明理变,当7由.25.在一条不完整的数轴上从左到右有A 、B 、C 三点,其中5cm AC =,2cm BC =,设点A 、B 、C 所对应数的和是p .(1)若以点B 为原点,2cm 长为1个单位长度,则点A 所对应的数为________,点C 所对应的数为________,p 的值为________;(2)若原点O 在数轴上,且15cm =OB ,以1cm 长为一个单位长度,求p 的值.26.老师写出一个整式(ax 2+bx ﹣3)﹣(2x 2﹣3x )(其中a 、b 为常数),然后让同学给a 、b 赋予不同的数值进行计算.(1)甲同学给出了一组数据,最后计算的结果为﹣x 2+4x ﹣3,则甲同学给出a 、b 的值分别是a = ,b = ;(2)乙同学给出一组数,计算的最后结果与x 的取值无关,求出ba+ab 的值.参考答案1.C2.A3.A4.D5.C6.C7.D8.B9.B10.D11.7【分析】利用最高气温减去最低气温计算即可.【详解】解:5-(-2)=7(℃),即这一天温差是7℃,故答案为:7.【点睛】此题主要考查了有理数的减法,关键是掌握减去一个数,等于加上这个数的相反数.12.2-【分析】直接利用单项式的次数与系数确定方法分析得出答案.【详解】 解:单项式223x y -的系数为:23-,次数为:3, 则23a =-,3b =. 所以2332ab =-⨯=-.故答案为:2-.【点睛】本题考查了单项式,解题的关键是正确把握单项式的次数与系数确定方法.13.1【解析】【分析】根据正数大于零进行分析即可.【详解】解:224-=-,3(1)1-=-,(5)5-+=-,21319⎛⎫-⎪⎭= ⎝,故在22-、3(1)-、(5)-+、213⎛⎫- ⎪⎝⎭中,正数有213⎛⎫-⎪⎝⎭,共1个,故答案为:1.14.<>【解析】【分析】(1)根据一个小于零的数乘以大于1的数会越乘越小即可得出结论;(2)根据两个小于零的数相乘结果大于零,再乘一个大于零的数结果仍然大于零即可得出结论.【详解】解:(1)℃a<0,2>1℃2a<a;(2)℃ab>0,c>0℃abc>0故答案为:<;>.【点睛】本题考查有理数相乘的符号问题,掌握符号的运算规律是本题关键.15.5-或1-##-1或-5【解析】【分析】与表示3-的点距离2个单位长度的点有两个,分别在-3的左侧和-3的右侧,利用数轴即可得到答案.【详解】解:据题意,作图如下如图,与表示3-的点距离2个单位长度的点有两个,分别是5-、1-故答案为:5-或1-【点睛】本题考查数轴上两点之间的距离,牢记相关知识点是解题的关键.16.14-##-0.25 【解析】【分析】由4277217236m n x y x y x y -+=得,4217m x y -、723n x y 、726x y 是同类项,从而得出m 、n 的值,代入即可求出答案.【详解】4277217236m n x y x y x y -+=,472m n =⎧∴⎨=⎩, 解得:742m n ⎧=⎪⎨⎪=⎩, 71244m n ∴-=-=-. 故答案为:14-. 【点睛】本题考查同类项的定义:所含字母相同且相同字母的指数也相同,掌握同类项的定义是解题的关键.17.6(1)n +【解析】【分析】根据三个图形的变化规律找到图形个数与火柴棒根数的关系,即可得出结论.【详解】根据图形可得:第一个图形需12根火紫棒,即126(11)=⨯+,第二个图形需18根火紫棒,即186(21)=⨯+,第三个图形需24根火紫棒,即246(31)=⨯+,,按照这种方法下去,第n 个图形需6(1)n +根火紫棒,故答案为:6(1)n +.【点睛】本题考查图形类的找规律问题,通过观察分析,用一般式子表示出变化规律是解题的关键.18.1,7+,0,9-,26-;13,0.5, 6.4-,613,0.3,5%. 【解析】【分析】利用整数、分数概念判断即可,即整数是正整数、零、负整数的集合;分数是表示一个数是另一个数的几分之几.【详解】解:整数集合:{1,7+,0,9-,26}-; 分数集合:1{3,0.5, 6.4-,613,0.3,5%}. 故答案为:1,7+,0,9-,26-;13,0.5, 6.4-,613,0.3,5%. 【点睛】本题考查了有理数中整数及分数,解题的关键是熟练掌握各自的定义:即整数是正整数、零、负整数的集合;分数是表示一个数是另一个数的几分之几.19.(1)10-;(2)4-;(3)12-;(4)212-【解析】【分析】(1)把减法转化成加法,利用加法的交换律、结合律,能使运算简便;(2)利用加法的交换律和结合律,把小数、同分母的分数分别相加;(3)根据有理数的乘除法则及减法进行计算;(4)利用乘法对加法的分配律,能使运算简便.【详解】解:(1)(8)4718(27)--+--, 8471827=--++,5545=-+,10=-;(2)510.474( 1.53)166----,510.47 1.53(41)66=+-+, 26=-,4=-;(3)1108(2)2⎛⎫--÷-⨯- ⎪⎝⎭, 110(4)2⎛⎫=---⨯- ⎪⎝⎭, 102=--,12=-;(4)202031312(1)468⎛⎫-+-⨯+- ⎪⎝⎭, 99212=-+-+, 212=-. 【点睛】本题考查了有理数的加减、乘除法运算、有理数的乘方,解题的关键是掌握有理数的运算法则,注意:利用运算律可以使运算简便.20.(1)273a ab -;(2)2562x x -- 【解析】【分析】直接根据去括号,合并同类项法则计算即可.【详解】解:(1)()()2237427a ab a ab -+--++ =2237427a ab a ab -++--=273a ab -;(2)221123422⎛⎫⎛⎫-+--+ ⎪ ⎪⎝⎭⎝⎭x x x x=221234422x x x x -+--+ =2562x x --. 【点睛】本题考查了整式的加减,熟知相关运算法则是解本题的关键.21.26m m ---,18- 【解析】【分析】去括号合并同类项后,再代入求值.【详解】解:22352(23)4mm m m ⎡⎤---+⎣⎦ =()2235464m m m m --++=2235464m m m m -+-- =26m m ---将4m =-代入,原式=()()2446-----=18-.【点睛】本题主要考查了整式的加减,掌握去括号法则和合并同类项法则是解决本题的关键. 22.(1)见解析;(2)45.【解析】【分析】(1)由于长方体有6个面,且相对的两个面全等,所以展开图是6个长方形(包括正方形),而图中所拼图形共有7个面,所以有多余块,应该去掉一个;又所拼图形中有3个全等的正方形,结合平面图形的折叠可知,可将第二行最左边的一个正方形去掉;(2)由题意可知,此长方体的长、宽、高可分别看作3厘米、5厘米和3厘米,将数据代入长方体的体积公式即可求解.【详解】解:(1)拼图存在问题,如图:(2)折叠而成的长方体的体积为:3×5×3=45(cm 3).23.(1)(25)x +,1(310)x -;(2)5153x +(小时);(3)565小时【解析】【分析】(1)根据甲队做宣传工作的时间是乙队所用时间的2倍还多5个小时,丙队所用的时间比乙队的三分之一少10个小时列代数式即可;(2)用甲队宣传的时间减去丙队宣传的时间,列出代数式,化简即可;(3)根据(2),将330x =代入5153x +求解即可. 【详解】解:(1)甲队的工作时间为:(25)x +小时, 丙队的工作时间为:1(310)x -小时,故答案是:(25)x +,1(310)x -; (2)15(25)(10)1533x x x +--=+; (3)由(2)知甲队比丙队多宣传的时间为5153x +, 当330x =时, 5153x +, 5330153=⨯+, 565=(小时), 答:甲队比丙队多宣传565小时.【点睛】本题考查了列代数式,整式的加减,解题的关键是注意把甲队宣传的时间和丙队宣传的时间看作整体,用小括号括起来.24.(1)59n +;(2)9250元;(3)每周计件工资制一周工人的工资总额更多,理由见解析【解析】【分析】(1)根据正负数的意义分别表示出5天的生产电子产品的数量,再求和即可;(2)5天的生产电子产品的总数200⨯元+超出部分的奖励-罚款可得工人这一周的工资总额;(3)计算出一周的工资,然后与(2)中数据进行比较即可.【详解】解:(1)51613259n n n n n n ++-+-+++-=+,故答案是:59n +;(2)当7n =时,5957944n +=⨯+=,2004455(513)60(162)9250⨯+++---=,所以该厂工人这一周的工资总额是9250元.(3)5(1)(6)13(2)9+-+-++-=,442009559295⨯+⨯=,92509295<,∴每周计件工资制一周工人的工资总额更多.【点睛】本题主要考查了由实际问题列代数式,解题的关键是正确理解题意,掌握每日计件工资制的计算方法.25.(1)32-;1;12-;(2)46-或44 【解析】【分析】(1)由A 、B 、C 点的位置关系,结合5cm AC =,2cm BC =即可求得点A 、点C 所对应的数,进一步求得p ;(2)原点O 在数轴上,1cm 长为一个单位长度,且15cm =OB ,可以知道点B 所对应的数为15-或15,然后分情况讨论并计算即可.【详解】解:(1)若以点B 为原点,2cm 长为1个单位长度,则点A 所对应的数为32-,点C 所对应的数为1,则:310122p =-++=- 故答案为:32-;1;12- (2)℃原点O 在数轴上,1cm 长为一个单位长度,且15cm =OB ,℃点B 所对应的数为15-或15当点B 所对应的数为15-时,点C 所对应的数为13-,点A 所对应的数为18-,则()()(18)151346p =-+-+-=-;当点B 所对应的数为15时,点C 所对应的数为17,点A 所对应的数为12,则12+15+17=44p =.综上所述,点p 的值为:46-或44【点睛】本题考查数轴上两点之间的距离,牢记数轴的相关知识点是解题关键.26.(1)1,1;(2)3【解析】【分析】(1)先计算出()()22323ax bx x x +---的结果为()()2233a x b x -++-,然后根据甲同学的计算结果为243x x -+-,则()()2223343a x b x x x -++-=-+-,由此求解即可; (2)根据()()()()222323233ax bx x x a x b x +---=-++-的结果与x 无关, 则2030a b -=⎧⎨+=⎩,即可得到23a b =⎧⎨=-⎩然后代值计算即可. 【详解】解:(1)()()22323ax bx x x +---22323ax bx x x =+--+()()2233a x b x =-++-,又℃甲同学的计算结果为243x x -+-,℃()()2223343a x b x x x -++-=-+-,℃2134a b -=-⎧⎨+=⎩,℃11a b =⎧⎨=⎩,故答案为:1,1;(2)℃()()()()222323233ax bx x x a x b x +---=-++-的结果与x 无关, ℃2030a b -=⎧⎨+=⎩,℃23a b =⎧⎨=-⎩,℃()()2323963a b ab +=-+⨯-=-=.。

北师大版七年级上册数学期中考试试卷含答案

北师大版七年级上册数学期中考试试卷含答案

北师大版七年级上册数学期中考试试题一、单选题1.﹣22=()A .﹣2B .﹣4C .2D .42.一个七棱柱的顶点的个数为()A .7个B .9个C .14个D .15个3.我国正在设计建造的长江三峡电站,估计总装机容量将达16780000千瓦,用科学记数法表示总装机容量是()A .1678×104千瓦B .16.78×106千瓦C .1.678×107千瓦D .0.1678×108千瓦4.多项式1+2xy ﹣3xy 2的次数为()A .1B .2C .3D .55.如图,点A 表示的实数是a ,则a ,a -和1的大小顺序为()A .1a a <-<B .1a a -<<C .1a a <<-D .1a a<-<6.下列说法正确的是()A .23表示2×3B .﹣32与(﹣3)2互为相反数C .(﹣4)2中﹣4是底数,2是幂D .a 3=(﹣a )37.下列说法中正确的是()A .5不是单项式B .2x y+是单项式C .2x y 的系数是0D .32x -是整式8.一次知识竞赛共有20道选择题,规定:答对一道得5分,不答或答错一道扣1分,如果某位学生答对了x 道题,则用式子表示他的成绩为()A .5x ﹣(20+x)B .100﹣(20﹣x)C .5xD .5x ﹣(20﹣x)9.一种袋装面粉的质量标识为“25±0.25千克”,则下列合格的有()A .25.30千克B .24.70千克C .25.51千克D .24.80千克10.若||2a =,||5b =,则a b +的值应该是()A .7B .-7和7C .3D .±7或±3二、填空题11.-9的绝对值是______.12.如图所示是一个立体图形的展开图,请写出这个立体图形的名称:________.13.计算:3π-=________.14.若650x y -++=,则x y -=____;15.(1011)(1112)(100101)=--- ________.16.比较大小:-3_______13-.(填:“<”或“>”)17.绝对值不大于5的所有整数的和是______.18.单项式256x y-的系数是____________.19.若a<0,b <0,则()a b --一定是_________(填负数,0或正数)20.对于任意有理数a 、b ,定义一种新运算“⊕”,规则如下:a ⊕b=ab+(a ﹣b),例如:3⊕2=3×2+(3﹣2)=7,则(﹣4)⊕5=____.三、解答题21.计算:(1)0.5(15)(17)|12|-+-----;(2)313()(24)864+-⨯-;(3)2113()()3838---+-;(4)31175(3)24(2)412÷--⨯-.22.-13.5,2,-5,0,0.128,-2.236,3.14,+27,45-,-15℅,32-,227,.0.3,π.正有理数数集合:{},整数集合:{},负分数集合:{}23.如图所示是一个用5个小立方体搭成的几何体,请画出它的三视图.24.a,b分别是数轴上两个不同的点A,B所表示的有理数,且a=5,b=2,A,B两点在数轴上的位置如图所示:(1)试确定数a,b;(2)A,B两点相距多少个单位长度?(3)若C点在数轴上,C点B点的距离是C点到A点距离的13,求C点表示的数;25.一个几何体的三种视图如图所示.(1)这个几何体的名称是____;(2)求这个几何体的表面积;(3)求这个几何体的体积.26.股民王先生上周星期五买进某公司股票1000股,每股18元,本周该股票的涨跌情况如表(正数表示价格比前一天上涨,负数表示价格比前一天下跌,单位:元):星期一二三四五每股涨跌3+ 2.5+4-2+ 1.5-(1)星期三结束时,该股票每股多少元?(2)该股票本周内每股的最高价和最低价分别是多少元?(3)已知王先生买进该股票时付了0.1%的手续费,卖出股票时须支付0.15%的手续费和0.1%的交易税,若他在星期五结束时将股票全部卖出,则他的收益情况如何?(注:股票市场周末不交易)27.出租车司机小李某天下午营运全是在东西走向的长清清河街,如果规定向东为正,向西为负,他这天下午行车里程如下:+15,-3,+14,-11,+10,-12,+4,-15,+16,-20.(1)将最后一名乘客送到目的地时,小李在出车地的什么方向?距下午出车地点的距离是多少千米?(2)小李将最后一名乘客送到目的地,总共行驶了多少千米?(3)若每千米耗油0.1升,这天下午共耗油多少升?参考答案1.B【解析】【分析】根据有理数的乘方的运算法则计算即可.【详解】解:根据有理数的乘方的运算法则,可得﹣22=﹣4,故选B.【点睛】本题考查了有理数的乘方,解题的关键是掌握相应的运算法则.2.C【解析】【分析】一个七棱柱是由两个七边形的底面和7个四边形的侧面组成,根据其特征进行填空即可.【详解】解:一个七棱柱共有:7×2=14个顶点.故选C.【点睛】本题主要考查n棱柱的构造特点:(n+2)个面,3n条棱,2n个顶点.3.C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:将16780000千瓦用科学记数法表示为:1.678×107千瓦.故选:C.4.C【解析】【分析】根据多项式的次数是多项式中最高次项的次数进行作答即可得.【详解】解:多项式1+2xy-3xy2的最高次项是-3xy2,次数为3,故多项式的次数为3,故选C.【点睛】本题考查了多项式的次数,解题的关键是熟知多项式的次数是多项式中最高次项的次数.5.A【解析】【分析】根据互为相反数的两数的几何意义:在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点的距离相等,数轴上右边表示的数总大于左边表示的数进行解答即可.【详解】解:因为-1<a<0,所以0<-a<1,可得:a<-a<1.故选:A.【点睛】此题考查有理数大小的比较问题,要让学生结合数轴理解这一规律:数的大小变化和数轴上表示这个数的点在数轴上移动的关系:左减右加.给学生渗透数形结合的思想.6.B【解析】【分析】根据有理数的乘方的定义对各选项分析判断后利用排除法求解.【详解】A、23表示2×2×2,故本选项错误;B、-32=-9,(-3)2=9,-9与9互为相反数,故本选项正确;C、(-4)2中-4是底数,2是指数,故本选项错误;D、a3=-(-a)3,故本选项错误.故选:B.【点睛】本题考查了有理数的乘方,是基础题,熟记概念是解题的关键.7.D 【解析】【分析】根据整式的概念、单项式的相关概念即可确定.【详解】解:A 选项5是单独的数字,是单项式,故A 错误;B 选项222x y x y+=+是两个单项式的和,是多项式,故B 错误;C 选项2x y 的系数是1,故B 错误;D 选项32x -是多项式,当然是整式,故D 正确.故选:D.【点睛】本题考查了整式的分类及单项式和多项式的相关概念,整式分为单项式和多项式,单项式是由数字或字母的积组成的代数式,单独的一个数或字母也叫做单项式,单项式中的数字因数叫做单项式的系数,几个单项式的和叫多项式,熟练掌握相关的概念是解题的关键.8.D 【解析】【分析】根据答对题目的得分-不答或答错的题数,列式可得结论.【详解】解:由题意可得,他的成绩是:5x-(20-x ),故选D .【点睛】本题考查列代数式,解答本题的关键是明确题意,列出相应的代数式.9.D 【解析】【分析】根据题意可确定合格的范围是24.75千克到25.25千克之间,判断即可.【详解】解:根据题意可确定合格的范围是24.75千克到25.25千克之间,只有24.80符合标准,故选:D.【点睛】本题考查了正负数的意义,解题关键是根据负数的意义确定合格的范围.10.D【解析】【分析】求出a=±2,b=±5,分为四种情况①当a=2,b=5时,②当a=2,b=−5时,③当a=−2,b=5时,④当a=−2,b=−5时,代入求出即可.【详解】解:因为|a|=2,|b|=5,所以a=±2,b=±5,①当a=2,b=5时,a+b=2+5=7;②当a=2,b=−5时,a+b=2+(−5)=−3;③当a=−2,b=5时,a+b=−2+5=3;④当a=−2,b=−5时,a+b=−2+(−5)=−7;即a+b的值为7或−3或3或−7,故选D.【点睛】本题考查了绝对值,解题的关键是熟知绝对值等于一个正数的数有两个,它们互为相反数.11.9【解析】【分析】根据负数的绝对值是它的相反数,即可得到答案.【详解】-9的绝对值是9,故填9.【点睛】本题主要考查了绝对值,解题的关键是熟记绝对值的定义.此题主要考查了绝对值,关键是掌握①当a 是正有理数时,a 的绝对值是它本身a ;②当a 是负有理数时,a 的绝对值是它的相反数-a ;③当a 是零时,a 的绝对值是零.12.圆锥【解析】【详解】因为圆锥的展开图为一个扇形和一个圆形,所以这个立体图形是圆锥.故答案为∶圆锥13.3π-【解析】【分析】先分析3π-的符号,再关键绝对值是含义可得答案.【详解】解:3 <π,3π∴-<0,()333,πππ∴-=--=-故答案为: 3.π-【点睛】本题考查的是绝对值的含义,掌握绝对值的含义是解题的关键.14.11【解析】【分析】先根据非负数的性质求出x 、y 的值,再代入x-y 进行计算即可.【详解】解:∵|x-6|+|y+5|=0,∴x-6=0,y+5=0,解得x=6,y=-5,∴原式=6+5=11.故答案为11.【点睛】本题考查非负数的性质,即任意一个数的绝对值都是非负数,当几个数或式的绝对值相加和为0时,则其中的每一项都必须等于0.15.-1【解析】【分析】根据有理数的乘法和乘方运算法则进行计算即可.【详解】解:(1011)(1112)(100101)--- =(1)(1)(1)--- =91(1)-=-1.故答案为:-1.【点睛】本题主要考查了有理数的乘法和乘方,熟练掌握有理数的乘法和乘方运算法则是解答本题的关键.16.<【解析】【分析】根据两个负数比较大小,其绝对值大的反而小比较即可.【详解】解:11133,,3333-=-=> 133∴-<-故答案为:<.【点睛】本题考查了有理数的大小比较的应用,能熟记有理数的大小比较法则是解此题的关键.17.0【解析】【分析】根据有理数大小比较的方法,可得:绝对值不大于5的所有整数有:±5、±4、±3、±2、±1、0,再把它们相加,求出绝对值不大于5的所有整数的和是多少即可.【详解】解:绝对值不大于5的所有整数为5-、4-、3-、2-、1-、0、1、2、3、4、5,它们的和为0.故答案为:0【点睛】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.18.56-【解析】【详解】单项式256x y -的系数是5.6-故答案为:5.6-【点睛】本题考查单项式的系数,单项式中的数字因数就是单项式的系数.19.负数【解析】【分析】由于a <0,b <0,然后根据有理数减法法则即可判定a-(-b )是正数还是负数.【详解】解:∵a <0,b <0,而a-(-b )=a+b ,∴a-(-b )一定是负数.故答案为:负数.【点睛】此题主要考查了正负数的定义及实数的大小的比较,判断一个数是正数还是负数,要把它化简成最后形式再判断.概念:用正数表示其中一种意义的量,另一种量用负数表示;特别地,在用正负数表示向指定方向变化的量时,通常把向指定方向变化的量规定为正数,而把向指定方向的相反方向变化的量规定为负数.20.﹣29【解析】【分析】根据a ⊕b=ab+(a-b ),可以求得题目中所求式子的值,本题得以解决.【详解】解:∵a ⊕b=ab+(a-b ),∴(-4)⊕5=(-4)×5+[(-4)-5]=(-20)+(-9)=-29,故答案为-29.【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.21.(1)-10.5;(2)5;(3)12;(4)50【解析】【详解】解:(1)0.5(15)(17)|12|-+-----0.5151712=--+-10.5=-(2)313()(24)864+-⨯-9418=--+5=(3)2113()()3838---+-21133388⎛⎫=+-+ ⎪⎝⎭112=-12=(4)31175(3)24(2)412÷--⨯-15357524412=-÷+⨯4757015=-⨯+2070=-+50=【点睛】本题考查了有理数的混合运算,掌握有理数的混合运算是解题的关键.22.2,0.128,3.14,+27,227,.0.3;2,-5,0,+27;-13.5,-2.236,45-,-15℅,32-.【解析】【分析】根据有理数的分类填写即可【详解】正有理数数集合:{2,0.128,3.14,+27,227,.0.3,……},整数集合:{2,-5,0,+27,……},负分数集合:{-13.5,-2.236,45-,-15℅,32-……}【点睛】本题考查了有理数的分类,掌握有理数的分类是解题的关键.23.见解析【解析】【分析】主视图从左往右2列正方形的个数依次为3,1;左视图从左往右2列正方形的个数依次为3,1;俯视图从左往右3列正方形的个数依次为2,1,依此画出图形即可.【详解】解:如图所示.【点睛】考查画几何体的三视图;用到的知识点为:主视、左视图、俯视图分别是从物体的正面、左面、上面看得到的图形.24.(1)a=-5,b=-2;(2)3个单位长度;(3)1-2或11 -4【解析】【分析】(1)根据绝对值的定义结合由数轴得出a、b的符号即可得;(2)根据数轴上两点间的距离公式即可得;(3)设C点表示的数为x,分以下两种情况:点C在A、B之间、点C在点B右侧,利用两点间距离公式列方程求解.【详解】解:(1)∵|a|=5,|b|=2,∴a=5或-5,b=2或-2,由数轴可知,a<b<0,∴a=-5,b=-2;(2)A、B两点间的距离是-2-(-5)=3;(3)设C点表示的数为x,当点C在A、B之间时,根据题意有:x-(-5)=3(-2-x),解得:114x=-;当点C在点B右侧时,根据题意有:x-(-5)=3[x-(-2)],解得:12x=-.∴C点表示的数为12-或114-.【点睛】本题主要考查绝对值和数轴及两点间的距离公式,根据题意分类讨论思想的运用是解题的关键.25.(1)圆柱体;(2)这个几何体的表面积为32π;(3)这个几何体的体积为24π.【解析】【分析】(1)根据这个几何体的三视图即可求解;(2)根据三视图可得到圆柱的高为6,底面半径为2,然后根据圆柱的表面积等于侧面积加两个底面积求解即可;(3)根据圆柱的体积等于底面积×高求解即可.【详解】解:(1)由图可得,主视图是长方形,左视图是长方形,俯视图是圆,∴这个几何体是圆柱体,故答案是:圆柱体;(2)由三视图可得,圆柱的高为6,底面半径为2,∴这个圆柱的表面积=底面积×2+侧面积=22222682432πππππ⨯⨯+⨯⨯⨯=+=;(3)这个圆柱的体积=底面积×高=22624ππ⨯⨯=.【点睛】此题考查了几何体的三视图,求圆柱的表面积和体积,解题的关键是熟练掌握三视图的表示方法以及圆柱的表面积和体积公式.26.(1)星期三结束时,该股票每股19.5元;(2)本周内最高价是每股23.5元,最低价每股19.5元;(3)他赚了1932元.【解析】【分析】(1)根据表格列出算式,即可得到结果;(2)根据表格求出每天的股价,即可得到最高与最低股价;(3)根据题意列出算式,计算即可得到结果.【详解】解:(1)根据题意列得:18+3+2.5-4=19.5(元);答:星期三结束时,该股票每股19.5元;(2)根据表格得:星期一每股18+3=21元,星期二每股21+2.5=23.5元,星期三每股23.5-4=19.5元,星期四每股19.5+2=21.5元,星期五每股21.5-1.5=20元,则本周内最高价是每股23.5元,最低价每股19.5元;(3)根据题意列得:1000×20×(1-0.15%-0.1%)-1000×18×(1+0.1%)=19950-18018=1932(元).则他赚了1932元.【点睛】本题考查了有理数的混合运算的应用,弄清题意是解本题的关键.27.(1)小李在出车地的西面方向,距下午出车地点的距离是2千米;(2)小李将最后一名乘客送到目的地,总共行驶了120千米;(3)若每千米耗油0.1升,这天下午共耗油12升.【解析】【分析】(1)根据有理数的加法运算,可得和,根据和的大小,可得答案;(2)根据行车就耗油,距离乘以单位耗油量,可得到答案.【详解】解:(1)15+(-3)+14+(-11)+10+(-12)+4+(-15)+16+(-20)=-2,答:将最后一名乘客送到目的地时,小李在出车地的西方,距下午出车地点的距离是2千米;++-+++-+++-+++-+++-(2)|15||3||14||11||10||12||4||15||16||20|=120(千米)所以,小李将最后一名乘客送到目的地,总共行驶了120千米(3)120×0.1=12(升),答:这天下午共耗油12升.。

北师大版七年级上册数学期中考试试卷含答案

北师大版七年级上册数学期中考试试卷含答案

北师大版七年级上册数学期中考试试题一、单选题1.在式子3n -,2a b ,2m s +≤,x ,ah-,s ab =中代数式的个数有()A .6个B .5个C .4个D .3个2.牛奶盒的包装上印有260±5ml ,下列四盒送去质检,不合格的是()A .265mlB .262mlC .258mlD .250ml3.用一个平面去截下列的几何体,可以得到长方形截面的几何体有()A .1个B .2个C .3个D .4个4.下列说法中正确的个数为()(1)4a 一定是偶数;(2)单项式237xy 的系数是37,次数是3;(3)小数都是有理数;(4)多项式325322x xy -+是五次三项式;(5)连接两点的线段叫做这两点的距离;(6)射线比直线小一半.A .1个B .2个C .3个D .4个5.已知图1的小正方形和图2中所有的小正方形都全等,将图1的小正方形安放在图2中的①、②、③、④的其中某一个位置,放置后所组成的图形是不能围成一个正方体的.那么安放的位置是()A .①B .②C .③D .④6.已知x y y x -=-,2x =,3y =,则2x y -的值为()A .-1B .1C .-1或7D .1或-77.有理数a 、b 在数轴上对应的位置如图所示,则下列结论正确的是()A .0ab >B .b a >-C .0a b +<D .0b a ->8.已知221a a -=,则2364a a -+的值为()A .-1B .1C .-2D .59.如图所示的几何体是由哪个图形绕虚线旋转一周形成的()A .B .C .D .10.若实数a 、b 、c 在数轴上对应点的位置如下图所示,则||||||c b a b c -++-等于()A .2a c --B .2a b -+C .a-D .2a b-二、填空题11.数9899万用科学记数法表示为____________.12.某棱柱共有8个面,则它的棱数是___________.13.若42n xy 与25m x y -是同类项,则n m =___________.14.若m ,n 为相反数,则m +(-2021)+n 为______.15.化简:3π4π---=____________.16.如图是一个正方体的平面展开图,正方体中相对的面上的数字或代数式互为相反数.则2x y -的值为___________.17.两根长度分别为8cm 和10cm 的直木条,将它们一端重合且放在同一条直线上,此时两根木条中点之间的距离为________.18.有一个数值转换器的原理如图所示,若开始输入x 的值是23,可发现第1次输出的结果是3-,第2次输出的结果是1,第3次输出的结果是2-,依次继续下去…,第2021次输出的结果是________.三、解答题19.计算:(1)110.53(2.75)742⎛⎫⎛⎫-+-+-++ ⎪ ⎪⎝⎭⎝⎭;(2)111122345⎛⎫⎛⎫--⨯- ⎪ ⎪⎝⎭⎝⎭;(3)411812944⎛⎫⎛⎫⎛⎫⨯-+-÷- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;(4)224323(2)2⎡⎤---+-÷⎣⎦;(5)()222233a b ab ab a b -++;(6)221123422⎛⎫⎛⎫-+--+ ⎪ ⎪⎝⎭⎝⎭x x x x 20.如图,是由8个大小相同的小立方体块搭建的几何体,请分别画出从这个几何体的三个不同方向看到的形状图.21.先化简,再求值:()()23233a ab b ab b ---+⎡⎤⎣⎦,其中()23310a b ++-=.22.已知关于x ,y 的多项式222622452x mxy y xy x --+-+化简后的结果中不含xy 项.求232m m -+()51m -的值.23.已知:点C 、D 、E 在直线AB 上,且点D 是线段AC 的中点,点E 是线段DB 的中点,若点C 在线段EB 上,且DB =6,CE =1,求线段AB 的长.24.如图,这是一个由小立方块塔成的几何体的俯视图,小正方形中的数字表示该位置的小立方块的个数.请你画出它的主视图与左视图.25.某日下午,出租车司机小王在南北走向的南海大道上运营.如果规定向南为正,向北为负,出租车的行车情况记录如下(单位:千米):+15,﹣4,+13,﹣10,﹣12,+3,﹣17.(1)将最后一名乘客送到目的地时,小王距出车地点的距离是多少千米?(2)如果每百公里耗油10升,那么小王下午耗油多少升?26.在数轴上,四个不同的点,,,A B C D 分别表示有理数a b c d ,,,,且,a b c d <<.(1)如图1,M 为线段AB 的中点,①当点M 与原点O 重合时,用等式表示a 与b 的关系为;②求点M 表示的有理数m 的值(用含,a b 的代数式表示);(2)已知ab c d+=+,①若三点,,A B C 的位置如图所示,请在图中标出点D 的位置;②a b c d ,,,的大小关系为(用“<”连接)参考答案1.C 2.D 3.B 4.A 5.A 6.D 7.C 8.B 9.A 10.A 11.79.89910⨯【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数;当原数的绝对值<1时,n 是负整数.据此解答即可.【详解】解:9899万=98990000=9.899×107.故答案为:9.899×107.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要确定a 的值以及n 的值.12.18【详解】某棱柱共有8个面,可知这个棱柱为6棱柱,6棱柱有18条棱.13.16【分析】根据同类项的定义示出m ,n 的值,再代入求解即可.【详解】解:∵42n xy 与25m x y -是同类项,∴m=4,n=2.∴nm =24=16.故答案为:16.14.-2021【分析】根据相反数的意义得出0m n +=,从而可计算m +(-2021)+n 的值.【详解】解:∵m ,n 为相反数,∴0m n +=,∴m +(-2021)+n=0-2021=-2021故答案为:-2021【点睛】本题主要考查互为相反数的概念和性质.只有符号不同的两个数互为相反数,互为相反数的两个数的和为0.15.2π7-【解析】【分析】根据绝对值的定义即可得.【详解】解:3π4π3427πππ---=--+=-;故答案为:2π7-【点睛】此题考查了绝对值,掌握绝对值的定义:数轴上某个数与原点的距离叫做这个数的绝对值是解题的关键.16.12【解析】【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形确定出相对面,再根据相对面上的数字互为相反数列式求出x 、y 的值,然后代入代数式进行计算即可得解.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形.“-3”与“23x -”是相对面,“y”与“x”是相对面,“-2”与“2”是相对面,∵相对的面上的数字或代数式互为相反数,∴()2330x -+-=,0x y +=,解得3x =,3y =-,∴()22339312x y -=--=+=.故答案为:12.17.1cm 或9cm 【分析】设较长的木条为AB ,较短的木条为BC ,根据中点定义求出BM 、BN 的长度,然后分两种情况:BC 不在AB 上和BC 在AB 上时,分别代入数据进行计算即可得解.【详解】解:设较长的木条为AB=10cm ,较短的木条为BC=8cm ,∵M 、N 分别为AB 、BC 的中点,∴BM=5cm ,BN=4cm ,①如图1,BC 不在AB 上时,MN=BM+BN=5+4=9(cm),②如图2,BC在AB上时,MN=BM−BN=5−4=1(cm),综上所述,两根木条的中点间的距离是1cm或9cm,故答案为:1cm或9cm.如图,18.-1【分析】根据数值转换器依次求出前几次的输出的数值,再根据数值的变化规律求解.【详解】解:第4次输出的结果是2,第5次输出的结果是-1,第6次输出的结果是1,第7次输出的结果是-2,第8次输出的结果是2,第9次输出的结果是-1,所以,从第5次开始,每4次输出为一个循环组依次循环,(2021-4)÷4=504…1,所以,第2021次输出的结果是-1.故答案为:-1.19.(1)1(2)1 5(3)-27(4)3(5)2 6a b(6)2562x x--【分析】(1)根据有理数加法运算法则进行计算;(2)根据乘法分配律进行运算即可;(3)根据有理数加减乘除四则混合运算法则进行计算即可;(4)根据含乘方的有理数混合运算法则进行计算即可;(5)根据整式加减混合运算法则进行计算即可;(6)先去括号,然后合并同类项进行运算即可.(1)解:110.53(2.75)742⎛⎫⎛⎫-+-+-++ ⎪ ⎪⎝⎭⎝⎭110.573(2.75)24⎛⎫⎛⎫=-+++-+- ⎪ ⎪⎝⎭⎝⎭76=-1=(2)111122345⎛⎫⎛⎫--⨯- ⎪ ⎪⎝⎭⎝⎭112112112253545⎛⎫⎛⎫⎛⎫=⨯--⨯--⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭643555=-++15=(3)411812944⎛⎫⎛⎫⎛⎫⨯-+-÷- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭369=-+27=-(4)22323(2)42⎡⎤---+-÷⎣⎦4(92)=---+47=-+3=(5)()222233a b ab ab a b -++222233a b ab ab a b=-++26a b=(6)221123422⎛⎫⎛⎫-+--+ ⎪ ⎪⎝⎭⎝⎭x x x x 221234422x x x x -+=-+-2562x x --=20.见解析【分析】由已知条件可知,主视图有3列,每列小正方形数目分别为1,3,1;左视图有3列,每列小正方形数目分别为3,2,1;俯视图有3列,每列小正方形数目分别为1,3,1;据此可画出图形.【详解】解:如图所示:21.233a ab -,30【分析】原式去括号,合并同类项进行化简,然后利用绝对值和偶次幂的非负性确定a 和b 的值,从而代入求值.【详解】解:()()23233a ab b ab b ---+⎡⎤⎣⎦236333a ab b ab b=--++233a ab =-;∵()23310a b ++-=∵30a +≥,()2310b -≥,∴30a +=,310b -=,∴3a =-,13b =,当3a =-,13b =时原式()()227330133333⨯--⨯-⨯==+=;22.3【分析】先根据关于x ,y 的多项式222622452x mxy y xy x --+-+化简后的结果中不含xy 项,求出m 的值,然后化简()23251m m m -+-,最后代入求值即可.【详解】解:222622452x mxy y xy x --+-+()224222x m xy y =+--+∵化简后的结果中不含xy 项,∴420m -=,∴2m =,()23251m m m -+-23255m m m=-+-2375m m =-+当2m =时,原式232725=⨯-⨯+12145=-+3=23.线段AB 的长为10【分析】由题意知AB AD DB =+,116322DE DB ==⨯=,314DC DE EC =+=+=,4AD DC ==,将各值代入AB AD DB =+计算即可.【详解】解:∵点E 是线段DB 的中点,且6DB =∴116322DE DB ==⨯=∵1EC =∴314DC DE EC =+=+=∵点D 是线段AC 的中点∴4AD DC ==∴4610AB AD DB =+=+=.24.见解析【分析】主视图有3列,每列小正方形数目分别为3,2,4;左视图有3列,每列小正方形数目分别为2,3,4.依此画出图形即可求解.【详解】解:如图所示:25.(1)小王距出车地点的北边12千米处;(2)小王下午耗油7.4升.【分析】(1)根据题意可直接进行求解即可;(2)先求出每次出车的距离之和,然后再进行求解即可.【详解】解:(1)由题意得:()()()()15413101231712++-++-+-++-=-(千米);答:小王距出车地点的北边12千米处.(2)由题意得:15413101231774++++++=(千米),10747.4100⨯=(升);答:小王下午耗油7.4升.26.(1)①0a b +=,②2a b+;(2)①见解析,②a c d b <<<或者c a b d<<<【分析】(1)①根据相反数的性质即可得出答案②根据数轴上两点间的距离公式结合已知条件即可求得(2)①根据数轴上两点间的距离公式可得出AC=DB ,从而确定点D 的位置②根据数轴上的点所表示的数,右边的总比左边的大即可得出答案【详解】解:(1)①∵M 为线段AB 的中点,点M 与原点O 重合∴0a b +=M ②为AB 中点,AM BM ∴=.m a b m ∴-=-.2a bm +∴=(2)①∵a b c d +=+,,a b c d <<.∴c-b-a d =,∴AC=DB∴点D 的位置如图所示②∵a b c d +=+,∴c-b-a d =,∴AC=DB如图或∴a c d b <<<或c a b d<<<故答案为:a c d b <<<或c a b d<<<。

北师大版七年级上册数学期中考试试题及答案

北师大版七年级上册数学期中考试试题及答案

北师大版七年级上册数学期中考试试题一、单选题1.若盈余2万元记作2+万元,则2-万元表示( )A .盈余2万元B .亏损2万元C .亏损2-万元D .不盈余也不亏损 2.如图是由5个小立方块搭成的几何体,则该几何体从左面看到的形状图是( )A .B .C .D .3.将5亿这个数用科学记数法表示为( )A .7510⨯B .8510⨯C .9510⨯D .10510⨯ 4.如图是某几何体的展开图,该几何体是( )A .长方体B .圆柱C .圆锥D .三棱柱 5.下列运算正确的是( )A .6a 2b ﹣a 2b =5abB .6a 2b ﹣a 2b =5C .6a 2b ﹣a 2b =5a 2bD .6a 2b ﹣a 2b =5ab 26.下表是几种液体在标准大气压下的沸点:则沸点最高的液体是( )A .液态氧B .液态氢C .液态氮D .液态氦 7.一个儿何体由大小相同的小立方块搭成,从上面看到的几何体的形状图如图所示,其中小正方形中的数字表示在该位置的小正方块的个数,能正确表示该几何体的主视图的是()A.B.C.D.8.已知点C是线段AB的中点,下列说法:①AB=2AC;①BC=12AB;①AC=BC.其中正确的个数是()A.0 B.1 C.2 D.39.有三堆棋子,数目相等,每堆至少有4枚.从左堆中取出3枚放入中堆,从右堆中取出4枚放入中堆,再从中堆中取出与左堆剩余棋子数相同的棋子数放入左堆,这时中堆的棋子数是()A.3 B.4 C.7 D.1010.在数轴上表示a、b两数的点如图所示,则下列判断正确的是()A.ab>0 B.a+b<0 C.ab>0 D.|a|>|b|二、填空题11.﹣(﹣2)=___.12.“x的2倍与5的和”用代数式表示为_________.13.如图,点C,D在线段AB上,且AD=BC,则AC___BD(填“>”、“<”或“=”).14.数轴上表示数m和m﹣4的点到原点的距离相等,则m的值为____.15.已知点C是直线AB上一点,且AC:BC=7:3,若AB=10,则AC=___.16.根据如图所示的程序进行计算,若输入x的值为1 ,则输出y的值为______.17.若有理数a 、b 互为相反数,cd 互为倒数,则2014(a +b )2016+(1ab)2015=________. 三、解答题18.计算:(1)321()(2)433-⨯-+-;(2)3228(2)0.5()(2)5-⨯--÷-.19.先化简,再求值:2(2mn ﹣2m +1)﹣3(2m ﹣mn +2),其中m =2,n =320.尺规作图:已知:如图,线段AB .求作:线段A B '',使2A B AB ''=.21.已知三角形第一条边长为4m +2n ,第二条边比第一条边长m ﹣2n ,第三条边比第一条边短2m +n .(1)第二条边长为 ,第三条边长为 .(2)求这个三角形的周长.22.如图是由若干个大小相同的小立方块搭成的几何体,请画出从正面、左面、上面看到的这个几何体的形状图.23.已知点C,D是线段AB上两点,点M,N分别为AC,DB的中点.(1)如图,若点C在点D的左侧,AB=12,CD=5,求MN的长.(2)若AB=a,CD=b,请直接用含a,b的式子表示MN的长.24.定义“*”运算:当a,b同号时,a*b=+(a2+b2);当a,b异号时,a*b=﹣(a2﹣b2).(1)求4*1的值.(2)求52*[(﹣2)*3]的值.25.某公交车原有乘客(3a-b)人,中途有一半人下车,又上车若干人,使车上共有乘客(8a-5b)人(注:题目中给定的a,b 符合实际意义)试求(1)上车的乘客人数是多少人?(2)当a=10 时,b=8 时,上车的乘客有多少人?26.如图,点A在数轴上所对应的数为2,(1)点B在点A左侧且距点A为3个单位长度,则点B所对应的数为,请在数轴上标出点B的位置;(2)在(1)的条件下,点A以每秒1个单位长度沿数轴向右运动,点B以每秒2个单位长度沿数轴向左运动,当点A运动到5所在的点处时停止运动,同时点B也停止运动,求此时A,B两点间距离;(3)在(2)的条件下,若点A不动,点B沿数轴向右运动,经过t秒A,B两点相距3个单位长度,求t值;(4)在(1)的条件下,点A以每秒1个单位长度,点B以每秒2个单位长度同时沿数轴向左运动,当点B运动到所对应的数为m时停止运动,请直接写出此时点A所对应的数为;若点A继续运动,请直接写出当AB=2时,点A继续运动的距离为.(用含m的式子表示)参考答案1.B2.D3.B4.B5.C6.A7.B8.D9.D10.B11.2【分析】根据相反数的意义计算即可.【详解】①﹣(﹣2)=+2=2,故答案为:2.【点睛】本题考查了有理数的化简,熟练掌握相反数的意义是解题的关键.12.2x+5【解析】【分析】首先表示x 的2倍为2x ,再表示“与5的和”为2x+5.【详解】由题意得:2x+5,故答案为2x+5.【点睛】此题主要考查了列代数式,关键是列代数时要按要求规范地书写.像数字与字母、字母与字母相乘可省略乘号不写,数与数相乘必须写乘号;除法可写成分数形式,带分数与字母相乘需把代分数化为假分数,书写单位名称什么时不加括号,什么时要加括号.注意代数式括号的适当运用.13.=【解析】【分析】利用线段的和差关系与AD BC =可得:,AC CD CD BD 从而可得答案.【详解】 解: AD =BC ,,AC BD ∴=故答案为:=【点睛】本题考查的是线段的和差关系,等式的基本性质,利用图形掌握线段的和差关系是解题的关键.14.2【分析】表示数m 和m -4的点到原点的距离相等可以表示为|m|=|m -4|.然后,进行分类讨论,即可求出对应的m 的值.【详解】解:由题意得|m|=|m -4|,①m=m -4或m=-(m -4),①m=2.故答案为:2.【点睛】本题在根据绝对值的几何意义列出方程之后,在解方程的时候要注意分类讨论,除了同一个数的绝对值相等之外,相反数的绝对值也相等.并且,在解方程之后,会发现有一个方程是无解的.这是一个易错题.15.7或175.【解析】【分析】分两种情况讨论:如图,当C 在线段AB 上时,如图,当C 在线段AB 的延长线上时,再利用线段的和差关系列运算式或方程,从而可得答案.【详解】解:如图,当C 在线段AB 上时,AC :BC =7:3,AB =10,如图,当C 在线段AB 的延长线上时,:7:3,10,AC BC AB设7,AC x 则3,BC x故答案为:7或175.【点睛】本题考查的是线段的和差关系,一元一次方程的应用,掌握利用方程解决线段问题是解题的关键.16.4【详解】试题分析:观察可得计算顺序,可以看出当输入的数输出时时可能会有两种结果,一种是输入后结果小于0,此时就需要将结果返回重新计算,直到结果大于0才能输出结果;另一种是结果大于0,此时可以直接输出结果.将输入得[(-1)+2]×(-2)-4,结果为-6,-6<0,再次输入可得[(-6)+2]×(-2)-4,结果为4,输出即可.考点:有理数的混合运算.17.1【解析】【分析】根据互为相反数两数相加得0,乘积为1的两个数互为倒数,代入计算即可.【详解】解:①有理数a、b互为相反数,cd互为倒数,①0a b+=,1cd=,①2014(a+b)2016+(1ab)2015=2014×02016+12015=1.故答案为:1.【点睛】本题考查了相反数的意义以及倒数的性质,熟知互为相反数两数相加得0,乘积为1的两个数互为倒数是解本题的关键.18.(1)54;(2)8425【解析】【分析】(1)先计算括号,再计算乘法;(2)先计算乘方,把除法转化乘法,最后计算加减即可.【详解】(1)321 ()(2) 433 -⨯-+-=31 ()(2) 43 -⨯-+=35()()43-⨯- =54; (2)3228(2)0.5()(2)5-⨯--÷-641=8240.55-⨯⨯ 16=425- =8425. 【点睛】本题考查了有理数的混合运算,熟练掌握运算顺序,准确计算是解题的关键.19.-52m +7mn -4, 18【解析】【分析】先去括号,后合并同类项,最后代入求值即可.【详解】①2(2mn ﹣2m +1)﹣3(2m ﹣mn +2)=4mn ﹣22m +2﹣32m +3mn -6=-52m +7mn -4,当m =2,n =3时,原式=-5×22+7×2×3-4= -20+42-4,=18.20.作图见解析【分析】利用直尺先作射线,再利用圆规依次在射线上截取两条与AB 相等的线段,从而可得答案.【详解】则线段A B ''即为所求作的线段.【点睛】本题考查的是尺规作图,作一条线段等于已知线段的2倍,掌握“作一条线段等于已知线段”是解题的关键.21.(1)5,2m m n ;(2)113m n【解析】【分析】(1)根据第二条边比第一条边长用加法列运算式,第三条边比第一条边短用减法列运算式,再合并同类项即可;(2)把三角形的三边相加,再合并同类项即可.【详解】解:(1) 三角形第一条边长为4m +2n ,第二条边比第一条边长m ﹣2n ,第三条边比第一条边短2m +n ,∴ 第二条边为:4225,m n m n m第三条边为:4224222,m nm n m n m n m n故答案为:5,2m m n (2)这个三角形的周长为:4252113.m n m m n m n【点睛】本题考查的是列代数式,整式的加减运算的应用,掌握列出正确的代数式是运算的基础,是解题的关键.22.见解析【解析】【分析】观察几何体,作出三视图即可.【详解】解:如图所示:【点睛】此题考查了作图-----三视图,熟练掌握三视图的画法是解本题的关键.23.(1)172;(2)2a b【解析】【分析】(1)先根据AC+CD+DB=AB,计算AC+DB,再根据MN=MC+CD+DN,线段的中点计算即可;(2)利用(1)的结论一般化即可.【详解】(1)如图,①点M,N分别为AC,DB的中点,①AM=MC= 12AC,DN=NB= 12DB,①MC+DN=12AC+12DB=12(AC+BD)=12(AB-CD),①MN=MC+CD+DN=12(AB-CD)+CD=12(AB+CD),①AB=12,CD=5,①MN= 12(12+5)=172;(2)①点M,N分别为AC,DB的中点,①AM=MC= 12AC,DN=NB= 12DB,①MC+DN=12AC+12DB=12(AC+BD)=12(AB-CD),①MN=MC+CD+DN=12(AB -CD )+CD=12(AB+CD ), ①AB =a ,CD =b , ①MN=2a b +. 【点睛】本题考查了线段的中点,线段的和差计算,熟练掌握线段中点,线段和差的意义是解题的关键.24.(1)17;(2)1254. 【解析】【分析】(1)原式利用已知新定义计算即可得到结果;(2)原式利用已知新定义先计算中括号内的,再行计算即可得到结果. 【详解】解:(1)根据已知新定义得:4*1=42+12=17;(2)根据已知新定义得:(﹣2)*3=-(a 2﹣b 2)= b 2-a 2=32-(-2)2=5, 则52*[(﹣2)*3]=5 2*5=(52)2+52=1254.25.(1)13922a b ⎛⎫- ⎪⎝⎭人;(2)29人 【解析】【分析】(1)根据公交车原有乘客()3a b -人,中途有一半人下车,则下车的人数()132a b =-人,再由又上车若干人,使车上共有乘客()85a b -人,即可得到上车的乘客人数()()()185332a b a b a b ⎡⎤=-----⎢⎥⎣⎦人; (2)根据(1)求得的结果把a=10 ,b=8 代入计算即可.【详解】解:(1)公交车原有乘客()3a b -人,中途有一半人下车,①下车的人数()132a b =-人,又①又上车若干人,使车上共有乘客()85a b -人,①上车的乘客人数()()()185332a b a b a b ⎡⎤=-----⎢⎥⎣⎦ ()18532a b a b =--- 13922a b ⎛⎫=- ⎪⎝⎭人 答:上车的乘客人数是13922a b ⎛⎫- ⎪⎝⎭人; (2)当 a=10 时,b=8 时,1391391086536292222a b ⎛⎫-=⨯-⨯=-= ⎪⎝⎭人, ①上车的乘客有29人,答:上车的乘客有29人.【点睛】本题主要考查了整式的加减计算和代数式求值,解题的关键在于能够根据题意准确求出上车的乘客的代数式.26.(1)-1,点B 的位置见解析;(2)此时A ,B 两点间距离为12;(3)t=6或t=3;(4)52m +,12m -或92m - 【分析】(1)根据数轴的意义,即在数轴上标出点B 的位置;(2)根据题意,点A 运动了4个单位长度,用时4秒,则可计算点B 运动的距离,可得到此时点B 在数轴上所对应的数,根据两点距离公式即可求解;(3)经过t 秒,点B 在数轴上所对应的数为2t -1,根据两点距离公式列出方程解答便可; (4)点B 运动的距离为-1-m ,则时间为12m --,即可得点A 所对应的数,再分类求解即可. 【详解】解:(1)点B 在点A 左侧且距点A 为3个单位长度,则点B 所对应的数为-1, 点B 的位置如图所示:(2)根据题意,点A 运动了523-=个单位长度,则用时31=3秒, ①点B 运动了:3⨯2=6(个长度单位),①点B 在数轴上所对应的数为-1-6=-7,①A ,B 两点间距离为5-(-7)=12(个长度单位);(3)经过t 秒,点B 在数轴上所对应的数为2t -7, 根据题意得:2723t --=,即2t -9=3或2t -9=-3,解得t=6或t=3;(4)根据题意,点B 运动的距离为-1-m ,则时间为12m--,①点A 所对应的数为15222mm--+-=,当点A 继续运动到点B 的右侧,此时点A 所对应的数为2m +, ①点A 继续运动的距离为()51222mmm +--+=;当点A 继续运动到点B 的左侧,此时点A 所对应的数为2m -, ①点A 继续运动的距离为()59222mmm +---=. 故答案为:52m +,12m-或92m-.。

北师大版七年级上册数学期中考试试卷含答案

北师大版七年级上册数学期中考试试卷含答案

北师大版七年级上册数学期中考试试题2022年7月一、单选题1.下列各数中,最小的数是()A .4-B .2-C .1D .32.据《吉林日报》2021年5月14日报道,第一季度一汽集团销售整车70060辆,数据70060用科学记数法表示为()A .37.00610⨯B .47.00610⨯C .370.0610⨯D .40.700610⨯3.下列运算正确的是()A .236=B .660a a --=C .2416-=-D .523xy xy -+=-4.单项式23a b π-的系数和次数分别是()A .3π,3B .3π-,3C .13-,4D .13,45.在代数式:234x ,3ab ,5x +,5yx ,4-,3y ,2a b a -中,整式有()A .4个B .5个C .6个D .7个6.有理数a 在数轴上的对应点的位置如图所示,若有理数b 满足-a <b <a ,则b 的值不可能是()A .2B .0C .-1D .-37.小明周末从家里去书店,需要先步行一段路程,然后再坐公交车到书店,步行的速度为4千米每小时,汽车的速度为45千米每小时,小明先步行x 分钟,再乘车y 分钟,则小明家离书店的路程是()千米A .454x y+B .445x y +C .344x y +D .13154x y +8.下列判断正确的是()A .两个数相加,和一定大于其中一个加数B .两数相减,差一定小于被减数C .两数相乘,积一定大于其中一个因数D .|a|一定是非负数9.如图,是由一些棱长为1cm 的小正方体构成的立体图形的三种视图,那么这个立体图形的体积是()A .33cmB .143cm C .53cm D .73cm 10.一根1m 长的绳子,第一次剪去绳子的23,第二次剪去剩下绳子的23,如此剪下去,第100次剪完后剩下绳子的长度是()A .9913m ⎛⎫ ⎪⎝⎭B .9923m ⎛⎫ ⎪⎝⎭C .10013m⎛⎫ ⎪⎝⎭D .10023m⎛⎫ ⎪⎝⎭二、填空题11.如果盈利80元记作+80元,那么亏损40元记作______元.12.﹣5的倒数是_____;12018-的相反数是_____.13.通常山的高度每升高100米,气温下降0.6C ︒,如地面气温是4C -︒,那么高度是2400米高的山上的气温是____________________.14.按照如图所示的操作步骤,若输入的值为-3,则输出的值为_______________.15.已知代数式235x x +-的值等于6,则代数式2268x x ++的值为_____________.16.一个正方体的每个面上都写有一个汉字,其平面展开图如图所示,那么在该正方体中和“文”相对的字是_____17.一条数轴上有点A 、B 、C ,其中点A 、B 表示的数分别是16-、9,现以点C 为折点,将放轴向右对折,若点A 对应的点A '落在点B 的右边,若3A B '=,则C 点表示的数是______.三、解答题18.计算:()3421415231211⎛⎫---⨯+-÷-+ ⎪⎝⎭19.某公司的某种产品由一商店代销,双方协议,不论这种产品销售情况如何,该公司每月给商店a 元代销费,同时,商店每销售一件产品有b 元提成,该商店一月份销售了m 件,二月份销售了n 件.(1)用代数式表示,这两个月公司分别应付给商店的钱数;(2)假设代销费为每月20元,每件产品的提成为2元,一月份销售了20件,二月份销售了25件,求该商店这两个月销售其总产品的总收益.20.如图是由几个小立方体所组成几何体从上面看到的形状图,其中小正方形中的数字表示该位置的小正方体的个数,请画出这个几何体从正面和从左面看到的形状图.21.已知多项式()()2223221M x xy y x x yx =++-+++.(1)当()2120x y -+-=,求M 的值;(2)若多项式M 与字母x 的取值无关,求y 的值.22.一辆出租车沿着南北方向的道路来回行驶接送客人,一天早晨从某商店门口出发,中午到达B 地,约定向南为正,向北为负,当天记录如下(单位:千米)18.3-,9.5-,+7.1,+14, 6.2-,+12,+6.8,8.5-(1)B 地在商店何处,相距多少千米?(2)第4个客人下车地点距离商店多少千米?(3)若汽车行驶每千米耗油0.1升,那么这天上午共耗油多少升?23.定义新运算:对于任意a ,b ,都有()()223a b a b a ab b b ⊕=+-+-,等式右边是通常的加法、减法、乘法及乘方运算,比如:()()223525255222⊕=+⨯-⨯+-7198=⨯-1338=-125=(1)求()32⊕-的值.(2)化简()()223a b a ab b b +-+-.24.观察下列等式:①11111323⎛⎫=⨯- ⎪⨯⎝⎭;②111135235⎛⎫=⨯- ⎪⨯⎝⎭;③111157257⎛⎫=⨯- ⎪⨯⎝⎭…根据上述等式的规律,解答下列问题:(1)请写出第④个等式:_____________;(2)写出第n 个等式(用含有n 的等式表示):_____________;(3)应用你发现的规律,计算:222221335577920192021++++⋅⋅⋅+⨯⨯⨯⨯⨯.25.“分类讨论”是一种重要数学思想方法,下面是运用分类讨论的数学思想解决问题的过程,请仔细阅读,并解答题目后提出的四个问题.例:三个有理数a ,b ,c 满足0abc >,求a b c a b c++的值.解:由题意得,a ,b ,c 三个有理数都为正数或其中一个为正数,另两个为负数.①当a ,b ,c 都是正数,即0a >,0b >,0c >时,则:1113a b c a b ca b c a b c++=++=++=,②当a ,b ,c 有一个为正数,另两个为负数时,设0a >,0b <,0c <,则:()()1111a b c a b c a b c a b c--++=++=+-+-=-.综上,a b c a b c++的值为3或-1.请根据上面的解题思路解答下面的问题:(1)已知3a =,1=b ,且a b <,求a b +的值;(2)已知a ,b 是有理数,当0ab >时,求a ba b+的值.(3)已知a ,b ,c 是有理数,0a b c ++=,0abc <,求a b c a b c++.参考答案1.A 【解析】【分析】根据有理数的大小比较即可求解.【详解】解:∵4213-<-<<,故选:A .【点睛】本题考查有理数的大小比较,掌握有理数的大小比较法则是解题的关键.2.B 【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数;当原数的绝对值<1时,n 是负整数.【详解】解:4700607.006010=⨯,故选:B .【点睛】此题考查科学记数法的表示方法,表示时关键要确定a 的值以及n 的值.3.C 【解析】【分析】A.根据有理数的乘方法则解题;B.根据合并同类项法则解题;C.根据有理数的乘方法则解题;D.根据合并同类项法则解题.【详解】A.239=,故A 错误;B.6612a a a --=-,故B 错误;C.2416-=-,故C 正确;D.523xy xy xy -+=-,故D 错误,故选:C .【点睛】本题考查乘方、合并同类项等知识,是基础考点,难度较易,掌握相关知识是解题关键.4.B 【解析】【分析】根据单项式系数和次数的概念分析即可,单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数.【详解】单项式23a b π-的系数和次数分别是3π-,3故选B 【点睛】本题考查了单项式系数和次数的概念,掌握概念是解题的关键.5.C 【解析】【分析】根据整式的概念辨析即可得到答案,单项式和多项式统称为整式.【详解】234x ,3ab ,5x +,5y x,4-,3y ,2a b a -是整式的有234x ,3ab ,5x +,4-,3y ,2a b a -,共6个故选:C 【点睛】此题考查了整式的概念,注意5yx分母中含有字母,是分式不是整式.6.D 【解析】【分析】先根据点在数轴上的位置得出a 的取值范围,从而可得出b 的取值范围,由此即可得.【详解】由数轴上点的位置得:23a <<32a ∴-<-<-23a ∴<<又a b a -<< 2b ∴≤观察四个选项,只有选项D 不符合故选择:D .【点睛】本题考查了用数轴上的点表示有理数,比较简单,正确表示取值范围是解题关键.7.D 【解析】【分析】首先根据速度×时间=路程,用小明步行的速度乘x ,求出从小明家到车站的路程是多少;然后根据速度×时间=路程,用公交车行驶的速度乘y ,求出从车站到学校的路程是多少;最后把它们相加即可.【详解】解:小明家离书店的路程为:134456060154x y x y ⨯+⨯=+故选:D .【点睛】此题主要考查了列代数式,注意行程问题中速度、时间和路程的关系:速度×时间=路程,路程÷时间=速度,路程÷速度=时间,要熟练掌握.8.D 【解析】【详解】试题分析:A 、(-1)+(-2)=-3,和小于每一个加数,故选项错误;B 、1-(-2)=3,差大于被减数,故选项错误;C 、1×(-2)=-2,积都不大于每一个因数,故选项错误;D 、|a|一定是非负数是正确的.故选D .9.A 【解析】【分析】首先根据三视图确定该几何体的形状,然后确定其体积即可.【详解】易得第一层有2个小正方体,第二层有1个小正方体,一共有3个,体积为:3×1×1×1=3(cm3).故选:A.【点睛】本题考查了学生的思考能力和对几何体三种视图的空间想象能力.10.C【解析】【分析】根据题意得每次减绳子后的长度都是上次剩下长度的13,根据乘方的定义我们可以得出关于x的关系式,代入100x=求解即可.【详解】∵第一次剪去绳子的23,还剩213⎛⎫-⨯⎪⎝⎭原长第二次剪去剩下绳子的23,还剩213⎛⎫-⨯⎪⎝⎭上次剩下的长度因此每次减绳子后的长度都是上次剩下长度的1 3根据乘方的定义,我们得出第n次剪去绳子的23,还剩13x⎛⎫⎪⎝⎭第100次剪去绳子的23,还剩10013⎛⎫⎪⎝⎭故答案为:C.【点睛】本题考查了乘方的定义,掌握乘方的定义从而确定它们的关系式是解题的关键.11.-40【解析】【分析】【详解】盈利80元记作+80元,那么亏损40元记为﹣40元.故答案为:﹣40.12.-1512018【解析】【分析】根据倒数和相反数的定义进行解答即可.【详解】解:-5的倒数是-15;12018-的相反数是12018.故答案为:-15;12018.【点睛】本题主要考查倒数和相反数,倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数;只有符号不同的两个数互为相反数.13.18.4C-︒【解析】【分析】从地面到高山上高度升高了2400米,用升高的高度除以100再乘以0.6得出下降的温度,再用地面的气温减去此值即可.【详解】解:由题意可得,高度是2400米高的山上的气温是:-4-2400÷100×0.6=-4-14.4=-18.4℃,故答案为:-18.4℃.【点睛】本题考查有理数的混合运算,解答本题的关键是根据题意列出正确的算式.14.55【解析】【分析】根据运算程序列式计算即可得解.【详解】解:由图可知,输入的值为-3时,()2-3=910<则()()2-32592555⎡⎤+⨯=+⨯=⎢⎥⎣⎦.故答案为:55.【点睛】本题考查了代数式求值,读懂题目运算程序是解题的关键.15.30【解析】【分析】将代数式化为:2(x 2+3x )+8,由于代数式x 2+3x-5的值等于6,那么x 2+3x=11,将其代入代数式并求出代数式的值.【详解】解:由题意得:x 2+3x-5=6,即:x 2+3x=11,∴2x 2+6x+8=2(x 2+3x )+8=2×11+8=30.故答案为:30.【点睛】本题考查代数式的求值,关键在于找出代数式与已知条件的关系,根据已知条件求出代数式中的未知项,代入求解.16.强【解析】【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这个特点作答即可.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,∴“文”与“强”相对,“富”与“主”相对,“民”与“明”相对,故答案为:强.【点睛】本题考查了正方体的展开图,注意从相对面入手,分析及解答问题.17.2-【解析】【分析】根据3A B '=可得点A '为12,再根据A 与A '以C 为折点对折,即C 为A ,A '中点即可求解.【详解】解:翻折后A '在B 右侧,且3A B '=.所以点A '为12,∵A 与A '以C 为折点对折,则C 为A ,A '中点,即1216:22C -=-.【点睛】本题考查数轴上两点间的距离,得到C 为A ,A '中点是解题的关键.18.0【解析】【详解】解:()3421415231211⎛⎫---⨯+-÷-+ ⎪⎝⎭()()114188211=---⨯+-÷()()121=---+-1210=-+-=.【点睛】本题考查了有理数的混合运算,熟练掌握混合运算的顺序是解答本题的关键.混合运算的顺序是先算乘方,再算乘除,最后算加减;同级运算,按从左到右的顺序计算.19.(1)一月份:()a bm +元;二月份:()a bn +元(2)该商店这两个月销售其总产品的总收益为130元【解析】【分析】(1)每月应付费用为:a 元代销费+b×销售件数,所以这两个月公司应付给商店的钱数=2×a+b×两个月销售件数;(2)把a=200,b=2,m=200,n=250,代入(1)中的式子即可.【详解】(1)一月份:()a bm +元二月份:()a bn +元(2)当20a =,2b =,20m =,25n =时()()a bm a bn +++()2022020225=+⨯++⨯20402050130=+++=(元)答:该商店这两个月销售其总产品的总收益为130元.【点睛】本题考查列代数式和代数式求值,用代数式表示出代销费和提成是解题的关键.20.见解析【解析】【分析】由已知条件可知,从正面看有3列,每列小正方数形数目分别为4,3,1;从左面看有3列,每列小正方形数目分别为3,4,1,据此可画出图形.【详解】解:如图所示:【点睛】本题考查几何体的三视图画法.由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视数的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字.左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.21.(1)M=2(2)2y =【解析】【分析】(1)先化简M ,进而根据非负数的性质求得,x y 的值,进而代入求解即可;(2)根据(1)中M 的化简结果变形,令含x 项的系数为0,进而求得y 的值解:()()2223221M x xy y x x yx =++-+++222322222x xy y x x yx -=++---222xy y x =+-- ()2120x y -+-=1,2x y ∴==原式12222122=⨯+⨯-⨯-=(2)M 222xy y x =+--()222y x y =-+-与字母x 的取值无关,20y ∴-=解得2y =【点睛】本题考查了整式加减化简求值,整式无关类型,掌握整式的加减运算是解题的关键.22.(1)B 点在商的北边2.6千米;(2)第4个客人下车地点距离商店6.7千米;(3)这天上午共耗油8.24升【解析】【分析】(1)把所给数据相加,若和为正,则说明B 地在商店的南边,若和为负,则说明B 地在商店的北边,再求出和的绝对值即可解答;(2)求出前4个数据相加的和的绝对值即可;(3)求出所有数据的绝对值的和,再乘以每千米的耗油量即可求解.(1)解:18.39.57.114 6.212 6.88.5 2.6--++-++-=-(千米),所以B 点在店的北边2.6千米;(2)解:18.39.57.114 6.7--++=-(千米),所以第4个客人下车地点距离商店6.7千米;解:18.39.57.114 6.212 6.88.582.4+++++++=(千米)82.40.18.24⨯=升.所以这天上午共耗油8.24升.【点睛】本题考查正负数的实际应用、有理数的混合运算的实际应用,理解相反意义的量的含义是解答的关键.23.(1)27;(2)3a 【解析】【分析】(1)先根据新定义运算的运算顺序运算即可;(2)先用乘法分配律算乘法,再合并同类项即可.【详解】解:(1)∵()()223a b a b a ab b b ⊕=+-+-,∴()2332(32)(3324)(2)⊕-=-+⨯+--=198+=27;(2)()()223a b a ab b b-+++=3222233a ab ab a b ab b b ++---+=3a .【点睛】本题考查了整式的混合运算,理解新定义运算顺序并正确运用运算法则进行计算是解此题的关键.24.(1)111179279⎛⎫=⨯- ⎪⨯⎝⎭(2)()()1111212122121n n n n ⎡⎤=⨯-⎢⎥-+-+⎣⎦(3)20202021【解析】【分析】(1)根据所给等式总结规律解答;(2)根据(1)中规律写出答案即可;(3)根据(2)中规律裂项相消即可;(1)解:∵①11111323⎛⎫=⨯- ⎪⨯⎝⎭;②111135235⎛⎫=⨯- ⎪⨯⎝⎭;③111157257⎛⎫=⨯- ⎪⨯⎝⎭,…,∴111179279⎛⎫=⨯- ⎪⨯⎝⎭,故答案是:17×9=12×−(2)解:由(1)可知,第n 个等式为:()()1111212122121n n n n ⎡⎤=⨯-⎢⎥-+-+⎣⎦,故答案是:()()1111212122121n n n n ⎡⎤=⨯-⎢⎥-+-+⎣⎦;(3)解:222221335577920192021++++⋅⋅⋅+⨯⨯⨯⨯⨯()1111121335577920192021=⨯++++⋅⋅⋅+⨯⨯⨯⨯⨯()1111111111212335577920192021=⨯⨯-+-+-+-+⋅⋅⋅+-112021=-20202021=.【点睛】本题考查了数字类规律探究,以及有理数的混合运算,通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题是应该具备的基本能力.25.(1)-2或-4;(2)2±;(3)1【解析】【分析】(1)根据绝对值的意义和a <b ,确定a 、b 的值,再计算a+b ;(2)对a 、b 进行讨论,即a 、b 同正,a 、b 同负,根据绝对值的意义进行计算即可;(3)根据a ,b ,c 是有理数,a+b+c=0,0abc <,则a ,b ,c 两正一负,然后进行计算即可.【详解】解:(1)因为3a =,1=b ,且a b <,所以3a =-,1b =或1-,则2a b +=-或4a b +=-.(2)①当0a <,0b <时,112a b a b+=--=-;②当0a >,0b >时,112a b a b+=+=;综上,a b a b+的值为2±.(3)已知a ,b ,c 是有理数,0a b c ++=,0abc <.所以a ,b ,c 两正一负,不妨设0a >,0b >,0c <,所以1111a b c a b c++=+-=.【点睛】考查了绝对值的意义、分类讨论的思想方法.能不重不漏的分类,会确定字母的范围和字母的值是关键;。

北师大版七年级上册数学期中考试试卷含答案

北师大版七年级上册数学期中考试试卷含答案

北师大版七年级上册数学期中考试试题一、单选题1.3-的相反数是( )A .3B .3-C .13D .13-2.多项式-23m 2-n 2是( )A .二次二项式B .三次二项式C .四次二项式D .五次二项式 3.已知长方形周长为20cm ,设长为x cm ,则宽为( )A .20x -B .202x- C .202x - D .10x -4.下列各式的化简,正确的是( )A .-(-3)= -3B .-[-(-10)]= -10C .-(+5)=5D .-[-(+8)]= -85.我国最长的河流长江全长约6300千米,6300千米用科学记数法表示为( ) A .6.3×102千米 B .6.3×103千米C .0.63×104千米D .630×10千米6.有理数a b ,在数轴上的位置如图,则下列各式成立的是( )A .a b >B .0a b +<C .0ab >D .||a b < 7.已知:32m x y -与5n xy 是同类项,则代数式2m n -的值是( )A .6-B .5-C .2-D .58.如图,边长为a 的正方形中,阴影部分的面积是( )A .22a a π-B .22a a π-C .222a a π⎛⎫- ⎪⎝⎭ D .2()a π-9.已知代数式x +2y +1的值是3,则代数式2x +4y +1的值是( )A .4B .5C .7D .不能确定10.将下面平面图形绕直线l 旋转一周,可得到如图所示立体图形的是( )A .B .C .D .二、填空题11.如果﹣20%表示减少20%,那么+6%表示_____.12.单项式25xy -的系数是______.13.表示“x 与4的差的3倍”的代数式为_____.14.在(﹣25)4中,底数是___,指数是___;在﹣63中,底数是______.15.用“<”“=”或“>”号填空:-3_____0 89- _____89- -(+6) _____-|-6|16.根据你学过的数学知识,写出一个运算结果为2a -的多项式______________. 17.观察一列单项式:234,2,4,8,...a a a a -- 根据你发现的规律,第7个单项式为_____________;第n 个单项式为________.三、解答题18.计算:(1)341119-+--+--()()()()(2)321210.5233---⨯⨯--()[()](3)372a b a b ++-()()(4)222(8)3(2)x y y x y y +--19.先化简,再求值:222[7(43)2]x x x x ----,其中12x =-.20.已知:a b ,互为相反数,c d ,互为倒数,(3)m =--.求2||a b m cd m m+---的值.21.如图,由5个相连的正方形可以折成一个无盖的正方体盒子.请你再画出3种不同的由5个正方形相连组成的图形,使它可以折成一个无盖的正方体盒子.22.已知:已知:A =2a 2+3ab ﹣2a ﹣1,B =﹣a 2+ab ﹣1.(1)求2A ﹣3B ;(2)若A+2B 的值与a 的取值无关,求b 的值.23.某人用400元购买了8套儿童服装,准备以一定价格出售.如果以每套儿童服装55元的价格为标准,超出的记作正数,不足的记作负数,记录如下:+2,﹣3,+2,+1,﹣2,﹣1,0,﹣3(单位:元);请通过计算说明:(1)当他卖完这八套儿童服装后是盈利还是亏损?盈利(或亏损)了多少钱?(2)每套儿童服装的平均售价是多少元?24.某自然风景区的门票价格为:成人票20元,学生票10元.某中学七年级共有学生m人,老师n人,八年级学生人数是七年级学生人数的32倍,八年级老师人数是七年级老师人数的6 5倍,若他们一起去此风景区,买门票要花多少钱?若200m=,10n=,你能具体求出门票是多少钱吗?25.已知一个三角形的第一条边长为2a+5b,第二条边比第一条边长3a﹣2b,第三条边比第二条边短3a.(1)则第二边的边长为,第三边的边长为;(2)用含a,b的式子表示这个三角形的周长,并化简;(3)若a,b满足|a﹣5|+(b﹣3)2=0,求出这个三角形的周长.参考答案1.A2.A3.D4.B5.B6.B7.B8.C9.B10.B11.增加6%【分析】根据正负是相反意义的量,“正”和“负”相对,即可解题.【详解】如果﹣20%表示减少20%,那么+6%表示增加6%.故答案为增加6%.12.1 5 -【分析】单项式中的数字因数是单项式的系数,根据定义可得答案.【详解】因为:22155xyxy-=-,所以25xy-的系数是15-.故答案是:1 5 -【点睛】本题考查单项式的系数,掌握单项式系数概念是解题关键.13.3(x-4)【详解】x与4的差为:x-4,差的3倍为:3(4)x-.故答案为3(4)x-.14.﹣2546【分析】根据乘方的定义,即可解答.【详解】解:在425⎛⎫-⎪⎝⎭中,底数是25-,指数是4;在﹣63中,底数是6,故答案为:﹣25,4,6.【点睛】本题考查了有理数的乘方,熟练掌握乘方的定义是解题的关键.15. < = =【解析】【详解】解:因为负数小于0,所以-3<0;89-=89-;因为-(+6)=-6,-|-6|=-6,所以-(+6) =-|-6|.故答案是:<,=,=.16.222a a -(答案不唯一)【分析】运用合并同类项、单项式乘法、单项式除法等知识均可求解,注意答案不唯一.【详解】解:例如:2222a a a -=-故答案为222a a -(答案不唯一)【点睛】本题考查了合并同类项、单项式乘法、单项式除法等知识,属于开放型题目.17. 64a 7(或26a 7) (-2)n -1an【解析】通过观察已知条件,找出这列单项式的规律即可求出结果.【详解】解:根据观察可得,系数是(-2)n -1,a 的指数是n ,∴第7个单项式为64a 7,第n 个单项式为(﹣2)n ﹣1an .故答案为64a 7,(﹣2)n ﹣1an .18.(1)1(2)-416(3)10a ﹣b(4)222x y y -+根据有理数的混合运算和整式的加减的运算法则进行计算即可.(1)解:341119-+--+--()()()()71119--=+1819=-+1=(2) 解:321210.5233---⨯⨯--()[()] 1182923-⨯⨯-=-() 786+=- 416=- (3)解:372a b a b ++-()() 372a a b b ++-=()()10a b -=(4)解:222(8)3(2)x y y x y y +--2221636x y y x y y =+-+2223616x y x y y y =-++222x y y =-+【点睛】本题主要考查了有理数的混合运算和整式的加减,牢固掌握有理数的混合运算和整式的加减的运算法则并准确计算是做出本题的关键.19.12- 【解析】先对222[7(43)2]x x x x ----进行化简,然后将x 的值代入即可求解.【详解】解:222[7(43)2]x x x x ---- 222(7432)x x x x =--+-2227432x x x x =-+-+2433x x =--. 当12x =-时,原式1131433134222⎛⎫=⨯-⨯--=+-=- ⎪⎝⎭. 【点睛】本题主要考查代数式的化简求值,代数式的化简是解答本题的关键.20.5【解析】【分析】根据a ,b 互为相反数,c ,d 互为倒数的性质,以及求出m 的值,代入代数式,即可求解.【详解】解:由已知得0a b +=,1cd =,3m =.20||91|3|91353a b m cd m m +---=---=--=. 【点睛】考查了代数式求值,此题的关键是把a+b ,cd 当成一个整体求值.21.见解析【解析】【分析】根据正方体展开图的特征,画出能折叠成正方体纸盒的展开图即可,注意答案不唯一.【详解】解:画出3种图形如下(答案不唯一):【点睛】正方体展开图有11种特征,分四种类型,即:第一种:“1-4-1”结构,即第一行放1个,第二行放4个,第三行放1个;第二种:“2-2-2”结构,即每一行放2个正方形,此种结构只有一种展开图;第三种:“3-3”结构,即每一行放3个正方形,只有一种展开图;第四种:“1-3-2”结构,即第一行放1个正方形,第二行放3个正方形,第三行放2个正方形.22.(1)7a2+3ab﹣4a+1;(2)b=25.【解析】【分析】(1)把A与B代入原式,去括号合并即可得到结果;(2)由A+2B的结果与a的取值无关,即a的系数为0,确定出b的值即可.【详解】解:(1)∴A=2a2+3ab﹣2a﹣1,B=﹣a2+ab﹣1,∴2A﹣3B=2(2a2+3ab﹣2a﹣1)﹣3(﹣a2+ab﹣1)=4a2+6ab﹣4a﹣2+3a2﹣3ab+3=7a2+3ab﹣4a+1;(2)∴A=2a2+3ab﹣2a﹣1,B=﹣a2+ab﹣1,∴A+2B=2a2+3ab﹣2a﹣1﹣2a2+2ab﹣2=5ab﹣2a﹣3=(5b﹣2)a﹣3,由结果与a的取值无关,得到5b﹣2=0,解得:b=25.【点睛】本题考查整式的加减,熟练掌握运算法则是解本题的关键.23.(1)当他卖完这八套儿童服装后是盈利了,盈利了36元;(2)每套儿童服装的平均售价是54.5元.【解析】【分析】(1)将数据求和,就是和55元偏离的值,用总价减去成本就是盈利.(2)用总售价除以总件数,就是平均售价.【详解】解:(1)售价:55×8+(2﹣3+2+1﹣2﹣1+0﹣3)=440﹣4=436,盈利:436﹣400=36(元);答:当他卖完这八套儿童服装后是盈利了,盈利了36元;(2)平均售价:436÷8=54.5(元),答:每套儿童服装的平均售价是54.5元.24.门票为5440元【解析】【分析】先用m 、n 表示出八年级的学生数和老师数,然后运用总票价=人数×单价即可.【详解】 解:八年级的学生数和老师数32n ,65m 则七八年级一起去景区,应付票钱为:365111020102025442525m m n n m n m n ⎛⎫⎛⎫+++=⨯+⨯=+ ⎪ ⎪⎝⎭⎝⎭. 当200m =,10n =时,原式25200441050004405440=⨯+⨯=+=(元).答:门票为5440元.【点睛】本题主要考查了列代数式以及代数式求值问题,根据已知得出式子表示该支付门票费用是解题关键.25.(1)5a+3b ,2a+3b ;(2)9a+11b ;(3)78【解析】【详解】解:(1)∴三角形的第一条边长为2a +5b ,第二条边比第一条边长3a -2b ,第三条边比第二条边短3a ,∴第二条边长=(2a +5b)+(3a -2b)=2a +5b +3a -2b=5a +3b ,第三条边长=(5a +3b)-3a11 =5a +3b -3a=2a +3b ;故答案为:5a+3b ,2a+3b ;(2)周长:()()()255323911a b a b a b a b +++++=+; (3)∴|a ﹣5|+(b ﹣3)2=0,∴a -5=0,b -3=0,即a =5,b =3,∴周长:9a +11b =45+33=78.。

北师大版七年级上册数学期中考试试卷及答案

北师大版七年级上册数学期中考试试卷及答案

北师大版七年级上册数学期中考试试题一、单选题1.下列说法正确的个数有()①0是整数;② 1.2-是负分数;③1π是分数;④自然数一定是正数;⑤负分数一定是负有理数.A .1个B .2个C .3个D .4个2.3-的倒数是()A .3B .13C .13-D .3-3.有下列式子:①2;②2a ;③31x -;④39s t+;⑤12S ab =;⑥4x y +>;⑦2x .其中代数式有()A .4个B .5个C .6个D .7个4.在﹣(﹣8),(﹣1)2017,﹣32,0,﹣|﹣1|,﹣23中,负数的个数有()A .2个B .3个C .4个D .5个5.如图,是一个正方体的平面展开图,把展开图折成正方体后,“党”字一面相对的字是()A .一B .百C .周D .年6.近年来,我国5G 发展取得明显成效,截至2020年2月底,全国建设开通5G 基站达16.4万个,将数据16.4万用科学记数法表示为()A .316410⨯B .416.410⨯C .51.6410⨯D .60.16410⨯7.下面图形经过折叠不能围成棱柱的是()A .B .C .D .8.数轴上,到原点距离是8的点表示的数是()A .8和﹣8B .0和﹣8C .0和8D .﹣4和49.下列各组数中,数值相等的是()A .-22和(-2)2B .212-和212⎛⎫- ⎪⎝⎭C .(-2)2和22D .212⎛⎫-- ⎪⎝⎭和212-10.根据如图所示的程序计算,若输入x 的值为1,则输出y 的值为()A .4B .﹣2C .8D .311.如图,将小正方体切去一个角后再展开,其平面展开图正确的是()A .B .C .D .12.已知()29320x y z -++++=,则2x y z-+=()A .4B .6C .10D .13二、填空题13.如果一个棱柱共有15条棱,那么它一定是______棱柱.14.在体育课的跳远比赛中,以4.00米为标准,若小东跳出了4.22米,可记做+0.22,那么小东跳出了3.85米,记作______.15.对于任意有理数a 、b ,定义一种新运算“⊕”,规则如下:a ⊕b=ab+(a ﹣b),例如:3⊕2=3×2+(3﹣2)=7,则(﹣4)⊕5=____.16.如果用c 表示摄氏温度(℃),f 表示华氏温度(℉),c 和f 的关系是:()5329c f =-,某日兰州和银川的最高气温分别是72℉和88℉,则他们的摄氏温度分别是:______℃和______℃.三、解答题17.计算:(1)()281510---+;(2)22523963⎛⎫-⨯+-⎪⎝⎭;(3)331122⎛⎫⎛⎫-+ ⎪ ⎪⎝⎭⎝⎭;(4)()()321113232⎛⎫⎡⎤---÷⨯-- ⎪⎣⎦⎝⎭;18.如图所示,a 、b 是有理数,请化简式子|a|﹣|b|+|a+b|+|b ﹣a|.19.a 的绝对值2b+1,b 的相反数是其本身,c 与d 互为倒数,求23cd a b ++的值.20.人体血液的质量约占人体体重的6%-7.5%.(1)如果某人体重是a kg ,那么他的血液质量大约在什么范围?(2)亮亮体重是35kg ,他的血液质量大约在什么范围?21.商店出售甲、乙两种书包,甲种书包每个38元,乙种书包每个26元,现已售出甲种书包a 个,乙种书包b 个.(1)用代数式表示销售这两种书包的总金额;(2)当a=2,b=10时,求销售总金额.22.在罗山县某住房小区建设中,为了提高业主的宜居环境,某小区规划修建一个广场(平面图如图所示).(1)用含m、n的代数式表示该广场的面积S;(2)若m、n满足(m-6)2+|n-8|=0,求出该广场的面积.23.一辆货车从百货大楼出发负责送货,向东走了4千米到达小明家,继续向东走了1.5千米到达小红家,然后向西走了8.5千米到达小刚家,最后返回百货大楼.(1)以百货大楼为原点,向东为正方向,1个单位长度表示1千米,请你在数轴上标出小明、小红、小刚家的位置.(小明家用点A表示,小红家用点B表示,小刚家用点C表示)(2)小明家与小刚家相距多远?(3)若货车每千米耗油0.2升,那么这辆货车此次送货共耗油多少升?24.一辆汽车沿着一条南北方向的公路来回行驶.某一天早晨从A地出发,晚上到达B地.约定向北为正,向南为负,当天记录如下:(单位:千米)﹣18.3,﹣9.5,+7.1,﹣14,﹣6.2,+13,﹣6.8,﹣8.5(1)问B地在A地何处,相距多少千米?(2)若汽车行驶每千米耗油0.2升,那么这一天共耗油多少升?25.某公司仓库一周内货物进出的吨数记录如下:(“+”表示进库,“-”表示出库)日期星期日星期一星期二星期三星期四星期五星期六吨数+22-29-15+37-25-21-19(1)若星期日开始时仓库内有货物465吨,则星期六结束时仓库内还有货物多少吨?(2)如果该仓库货物进出的装卸费都是每吨5元,那么这一周内共需付多少元装卸费?26.【背景知识】数轴是初中数学的一个重要工具.利用数轴可以将数与形完美的结合.研究数轴我们发现了许多重要的规律:数轴上A 点、B 点表示的数为a 、b ,则A ,B 两点之间的距离AB a b =-,若a>b ,则可简化为AB a b =-;线段AB 的中点M 表示的数为2a b+.【问题情境】已知数轴上有A 、B 两点,分别表示的数为10-,8,点A 以每秒3个单位的速度沿数轴向右匀速运动,点B 以每秒2个单位向左匀速运动.设运动时间为t 秒(t>0).【综合运用】(1)运动开始前,A 、B 两点的距离S 为多少;线段AB 的中点M 所表示的数是多少?(2)点A 运动t 秒后所在位置的点C 表示的数为多少;点B 运动t 秒后所在位置的点D 表示的数为多少;(用含t 的式子表示)(3)它们按上述方式运动,A 、B 两点经过多少秒会相距4个单位长度?27.如图,将一个边长为1的正方形纸片分割成7个部分,部分②是下部分①面积的一半,部分③是部分②面积的一半,依次类推.(1)阴影部分的面积是多少?(2)受此启发,你能求出611112482++++ 的值吗?参考答案1.C 【解析】【分析】根据有理数的意义,逐一判断即可.【详解】①0是整数,故①正确;②-1.2是负分数,故②正确;③1π是无理数,故③错误;④自然数一定是非负数,故④错误;⑤负分数一定是负有理数,故⑤正确;综上,正确的有3个,故选:C .【点睛】本题考查了有理数的分类,熟记有理数的意义是解题关键.2.C 【解析】【分析】由互为倒数的两数之积为1,即可求解.【详解】解:∵1313⎛⎫-⨯-= ⎪⎝⎭,∴3-的倒数是13-.故选C 3.B 【解析】【分析】根据代数式的定义,即可求解.【详解】解:代数式有2;2a ;31x -;39s t+;2x ,共5个.故选:B 【点睛】本题主要考查了代数式的定义,熟练掌握用基本的运算符号把数或表示数的字母连接而成的式子叫做代数式,单独的一个数或一个字母也是代数式是解题的关键.4.C 【解析】【分析】先根据有理数的乘方、绝对值、相反数化简,再根据负数的定义即可.【详解】解:-(-8)=8,(-1)2017=-1,-32=-9,-|-1|=-1,负数有:(-1)2017,-32,-|-1|,23-,负数的个数有4个,故选:C .【点睛】本题考查了有理数的乘方、绝对值、相反数和负数,解决本题的关键是先根据有理数的乘方、绝对值、相反数化简.5.B 【解析】【分析】正方体的平面展开图中,相对面的特点是之间一定隔着一个正方形,据此作答即可.【详解】正方体的表面展开图,相对的面之间一定相隔一个正方形,“建”与“周”是相对面,“党”与“百”是相对面,“一”与“年”是相对面.故选:B .【点睛】本题考查了正方体的展开图,解题的关键是从相对面入手进行分析及解答问题.6.C 【解析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.【详解】解:16.4万=51.6410 ,故选:C .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.7.D 【解析】【详解】A 可以围成四棱柱,B 可以围成五棱柱,C 可以围成三棱柱,D 选项侧面上只有三个长方形,而两个底面都是长方形,因此从图形中看少了一个侧面,故不能围成长方体,故选D .【点睛】本题考查了展开图,解决此题的关键是要有一定的空间想象能力.8.A 【解析】【分析】根据数轴上的点到原点的距离的意义解答.数a 到原点的距离为a .【详解】解:数轴上距离原点是8的点有两个,表示﹣8的点和表示+8的点.故选:A .【点睛】本题考查了数轴上点到原点的距离,根据数轴的意义解答.9.C 【解析】根据有理数的乘方的运算方法,求出每组中的两个算式的值各是多少,判断出各组数中,数值相等的是哪个即可.【详解】解:224-=- ,2(2)4-=,222(2)-≠-,∴选项A 不符合题意;21122-=- ,211(24-=,2211(22-≠-,∴选项B 不符合题意;2(2)4-= ,224=,22(2)2-=,∴选项C 符合题意;211(24--=- ,21122-=-,2211(22--≠-,∴选项D 不符合题意.故选:C .【点睛】此题主要考查了有理数的乘方的运算方法,要熟练掌握.10.A 【解析】【详解】根据题意中的计算程序,可直接计算为:12×2-4=-2<0,把-2输入可得(-2)2×2-4=4>0,所以输出的数y=4.故选A.11.D 【解析】【详解】只有D,可以还原回去,所以选D.12.D 【解析】【分析】根据题意可知,()29320x y z -++++=,所以|x-9|=0,|y+3|=0,(z+2)2=0,分别求出x,y,z 的值,然后代入2x y z -+求值.【详解】根据题意可知,()29320x y z -++++=,所以|x-9|=0,|y+3|=0,(z+2)2=0,所以x=9,y=-3,z=-2,2x y z -+=9-2×(-3)+(-2)=13,故选:D.【点睛】本题考查了绝对值和平方的非负性以及代数式求值,熟练掌握非负数和为0的解题方法是本题的解题关键.13.五【解析】【分析】根据棱柱的概念和定义,可知有15条棱的棱柱是五楼柱.【详解】解:一个棱柱共有15条棱,那么它是五棱柱,故答案为:五【点睛】本题主要考查了认识立体图形,关键是掌握五棱柱的构造特征.14.-0.15米【解析】【分析】根据多于标准记为正,可得少于标准记为负.【详解】解:∵以4.00米为标准,若小东跳出了4.22米,可记做+0.22,∴小东跳出了3.85米,记作-0.15米,故答案为:-0.15米.【点睛】本题考查了正数和负数,注意高于标准用正数表示,低于标准用负数表示.15.﹣2916.20092809【解析】【分析】把兰州和银川的最高气温的华氏温度代入c 和f 的关系式()5329c f =-,即可求出最高气温的摄氏温度.【详解】当f=72℉时,()5329c f =-=()572329-=2009,当f=88℉时,()5329c f =-=()588329-=2809,所以兰州和银川的最高摄氏温度分别是2009℃和2809℃.【点睛】本题考查了代数式的求值,会进行代数式的代入求值是本题的解题关键.17.(1)3-(2)72-(3)0(4)16【解析】(1)解:28(15)10---+281510=-++3=-(2)解:22523963⎛⎫-⨯+- ⎪⎝⎭415129181818⎛⎫=-⨯+- ⎝⎭7918=-⨯72=-(3)331122⎛⎫⎛⎫-+ ⎪ ⎪⎝⎭⎝⎭1188⎛⎫=-+ ⎪⎝⎭0=(4)()()321113232⎛⎫⎡⎤---÷⨯-- ⎪⎣⎦⎝⎭()113292=--÷⨯-()11372=--÷⨯-()111723=--⨯⨯-761=-+16=【点睛】本题考查有理数的加、减、乘、除、乘方运算,熟练掌握运算顺序和运算法则是解决本题的关键.18.b ﹣a【解析】【分析】先根据a 、b 两点在数轴上的位置判断出其取值范围,再根据绝对值的性质进行解答即可.【详解】∵由数轴上a 、b 两点的位置可知,﹣1<a <0,b >1,∴a+b >0,b ﹣a >0,∴原式=﹣a ﹣b+a+b+b ﹣a=b ﹣a .【点睛】本题考查了绝对值与数轴的知识点,解题的关键是根据数轴确定取值范围去绝对值.19.1或3【解析】【分析】根据题意可知:b=0,所以|a|=1,又因为cd=1,分别代入原式即可求出答案.【详解】解:由题意可知:cd =1,b =0,∴|a|=2b+1=1,∴a =±1,当a =1时,∴原式=2+1+0=3,当a =-1时,∴原式=2-1=1【点睛】本题考查代数式求值,涉及绝对值,相反数与倒数的性质.20.(1)0.06a kg -0.075a kg(2)2.1kg -2.625kg【解析】【分析】(1)根据人体血液的质量占人体体重的6%-7.5%,再根据人体体重a kg ,分别相乘即可.(2)根据人体血液的质量占人体体重的6%-7.5%,再根据亮亮体重35kg ,分别相乘求解即可.(1)解:6%0.06a a ⨯=,7.5%0.075a a⨯=答:血液质量大约在0.06a kg -0.075a kg 范围.(2)解:356% 2.1kg ⨯=,357.5% 2.625kg⨯=答:血液质量大约在2.1kg -2.625kg 范围.【点睛】本题主要考查列代数式的问题,解题关键是找出所求量的等量关系.21.(1)(38a+26b )元;(2)336元.【解析】【分析】(1)根据“销售总金额=销售甲种书包的金额+销售乙种书包的金额”列代数式即可;(2)将a,b的值代入(1)中代数式求解即可.【详解】解:(1)根据题意得,销售这两种书包的总金额为:(38a+26b)元;(2)将a=2,b=10代入38a+26b得,38a+26b=38×2+26×10=336.答:销售总金额为336元.【点睛】本题主要考查列代数式以及求代数式的值,解题关键是根据题意正确列出代数式.22.(1)3.5mn;(2)168.【解析】【分析】(1)由广场的面积等于大矩形面积减去小矩形面积表示出S即可;(2)利用非负数的性质求出m与n的值,代入S中计算即可得到结果.【详解】(1)S=2m×2n–m(2n–n–0.5n)=4mn–0.5mn=3.5mn;(2)由题意得m–6=0,n–8=0,∴m=6,n=8,∴原式=3.5×6×8=168.【点睛】此题考查了整式的加减-化简求值,非负数的性质,不规则图形的面积等知识,解本题的关键是学会利用分割法求不规则图形的面积.23.(1)见解析(2)7千米(3)3.4【解析】【分析】(1)根据题意可直接进行求解;(2)由(1)可直接进行求解;(3)先求出货车总的路程,然后再进行求解即可.(1)解:如图所示:(2)解:由(1)数轴可知:小明家与小刚家相距:4-(-3)=7(千米);答:小明家与小刚家相距7千米(3)解:这辆货车此次送货共耗油:(4+1.5+8.5+3)×0.2=3.4(升).答:小明家与小刚家相距7千米,这辆货车此次送货共耗油3.4升.【点睛】本题主要考查数轴及有理数混合运算的应用,熟练掌握数轴上数的表示及有理数的运算是解题的关键.24.(1)B地在A地南方,相距43.2千米;(2)这一天共耗油16.68升.【解析】【分析】(1)根据有理数的加法,可得答案;(2)根据单位耗油量乘以路程,可得答案.【详解】解:(1)-18.3+(-9.5)+7.1+(-14)+(-6.2)+13+(-6.8)+(-8.5)=-43.2(km),答:B地在A地南方,相距43.2千米;(2)(|-18.3|+|-9.5|+7.1+|-14|+|-6.2|+13+|-6.8|+|-8.5|)×0.4=83.4×0.2=16.68(升).答:这一天共耗油16.68升.【点睛】本题考查了有理数的加减乘除混合运算,解题的关键是注意理解相反意义的量的含义,耗油量=行使的路程×单位耗油量.25.(1)415吨(2)840元【解析】【分析】(1)首先计算出表格中的数据的和,再利用465加上表格中的数据的和即可;(2)首先计算出表格中数据绝对值的和,再乘以5元即可.(1)22-29-15+37-25-21-19=-50(吨),465-50=415(吨).答:星期六结束时仓库内还有货物415吨;(2)5×(22+|-29|+|-15|+37+|-25|+|-21|+|-19|)=840(元).答:这一周内共需付840元装卸费.【点睛】此题主要考查了正负数,关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.26.(1)18,1-(2)103t-+;8-2t(3)2.8秒或4.4秒【解析】【分析】(1)根据数轴两点距离求AB的距离,利用数轴中点坐标公式计算即可;(2)先求距离,再利用起点表示的数加或减距离即可求解;(3)根据相遇前与相遇后的等量关系分类讨论列一元一次方程,解方程即可.(1)解:S=|-10-8|=18∵1081 2-+=-∴M表示的数是:-1;(2)解:AC=3t,BD=2t,C表示的数:-10+3t,D表示的数:8-2t;(3)设它们按上述方式运动,A、B两点经过t秒会相距4个单位长度,当点A在点B左侧时∶依题意列式,得3t+2t=18-4,解得t=2.8;当点A在点B右侧时∶3t+2t=18+4,解得t=4.4,答:它们按上述方式运动,A、B两点经过2.8秒或4.4秒会相距4个单位长度.【点睛】本题考查数轴上点数轴上点表示数,数轴上两点间距离,中点表示的数,用代数式表示线段的长,一元一次方程,数轴上点表示数,数轴上两点间距离,中点表示的数,用代数式表示线段的长,一元一次方程是解题关键.27.(1)164;(2)6364.【解析】【分析】(1)根据题意可以写出前几部分的面积,从而可以发现各部分面积的变化规律,再根据图形可知阴影部分的面积和部分⑥的面积相等,从而可以解答本题;(2)根据(1)中发现的规律和题目中的式子,可以计算出相应的结果.【详解】解:(1)由题意可知,部分①面积是1 2,部分②面积是(12)2,部分③面积是(12)3,…,则阴影部分的面积是(12)6=164,阴影部分的面积是1 64;(2)原式=12+23456611111163122222264 ++++=-=.。

【晨鸟出品】北师大版七年级数学上学期半期试题含答案

【晨鸟出品】北师大版七年级数学上学期半期试题含答案

四川省德阳市X-X 学年七年级数学上学期半期试题(考试时间:120分钟;满分:120分)第I 卷一、选择题(每小题3分,共36分)1.-|-2︳的值等于()A .2 B.0 C.±2 D.-22.单项式322xy 的系数和次数分别是()A . B.-3,32 C .3,32 D .2,23.若a 、b 互为相反数,c 、d 互为倒数,|m |=2,则代数式mba cdm 32的值为()A 、-1 B、1 C、-7 D、1或-74.下列利用等式的性质,错误的是()A 、由b a ,得到b a 2121B 、由bc ac ,得到baC 、由cb ca ,得到b aD 、由b a,得到1122cb ca 5.若方程02122xmxxm是关于x 的一元一次方程,则代数式|m ﹣1|的值为()A.0B.2C.0或2 D.﹣26.若a >0,ab <0,则|b-a-1|-|a-b+3|的值为()A 、2B 、-2 C、-2a+2b+4 D、2a-2b-47.若当1x 时,整式73bxax的值为4,则当1x时,整式73bx ax的值为()A. 7B. 12C. 11D. 10 8.已知7x 是方程ax x 72的解,则代数式aa3的值是( )A.-3B.3C.2D 328.9.某村原有林地120公顷,旱地60公顷,为适应产业结构调整,需把一部分旱地改造为林地,改造后,旱地面积占林地面积的20%,设把x 公顷旱地改造为林地,则可列方程为()A .60﹣x=20%(120+x )B .60+x=20%×120C .180﹣x=20%(60+x )D .60﹣x=20%×12010.若k 为整数,则使得关于x 的方程1439kx x 的解也是整数的k 值有( )。

A 、2个B 、4个C 、8个D 、16个11.某市出租车起步价是5元(3公里及3公里以内为起步价),以后每公里收费是 1.6元,不足1公里按1公里收费,小明乘出租车到达目的地时计价器显示为11.4元,则此出租车行驶的路程可能为()A .5.5公里B .6.9公里C .7.5公里 D.8.1公里12.如图为手的示意图,在各个手指间标记A,B,C,D 请你按图中箭头所指方向(A →B →C →D→C →B →A →B →C →的方式),从A 开始数连续正整数1,2,3,4当数到X 时,其对应的字母是()【A. AB. BC. CD.D 二、填空题:(每小题3分,共18分)13.地球上的海洋面积约为36100000千米2,用科学记数法表示为千米2。

七年级上学期期中数学考试试卷(共3套,北师大版)

七年级上学期期中数学考试试卷(共3套,北师大版)

(七年级上学期期中考试数学试卷考试时间:90 分钟试题满分:100 分一、选择题(本大题共 8 个小题,每小题 2 分,共 16 分.)题号1 2 3 45678答案1. 下列计算正确的是()A . ﹣34=81B .﹣(﹣6)2=36C .=﹣D . (﹣ )3=2.计算|﹣ |﹣ 的结果是()A . ﹣B .C . ﹣1D . 13.化简 5(2x ﹣3)+4(3﹣2x )结果为( )A . 2x ﹣3B . 2x+9C . 8x ﹣3D . 18x ﹣34. 下列各组中互为相反数的是()A . ﹣2 与B . |﹣2|和 2C . ﹣2.5 与|﹣2|D .与5. 下表是淮河某河段今年雨季一周内水位变化情况, 其中 0 表示警戒水位)那么水位最高是(星期 一 二 三 四 五 六 日 水位变化/米 +0.03 +0.41 +0.25 +0.10 0 ﹣0.13 ﹣0.2A . 周一B . 周二C . 周三D . 周五6.下列运算正确的是( )A . ﹣2(3x ﹣1)=﹣6x ﹣1B . ﹣2(3x ﹣1)=﹣6x+1C . ﹣2(3x ﹣1)=﹣6x ﹣2D . ﹣2(3x ﹣1)=﹣6x+27. 有理数 a ,b 在数轴上的位置如图所示,下面结论正确的()A . b ﹣a <0B . ab >0C . a+b >0D . |a|>|b|)(|((238.如图给定的是纸盒的外表面,下面能由它折叠而成的是()A.B.C.D.二、填空题(本大题每题3分,共24分.)9.在﹣|﹣5|,﹣(﹣3),﹣(﹣3)2,(﹣5)2中,负数有个.10.计算:1)﹣24=,2)﹣3的倒数是,3)﹣|的相反数是.11.南海是我国固有领海,它的面积超过东海、黄海、渤海面积的总和,约为360万平方千米,360万用科学记数法可表示为.12.定义运算“※”的运算法则为:x※y=xy+6,则﹣2※3=.13.已知|a﹣3|+|b+2|=0,则b a=.14.一个自然数的立方,可以分裂成若干个连续奇数的和.例如:3,3和43分别可以按如图所示的方式“分裂”成2个、3个和4个连续奇数的和,即23=3+5;33=7+9+11;43=13+15+17+19;…;若63也按照此规律来进行“分裂”,则63“分裂”出的奇数中,最大的奇数是.15.如图是一组有规律的图案,第1个图案由4个基础图形组成,第2个图案由7个基础图形组成,…,第n (n是正整数)个图案中由个基础图形组成.+16. 观察下面点阵图和相应的等式,探究其中的规律:按此规律 1+3+5+7+… (2n ﹣1)= .三、解答题:(共 60 分) 17. 计算:(每题 4 分,共 16 分) (1)﹣20+(﹣15)﹣(﹣28)﹣17(2)(3)﹣32÷(﹣3)2+3×(﹣2)+|﹣4|(4) (﹣1)﹣(﹣5 )×+(﹣8)÷[(﹣3)+5].18. 化简(每题 4 分,共 16 分) (1)2a+5a ﹣6a( ((2)x ﹣(5x+2y )﹣(x ﹣2y )(3)a ﹣2(2a+b )+3(a ﹣b )(4)先化简,再求值:2ab+3a 2b ﹣2(a 2b ﹣ab ),其中 a=﹣1,b=﹣2.19. 4分) 如图是有几个小立方体块搭建成的几何体的俯视图,小正方体中的数字表示在该位置小立方体 块的个数,请画出这个几何体的主视图和左视图.20. 6分) 为了有效控制酒后驾车,吉安市城管的汽车在一条东西方向的公路上巡逻,如果规定向东为正, 向西为负,从出发点开始所走的路程为:+2,﹣3,+2,+1,﹣2,﹣1,﹣2(单位:千米)(1)此时,这辆城管的汽车司机如何向队长描述他的位置?(2)如果队长命令他马上返回出发点,这次巡逻(含返回)共耗油多少升?(已知每千米耗油0.2 升)21.(6分)某空调器销售商,今年四月份销出空调(a﹣1)台,五月份销售空调比四月份的2倍少1台,六月份销售空调比前两个月的总和的4倍还多5台.(1)用代数式表示该销售商今年第二季度共销售空调多少台?(2)若a=220,求第二季度销售的空调总数.22.(6分)学校需要到印刷厂印刷x份材料,甲印刷厂提出:每份材料收0.2元印刷费,另收500元制版费;乙印刷厂提出:每份材料收0.4元印刷费,不收制版费.(1)两印刷厂的收费各是多少元?(用含x的代数式表示)(2)学校要印刷2400份材料,若不考虑其他因素,选择哪家印刷厂比较合算?试说明理由.23.(6分)请先阅读下列一组内容,然后解答问题:因为:,所以:===.计算:(1)(2).答案考试时间:90分钟试题满分:100分一、选择题(本大题共8个小题,每小题2分,共16分.)题号12345678答案C A A D B D A B二、填空题(本大题每题3分,共24分.)9、2;10、-16,-3/10,-1/3;11、3.6×10612、0;13、-8;14、41;15、3n+1;16、n2三、解答题:(共60分)17.计算:(每题4分,共16分)(1) -24;(2)25;(3)-3;(4)-318.化简(每题4分,共16分)(1)a;(2)-5x;(3)-5b;(4)4ab+a2b;-619.(4分)20.(6分)解:(1)∵(+2)+(﹣3)+(+2)+(+1)+(﹣2)+(﹣1)+(﹣2)=﹣3千米,∴这辆城管的汽车司机向队长描述他的位置为出发点以西3千米;(2)|+2|+|﹣3|+|+2|+|+1|+|﹣2|+|﹣1|+|﹣2|+|﹣3|=16千米,∴16×0.2=3.2(升),∴这次巡逻(含返回)共耗油3.2升.21.(6分)解:(1)四月份:(a﹣1)台,五月份:2(a﹣1)﹣1=(2a﹣3)台,六月份:4[(a﹣1)+(2a﹣3)]+5=(12a﹣11)台,第二季度共销售:(a﹣1)+(2a﹣3)+(12a﹣11)=(15a﹣15)台;(2)当a=220时,有15a﹣15=15×220﹣15=3285台.22.(6分)解:(1)甲印刷厂收费表示为:(0.2x+500)元,乙印刷厂收费表示为:0.4x元.(2)选择乙印刷厂.理由:当x=2400时,甲印刷费为0.2x+500=980(元),乙印刷费为0.4x=960(元).因为980>960,所以选择乙印刷厂比较合算.23.(6分)解:(1)原式=1﹣+﹣+﹣+…+(2)原式=×(1﹣+﹣+﹣+…+﹣﹣)==1﹣.=;A.—3 2 = 9B.( - )÷( - 4)= 1 2 -题号 第一学期期中考试七年级数学试卷(满分:100 分,考试时间:120 分)一 二 三 总 分得分一、选择题(每题 2 分,满分 16 分)题号 1 2 3 4 5 6 7 8答案1、如图的几何体,左视图是()A 2、下列计算正确的是()14B C DC.( - 8)= -16 D. - 5 ( - 2)= -33、一种笔记本的单价是 x 元,钢笔的单价是 y 元,李华买这种笔记本 4 本,买钢笔 3 支,问李华花了()元。

2024-2025学年七年级数学上学期期中模拟卷(深圳专用,北师大版2024七上第1~3章)考试版

2024-2025学年七年级数学上学期期中模拟卷(深圳专用,北师大版2024七上第1~3章)考试版

2024-2025学年七年级数学上学期期中模拟卷(深圳专用)(考试时间:90分钟 试卷满分:100分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号等填写在答题卡和试卷指定位置上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

4.测试范围:北师大第一章丰富的图形世界+第二章有理数及其运算+第三章整式及其加减。

5.难度系数:0.75。

第一部分(选择题 共24分)一、选择题(本大题共8小题,每小题3分,满分24分.在每个小题给出的四个选项中,只有一项符合题目要求的)1.下列互为倒数是( )A .12和12-B .12-和2-C .12和2-D .12-和122.经文化和旅游部数据中心测算,今年春节假期全国国内旅游出游3.08亿人次,实现国内旅游收入3758.43亿元,其中3758.43亿用科学记数法表示为( )A .83758.4310´B .113758.4310´C .103.7584310´D .113.7584310´3.下列计算正确的是( )A .253-+=a b abB .b a b a ba 2222-=+-C .224222a a a +=D .22431a a -=4.代数式2114,2,,,3π4x y y x y ab x x-+,0.5中整式的个数( )A .3个B .4个C .5个D .6个5.如图,点O ,A ,B ,C 在数轴上的位置如图所示,O 为原点,2AC =,OA OB =.若点C 所表示的数为a ,则点B 所表示的数为( )A .2a -B .2a --C .2a +D .2a -+6.如图所示是一个长方形,根据图中尺寸大小,用含x 的代数式表示阴影部分的面积S ,正确的为( )A .183x +B .183x -C .366x +D .366x-7.阅读材料:一般地,n 个相同因数a 相乘:记为n a .如328=,此时,3叫做以2为底的8的对数,记为2log 8(即2log 83=).那么23log 16log 27+=( )A .7B .11C .13D .178.下列说法中:①如果a 大于b ,那么a 的倒数小于b 的倒数;②几个有理数相乘,如果负因数的个数为奇数个,则积为负;③如果||||a b >,且a 大于其相反数,则a b >;④若22a a -=--(),则2a <.错误的有( )A .1个B .2个C .3个D .4个第二部分(非选择题 共76分)二、填空题(本大题共5小题,每小题3分,满分15分)9.用一个平面去截一个三棱柱,截面图形的边数最多的为 边形.10.已知当985x =-时,代数式31ax bx ++的值为6,那么当985x =时,代数式31ax bx ++的值是 .11.已知多项式23222(3)m x y x y xy m xy -+-++是关于x 、y 的四次三项式,则m = .12.若85a b ∣∣=,∣∣=,且0ab <,则a b -= ;13.按如图所示的程序计算,若开始输入的x 的值为24,我们发现第一次得到的结果为12,第2次得到的结果为6,……,请你探索第2024次得到的结果为 .三、解答题(本大题共7小题,满分61分.解答应写出文字说明,证明过程或演算步骤)14.(12分)计算(1)()()101517+---;(2)()()310.12533 1.7548æöæö+--+--+ç÷ç÷èøèø;(3)()221360225--¸´+-; (4)()2213133243468æöæö-´-+-+´-ç÷ç÷èøèø.15.(5分)先化简,再求值:22222[2(23)]3x y x y xy x y xy ---+,其中3x =,13y =-.16.(7分)李明同学设计了某个产品的正方体包装盒如图所示,由于粗心少设计了其中一个顶盖,请你把它补上,使其成为一个两面均有盖的正方体盒子.(1)共有_______种弥补方法;(2)任意画出一种成功的设计图(在图中补充);(3)在你帮忙设计成功的图中,要把10-,8,10,12-,8-,12这些数字分别填入六个小正方形,使得折成的正方体相对面上的两个数相加等0(直接在图中填上)17.(8分)有理数a ,b 在数轴上的对应点位置如图所示,且a c =.(1)用“<”连接:0,a ,b ,c ,b -;(2)化简:2a b a b c +--+.18.(8分)表是嘉嘉记录的今年雨季河流一周的水位变化情况(上周末的水位达到警戒水位):星期一二三四五六日水位变化/米0.50+0.61+0.45-0.06+0.27+0.58-0.06-注:正号表示水位比前一天上升,负号表示水位比前一天下降.(1)本周星期________河流的水位最高,与警戒水位的距离是________米;星期________河流的水位最低,与警戒水位的距离是________米;(2)与上周相比,本周末河流水位________(选填“上升”或者“下降”)了;(3)某市遭遇暴雨袭击,需要抗洪抢险,抢救灾民,人民解放军的冲锋舟沿东西方向的河流救灾民,早晨从A 地出发,晚上到达B 地,约定向东为正方向,当天航行路程记录如下:12,8-,15-,6-,12,7-,11,4-(单位:千米).若冲锋舟每千米耗油0.5升,出发前冲锋舟油箱有油25升,求途中至少需补充多少升油?19.(10分)甲乙两家商店出售两种同样品牌的乒乓球和球拍,乒乓球拍每副定价50元,乒乓球4盒定价20元,经洽谈后,甲店每买一副球拍赠一盒乒乓球,乙店全部按定价的8折优惠.该班需球拍5副,乒乓球x 盒(不小于5)(1)若该班在甲商店购买,乒乓球拍需付款______元,乒乓球需付款______元(用含x 的代数式表示);若该班在乙商店购买,乒乓球拍需付款______元,乒乓球需付款______元(用含x 的代数式表示).(2)该班在甲商店购买共需付款______元(用含x 的代数式表示);该班在乙商店购买共需付款______元(用含x 的代数式表示).(3)若该班买30盒乒乓球,请您去买,你打算去其中哪家商店买?为什么?20.(11分)我国著名数学家华罗庚说过“数缺形时少直观,形少数时难入微”.数轴是一个非常重要的数学工具,它使数和数轴上的点建立起对应关系,揭示了数与点之间的内在联系,它是“数形结合”的基础.例如,式子2x -的几何意义是数轴上x 所对应的点与2所对应的点之间的距离;因为()+=--x 1x 1,所以1x +的几何意义就是数轴上x 所对应的点与-1所对应的点之间的距离.结合数轴与绝对值的知识回答下列问题:(1)若23x -=,则x = ;32x x -++的最小值是 .(2)若327x x -++=,则x 的值为 ;若43113x x x ++-++=,则x 的值为 .(3)是否存在x 使得32143x x x +-+++取最小值,若存在,直接写出这个最小值及此时x 的取值情况;若不存在,请说明理由.。

最新北师大版七年级数学上册期中测试题(附答案)

最新北师大版七年级数学上册期中测试题(附答案)

最新北师大版七年级数学上册期中测试题时间:120分钟 满分:120分一、选择题(本大题共6小题,每小题3分,共18分,每小题只有一个正确选项) 1.在1,-2,0,53这四个数中,最大的数是( )A.-2B.0C.53D.12.如图所示是由4个大小相同的正方体组合而成的几何体,则从正面看到的图形是( )3.下列各式计算正确的是( ) A.-7-2×5=-45 B.3÷54×45=3C.-22-(-3)3=22D.2×(-5)-5÷⎝⎛⎭⎫-12=0 4.如果-2a m b 2与12a 5b n +1是同类项,那么m +n 的值为( )A.5B.6C.7D.85.用一个平面去截一个圆锥,截面图形不可能是( )6.已知a 、b 在数轴上的位置如图所示,则下列各式正确的是( )A.ab 〉0B.a -b 〉0C.a 2b 〉0D.|b|〈|a|二、填空题(本大题共6小题,每小题3分,共18分) 7.单项式-5x 2yz 的系数是 ,次数是 .8.天宫二号空间实验室将开展空间冷原子钟实验,有望实现3千万年误差一秒的超高精准,对卫星定位导航等生产生活及引力波探测等空间科学研究将产生重大影响.其中3千万用科学记数法表示为 .9.在akg 含糖15%的糖水中,若加入mkg 的水,则这些糖水的浓度变为 ;若再加入nkg 的糖并假设这些糖全部溶解,则这些糖水的浓度变为 .10.若m 、n 互为相反数,则54(3m -2n)-2⎝⎛⎭⎫54m -158n = .11.如图所示是一个正方体纸盒的展开图,若在其中三个正方形的a 、b 、c 内分别填入适当的数,使得它们折成正方体后a 与其相对面上的数互为相反数,b 与其相对面上的数互为倒数,则a = ,b = .12.若|x|=7,|y|=5,且xy >0,则x +y = . 三、(本大题共5小题,每小题6分,共30分) 13.计算:(1)-3.25-⎝⎛⎭⎫-19+(-6.75)+179;(2)-12018-(1+0.5)×13÷(-4).14.化简:(1)3x 2-1-2x -5+3x -x 2;(2)(2a 2-1+2a)-3(a -1+a 2).15.将下列各数在数轴上表示出来,然后用“<”连接起来.-212,0,|-4|,0.5,-(-3).16.已知(x +1)2+|y -1|=0,求代数式4⎝⎛⎭⎫x -12y -[2y +3(x +y)+3xy]的值.17.如图,这是一个由小正方体搭成的几何体从上面看得到的平面图形,小正方形中的数字表示该位置的小正方体的个数.请你画出从它的正面和左面看得到的平面图形.四、(本大题共3小题,每小题8分,共24分)18.某人用400元购买了8套儿童服装,准备以一定的价格出售,如果每套儿童服装以55元的价格为标准,超出的记作正数,不足的记作负数,记录如下(单位:元):+2,-3,+2,+1,-2,-1,0,-2.当他卖完这8套儿童服装后是盈利还是亏损?盈利(或亏损)多少?19.如图,将面积为a2的小正方形和面积为b2的大正方形放在同一水平面上(b>a>0).(1)用a、b表示阴影部分的面积;(2)计算当a=3,b=5时,阴影部分的面积.20.如图所示是一个包装盒从不同方向看到的图形,求这个包装盒的表面积(结果保留π).五、(本大题共2小题,每小题9分,共18分)21.定义一种新运算:观察下列各式:1⊙3=1×4+3=7,3⊙(-1)=3×4-1=11,5⊙4=5×4+4=24,4⊙(-3)=4×4-3=13.(1)请你想一想:a⊙b=;(2)若a≠b,那么a⊙b b⊙a(填“=”或“≠”);(3)先化简,再求值:(a-b)⊙(2a+b),其中a=1,b=2.22.如图,观察数轴,请回答:(1)点C与点D的距离为,点B与点D的距离为;(2)点B与点E的距离为,点A与点C的距离为;发现:在数轴上,如果点M与点N分别表示数m,n,则他们之间的距离可表示为MN =(用m,n表示).(3)利用发现的结论解决下列问题:数轴上表示x的点P与点E之间的距离是3,求x 的值.六、(本大题共12分)23.探究题.用棋子摆成的“T”字形图案如图所示:(1)(2)(3)第20个“T”字形图案共有棋子多少个?参考答案与解析1.C2.C3.D4.B5.A6.B7.-548.3×1079.15%aa+m15%a+na+m+n10.011.-31212.12或-12解析:⊙|x|=7,|y|=5,⊙x=±7,y=±5.⊙xy>0,⊙x=7时,y=5,则x +y =7+5=12;x =-7时,y =-5,则x +y =-7-5=-12.综上所述,x +y =12或-12.13.解:(1)原式=-8.(3分) (2)原式=-78.(6分)14.解:(1)原式=3x 2-x 2-2x +3x -1-5=2x 2+x -6.(3分) (2)原式=2a 2-1+2a -3a +3-3a 2=-a 2-a +2.(6分) 15.解:如图所示.(3分)用“<”连接为-212<0<0.5<-(-3)<|-4|.(6分)16.解:由题意可知x +1=0,y -1=0,解得x =-1,y =1.(3分)故原式=x -7y -3xy =-1-7-3×(-1)×1=-5.(6分)17.解:如图所示.(每图3分)18.解:由题意得55×8+2+(-3)+2+1+(-2)+(-1)+0+(-2)-400=37(元),(6分)所以他卖完这8套儿童服装后是盈利,盈利37元.(8分)19.解:(1)阴影部分的面积为12b 2+12a(a +b).(4分)(2)当a =3,b =5时,12b 2+12a(a +b)=12×25+12×3×(3+5)=492,即阴影部分的面积为492.(8分)20.解:由题意及图形可知,该包装盒是一个圆柱,此圆柱的直径为20cm ,高为20cm ,(3分)⊙表面积为π×20×20+π×⎝⎛⎭⎫12×202×2=400π+200π=600π(cm 2).(8分) 21.解:(1)4a +b (2分) (2)≠(4分)(3)(a -b)⊙(2a +b)=4(a -b)+(2a +b)=4a -4b +2a +b =6a -3b.(7分)当a =1,b =2时,原式=6×1-3×2=0.(9分)22.解:(1)3 2(2分) (2)4 7 |m -n|(5分)(3)由图可知,当点P 在点E 左边时,x =2-3=-1;(7分)当点P 在点E 右边时,x =2+3=5,故x 的值为-1或5.(9分)23.解:(1)11 14 32(3分)(2)第n 个“T ”字形图案中棋子的个数为(3n +2)个.(8分)(3)当n=20时,3n+2=3×20+2=62(个).所以第20个“T”字形图案共有棋子62个.(12分)。

北师大版七年级数学上学期期中试卷含答案(共5套)

北师大版七年级数学上学期期中试卷含答案(共5套)

北师大版七年级上学期数学期中测试卷(总分120分)一.选择题(共9小题,每题3分)1.下列各数中,负数是()A.﹣(1﹣2)B.(﹣1)﹣1C(﹣1)n D.1﹣2 2.在数轴上表示两个数的距离为3个单位长度的一对数是()A.﹣1和1B.﹣1和2C.﹣1和3D.﹣1和4 3.在数轴上表示实数﹣1和7这两点间的距离为()个单位长度.A.6B.8C.一6D.﹣8 4.如图,数轴上的点A所表示的是实数a,则点A到原点的距离是()A.a B.﹣a C.±a D.﹣|a| 5.|﹣2|的相反数是()A.﹣2B.﹣C.D.26.在﹣,0,﹣2,,1这五个数中,最小的数为()A.0B.﹣C﹣2D.7.小明家冰箱冷冻室的温度为﹣5℃,调高4℃后的温度为()A.4℃B.9℃C.﹣1℃D.﹣9℃8.计算|﹣|﹣的结果是()A.﹣B.C.﹣1D.19.计算1﹣2+3﹣4+5﹣6+7﹣8+…+2009﹣2010的结果是()A.﹣1005B.﹣2010C.0D.﹣1二.填空题(共6小题,每题3分)10.﹣(﹣)的相反数与﹣的倒数的积为_________.11.若a与b互为倒数,则3﹣5ab=_________., 12.若|m+3|+(n ﹣2)2=0,则(m+n )2010 的值为_________.13.根据相关部门统计,2014 年我国共有 9390000 名学生参加高考,9390000 用科学记数法表示为_________.14.32×3.14+3×(﹣9.42)=_________.15.(为了解体育测试中篮球项目的得分情况(个人得分都是整数) 抽取 7 位同学的成绩,若用四舍五入取近似值的方法将平均分精确到一位小数,该 7 位同学的平均分为 9.4 分,若精确到两位小数,则该7位同学的平均分为_________分.三.解答题(共 12 小题)16.计算:(6 分)(1)﹣0.1252009×82010;(2)﹣32﹣|(﹣5)|×(﹣ )2×(﹣18)÷|﹣(﹣3)2|.17.(6 分)计算:(1﹣ )×(1﹣ )×(1﹣ )×(1﹣ )×…×(1﹣ )×(1﹣ )18.(6 分)计算: .19.先化简,再求值:(6 分)(1)(6a ﹣1)﹣(2﹣5a )﹣,其中 a=2;(2)(3a 2﹣ab+7)﹣(5ab ﹣4a 2+7),其中 a=2,b= .20.(6分)已知a﹣b=6,ab=﹣2,求3(ab+a﹣2b)﹣5(b﹣2a)+2(ab﹣a)的值.21.(6分)已知|a+1|与|2a+b|互为相反数,试求整式3(a﹣b)﹣5(a﹣b)2+3(a+b)+(a﹣b)2﹣7(a+b)2﹣3(a+b)的值.22(6分).若多项式2x n﹣1﹣x n+3x m+1是六次二项式,试求2(m﹣n2)﹣3(n﹣m2)﹣(2m﹣n)+4(2m﹣n)的值.23.(6分)在修我市解放路的BRT(快速公交)时,需要对部分建筑进行拆迁,市政府成立了拆迁工作组,他们步行去做拆迁户主的思想工作;如果向南记为负,向北记为正;以下是他们一天中行程(单位:km):出发点,﹣0.7,+2.7,﹣1.3,+0.3,﹣1.4,+2.6,拆迁点;(1)工作组最后到达的地方在出发点的哪个方向?距出发点多远?(2)在一天的工作中,最远处离出发点有多远?(3)如果平均每个拆迁地址(出发点处没有拆迁)要做1小时的思想工作,他们步行的速度为2km/h,工作组早上九点出发,做完工作时是下午几点?24.(6分)如图是某种细胞分裂示意图,这种细胞每过30分钟便由1个分裂成2个.根据此规律可得:(1)这样的一个细胞经过第四个30分钟后可分裂成_________个细胞;(2)这样的一个细胞经过3小时后可分裂成_________个细胞;(3)这样的一个细胞经过n(n为正整数)小时后可分裂成_________个细胞.25.(7分)观察下面的变形规律:解答下面的问题:(1)若n为正整数,请你猜想(2)证明你猜想的结论;=1﹣;=﹣;=﹣;…=_________;(3)求和:+++…+.26.(7分)如图,某长方形广场的四个角都有一块半径相同的四分之一圆形的草地,若圆形的半径为r 米,长方形长为a米,宽为b米.(1)分别用代数式表示草地和空地的面积;(2)若长方形长为300米,宽为200米,圆形的半径为10米,求广场空地的面积(计算结果保留到整数).27.(7分)在数学活动中,小明为了求几何图形.(1)请你利用这个几何图形求(2)请你利用下图,再设计一个能求的值(结果用n表示).设计如图所示的的值为_________.的值的几何图形.参考答案与试题解析一.选择题(共9小题)1.下列各数中,负数是()A.﹣(1﹣2)B.(﹣1)﹣1C.(﹣1)n D.1﹣2考点:正数和负数;有理数的乘方;负整数指数幂.专题:常规题型.分析:将各选项化简得:﹣(1﹣2)=1;(﹣1)﹣1=﹣1;当n为偶数,(﹣1)n=1,当n为奇数,(﹣1)n=﹣1;1﹣2=1,再根据正数与负数的概念即可判断.解答:解:A、﹣(1﹣2)=1,为正数,故本选项错误;B、(﹣1)﹣1=﹣1,为负数,故本选项正确;C、当n为偶数,(﹣1)n=1,当n为奇数,(﹣1)n=﹣1,故本选项错误;D、1﹣2=1,为正数,故本选项错误.故选B.点评:本题考查了正数与负数的知识,属于基础题,判断一个数是正数还是负数,要把它化简成最后形式再判断.2.在数轴上表示两个数的距离为3个单位长度的一对数是()A.﹣1和1B.﹣1和2C.﹣1和3D.﹣1和4考点:数轴.专题:探究型.分析:根据两点间距离的定义进行解答即可.解答:解:A、﹣1和1之间的距离为:|﹣1﹣1|=2,故本选项错误;B、﹣1和2之间的距离为:|﹣1﹣2|=3,故本选项正确;C、﹣1和3之间的距离为:|﹣1﹣3|=4,故本选项错误;D、﹣1和4之间的距离为:|﹣1﹣4|=5,故本选项错误.故选B.点评:本题考查的是数轴上两点之间的距离,即数轴上两点之间的距离等于两点所表示数的差的绝对值.3.在数轴上表示实数﹣1和7这两点间的距离为()个单位长度.A.6B.8C.一6D.﹣8考点:数轴.专题:计算题.分析:根据数轴上的点与实数的对应关系利用数形结合的思想,用较大的数减去较小的数即可求解.解答:解:∵7>﹣1,∴在数轴上表示实数﹣1和7这两点间的距离为=7﹣(﹣1)=8.故选B.点评:本题考查的知识点为:求数轴上两点间的距离就让两点中对应的较大的数减去较小的数.4.如图,数轴上的点A所表示的是实数a,则点A到原点的距离是()A.a B.﹣a C.±a D.﹣|a|考点:数轴;绝对值.分析:本题通过观察数轴,判断出A点表示的数的正负性,再根据距离等于坐标的绝对值,化简,即可得出答案.解答:解:依题意得:A到原点的距离为|a|,∵a<0,∴|a|=﹣a,∴A到原点的距离为﹣a.故选B.点评:本题考查了数轴的性质及绝对值的定义,能够根据数轴判断出数的符号,再进一步确定距离.5.|﹣2|的相反数是()A.﹣2B.﹣C.D.2考点:绝对值;相反数.分析:相反数的意义:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.绝对值规律总结:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.解答:解:∵|﹣2|=2,∴2的相反数是﹣2.故选A.点评:本题考查了相反数的意义及绝对值的性质:学生易把相反数的意义与倒数的意义混淆.6.在﹣,0,﹣2,,1这五个数中,最小的数为()A.0B.﹣C.﹣2D.考点:有理数大小比较.专题:数形结合.分析:用数轴法,将各选项数字标于数轴之上即可解本题.解答:解:画一个数轴,将A=0、B=﹣、C=﹣2、D=,E=1标于数轴之上,可得:∵C点位于数轴最左侧,是最小的数故选:C.点评:本题考查了数轴法比较有理数大小的方法,牢记数轴法是解题的关键.7.小明家冰箱冷冻室的温度为﹣5℃,调高4℃后的温度为()A.4℃B.9℃C.﹣1℃D.﹣9℃考点:有理数的加法.专题:计算题.分析:原来的温度为﹣5℃,调高4℃,实际就是转换成有理数的加法运算.解答:解:﹣5+4=﹣1故选C.点评:本题主要考查从实际问题抽象出有理数的加法运算.8.计算|﹣|﹣的结果是()A.﹣B.C.﹣1D.1考点:有理数的减法;绝对值.专题:计算题.分析:根据绝对值的性质去掉绝对值符号,然后根据有理数的减法运算,减去一个数等于加上这个数的相反数进行计算即可得解.解答:解:|﹣|﹣=﹣=﹣.故选A.点评:本题主要考查有理数的减法法则:减去一个数等于加上这个数的相反数.这是需要熟记的内容.9.计算1﹣2+3﹣4+5﹣6+7﹣8+…+2009﹣2010的结果是()A.﹣1005B.﹣2010C.0D.﹣1考点:有理数的加减混合运算.专题:规律型.分析:由题意,这从1到2010一共可分为1005组,每组的结果都是1,由此不难得出答案.解答:解:这从1到2010一共2010个数,相邻两个数之差都为﹣1,所以1﹣2+3﹣4+5﹣6+7﹣8+…+2009﹣2010的结果是﹣1005.故选A.点评:此题主要考查有理数的加减混合运算,认真审题,找出规律,是解决此类问题的关键所在.二.填空题(共6小题)10.﹣(﹣)的相反数与﹣的倒数的积为.考点:有理数的乘法;相反数;倒数.分析:根据只有符号不同的两个数互为相反数,可得一个数的相反数,根据乘积为1的两个数互为倒数,可得一个数的倒数,根据有理数的乘法,可得答案.解答:解:﹣(﹣)的相反数是﹣,﹣的倒数是﹣,﹣(﹣)的相反数与﹣的倒数的积是﹣×(﹣)=,故答案为:.点评:本题考查了有理数的乘法,同号得正,异号得负,并把绝对值相乘.11.若a与b互为倒数,则3﹣5ab=﹣2.考点:倒数.专题:计算题.分析:根据互为倒数的两个数的积为1,直接求出ab的值,从而得到3﹣5ab的值.解答:解:∵ab=1,∴3﹣5ab=3﹣5×1=﹣2.故答案为﹣2.点评:本题考查了利用倒数求代数式的值,明确互为倒数的两个数的积为1是解题的关键.12.若|m+3|+(n﹣2)2=0,则(m+n)2010的值为1.考点:非负数的性质:偶次方;非负数的性质:绝对值;有理数的乘方.专题:计算题.分析:根据非负数的性质,可求出x、y的值,然后将代数式化简再代值计算.解答:解:∵|m+3|+(n﹣2)2=0,∴m=﹣3,y=2;∴原式=(﹣3+2)2010=1故答案为1.点评:本题考查了非负数的性质以及有理数的乘方,几个非负数的何为0,这几个数都为0.13.根据相关部门统计,2014年我国共有9390000名学生参加高考,9390000用科学记数法表示为9.39×106.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:9390000用科学记数法表示为9.39×106,故答案为:9.39×106.点评:此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.14.32×3.14+3×(﹣9.42)=0.考点:有理数的混合运算.分析:根据32×3.14+3×(﹣9.42)=3×9.42+3×(﹣9.42)即可求解.解答:解:原式=3×9.42+3×(﹣9.42)=3×=3×0=0.故答案是:0.点评:本题考查了有理数的混合运算,理解运算顺序是关键.15.为了解体育测试中篮球项目的得分情况(个人得分都是整数)抽取7位同学的成绩,若用四舍五入,取近似值的方法将平均分精确到一位小数,该7位同学的平均分为9.4分,若精确到两位小数,则该7位同学的平均分为9.43分.考点:近似数和有效数字.分析:应根据得9.4分得到7位裁判的准确打分和,除以7,再保留2位小数即可.解答:解:用四舍五入取近似值的方法精确到一位小数能得到9.4的数值范围是:(大于等于9.35和小于9.45之间)∴9个裁判去掉最高和最低得分后,实际取值就是7个人的分数.∴该运动员的有效总得分在大于或等于9.35×7=65.45分和小于9.45×7=66.15之间.∵每个裁判给的分数都是整数,∴得分总和也是整数,在65.45和66.15之间只有66是整数,∴该运动员的有效总得分是66分.∴得分为:66÷7≈9.4286,精确到两位小数就是9.43.点评:本题考查了近似数和有效数字,得到得分为一位小数的准确分值的范围,及得到7位裁判的准确打分和是难点.三.解答题(共12小题)16.计算:(1)﹣0.1252009×82010;(2)﹣32﹣|(﹣5)|×(﹣)2×(﹣18)÷|﹣(﹣3)2|.考点:有理数的混合运算.专题:计算题.分析:(1)原式变形后,利用积的乘方逆运算法则计算即可得到结果;(2)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.解答:解:(1)原式=﹣(0.125×8)2009×8=﹣8;(2)原式=﹣32﹣5××(﹣18)÷9=﹣32+=﹣30.点评:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.17.计算:(1﹣)×(1﹣)×(1﹣)×(1﹣)×…×(1﹣)×(1﹣)考点:有理数的混合运算.分析:先算减法,再算乘法,分子与分母错位约分得出答案即可.解答:解:原式=××××…××=.点评:此题考查有理数的混合运算,掌握运算顺序与计算的方法是解决问题的关键.18.计算:.考点:有理数的混合运算.分析:利用乘法分配律计算即可.解答:解:原式=10×(﹣18)﹣×(﹣18)=﹣180+=﹣179.点评:此题考查有理数的混合运算,掌握运算方法和运算定律,正确判定运算符号计算即可.19.先化简,再求值:(1)(6a﹣1)﹣(2﹣5a)﹣,其中a=2;(2)(3a2﹣ab+7)﹣(5ab﹣4a2+7),其中a=2,b=.考点:整式的加减—化简求值.分析:(1)根据去括号的法则,可去掉括号,根据合并同类项,可化简整式,根据代数式求值,可得答案;(2)根据去括号的法则,可去掉括号,根据合并同类项,可化简整式,根据代数式求值,可得答案.解答:解:(1)(6a﹣1)﹣(2﹣5a)﹣=6a﹣1﹣2+5a+(1﹣a)=6a﹣1﹣2+5a+1﹣a=10a﹣2,把a=2代入原式,得10a﹣2=10×2﹣2=18;(2)(3a2﹣ab+7)﹣(5ab﹣4a2+7)=3a2﹣ab+7﹣5ab+4a2﹣7=7a2﹣6ab,把a=2,b=代入原式,得7a2﹣6ab=7×2﹣6×2×=14﹣4=10.,点评:本题考查了整式的化简求值,注意去括号的法则:括号前是正号去掉括号不变号,括号前是负号去掉括号要变号.20.已知a﹣b=6,ab=﹣2,求3(ab+a﹣2b)﹣5(b﹣2a)+2(ab﹣a)的值.考点:整式的加减—化简求值.分析:首先利用整式的混合运算法则整理进而将已知代入求出即可.解答:解:∵a﹣b=6,ab=﹣2,∴3(ab+a﹣2b)﹣5(b﹣2a)+2(ab﹣a)=3ab+3a﹣6b﹣5b+10a+2ab﹣2a=5ab+11a﹣11b=5ab+11(a﹣b)=﹣10+11×6=56.点评:此题主要考查了整式的加减运算,正确把握运算法则是解题关键.21.已知|a+1|与|2a+b|互为相反数,试求整式3(a﹣b)﹣5(a﹣b)2+3(a+b)+(a﹣b)2﹣7(a+b)2﹣3(a+b)的值.考点:整式的加减—化简求值;非负数的性质:绝对值.分析:由|a+1|与|2a+b|互为相反数,可得|a+1|+|2a+b|=0,因为|a+1|≥0,|2a+b|≥0,所以a+1=0,2a+b=0,进而求出a=﹣1,b=2,然后计算a﹣b=﹣3,a+b=1,然后代入即可.解答解:∵|a+1|与|2a+b|互为相反数,∴|a+1|+|2a+b|=0,∵|a+1|≥0,|2a+b|≥0,∴a+1=0,2a+b=0,∴a=﹣1,b=2,∴a﹣b=﹣3,a+b=1,∴3(a﹣b)﹣5(a﹣b)2+3(a+b)+(a﹣b)2﹣7(a+b)2﹣3(a+b)=3(a﹣b)﹣4(a﹣b)2﹣7(a+b)2=3×(﹣3)﹣4×(﹣3)2﹣7×12=﹣9﹣4×9﹣7=﹣9﹣36﹣7=﹣52.点评:此题考查了整式的加减化简求值,解题的关键是求出a、b的值.22.若多项式2x n﹣1﹣x n+3x m+1是六次二项式,试求2(m﹣n2)﹣3(n﹣m2)﹣(2m﹣n)+4(2m﹣n)的值.考点:整式的加减—化简求值;多项式.专题:计算题.分析:由题意求出m与n的值,原式去括号合并得到最简结果,把m与n的值代入计算即可求出值.解答:解:∵多项式2x n﹣1﹣x n+3x m+1是六次二项式,∴n﹣1=m+1,n=6,解得:m=4,n=6,原式=2m﹣2n2﹣3n+3m2﹣2m+n+8m﹣4n=3m2﹣2n2+8m﹣6n,当m=4,n=6时,原式=48﹣72+32﹣36=﹣28.点评:此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.23.在修我市解放路的BRT(快速公交)时,需要对部分建筑进行拆迁,市政府成立了拆迁工作组,他们步行去做拆迁户主的思想工作;如果向南记为负,向北记为正;以下是他们一天中行程(单位:km):出发点,﹣0.7,+2.7,﹣1.3,+0.3,﹣1.4,+2.6,拆迁点;(1)工作组最后到达的地方在出发点的哪个方向?距出发点多远?(2)在一天的工作中,最远处离出发点有多远?(3)如果平均每个拆迁地址(出发点处没有拆迁)要做1小时的思想工作,他们步行的速度为2km/h,工作组早上九点出发,做完工作时是下午几点?考点:正数和负数.分析:(1)根据有理数的加法运算,可得答案;(2)根据有理数的加法,可得每次距离,根据有理数比较大小,可得答案;(3)根据有理数的加法,可的路程,根据路程与时间的关系,可得答案.答:解:(1)﹣0.7+2.7+(﹣1.3)+0.3+(﹣1.4)+2.6=2.2(km),答:工作组最后到达的地方在出发点的北方,距出发点2.2km;(2)第一次的距离是|﹣0.7|=0.7(km),第二次的距离是|﹣0.7+2.7|=2(km),第三次的距离是|2+(﹣1.3)|=0.7(km),第四次的距离是|0.7+0.3|=1(km),第五次的距离是|1+(﹣1.4)|=0.4,第六次的距离是|﹣0.4+2.6|=2.2(km),∵2.2>2>1>0.7>0.4,答:在一天的工作中,最远处离出发点有2.2km;(3)(|﹣0.7|+2.7+|﹣1.3|+0.3+|﹣1.4|+2.6)÷2=4(h),9+4+6=19(点),即下午7点,答:工作组早上九点出发,做完工作时是下午7点.点评:本题考查了正数和负数,利用了有理数的加法运算.24.如图是某种细胞分裂示意图,这种细胞每过30分钟便由1个分裂成2个.根据此规律可得:(1)这样的一个细胞经过第四个30分钟后可分裂成16个细胞;(2)这样的一个细胞经过3小时后可分裂成64个细胞;(3)这样的一个细胞经过n(n为正整数)小时后可分裂成22n个细胞.考点:有理数的乘方.专题:规律型.分析:根据图形可知其规律为n小时是22n.解答:解:(1)第四个30分钟后可分裂成24=16;(2)经过3小时后可分裂成22×3=26=64;(3)经过n(n为正整数)小时后可分裂成22n.点评:主要考查从图示或数据中寻找规律的能力.25.观察下面的变形规律:解答下面的问题:(1)若n为正整数,请你猜想(2)证明你猜想的结论;(3)求和:++=1﹣;=﹣;=﹣;…=;+…+.考点:规律型:数字的变化类.专题:规律型;探究型.分析:(1)根据所给的等式,进行推而广之即可;(2)根据分式的加减运算法则进行证明;(3)根据(2)中证明的结论,进行计算.解答:(1)解:;(2)证明:右边=﹣所以猜想成立.=﹣===左边,(3)原式=1﹣+﹣+﹣+…+﹣=1﹣=.点评:此题考查了异分母的分式相减的运算法则.26.如图,某长方形广场的四个角都有一块半径相同的四分之一圆形的草地,若圆形的半径为r米,长方形长为a米,宽为b米.(1)分别用代数式表示草地和空地的面积;(2)若长方形长为300米,宽为200米,圆形的半径为10米,求广场空地的面积(计算结果保留到整数).考点:列代数式;代数式求值.分析:(1)草地面积=4×四分之一圆形面积;空地的面积=长方形面积﹣草地面积;(2)把长=300米,宽=200米,圆形的半径=10米代入(1)中式子即可.解答:解:(1)草地面积为:4×πr2=πr2米2,空地面积为:(ab﹣πr2)米2;(2)当a=300,b=200,r=10时,ab﹣πr2=300×200﹣100π≈59686(米2),∴广场空地的面积约为59686米2.点评:解决问题的关键是读懂题意,找到所求的量的等量关系.要熟练运用长方形面积和圆面积公式.27.在数学活动中,小明为了求形.(1)请你利用这个几何图形求(2)请你利用下图,再设计一个能求的值(结果用n表示).设计如图所示的几何图的值为(1﹣).的值的几何图形.考点:规律型:图形的变化类.分析:此题要结合图形分析计算其面积和的方法是总面积减去剩下的面积.解答:解:(1)设总面积为:1,最后余下的面积为:,的值为:.故几何图形故答案为:.(2)如图等.点评:(1)此题结合图形观察发现,计算面积和的时候,运用总面积减去剩下的面积非常简便.(2)只要是按照图形的对称轴进行折叠均可.A.-6B.6C.-1D.题号得分七年级第一学期期中教学质量检查数学试卷一二三四五总分(全卷共4页,考试时间为100分钟,满分100分)亲爱的同学,你好!又到了你展示学习成果的时候了。

七年级半期考数学试卷(北师大版)

七年级半期考数学试卷(北师大版)

龙川中学2011-2012学年度上学期期中考试七年级数学试题班级: 姓名: 学号: 得分:一、选择题(每小题3分,共30分,请将答案填写在下面的表格中) 题号 1 2 3 4 5 6 7 8 9 10 答案1.下列说法中,正确的个数是( ).①柱体的两个底面一样大;②圆柱、圆锥的底面都是圆;③棱柱的底面是四边形;④长方体一定是柱体;⑤棱柱的侧面一定是长方形.(A )2个 (B )3个 (C )4个 (D )5个 2.如图绕虚线旋转得到的几何体是( ).3.已知3=x y,则x yx -3等于( ). (A )34 (B )1 (C)32(D )04.下面每个图形都是由6个全等的正方形组成的,其中是正方体的展开图的是( )A BCD5.如图,是一个正方体纸盒展开图,按虚线折成正方体后,若使相对面上的两数互为相反数,则A 、B 、C 表示的数依次是( )(A )235、、π-- (B)235、、π-(D )(B )(C )(A )(C )π、、235- (D)235-、、π6.如果多项式A 减去-3x+5,再加上x 2-x -7后得5x 2-3x -1,则A 为( ). A .4x 2+5x+11 B .4x 2-5x -11 C .4x 2-5x+11 D .4x 2+5x -11 7.下列合并同类项正确的是( ).A .2x+4x=8x 2B .3x+2y=5xyC .7x 2-3x 2=4D .9a 2b -9ba 2=0 8.一辆汽车在a 秒内行驶6m米,按此速度它在2分钟内可行驶( ). A .2010120...3m m m mB C D a a a米米米米 9.若代数式2x 2+3x+7的值是8,则代数式4x 2+6x+15的值是( )。

A .2 B .17 C .3 D .16 10.化简:10011000)2()2(-+-的结果是( )A 、.-2B 、.0C 、-2000D 、10002- 二、填空题。

2022-2023学年北师大版七年级上册数学期中复习试卷

2022-2023学年北师大版七年级上册数学期中复习试卷

2022-2023学年北师大新版七年级上册数学期中复习试卷一.选择题(共12小题,满分48分,每小题4分)1.如果一个数的倒数是,这个数是()A.B.6C.D.12.用平面截一个正方体,则截面形状不可能是()A.七边形B.六边形C.五边形D.正方形3.如图,一个几何体是由两个小正方和一个圆锥构成,其俯视图是()A.B.C.D.4.一个正方体的平面展开图如图所示,将它折成正方体后“西”字对面的字是()A.建B.设C.安D.美5.今年9月世界计算机大会在湖南省长沙市开幕,大会的主题是“计算万物,湘约未来”.从心算、珠算的古老智慧到“银河”“天河”“神威”创造的中国速度,“中国计算”为世界瞩目.超级计算机“天河一号”的性能是4700万亿次,换算成人工做四则运算,相当于60亿人算一年,它1秒就可以完成.数4700万亿用科学记数法表示为()A.4.7×107B.4.7×1011C.4.7×1014D.4.7×10156.现有四种说法:①﹣m表示非正数;②若|x|=﹣x,则x<0;③绝对值最小的有理数是0;④最小的正数是1.其中正确的是()A.①B.②C.③D.④7.如果和﹣x2y n是同类项,则m+n=()A.3B.2C.1D.﹣18.甲乙两位采购员同去一家饲料公司购买两次饲料,两次饲料的价格分别为a元/kg和b 元/kg(a,b是正数,且a≠b),两位购货员的购货方式也不同,其中,甲每次购买500kg,乙每次用去400元,则甲乙所采购饲料的平均价()A.一样B.甲较低C.乙较低D.无法确定9.下列运算正确的是()A.2a﹣a=1B.2a+b=3abC.2a+3a=5a D.3a2+2a2=5a410.下列式子中:﹣a2b2,﹣3,,3a=b,x﹣1,,+1,m3+2m2﹣m,,整式的个数()A.4个B.5个C.6个D.7个11.如图,a,b两个数在数轴上的位置如图所示,则下列正确的是()A.﹣a<﹣b B.﹣a>﹣b C.a>0D.b<012.如图是一个运算程序的示意图,若开始输入x的值为27,则第2021次输出的结果为()A.3B.27C.9D.1二.填空题(共6小题,满分24分,每小题4分)13.若a的相反数是﹣2,则a=;若﹣b的相反数是﹣2.4,则b=.14.如果|x﹣3|+(y+5)2=0,那么代数式x2﹣3y+6的值是.15.节约用水10吨记作“+10吨”,那么浪费用水20吨记作.16.单项式6a2b的系数是;次数是.17.已知3b2=4a﹣7,代数式9b2﹣12a+4=.18.计算+++++…+=.三.解答题(共8小题,满分78分)19.(8分)计算.(1)﹣1﹣2﹣(﹣4.5)﹣20%(2)﹣2×(﹣)4﹣|﹣1﹣3|+(﹣4)﹣1620.(10分)已知A=2a2﹣a+3b﹣ab,B=a2+2a﹣b+ab.(1)化简A﹣2B;(2)当a﹣b=2,ab=﹣1,求A﹣2B的值;(3)若A﹣2B的值与b的取值无关,求A﹣2B的值.21.(8分)计算(1);(2);(3);(4);(5)﹣22﹣3×(﹣1)3+;(6)﹣32﹣0.75÷.22.(8分)下列图形的三视图是否正确?不正确的,请改正.23.(10分)在数轴上分别画出数、2、和所对应的点A、B、C和D,并用“>”连接这几个数.将点A、B、C和D所表示的数用“>”连接24.(10分)“滴滴”司机沈师傅从上午8:00~9:15在东西方向的江平大道上营运,共连续运载十批乘客.若规定向东为正,向西为负,沈师傅营运十批乘客里程如下:(单位:千米)+8,﹣6,+3,﹣6,+8,+4,﹣8,﹣4,+3,+3.(1)将最后一批乘客送到目的地时,沈师傅距离第一批乘客出发地的东面还是西面?距离多少千米?(2)若汽车每千米耗油0.4升,则8:00~9:15汽车共耗油多少升?(3)若“滴滴”的收费标准为:起步价8元(不超过3千米),超过3千米,超过部分每千米2元.则沈师傅在上午8:00~9:15一共收入多少元?25.(12分)如图,池塘边有一块长为20m,宽为10m的长方形土地,现在将其余三面留出宽都是xm的小路,中间余下的长方形部分做菜地.(1)菜地的长a=m,菜地的宽b=m(用含x的式子表示);(2)如果要将菜地周围围上栅栏(靠水池的一边不用围).①求所用栅栏的总长度l(用含x的式子表示);②当x=1时,求栅栏的总长度l为多少米?26.(12分)阅读下面的文字,完成解答过程.(1),,,则=.并且用含有n的式子表示发现的规律.(2)根据上述方法计算:;(3)根据(1),(2)的方法,我们可以猜测下列结论:=(其中n,k均为正整数),并计算.参考答案与试题解析一.选择题(共12小题,满分48分,每小题4分)1.解:∵的倒数是,∴这个数是.故选:C.2.解:∵用平面去截正方体时最多与六个面相交得六边形,最少与三个面相交得三角形,∴最多可以截出六边形,∴不可能是七边形.故选:A.3.解:俯视图为:故选:D.4.解:这是一个正方体的平面展开图,共有六个面,其中面“建”与面“安”相对,面“设”与面“丽”相对,面“美”与面“西”相对.故选:D.5.解:4700万亿=4700 0000 0000 0000=4.7×1015,故选:D.6.解:①当m是负数时,﹣m就是正数,所以①不正确;②若|x|=﹣x,x一定为负数或0,则x≤0,所以②不正确;③根据绝对值的定义绝对值最小的有理数是0,所以③正确;④没有最小的正数,所以④不正确.故选:C.7.解:∵和﹣x2y n是同类项,∴m=2,n=1,∴m+n=2+1=3.故选:A.8.解:甲的平均价格为=(元);乙的平均价格为=(元),∵﹣==>0(a≠b),∴乙较低.故选:C.9.解:A、2a﹣a=a,故本选项不合题意;B、2a与b不是同类项,所以不能合并,故本选项不合题意;C、2a+3a=5a,故本选项符合题意;D、3a2+2a2=5a2,故本选项不合题意;故选:C.10.解:﹣a2b2,﹣3,,x﹣1,,m3+2m2﹣m是整式,共6个,故选:C.11.解:由a,b两个数在数轴上的位置可得,a<0,b>0,且|a|<|b|,因此C、D选项错误,﹣a>0,﹣b<0,A选项错误,故B选项正确,故选:B.12.解:第1次,,第2次,,第3次,,第4次,1+2=3,第5次,,从第3次开始,第偶数次输出为3,第奇数次输出为1,∴第2021次输出为1.故选:D.二.填空题(共6小题,满分24分,每小题4分)13.解:∵a的相反数是﹣2,∴a=2,∵﹣b的相反数是﹣2.4,∴﹣b=2.4,∴b=﹣2.4,故答案为:2;﹣2.4.14.解:∵|x﹣3|+(y+5)2=0,∴x﹣3=0,y+5=0,∴x=3,y=﹣5,∴x2﹣3y+6=32﹣3×(﹣5)+6=9+15+6=30.故答案为:30.15.解:“正”和“负”相对,所以节约用水10吨记作“+10吨”,那么浪费用水20吨记作﹣20吨,故答案为﹣20吨.16.解:6a2b=6•a2b,所以数字因式为6,字母有a与b两个,其指数和为2+1=3,则单项式的系数为6,次数为三次.故答案为:6;三次17.解:∵3b2=4a﹣7,∴9b2﹣12a+4=3×3b2﹣12a+4=3×(4a﹣7)﹣12a+4=12a﹣21﹣12a+4=﹣17故答案为:﹣17.18.解:原式=+++++…+=(1﹣+﹣+﹣+﹣+﹣+…+﹣)=(1﹣)=×=.故答案为.三.解答题(共8小题,满分78分)19.解:(1)原式=﹣1﹣2+4.5﹣20%=﹣3.7+4.5=0.8;(2)原式=﹣2×﹣4﹣4﹣1=﹣9.20.解:(1)A﹣2B=(2a2﹣a+3b﹣ab)﹣2(a2+2a﹣b+ab)=2a2﹣a+3b﹣ab﹣2a2﹣4a+2b﹣2ab=﹣5a+5b﹣3ab;(2)由(1)得,因为a﹣b=2,ab=﹣1,所以A﹣2B=﹣5a+5b﹣3ab=﹣5(a﹣b)﹣3ab=﹣5×2﹣3×(﹣1)=﹣10+3=﹣7;(3)由(1)得,﹣5a+5b﹣3ab=(5﹣3a)b﹣5a,由于A﹣2B的值与b的取值无关,因此5﹣3a=0,即a=,所以A﹣2B=﹣5a=﹣5×=﹣.答:A﹣2B的值为﹣.21.解:(1)=[(﹣26.54)+18.54]+[(﹣6.4)+6.4]=﹣8+0=﹣8.(2)=6﹣6+20=20.(3)=40×2=80.(4)=1×(﹣1)﹣×(﹣1)﹣×(﹣1)=﹣2+1+=﹣.(5)﹣22﹣3×(﹣1)3+=﹣4﹣3×(﹣1)+=﹣4+3+=.(6)﹣32﹣0.75÷=﹣9﹣×[4﹣(﹣8)]=﹣9﹣×12=﹣9﹣27=﹣36.22.解:(1)主视图和俯视图均错误,改正如图:(2)左视图和和俯视图均错误,改正如图所示.23.解:各数在数轴上表示为:根据数轴上右边的数总比左边的大可知:2>>>;故答案为:2>>>.24.解:(1)∵(+8)+(﹣6)+(+3)+(﹣6)+(+8)+(+4)+(﹣8)+(﹣4)+(+3)+(+3)=5故将最后一批乘客送到目的地时,沈师傅在第一批乘客出发地的东面,距离是5千米;(2))|+8|+|﹣6|+|+3|+|﹣6|+|+8|+|+4|+|﹣8|+|﹣4|+|+3|+|+3|=8+6+3+6+8+4+8+4+3+3=530.4×53=21.2(升)∴8:00~9:15汽车共耗油21.2升.(3)∵共营运十批乘客∴起步费为:8×10=80(元)超过3千米的收费总额为:[(8﹣3)+(6﹣3)+(3﹣3)+(6﹣3)+(8﹣3)+(4﹣3)+(8﹣3)+(4﹣3)+(3﹣3)+(3﹣3)]×2=46(元)80+46=126(元)∴沈师傅在上午8:00~9:15一共收入126元.25.解:(1)由题意得,菜地的长a=(20﹣2x)m,菜地的宽b=(10﹣x)m,故答案为:(20﹣2x),(10﹣x);(2)①l=a+2b=(20﹣2x)+2(10﹣x)=20﹣2x+20﹣2x=(40﹣4x)m;②当x=1时,l=40﹣4×1=36m,答:当x=1时,求栅栏的总长度l为36米.26.解:(1)根据所给算式可知:=;;故答案为:;;(2)原式=1﹣+﹣+﹣+…+﹣=1﹣=;故答案为:;(3)根据(1),(2)的方法可知:=;所以=(1﹣+﹣+﹣+…+﹣)=(1﹣)=.故答案为:.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

D. 收入 80 元
2. 下列代数式书写规范的是( )
A. 2
B.
1
1 2
C.

D. 2
. 下列说法中,其中不正确的有 㱘
①任何数都有算术平方根; ②一个数的算术平方根一定是正数;
③ 2的算术平方根是 a; ④算术平方根不可能是负数.
A. 0 个
B. 1 个
C. 2 个
D. 3 个
4. 如图是由 6 个大小相同的小正方体组成的几何体,它的主视图是( )
27. 为了迎接第二届“某国际自行车赛”的到来,泉州台商投资区需要制作 宣传单.有两个印刷厂前来联系制作业务,甲厂的优惠条件是:按每份 定价 1.5 元的八折收费,另收 900 元制版费;乙厂的优惠条件是:每份 定价 1.5 元的价格不变,而制版费 900 元则六折优惠.且甲乙两厂都规 定:一次印刷数量至少是 500 份. (1)若印刷数量为 x 份(x≥500,且 x 是整数),请你分别写出两个印 刷厂收费的代数式; (2)如果比赛宣传单需要印刷 1100 份,应选择哪个厂家?为什么?
22.解:(1)如图,
第 4页,共 6页
答案 一,选择题
1---5:C D D C C 6---10:B A B D A 11----15:C B B B C
二,填空题
16. 1π;3;5;0 17. 1 18. 7040000 19. -2 20. -2
三,计算题
21.解:(1)原式=7-2+5=12-2=10;
(2)原式=-4×196×49=-1; (3)原式=20×(4-12-14)=0; (4)原式=-2-1+3=-1+3=2.
()
A. 44 108
B. 4.4 108
C. 4.4 109
D. 4.4 1010
12. 整式:-0.34x2y,π, 21,-52xyz2,1x2-1y,-1xy2-12中,单项式有(

A.
1 . 若多项式(k-2)x3+kx2-2x-6 是关于 x 的二次多项式,则 k 的值是( )
D. 7
②若 a,b 互为相反数,则 1;
③12 个有理数相乘,如果负因数的个数为奇数个,则积为负; ④若 ax+2=-bx+2,则 a=b. 其中正确的个数为( )
A. 1
B. 2
C. 3
D. 4
第 1页,共 6页
11. 我国倡导的“一带一路”建设将促进我国与世界一些国家的互利合作,根据规划
“一带一路”地区覆盖总人口为 4400000000 人,这个数用科学记数法表示为
A.
B.
C.
D.
. 在数轴上到原点距离等于 3 的数是( )
A. 3
B. −
C. 3 或−
D. 不知道
6. A,B 是数轴上两点,线段 AB 上的点表示的数中,有互为相反数的是( )
A.
B. ​
C.
D.
7. 实数 a、b 在数轴上的位置如图,则|a+b|-|a-b|等于(
​ )
A. 2a
B. 2b
C. 2 2
D. 2 2
8. 已知 a 是最小的正整数,b 是最大的负整数,c 是绝对值最小的有理数,那么 a+b+|c|
等于( )
A. 1
B. 0
C. 1
D. 2
9. 已知|a|=3,|b|=4,且 ab<0,则 a-b 的值为()
A. 1 或 7 个
B. 1 或 7
C. 1 个
10. 下列说法:
①两个数互为倒数,则它们的乘积为 1;
卷 II
二、填空题(每小题 5 分,共 25 分) 16. 单项式1πr2h 的系数是______,次数是______;多项式-2a2b3+3ab2 的次数是______,
常数项是______.
17. 若有理数 a,b 互为倒数,c,d 互为相反数,则 㸸 ㄮ㱘201
1 㱘2

18. 用科学记数法表示为 7.04×106,则原数是______.
A. 0
B. 2
C. 0 或 2
D. 不确定
14. 若是 5x2ym 与 4xn+m+1y2n-2 同类项,则 m2-n 的值为( )
A. 1
B. 1
C.
D. 以上答案都不对
1 . 填在下面各正方形中四个数之间都有相同的规律,根据这种规律 m 的值为( )
A. 180
B. 182
C. 184
D. 186
19. 若 − − 1㱘
为关于 x 的三次二项式,则 − 的值为______.
20. 若(a-2)x2y|a|+1 是 x,y 的五次单项式,则 a= ______ .
三、计算题(每小题 5 分,共 20.0 分)
21. 计算:
(1)(+7)+(-2)-(-5)
(2)(-2)2×(- )÷(- )2
绝密★启用前
北师大版七年级(上)数学半期考试试卷
(考试时间:120 分钟
满分:150 分)
学校:___________姓名:___________班级:___________考号:___________
注意:本试卷包含Ⅰ、Ⅱ两卷。第Ⅰ卷为选择题,所有答案必须用 2B 铅笔涂在答
题卡中相应的位置。第Ⅱ卷为非选择题,所有答案必须填在答题卷的相应位置。答
24. 先化简,再求值:14(4a2-2a-8)-(12a-1),其中 a=1.
25. 已知 A-B=7a2-7ab,且 B=-4a2+6ab+7. (1)求 A 等于多少? (2)若|a+1|+(b-2)2=0,求 A 的值.
第 页,共 6页
26. 已知 A=-3x2+3x+1,B=2x2+2mx-1,且 2A+3B 的值与 x 无关,求 m 的值.
(3)20× +(-20)× +20×(- )
(4)-|- |-|- |+3
第 2页,共 6页
四、解答题(本大题共 6 小题,共 60 分)
22.
已知下列各有理数:-2.5,0,|-3|,-(-2),1,-1
2
(1)画出数轴,在数轴上标出这些数表示的点; (2)用“<”号把这些数连接起来.
23. 如果 a,b 互为倒数,c,d 互为相反数,且 m 的绝对值是 1,求代数式 2ab-(c+d) +m 的值.
案写在试卷上均无效,不予记分。
卷I
一、选择题(每小题 3 分,共 45 分)
1. 中国人很早开始使用负数,中国古代数学著作《九章算术》的“方程”一章,在世
界数学史上首次正式引入负数。如果收入 100 元记作+100 元。那么-80 元表示( )
A. 支出 20 元
B. 收入 20 元
C. 支出 80 元
相关文档
最新文档