求方程组的解典型例题

合集下载

10.4列方程组解应用题

10.4列方程组解应用题

10.4列方程组解应用题第一篇:10.4列方程组解应用题10.4列方程组解应用题(3)学习目标:1.培养学生利用现实情境抽象数学模型的能力;2.能够运用三元一次方程组解决实际问题。

重点:利用现实情境找出等量关系,抽象出数学模型.难点:利用现实情境找出等量关系,抽象出数学模型.教学过程:【温故知新】列二元一次方程组解应用题的一般步骤是:(1)申请题意,找出问题中的已知量和未知量,明确问题中的全部关系;(2)选设适当的,确定用以列方程的两个主要的关系;(3)用已知数或含有未知数的代数式,表示主要相等关系的有关数量;(4)根据主要的相等关系列出;(5)解这个,并写出答案。

【探索新知】例6:一个三位数,三位数字之和为12,个位数字是百位数字与十位数字之和的2倍,百位数字是十位数字的3倍,求这个三位数.(1)请小组讨论找出这个题目的等量关系,分别是:;;.(2)若设这个三位数的个位数字是x,十位数字是y,百位数字是z,则根据题意可列方程组为:(3)写出这个题目的解答过程.例7:先欣赏古代数学问题:“今有上禾三秉,中禾二秉,下禾一秉,实三十九斗;上禾二秉,中禾三秉,下禾一秉,实三十四斗;上禾一秉,中禾二秉,下禾三秉,实二十六斗。

问上、中、下禾实一秉各几何.”意为:今有上等黍3捆,中等黍2捆,下等黍1捆,共打出黍米39斗;又有上等黍2捆,中等黍3捆,下等黍1捆,共打出黍米34斗;再有上等黍2捆,中等黍2捆,下等黍3捆,共打出黍米26斗.问每捆上、中、下黍各能打出黍米多少斗?此题的等量关系是:;;.此题的解答过程为:【巩固提升】小亮、小莹和大刚每人面前各放有一堆栗子.小亮将自己面前的栗子分出一些给另外二人后,这二人的栗子数各增加1倍.接着小莹又将自己面前的栗子分一些给小亮和大刚,小亮和大刚的栗子数都增加了1倍.然后,大刚又分给另外二人一些栗子,使小亮和小莹面前的栗子数也都增加1倍.这时,他们三人面前的栗子竟然都是24颗.你知道他们三人面前原来有多少颗栗子吗?【课堂小结】尽情谈谈你这节课的收获吧!【达标检测】1.甲、乙、丙三数中,乙数是甲数的2倍,丙数是甲数2.5倍,丙数比甲数多6.甲、乙、丙三数分别是.2.三角形周长为21cm,最长边比其他两边之和少5cm,最短边比其两边之差多5cm.求它的三边长.设最短边为x,最长边为z,另一边为y,可列三元一次方程组.3.(中国古代问题)今有2匹马、3头牛和4只羊,它们各自的总价都不满10000文钱(古时的货币单位)。

二元一次方程组的典型例题

二元一次方程组的典型例题

2二元一次方程组的典型例题例1解方程组 2x +5y = -21,x + 3y = 8 ・分析 我们已经掌握一元一次方程的解法,那么要解二元一次方程组,就应设法 将其转化为一元一次方程,为此,就要考虑将一个方程中的某个未知数用含另一 个未知数的代数式表示.方程(2)中x 的系数是1,因此,可以先将方程(2)变形为 用含y 的代数式表示x ,再代入方程(1)求解•这种方法叫“代入消元法”. 解:由(2),得x=8-3y . ⑶ 把⑶代入(1),得: 2(8-3y)+5y=-21, 16-6y+5y=-21, -y=-37,所以 y=37.把y = 代入⑶,得K = s-3X 37, x = -103.所以方程组的解是= -103, [? = 37.点评 如果方程组中没有系数是1的未知数,那么就选择系数最简单的未知数来 变形.把⑶代入(2),得範;乃)_8y = 10, 24 + 21y-16y = 20,5y = -4,所以y =把厂冷代入⑶,得40-28 10例戈解方程组飞-8y = 10.分析此方程组里没有一个未知数的系数是 简单,可选择它来变形. 解:由(1),得 2x=8+7y ,⑴ (2)1,但方程⑴中x 的系数是2,比较所以方程组的解是分析 本题不仅没有系数是1的未知数,而且也没有一个未知数的系数较简单.经 过观察发现,若将两个方程相加,得出一个 x , y 的系数都是100、常数项是200的方程,而此方程与方程组中的(1)和(2)都同解.这样,就使问题变得比较简单 了. 解:(1)+(2),得 100x+100y=200,所以x=2-y 把⑷代入(1),得 53(2-y)+47y=112, 106-53y+47y=112, -6y=6,所以 y=-1.把y = T 代入(4) *得農=2 - (T) = 3.所以原方程组的解是分析 经观察发现,(1)和(2)中x 的系数都是6,若将两方程相减,便可消去 x , 只剩关于y 的方程,问题便很容易解决、这种方法叫“加减消元法”.解:(1)-(2),得 12y=-36,所以 y=_3.把 y=-3 代入(2),得:6x-5X (-3)=17, 6x=2,所以:方程组的解是点评 若方程组中两个方程同一未知数的系数相等,贝U 用减法消元;若同一未知 数的系数互为相反数,则用加法消元;若同一未知数的系数有倍数关系, 或完全 不相等,则可设法将系数的绝对值转化为原系数绝对值的最小公倍数, 然后再用 加减法消元.在进行加减特别是进行减法运算时,一定要正确处理好符号.例3解方程组53x+47y = 112s47x + 53y = 88 ・ (1)⑵ 例4解方程组6x+7y=-19f 6z - 5y = 17.x+y=2解这个方程组.由(3),得(1)例5解方程组比- 6y = 33分析 方程组中,相同未知数的系数没有一样的,也没有互为相反数的•但不难 将未知数y 的系数绝对值转化为12(4与6的最小公倍数),然后将两个方程相加 便消去了 y .解:⑴X 3,得 9x+12y=48 (3) ⑵ X 2,得 10x-12y=66 (4) (3)+(4),得19x=114,所以x=6.把x=6代入⑴,得 3X 6+4y=16,4y=-2,点评 将x 的系数都转化为15(3和5的最小公倍数),比较起来,变y 的系数要 简便些•一是因为变y 的系数乘的数较小,二是因为变 y 的系数后是做加法,而 变x 的系数后要做减法.例6已知x mjn+1y 与-2x nJ y 3m ^^^是同类项,求m 和n 的值.分析 根据同类项的概念,可列出含字母 m 和n 的方程组,从而求出m 和n . 解:因为x m 』+1y 与一2£亍2心是同类项,所以Im - n +1 =n - 1, (1) [3m-2n-5 = L⑵ 解这个方程组.整理,得Jm - 2n + 2 = 0, ⑶ 13m -2n - 6 = 0.(4)⑷-(3),得2m=8,所以m=4.把m=4代入(3),得2n=6,所以n=3.所以{J ;'时宀心为与-2厂汁3是同类项. 例丫己知满足方程组-的心yfi 的和等于2,求|2x + 3y = nim 2 - 2m + 啲值.分析 因为x+y=2,所以x=2-y ,把它代入方程组,便得出含y ,m 的新方程组, 从而求出m .也可用减法将方程组中的 m 消去,从而得出含x ,y 的一个二元一 次方程,根据x+y=2这一条件,求出x 和y ,再去求m . 解:将方程组中的两个方程相减,得 x+2y=2,即 (x+y)+y=2.因为x+y=2,所以2+y=2,所以y=O ,于是得x=2.把x=2, y=0代入2x+3y=m , 得 m=4.把 m=4 代入 m 2-2m+1,得 m 2-2m+1=42-2X 4+1=9. 例 8 已知 x+2y=2x+y+1=7x-y ,求 2x-y 的值.所以y = 方程组的解是分析已知条件是三个都含有x , y 的连等代数式,这种连等式可看作是二元一 次方程组,这样的方程组可列出三个,我们只要解出其中的一个便可求出 x 和y , 从而使问题得到解决.解:已知条件可转化为[ir + 2y = 2x+y+ 1,(1) 2x+y+ l = 7x -y, L⑵ 整理这个方程组,得jx-y + l = 0,⑶ \5K -2y -1 = 0.(4) 解这个方程组.由(3),得x=y-1⑸把⑸代入(4),得 5(y-1)-2y-1=0, 5y-2y=5+1,所以 y=2. 把y=2代入(3),得x-2+仁0,所以 x=1.把代入古-珀得2x-y=0.二元一次方程组的典型例题元一次方程组复习题例题:1、下列方程是二元一次方程的是()丄1=02、下列各组数值是 x-2y=4方程的解的是()x=23、以"二1为解的二元一次方程的个数是( )(A)有且只有一个 (B)只有两个 (C)有无数个 (D)不会超过100个4、 二元一次方程 3x+2y=7的正整数解的组数是()(A)1 组(B)2 组(C)3 组(D)4 组x = 45、 已知~ 2是二元一次方程 mx+y=10的一个解,则 m 的值为6、 已知 3xm-1-4y2m-n+4=1 是二元一次方程,则 m= ,n= .7、下列方程组中,属于二元一次方程组的是()(A)x2+x+ 仁0(B)2x+3y-1=0 (C)x+y-z=0(D)x+ y\=2(A) W " (B)x = -1:y"x=0(C)姑 _2 (D)「X =4 畀=一x + y = 5(D) A 2"'x + y = 1 -X - 2y = -1 (B) xy = 1 x + y =2 'x + y = 3 (C)Z-2y = -18、已知2ay+5b 和-4a2xb2-4y 是同类项,贝U x= (A) ,y=x =1 9、写一个y = 一2以为解的二元一次方程组: x =1 10、如果y =~2是方程组 'x-y =1 Qx-2y =5的解是 - ay = 5 9的解,则a + b =11、 方程组12、 将下列二元一次方程变形,使其中一个未知数用含另一个未知数的代数式表示: ⑴ 2x-y-3=0 ⑵ x-2y-3=0 ⑶ 2x+5y-13=0 13、用代入法解下利二元一次方程组:y =1 _x ① 3x 2y =5 'x + 2y = 4 ② /-^1 2s 3t = -1 4s —9t =8 14、用加减法解方程组2x -3y = 5 3x +2y = -4 时, F 列变形正确的是()(A) 6x -9y =5 ©x +4y = -4 (B) 』4x -6y =10、9x+6y = _12 (C) ‘6x -3y = 15 Qx + 2y —12(D)‘2x -6y = 10 、3x + 6y= —12 15、解方程组 13x-6y =25(1) 、27x _4y=19(2)(A )代入消元法(C )用(1) 4-( 2) 6,先消去 你认为下列4种方法中,最简便的是() (B )用(1) 27- ( 2) 13,先消去 x (D )用(1) 2- (2) 3,先消去 ym + 5n = 616、用加减法解下列方程组:①yHx+5y = 21_2x _5y = _11x + y = 26、已知关于x , y 的二元一次方程组y=4a 的解也是方程x- y=2的解,求a 的值。

沪科版七年级数学上册第3章一次方程与方程组单元复习(第5单元)

 沪科版七年级数学上册第3章一次方程与方程组单元复习(第5单元)

第5单元知识点七:二元一次方程组的应用【典型例题】 1、某市举办中学生足球赛,规定胜一场得3分,平一场得1分。

市第二中学足球队比赛11场,没输过一场,共得27分。

问该队胜几场,平几场?2、某市举办中学生足球比赛,规定胜一场得3分,平一场得1分,输一场得0分;市第二中学足球队比赛11场,胜的场次是输的场次的3倍,共得21分。

试问该队胜几场,平几场,输几场?3、甲、乙两人相距4km,以各自的速度同时出发,如果同向而行,甲2h追上乙;如果相向而行,两人0.5h后相遇,试问两人的速度各是多少?4、玻璃厂熔炼玻璃液,原料是石英砂和长石粉混合而成,要求原料中含二氧化硅70%,根据化验,石英砂中含二氧化硅99%,长石粉中含二氧化硅67%,试问3.2t原料中,石英砂和长石粉各多少吨?5、某医院利用甲乙两种原料为病人配制营养品。

已知每克甲原料含0.6单位蛋白质和0.08单位铁质,每克乙原料含0.5单位蛋白质和0.04单位铁质,如果病人每餐需34单位蛋白质和4单位铁质,那么每餐甲乙两种原料各多少克恰好满足病人的需要?6、某商场向银行申请了甲、乙两种贷款,共计68万元。

每年应付利息3.82万元,甲种贷款年利率是6%,乙种贷款年利率是5%,试问这两种贷款的金额各是多少?7、甲对乙说:“当我的岁数是你现在的岁数时,你才4岁.”乙对甲说:“当我的岁数是你现在的岁数时,你将61岁.”问甲、乙现在各多少岁?8、某村18位农民筹集5万元资金,承包了一些低产田地。

根据市场调查,他们计划对种植作物的品种进行调整,改种蔬菜和荞麦,种这两种作物每公顷所需的人数和需投入的资金如下表:在现有的条件下,这18位农民应承包多少公顷田地,怎样安排种植才能使所有的农民都有工作,且资金正好够用?知识点八:三元一次方程组及其解法【知识要点】解三元一次方程组的基本思路是通过“代入”或“加减”进行消元,把“三元”转化为“二元”,使解三元一次方程组转化为解二元一次方程组,进而再转化为解一元一次方程。

二元一次方程组的应用压轴题十种模型全攻略(解析版) 七年级数学下册

二元一次方程组的应用压轴题十种模型全攻略(解析版) 七年级数学下册

专题06二元一次方程组的应用压轴题十种模型全攻略【考点导航】目录【典型例题】 (1)【考点一二元一次方程组的应用——年龄问题】 (1)【考点二二元一次方程组的应用——分配问题】 (3)【考点三二元一次方程组的应用——古代问题】 (5)【考点四二元一次方程组的应用——行程问题】 (6)【考点五二元一次方程组的应用——工程问题】 (7)【考点六二元一次方程组的应用——和差倍分问题】 (9)【考点七二元一次方程组的应用——方案问题】 (10)【考点八二元一次方程组的应用——销售、利润问题】 (12)【考点九二元一次方程组的应用——数字问题】 (14)【考点十二元一次方程组的应用——几何问题】 (16)【过关检测】 (17)【典型例题】【考点一二元一次方程组的应用——年龄问题】例题:(2023下·江苏宿迁·七年级统考期末)爸爸、妈妈、我、妹妹,四人今年的年龄之和是101岁,爸爸比妈妈大1岁,我比妹妹大6岁,十年前,我们一家的年龄之和是63岁,今年爸爸的年龄是()A.38岁B.39岁C.40岁D.41岁【答案】C【分析】由题意得:妹妹今年的年龄为8岁,我今年的年龄为14岁,设妈妈今年的年龄为x岁,爸爸今年的年龄为y岁,再由题意:一家四口人的年龄加在一起是101岁,爸爸比妈妈大1岁,列出方程组,解方程组即可.【详解】解:现在一家四口人的年龄之和应该比十年前全家人年龄之和多40岁,但实际上1016338-=(岁),说明十年前妹妹没出生,则妹妹今年的年龄为1040388()--=(岁),我的年龄为6814+=(岁),设妈妈今年的年龄为x 岁,爸爸今年的年龄为y 岁,由题意得:8141011x y y x +++=⎧⎨=+⎩,解得:3940x y =⎧⎨=⎩,即爸爸今年的年龄为40岁,故选:C .【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.【变式训练】【详解】解:设大头儿子现在的年龄是x 岁,爸爸的年龄是y 岁,由题意得:2352(5)8y x y x =+⎧⎨+=++⎩,解得:1033x y =⎧⎨=⎩,答:大头儿子现在的年龄为10岁.【点睛】本题考查二元一次方程组的实际应用,解题的关键是根据题意列出二元一次方程组.【考点二二元一次方程组的应用——分配问题】例题:(2023上·重庆·八年级重庆八中校考期中)某共享单车运营公司准备采购一批共享单车投入市场,而共享单车安装公司由于抽调不出足够熟练工人,准备招聘一批新工人.已知2名熟练工人和3名新工人每天共安装44辆共享单车;4名熟练工人每天安装的共享单车数与5名新工人每天安装的共享单车数一样多.(1)求每名熟练工人和新工人每天分别可以安装多少辆共享单车;(2)共享单车安装公司计划抽调出熟练工人若干,并且招聘新工人共同安装共享单车.如果25天后刚好交付运营公司3500辆合格品投入市场,求熟练工人和新工人各多少人.【答案】(1)每名熟练工人和新工人每天分别可以安装10辆和8辆共享单车(2)熟练工人和新工人分别有10人、5人或6人、10人或2人、15人【分析】(1)设每名熟练工人每天可以安装x 辆共享单车,每名新工人每天可以安装y 辆共享单车,根据题意列方程组即可;(2)设熟练工人和新工人各m ,n 人,根据题意列出等式取值即可.【详解】(1)解:设每名熟练工人每天可以安装x 辆共享单车,每名新工人每天可以安装y 辆共享单车,根据题意,得:234445x y x y +=⎧⎨=⎩,解得108x y =⎧⎨=⎩,答:每名熟练工人和新工人每天分别可以安装10辆和8辆共享单车.(2)解:设熟练工人和新工人各m ,n 人,由题意得:25102583500m n ⨯+⨯=,整理得:5470m n +=,当2m =时,15n =;当6m =时,10n =;当10m =时,5n =;答:熟练工人和新工人分别有10人、5人或6人、10人或2人、15人;【点睛】本题主要考查二元一次方程组的应用,解题的关键是理解题意,找到题目蕴含的相等关系.【变式训练】1.(2023下·福建南平·七年级统考期末)“建盏”作为一种茶器,是黑瓷的代表,更是南平的一张名片.“建盏”的焙烧方法目前有两种:“柴烧”和“电烧”,制坯的原料是用当地的红土和白土.已知某种同样规格的建盏,一个柴烧的坯体原料红土需要90克,白土需要60克,一个电烧的坯体原料红土需要75克,白土需要75克.在不考虑破损的情况下,某生产车间在一次生产中恰好用了红土1530克,白土1170克.(1)在这次生产中,“柴烧”和“电烧”建盏各生产多少个?(2)该车间计划购买礼盒,现有两种礼盒可供选择,A 礼盒可装2个建盏,B 礼盒可装6个建盏,若要把本次生产的建盏恰好全部装完,且礼盒装满,有几种购买方案?请说明理由.【答案】(1)“柴烧”建盏生产12个,“电烧”建盏生产6个(2)有四种购买方案,见解析【分析】(1)设这次生产“柴烧”建盏x 个,“电烧”建盏y 个,根据“一个柴烧的坯体原料红土需要90克,白土需要60克,一个电烧的坯体原料红土需要75克,白土需要75克.”再建立方程组解题即可;(2)设A 礼盒购买m 个,B 礼盒购买n 个,根据题意,得2618m n +=,再利用方程的正整数解可得答案.【详解】(1)解:设这次生产“柴烧”建盏x 个,“电烧”建盏y 个,根据题意,得9075153060751170x y x y +=⎧⎨+=⎩解这个方程组得:126x y =⎧⎨=⎩,答:“柴烧”建盏生产12个,“电烧”建盏生产6个.(2)由(1)可知共生产18个建盏,设A 礼盒购买m 个,B 礼盒购买n 个,根据题意,得2618m n +=,化简得39m n +=,所以93m n =-,因为m ,n 均为非负整数,所以930n -≥,所以3n ≤,且n 为非负整数,所以当30n m ==时,;当23n m ==时,,当16n m ==时,,当09n m ==时,,所以共有四种购买方案.【点睛】本题考查的是二元一次方程组的应用,二元一次方程的正整数解问题,理解题意,确定相等关系建立方程或方程组是解本题的关键.【考点三二元一次方程组的应用——古代问题】【变式训练】【考点四二元一次方程组的应用——行程问题】例题:(2023上·陕西咸阳·八年级咸阳市秦都中学校考阶段练习)一艘船从甲码头到乙码头顺流而行,用了2小时,从乙码头到甲码头逆流而行,用了2.5小时,已知轮船在静水中的平均速度为27千米/时,求水流的速度和甲、乙码头间的距离?(顺水速度=静水速度+水流速度;逆水速度=静水速度-水流速度,用二元一次方程组的知识解答)【答案】水流的速度是3千米/时,甲、乙码头间的距离为60千米【分析】本题考查一元一次方程的应用,设水流的速度为x 千米/时,甲、乙码头间的距离为y 千米,则顺流的速度为()27x +千米/时,逆流的速度为()27x -千米/时,根据顺流、逆流时行驶路程相等列方程组,解方程即可.根据题意正确列出方程是解题的关键.【详解】设水流的速度是x 千米/时,甲、乙码头间的距离为y 千米,根据题意得:()()227,2.527,x y x y ⎧+=⎪⎨-=⎪⎩解得:3,60,x y =⎧⎨=⎩答:水流的速度是3千米/时,甲、乙码头间的距离为60千米.【变式训练】1.(2023下·重庆渝中·七年级重庆市求精中学校校考期中)甲乙两地相距240千米,一辆小车和一辆摩托车分别从甲、乙两地同时出发相向而行,1小时20分两车相遇.相遇后,摩托车继续前进,小车在相遇处停留1个小时后调头按原速返回甲地,小车在返回后半小时追上了摩托车,【考点五二元一次方程组的应用——工程问题】例题:(2023下·云南昆明·七年级校考阶段练习)巴川河是铜梁的母亲河,为打造巴川河风光带,现有一段长为360米的河道整治任务由A、B两个工程队先后接力完成.A工程队每天整治24米,B工程队每天整治16米,共用时20天.(1)求A、B两工程队分别整治河道多少天?(2)若A工程队整改一米的工费为200元,B工程队整改一米的工费为150元,求完成整治河道时,这两工程队的工费共是多少?【答案】(1)A工程队整治河道5天,B工程队整治河道15天(2)60000元【分析】(1)设A工程队整治河道x天,B工程队整治河道y天,根据A工程队每天整治24米,B工程队每天整治16米,共用时20天完成认为列出方程组进行求解即可;(2)分别求出A、B两个工程队的工费,然后求和即可.【详解】(1)解:设A工程队整治河道x天,B工程队整治河道y天,根据题意得:20 2416360 x yx y+=⎧⎨+=⎩,解得:515 xy=⎧⎨=⎩.答:A工程队整治河道5天,B工程队整治河道15天;(2)解:根据题意得:2002451501615⨯⨯+⨯⨯2400036000=+60000(=元).答:完成整治河道时,这两工程队的工费共是60000元.【点睛】本题主要考查了二元一次方程组的实际应用,有理数四则混合计算的实际应用,正确理解题意找到等量关系列出方程组求解是解题的关键.【变式训练】1.(2023下·湖南邵阳·七年级统考期末)一家商店进行装修,若请甲、乙两个装修组同时施工,8天可以完成,需付给两组费用共3520元;若先请甲组单独做6天,再请乙组单独做12天可以完成,需付给两组费用共3480元,问:(1)甲、乙两组单独工作一天,商店应各付多少元?(2)已知甲组单独完成需要12天,乙组单独完成需要24天,若装修完后,商店每天可盈利200元,你认为如何安排施工有利于商店经营?说说你的理由.(提示:三种施工方式:方式一甲单独完成;方式二乙组单独完成;方式三甲、乙两个装修组同时施工.)【答案】(1)甲单独工作一天应付工资300元,乙单独工作一天应付工资140元(2)由甲、乙两个装修队同时施工有利于商店经营,理由见解析【分析】(1)设甲单独工作一天应付工资x元,乙单独工作一天应付工资y元,依题意得:883520 6123480 x yx y+=⎧⎨+=⎩,进行计算即可得;(2)分别算出甲单独完成时需装修的费用和少盈利的钱,乙单独完成时需装修的费用和少盈利的钱,甲乙合作完成时需装修的费用和少盈利的钱,进行比较即可得.【详解】(1)解:设甲单独工作一天应付工资x元,乙单独工作一天应付工资y元,依题意得:883520 6123480 x yx y+=⎧⎨+=⎩,解得300140 xy=⎧⎨=⎩,答:设甲单独工作一天应付工资300元,乙单独工作一天应付工资140元.(2)解:甲单独完成:30012200126000⨯+⨯=(元)乙单独完成:14024200248160⨯+⨯=(元)甲、乙两队完成:(300140)820085120+⨯+⨯=(元)512060008160<<,∴由甲、乙两个装修队同时施工有利于商店经营.【点睛】本题考查了二元一次方程组的应用,解题的关键是理解题意,根据等量关系列出方程,正确计算.【考点六二元一次方程组的应用——和差倍分问题】例题:(2023上·江西九江·八年级统考阶段练习)为落实“五育并举”、提高学生的身体素质,某校在课后服务中大力开展球类运动,现需要购买一批足球、篮球.已知购买1个足球和1个篮球共需140元,购买2个足球和3个篮球共需340元,求足球和篮球的单价.【答案】足球的单价为80元,篮球的单价为60元【分析】本题考查了二元一次方程组的应用.设足球的单价为x元,篮球的单价为y元,根据“购买1个足球和1个篮球共需140元;购买2个足球和3个篮球共需340元”,即可得出关于x,y的二元一次方程组,解之即可求解.【详解】解:设足球的单价为x元,篮球的单价为y元,依题意得:140 23340 x yx y+=⎧⎨+=⎩,解得:8060 xy=⎧⎨=⎩.答:足球的单价为80元,篮球的单价为60元.【变式训练】1.(2023下·河南周口·七年级校联考阶段练习)“绿水青山就是金山银山”,保护环境从日常出行做起.我市实行限行政策后,某天小林在某停车场观察到:该停车场停有三轮车和小轿车两种车型共30辆,已知停车场的车轮总数为110个,求三轮车和小轿车各有多少辆?(请用二元一次方程组解答)【答案】停车场有三轮车10辆,小轿车20辆【分析】设停车场有三轮车x 辆,小轿车y 辆,根据停车场停有三轮车和小轿车两种车型共30辆,停车场的车轮总数为110个,列出方程组进行求解.【详解】解:设停车场有三轮车x 辆,小轿车y 辆.由题意得:3034110x y x y +=⎧⎨+=⎩,解得:1020x y =⎧⎨=⎩;答:停车场有三轮车10辆,小轿车20辆.【点睛】本题考查二元一次方程组的应用,解题的关键是找准等量关系,正确的列出方程组.【考点七二元一次方程组的应用——方案问题】例题:(2023上·山东·八年级期末)现欲将一批荔枝运往外地销售,若用2辆A 型车和1辆B 型车载满荔枝一次可运走10吨;1辆A 型车和2辆B 型车载满荔枝一次可运走11吨.现有荔枝31吨,计划同时租用A 型车a 辆,B 型车b 辆,一次运完,且恰好每辆车都装满货物.根据以上信息,解答下列问题::(1)1辆A 型车和1辆B 型车都载满荔枝一次可分别运送多少吨?(2)请你帮该物流公司设计租车方案.【答案】(1)1辆A 型车载满荔枝一次可运送3吨,1辆B 型车载满荔枝一次可运送4吨(2)答案见解析【分析】本题考查了二元一次方程组的应用以及二元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)找准等量关系,正确列出二元一次方程.(1)设1辆A 型车载满荔枝一次可运送x 吨,1辆B 型车载满荔枝一次可运送y 吨,根据用2辆A 型车和1辆B 型车载满荔枝一次可运走10吨;1辆A 型车和2辆B 型车载满荔枝一次可运走11吨列出方程组求解即可;(2)根据题意可得3431a b +=,再根据a 、b 均为非负整数解方程即可得到答案.【详解】(1)解:设1辆A 型车载满荔枝一次可运送x 吨,1辆B 型车载满荔枝一次可运送y 吨,【变式训练】1.(2023上·四川达州·八年级校考期末)下列两题任选一道12两班共计有95名学生,他们的体育平均达标率(达到标准的百分率)是60%,如果一班学(1)初二()()生的达标率是40%,二班学生的达标率是78%,那么一、二班人数各是多少人?(2)某单位新盖了一栋楼房,要从相距132米处的自来水主管道处铺设水管,现有8米长的与5米长的两种规格的水管可供选用.①请你设计一种方案,如何选取这两种水管,才能恰好从主管道铺设到这座楼房?这样的方案有几种?②若8米长的水管每根50元,5米长的水管每根35元,选哪种方案最省钱?【答案】(1)一班人数是45人,二班人数是50人;(2)①共有3种选取方案,方案1:选取4根8米长的水管,20根5米长的水管;方案2:选取9根8米长的水管,12根5米长的水管;方案3:选取14根8米长的水管,4根5米长的水管;②选取14根8米长的水管,4根5米长的水管最省钱.【分析】本题主考查了解二元一次方程组以及二元一次方程组的应用.(1)设一班人数是x人,二班人数是y人,根据“初二(1)(2)两班共计有95名学生,且他们的体育平均达标率(达到标准的百分率)是60%”,可列出关于x,y的二元一次方程组解之即可得出结论;(2)①设选取m根8米长的水管,n根5米长的水管,根据需要水管的总长度为132米,可列出关于m,n的二元一次方程,结合m,n均为非负整数,即可得出各选取方案;②利用总价等于单价乘以数量,可求【考点八二元一次方程组的应用——销售、利润问题】【变式训练】【考点九二元一次方程组的应用——数字问题】例题:(2023上·江苏·七年级校考周测)一个两位数,个位上的数字与十位上的数字的和为13,若把个位上的数字与十位上的数字对调,则所得的数比原数的2倍小4,求原来的两位数.【答案】原来的两位数是49.【分析】本题考查了二元一次方程组的应用,读懂题意,找到合适的等量关系,列出方程组,是解答本题的关键.根据题意设个位数字为x,十位数字为y,利用已知条件列出二元一次方程组,由此得到答案.【详解】解:根据题意设:个位数字为x,十位数字为y,∴()()13210104x y y x x y +=⎧⎨+-+=⎩,解得:94x y =⎧⎨=⎩,∴原来的两位数为:410949⨯+=,答:原来的两位数是49.【变式训练】1.(2023下·河南南阳·七年级校考阶段练习)小明和小华在一起玩数字游戏,他们每人取了一张数字卡片,拼成了一个两位数,小明说:“哇!这个两位数的十位数字与个位数字之和恰好是9.”他们又把这两张卡片对调,得到了一个新的两位数,小华说:“这个两位数恰好也比原来的两位数大9.”那么,你能回答以下问题吗?(1)他们取出的两张卡片上的数字分别是几?(2)第一次,他们拼出的两位数是多少?【答案】(1)他们取出的两张卡片上的数字分别是4、5.(2)第一次他们拼成的两位数为45.【分析】(1)设他们取出的两个数字分别为x 、y .根据题意列方程组求解即可;(2)根据(1)的结果即可求解.【详解】(1)解:设他们取出的两个数字分别为x 、y .第一次拼成的两位数为10x y +,第二次拼成的两位数为10y x +.根据题意得:910910x y y x x y +=⎧⎨+-=+⎩①②,由②,得:1y x -=③,+①③得:5y =.把5y =代入①得:4x =,∴他们取出的两张卡片上的数字分别是4、5.(2)解:根据(1)得:十位数字是4,个位数字是5,所以第一次他们拼成的两位数为45.【点睛】本题考查二元一次方程组的应用,找出合适的等量关系是解题的关键.【考点十二元一次方程组的应用——几何问题】例题:(2023上·吉林四平·八年级统考期末)如图,在大长方形ABCD 中放入10个相同的小长方形(图中空白部分),若大长方形的周长是104,图中阴影部分的面积是327,设小长方形的长为x ,宽为y ,求一个小长方形的周长和面积分别是多少?【答案】一个小长方形的周长为26,面积为30.【分析】本题考查了二元一次方程组,找到正确的数量关系是解题的关键.由大长方形的周长是104,图中阴影部分的面积是327.列出方程组,可求解.【详解】解:由题意可得:()()()2331043310327x y x y x y x y xy ⎧+++=⎪⎨++-=⎪⎩∴2213109x y x y +=⎧⎨+=⎩()226,30x y xy ∴+==答:一个小长方形的周长为26,面积为30.【变式训练】1.(2023上·甘肃张掖·八年级校考阶段练习)如图:用8块相同的长方形拼成一个宽为48厘米的大长方形,每块小长方形的长和宽分别是多少?【答案】每块小长方形的长为36厘米,宽为12厘米【分析】本题考查了二元一次方程组的应用,观察图形、结合“大长方形宽为48厘米”列出二元一次方程组求解是解题的关键.【详解】解:设小长方形的长为x 厘米,宽为y 厘米,48x y +=⎩解得:3612x y =⎧⎨=⎩,答:每块小长方形的长为36厘米,宽为12厘米.【过关检测】一、单选题1.(2024下·全国·七年级假期作业)甲、乙两人相距42km ,若两人同时相向而行,可在6h 后相遇;若两人同时同向而行,乙可在14h 后追上甲.设甲的速度为km /h x ,乙的速度为km /h y ,列出的二元一次方程组为()A .6642141442x y y x +=⎧⎨=+⎩B .6642141442x y x y +=⎧⎨=+⎩C .66421414x y y x +=⎧⎨=⎩D .6642141442y x x y -=⎧⎨+=⎩【答案】A【解析】略2.(2024上·湖南怀化·九年级校考期末)《孙子算经》是中国传统数学的重要著作,其中有一道题,原文是:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”意思是:用一根绳子去量一根木头的长,绳子还剩余4.5尺;将绳子对折再量木头,则木头还剩余1尺,问木头长多少尺?可设木头长为x 尺,绳子长为y 尺,则所列方程组正确的是()A . 4.50.51y x y x =+⎧⎨=-⎩,B . 4.521y x y x =+⎧⎨=-⎩,C . 4.50.51y x y x =-⎧⎨=+⎩,D . 4.521y x y x =-⎧⎨=+⎩,【答案】A 【分析】本题主要考查了从实际问题中抽象出二元一次方程组,设木头长为x 尺,绳子长为y 尺,根据用一根绳子去量一根木头的长、绳子还剩余4.5尺,可得 4.5y x =+,根据将绳子对折再量木头,则木头还剩余1尺可得0.51y x =-,据此列出方程组即可.【详解】解:可设木头长为x 尺,绳子长为y 尺,0.51y x =-⎩故选:A .3.(2024上·陕西宝鸡·八年级统考期末)某校课外小组的学生分组做课外活动,若每组7人,则余下3人:若每组8人,则少5人.设课外小组的人数为x ,应分成的组数为y ,可列方程组()A .7385y x y x =+⎧⎨+=⎩B .7385y x y x +=⎧⎨-=⎩C .7385y x y x =-⎧⎨=-⎩D .7385y x y x =+⎧⎨=+⎩【答案】B【分析】本题主要考查了根据实际问题列方程组,审清题意、找准等量关系是解题的关键.设课外小组的人数为x ,应分成的组数为y ,根据等量关系“若每组7人,则余下3人”和“每组8人,则少5人”即可列出方程组.【详解】解:设课外小组的人数为x ,应分成的组数为y ,根据“每组7人,则余下3人;每组8人,则少5人”可得方程组:7385y x y x +=⎧⎨-=⎩.故选B .4.(2023上·山东青岛·八年级校考阶段练习)如图是由同一种长方形的墙砖粘贴的部分墙面,其中3块横放的墙砖比1块竖放的墙砖高10cm ,2块横放的墙砖比2块竖放的墙砖矮40cm ,则每块墙砖的面积是()2cm .A .425B .525C .600D .800【答案】B 【分析】本题主要考查了二元一次方程组的应用,根据题意列出二元一次方程组是解题的关键.设墙砖的长为cm x ,宽为cm y ,根据等量关系“3块横放的墙砖比1块竖放的墙砖高10cm ,2块横放的墙砖比2块竖放的墙砖矮40cm ”列出二元一次方程组求出x 、y 的值,然后再求面积即可.【详解】解:设墙砖的长为cm x ,宽为cm y ,根据题意得:3102240y x x y -=⎧⎨-=⎩,解得:3515x y =⎧⎨=⎩,所以墙砖的面积为:23515525cm ⨯=.故选:B .二、填空题【答案】92【分析】本题考查二元一次方程组的应用.根据图中的数据,可以列出相应的二元一次方程组,然后即可求得小长方形的长和宽,然后即可计算出图中阴影部分的面积.【详解】解:设小长方形的长为cmx,宽为由图可得:212418x y yx y+-=⎧⎨+=⎩,10x=⎧三、解答题9.(2023上·山东青岛·八年级校考阶段练习)古代有一个官兵分布的问题:“一千官兵一千布,一官四尺无【答案】90cm【分析】本题考查了二元一次方程组的应用,设1支塑料凳子的高度为加ycm,即可根据题意列出方程组求解.【详解】设1台A 型机器人每小时拣垃圾a 吨,1台B 型机器人每小时拣垃圾b 吨,根据题意,得()23 2.623 3.6a b a b +=⎧⎨+=⎩,解得0.40.6a b =⎧⎨=⎩,故1台A 型机器人每小时拣垃圾0.4吨,1台B 型机器人每小时拣垃圾0.6吨.【点睛】本题考查了方程组的应用,熟练列出方程组是解题的关键.14.(2023下·湖南岳阳·七年级统考阶段练习)小明在拼图时发现8个一样大小的长方形恰好可以拼成一个大的长方形如图(1),小红看见了说:“我也来试一试.”结果小红七拼八凑,拼成了如图(2)那样的正方形,中间还留下了一个洞,恰好是边长为1mm 的小正方形.请问每个小长方形的面积是多少?【答案】215mm 【分析】设每个小长方形的长是mm x ,宽是mm y ,根据图形给出的信息可知,长方形的5个宽与其3个长相等,1个长加1的和等于两个宽的和,于是得方程组,解出即可.【详解】解:设小长方形的长是mm x ,宽是mm y ,由图(1),得35x y =,由图(2),得12x y +=,所以3512x y x y=⎧⎨+=⎩,解得53x y =⎧⎨=⎩,∴小正方形的长为5mm ,宽为3mm ,∴小长方形的面积为25315mm =⨯=,答:每个小长方形的面积是215mm .【点睛】本题考查了列二元一次方程组解实际问题的运用,二元一次方程组的解法的运用,解答时根据矩形和正方形的长与宽的关系建立方程组是关键.(1)放入1个小球水面升高______cm,放入1个大球水面升高(2)如果使水面上升到50cm,应放入大球、小球各多少个?【分析】本题考查了二元一次方程组的应用以及二元一次方程的应用,解题的关键是找准等量关系,正确列出二元一次方程组.(1)设1辆A 型车载满萝卜一次可运送x 吨,1辆B 型车载满萝卜一次可运送y 吨,根据题意列出二元一次方程组求解即可;(2)根据题意得到3431a b +=,然后由a ,b 都是正整数求解即可.【详解】(1)设1辆A 型车载满萝卜一次可运送x 吨,1辆B 型车载满萝卜一次可运送y 吨,依题意得:210211x y x y +=⎧⎨+=⎩,解得34x y =⎧⎨=⎩.答:1辆A 型车载满萝卜一次可运送3吨,1辆B 型车载满萝卜一次可运送4吨.(2)∵现有萝卜31吨,计划同时租用A 型车a 辆,B 型车b 辆,∴3431a b +=,∵a ,b 都是正整数,∴当9a =时,1b =;当5a =时,4b =;当1a =时,7b =;∴该物流公司共有3种租车方案:方案1:租用9辆A 型车,1辆B 型车方案2:租用5辆A 型车,4辆B 型车;方案3:租用1辆A 型车,7辆B 型车.。

三元一次方程及其解法

三元一次方程及其解法

三元一次方程组及其解法1.三元一次方程的定义:含有三个未知数的一次整式方程2.三元一次方程组:由三个一次方程 ( 一元、二元或三元 ) 构成并含有三个未知数的方程组叫做三元一次方程组3.三元一次方程组的解:能使三个方程左右两边都建立的三个未知数的值解题思路:利用消元思想使三元变二元,再变一元4.三元一次方程组的解法:用代入法或加减法消元,即经过消元将三元一次方程组转变为二元一次方程组,再转变为一元一次方程.例题分析一、三元一次方程组之特别型x y z 12 ①例 1:解方程组 x 2 y 5z 22 ②x 4 y ③剖析:方程③是对于 x 的表达式,经过代入消元法可直接转变为二元一次方程组,所以确定“消 x”的目标。

解法 1:代入法,消 x.5y z 12 ④把③分别代入①、②得6y ⑤5z 22y 2,解得z 2.把 y=2 代入③,得 x=8.x8,∴y 2, 是原方程组的解.z 2.依据方程组的特色,可概括出此类方程组为:种类一:有表达式,用代入法型.针对上例从而剖析,方程组中的方程③里缺z, 所以利用①、②消 z, 也能达到消元构成二元一次方程组的目的。

解法 2:消 z.①× 5 得 5x+5y+5z=60 ④④ - ②得 4x+3y=38 ⑤x 4y ③由③、⑤得4x3 y 38 ⑤x 8,解得y 2.把 x=8,y=2 代入①得 z=2.x 8,∴y 2, 是原方程组的解. z 2.依据方程组的特色,可概括出此类方程组为:种类二:缺某元,消某元型.2x y z 15 ①例 2:解方程组 x 2 y z 16 ②x y 2z 17 ③剖析:经过察看发现每个方程未知项的系数和相等;每一个未知数的系数之和也相等,即系数和相等。

具备这类特色的方程组,我们给它定义为“轮换方程组”,可采纳乞降作差的方法较简短地求出此类方程组的解。

解:由① +② +③得 4x+4y+4z=48,即 x+y+z=12 . ④①- ④得 x=3 ,②-④得 y=4 ,③- ④得 z=5 ,x3,∴y 4, 是原方程组的解.z 5.x y 20, ①典型例题举例:解方程组 y z 19, ②x z 21. ③解:由① +②+③得 2(x+y+z)=60 ,即 x+y+z=30 . ④④- ①得 z=10 ,④-②得 y=11 ,④-③得 x=9 ,x9,∴y 11, 是原方程组的解.z10.依据方程组的特色,由学生概括出此类方程组为:种类三:轮换方程组,乞降作差型.x : y : z 1:2:7 ①例 3:解方程组2x y ②3z 21剖析 1:察看此方程组的特色是未知项间存在着比率关系,依据过去的经验,看见比率式就会想把比率式化成关系式求解,即由 x:y=1:2 得 y=2x;由 x:z=1:7 得z=7x. 从而从形式上转化为三元一次方程组的一般形式,即y 2x, ①z 7x, ②,依据方程组的特色,可采用“有表达式,用代入法”求2x y 3z 21. ③解。

二元一次方程组解决实际问题典型例题(1)

二元一次方程组解决实际问题典型例题(1)

【变式】某商场计划拨款9万元从厂家购进50台 电视机,已知厂家生产三种不同型号的电视机, 出厂价分别为:甲种每台1500元,乙种每台2100 元,丙种每台2500元。 (1)若商场同时购进其中两种不同型号的电视机 50台,用去9万元,请你研究一下商场的进货方 案; (2)若商场销售一台甲、乙、丙电视机 分别可获利150元、200元、250元, 在以上的方案中,为使获利最多,你选择哪种进 货方案?
【变式1】现有190张铁皮做盒子,每张铁皮做8个盒 身或【【2变2变个式式盒23】底】某,一工一张厂个方有盒桌工身由人与1个6两0桌人个面,盒、生底4产配条某成桌种一腿由个组一完成个整, 螺盒如栓子果套,1立两问方个用米螺多木母少料的张可配铁以套皮做产制桌品盒面,身5每,0个人多,每少或天张做生铁桌产皮腿螺制3栓盒001底条4 ,。 个可现或以有螺正5立母好方2制0米个成的,一木应批料分完,配整那多的么少盒用人子多生?少产立螺方栓米,木多料少做人桌生面, 产用螺多母少,立才方能米使木生料产做出桌的腿螺,栓做和出螺的母桌刚面好和配桌套腿。,恰 好配成方桌?能配多少张方桌?
类型七:列二元一次方程组解决——和差倍分问题
7.“爱心”帐篷厂和“温暖”帐篷厂原计划每周 生产帐篷共9千顶,现某地震灾区急需帐篷14千顶, 两厂决定在一周内赶制出这批帐篷.为此,全体职工 加班加点,“爱心”帐篷厂和“温暖”帐篷厂一周内 制作的帐篷数分别达到了原来的1.6倍、1.5倍,恰好 按时完成了这项任务.求在赶制帐篷的一周内,“爱 心”帐篷厂和“温暖”帐篷厂各生产帐篷多少千顶?
【变式】小明家准备装修一套新住房,若甲、乙两个 装饰公司合作6周完成需工钱5.2万元;若甲公司单独 做4周后,剩下的由乙公司来做,还需9周完成,需工 钱4.8万元.若只选一个公司单独完成,从节约开支的 角度考虑,小明家应选甲公司还是乙公司?请你说明 理由.

《椭圆》方程典型例题20例(含标准答案)

《椭圆》方程典型例题20例(含标准答案)

例1 椭圆的一个顶点为()02,A 分析:解:(1)当()02,A 椭圆的标准方程为:11422=+y x (2)当()02,A 为短轴端点时,b 椭圆的标准方程为:116422=+y x 说明:横竖的,因而要考虑两种情况.例2 解:31222⨯⨯=c a c ∴23c =∴3331-=e . 说明:和c 的齐次方程,再化含e 例3 已知中心在原点,焦点在x 点,OM 的斜率为0.25解:由题意,设椭圆方程为22+ax )直线与曲线的综合问题,经常要借)22y ,与焦点()04,F 的距离成等差数BT 的斜率k .(2)因为线段AC 221=+-y y y 又∵点T 在x ()212221024x x y y x --=-又∵点()11y x A ,,(2x B ∴ ()212125259x y -=()222225259x y -= ∴ (12221259x y y +-=-将此式代入①,并利用 253640-=-x ∴ 4540590=--=x k BT例5 已知椭圆13422=+yx ,距离MN 是1MF 与2MF 解:假设M 存在,设M 2=a ,3=b ,∴=c ∵左准线l 的方程是=x ① ②.k ,利用条件求k . ⎪⎭⎫ ⎝⎛-=21x k .代入椭圆方程,并整理∵P 是弦中点,∴121=+x x 所以所求直线方程为342-+y x 分析二:设弦两端坐标为(11y x ,率:2121x x y y --.解法二:设过⎪⎭⎫⎝⎛2121,P ⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=+=+=+④1.③1②12①12212122222121y y x x y x y x ,,, ①-②得0222212221=-+-y y x x .将③、④代入⑤得212121-=--x x y y 所求直线方程为0342=-+y x 说明:(1迹;过定点的弦中点轨迹.(2(3线问题也适用.例7 (1)长轴长是短轴长的2(2)在x 12222=+b y a x 求出1482=a ,372=b ,1=. .182=a .故所求方程为191822=+y x .MF AM 2+为最小值M 到右准线的距离,从而得最小8=x l :.过A 作l AQ ⊥,垂足为AQ ,即M 为所求点,因此说明:是M 例9 求椭圆32x 分析:值.解:椭圆的参数方程为⎩⎨⎧距离为26sin cos 3=+-=θθd 当13sin -=⎪⎭⎫⎝⎛-θπ时,d 说明:例10的点的最远距离是7分析:要注意讨论b 提高逻辑推理能力.0>>b a 待定.21<b 矛盾.⎪⎭⎫-21,点⎪⎭⎫ ⎝⎛-213,到点⎪⎭⎫⎝⎛230,P 的距==θθsin cos b y a x ,其中0>>b a ,待定,πθ20≤≤,θ为参数.由22222221⎪⎭⎫ ⎝⎛-=-==a b a b a a c e 2143112=-=-=e a b ,即a 设椭圆上的点()y x ,到点 ⎝⎛0P 22222cos 23=⎪⎭⎫ ⎝⎛-+=θa y x d sin 3sin 34222--=θθb b b 421sin 3222+⎪⎭⎫ ⎝⎛+-=b b b θ如果121>b ,即21<b ,则当由题设得()22237⎪⎭⎫⎝⎛+=b 于是当b21sin -=θ时2d 由题设知()34722+=b,∴∴所求椭圆的参数方程是⎩⎨⎧y x 由21sin -=θ,cos θ例11 设x ,R ∈y ,y x 63222=+分析:考虑椭圆及圆的位置关系求得最值.0,0)点和(3,0)点. )1->.0,0)点时,半径最41=+m ,∴15=m .a 、b 如何变化, 120≠∠APB .(2分析:22222y ba a x -=解:(1 ⎩⎨⎧b x 2于是k AP=∵APB ∠∴tan ∠∵22c a >∴tan ∠故tan ∠(2)设∴tan ∠12-=k c .由21=e ,得4=k . k -1.8与9的大小关系不定,所以椭圆的焦点可能在x 轴上,也可能在y 例14 已知椭圆142222=+by b x 分析:解法一:由142222=+by b x ,得由椭圆定义,a PF PF 221=+b b b PF b PF 34421=-=-=.由椭圆第二定义,e d PF =11,∴b ePF d 3211==,即P 到左准线的距离为b 32解法二:∵e d PF =22,2d 为P ∴b ePF d 33222==. 又椭圆两准线的距离为c a 22=⋅∴P 到左准线的距离为b 338说明:圆的第二定义.3π=∠POx ,求P 点坐标.3π, 552, )0>上的一点,P 到左焦点1F 和右焦.ca 20+,∴01ex a PQ e r +==说明:例17 已知椭圆15922=+y x 上一点.(1) 求1PF PA +(2) 求223PF PA +分析:即代数方法.二是数形结合,解:(1)如上图,62=a ,)0,2(2F ,22AF PF PA -≥,∴1+PF PA 22AF PF PA -=时成立,此时P 、由22AF PF PA +≤,∴+PA 22AF PF PA +=时成立,此时P 、==45,02得两交点 ,P 点与2P 重合时,2PF PA +取Q 为垂足,由3=a ,2=c ,PQ PA PF PA +=+223,要使29=x .1,代入椭圆得满足条件的A 向相应准线作垂线段.巧用(2)分析:解:(1) ⎩⎨⎧==θθsin 2cos 3y x )(R ∈θ.(2)设椭圆内接矩形面积为S )sin 2,cos 3(θθ则2sin 12sin 2cos 34=⨯⨯=θθS 故椭圆内接矩形的最大面积为说明:问题,用参数方程形式较简便.例19 已知1F ,2F (1)(2)求证21F PF ∆分析:12222=+b y a x (0>>b a )),(11y x P ,)0,(1c F -,)0,(2c F 方程联立消去21x 得2312212-+cy b y c 出1y 可以求出21F PF ∆思路二:利用焦半径公式1PF =再利用],[1a a x -∈,可以确定离心率a 2求解.),11y ,)0,(1c F -,)0,(2c F ,0>c ,(1)在21F PF ∆︒==60sin 2sin sin cn m βα∴︒=++60sin 2sin sin cn m βα∵a n m 2=+, ∴︒=+60sin 2sin sin 2ca βα∴sin sin 60sin βα=+︒==a c e 212cos21≥-=βα.当且仅当βα=(2)在21F PF ∆-+=2)2(222mn n m c mn n m -+=22 mn n m 3)(2-+=∵a n m 2=+,∴mn a c 34422-=,即∴60sin 2121mn S F PF ︒=∆即21F PF ∆说明:椭圆上的一点P 21PF PF +的结,若这个椭圆上总存在点P ,使AP OP ⊥,转化为P 点坐的一个不等式,转化为关于e 的不等222ba b -=θ, ,又222c a b -= P 使AP OP ⊥.如何证明?。

二元一次方程组的典型例题

二元一次方程组的典型例题

1.已知方程组⎩
⎨⎧-=-+=-32342x y m y x 的解x 、y 互为相反数,求m 的值。

2.已知代数式x 2+bx +c ,当x =-3时,它的值为9,当x =2时,它的值为14,当x =-8时,求代数式的值。

3.若∣m +n -5∣+(2m +3n -5)2=0,求(m +n )2的值
4.已知方程组⎩⎨
⎧-=+=-154by ax y x 和⎩⎨⎧=+=+18
4393by ax y x 有相同的解,求b a ,的值。

7、 方程组的解也是方程的解,则k 的
8、若方程组的解满足条件,求a 的值
9、如图,8块相同的长方形地砖拼成一个长方形,每块长方形地砖的长和宽分别是多少?

↓60cm
⎩⎨⎧=+=-5
2,
12y ax y ax x y =
10.运往灾区的两批货物,第一批共480吨,用8节火车车厢和20辆汽车正好装完;第二批共运524吨,用10节火车车厢和6辆汽车正好装完,求每节火车车厢和每辆汽车平均各装多少吨?
一、数字问题
1. 一个两位数,比它十位上的数与个位上的数的和大9;如果交换十位上的数与个位上的数,所得两位数比原两位数大27,求这个两位数.
2.一件商品如果按定价打九折出售可以盈利20%;如果打八折出售可以盈利10元,问此商品的定价是多少?
三、调配、配套问题
例3某厂共有120名生产工人,每个工人每天可生产螺栓50个或螺母20个,如果一个螺栓与两个螺母配成一套,那么每天安排多名工人生产螺栓,多少名工人生产螺母,才能使每天生产出来的产品配成最多套?。

三元一次方程组解法总结与练习

三元一次方程组解法总结与练习

三元一次方程组解法总结与练习三元一次方程组一、三元一次方程组之特殊型类型一:有表达式,用代入法型. 例1:①⎧x +y +z =12⎪解方程组⎨x +2y +5z =22②⎪x =4y ③⎩分析:方程③是关于x 的表达式,因此确定“消x ”的目标。

类型二:缺某元,消某元型. 针对上例进而分析,方程组中的方程③里缺z, 因此利用①、②消z, 也能达到消元构成二元一次方程组的目的。

类型三:轮换方程组,求和作差型.分析:通过观察发现每个方程未知项的系数和相①⎧2x +y +z =15等;每一个未知数的系数之和也相等,即系数和相⎪例2:解方程组⎨x +2y +z =16②等。

具备这种特征的方程组,我们给它定义为“轮⎪x +y +2z =17③⎩换方程组”,可采取求和作差的方法较简洁地求出此类方程组的解。

⎧x +y =20, ⎪典型例题举例:解方程组⎨y +z =19,⎪x +z =21. ⎩⎧x :y :z =1:2:7⎩2x -y +3z =21①② ③分析:观察此方程组的特点是未知项间存在着比例关系,把比例式化成关系式求解类型四:遇比例式找关系式,遇比设元型. 例3:解方程组⎨①②⎧x +y +z =111①⎪典型例题举例:解方程组⎨y :x =3:2②⎪y :z =5:4③⎩二、三元一次方程组之一般型⎧3x -y +z =4, ⎪例4:解方程组⎨x +y +z =6,⎪2x +3y -z =12. ⎩①② ③分析:对于一般形式的三元一次方程组的求解,应该认清两点:一是确立消元目标——消哪个未知项;二是在消元的过程中三个方程式如何正确的使用,怎么才能做到“目标明确,消元不乱”,为此归纳出:(一)消元的选择1. 选择同一个未知项系数相同或互为相反数的那个未知数消元;2. 选择同一个未知项系数最小公倍数最小的那个未知数消元。

(二)方程式的选择采取用不同符号标明所用方程,体现出两次消元的过程选择。

⎧3x -y +=4⎪解方程组:⎨x +y +=6⎪2x +3y -=12⎩典型例题举例①∨②∆③∨∆⎧2x +4 y +3z =9, ⎪⎪解方程组⎨3x -2 y +5z =11,⎪y ⎪ +7z =13. ⎩5x -6①∨②∨③∆∆分析:通过比较发现未知项y 的系数的最小公倍数最小,因此确定消y 。

3.3(2)二元一次方程组的解法(加减消元)及典型例题

3.3(2)二元一次方程组的解法(加减消元)及典型例题
ቤተ መጻሕፍቲ ባይዱ
m = 1 +2n
1 2 2 5
所以原方程组的解:
m =5 n=2
即m 的值是5,n 的值是4.
7、如果∣y + 3x - 2∣+∣5x + 2y -2∣= 0,求 x 、y 的值. 解:由题意知, y + 3x – 2 = 0 ① 5x + 2y – 2 = 0 ② 由①得:y = 2 – 3x ③ 把③代入② 得: 5x + 2(2 – 3x)- 2 = 0 5x + 4 – 6x – 2 = 0 5x – 6x = 2 - 4 -x = -2 即x 的值是2,y 的值是-4. 把x = 2 代入③,得: y= 2 - 3×2 y= -4 所以原方程组的解: ∴ x=2 y = -4
1 3y 2 3y 6
把(3)代人(2)得
5
解法二:由(1)得:3 y=1-2x (3) 把(3)代人(2)得5x-(1-2x)=6 解法三:(1)+(2)得 : 7x=7 x=1
y 1 3
把x=1代入(1)得 2+3y=1

x 1 1 y 3
试 一 试 , 有 谁 能 用 三 种 方 法 解 ?
有相
这样可以通过第一个方程组求出x和y的值,再将 这两个值代入第二个方程,求关于a和b的二元 一次方程组。
9、 关于x、y的方程组 解满足3x+2y=19,求原方程组的解。
解:

分别把m=1代入到 x=7m、y=-m中, 得: x=7 ,y=-1 ∴原方程组的解为:
①+②,得: 2x=14m x=7m
6、若方程5x 求m 、n 的值.
m-2n+4y 3n-m =

(完整word版)二元一次方程组竞赛题集(答案+解析)

(完整word版)二元一次方程组竞赛题集(答案+解析)

二元一次方程组典型例题【例1】 已知方程组的解x ,y 满足方程5x —y=3,求k 的值.【思考与分析】 本题有三种解法,前两种为一般解法,后一种为巧解法.(1) 由已知方程组消去k ,得x 与y 的关系式,再与5x-y=3联立组成方程组求出x ,y 的值,最后将x ,y 的值代入方程组中任一方程即可求出k 的值.(2) 把k 当做已知数,解方程组,再根据5x-y=3建立关于k 的方程,便可求出k 的值。

(3) 将方程组中的两个方程相加,得5x —y=2k+11,又知5x-y=3,所以整体代入即可求出k 的值.把代入①,得,解得 k=-4。

解法二: ①×3-②×2,得 17y=k —22,解法三: ①+②,得 5x —y=2k+11. 又由5x-y=3,得 2k+11=3,解得 k=—4。

【小结】 解题时我们要以一般解法为主,特殊方法虽然巧妙,但是不容易想到,有思考巧妙解法的时间,可能这道题我们已经用一般解法解了一半了,当然,巧妙解法很容易想到的话,那就应该用巧妙解二元一次方程组能力提升讲义知识提要1. 二元一次方程组⎩⎨⎧=+=+222111c y b x a c y b x a 的解的情况有以下三种:① 当212121c c b b a a ==时,方程组有无数多解.(∵两个方程等效) ② 当212121c c b b a a ≠=时,方程组无解。

(∵两个方程是矛盾的) ③ 当2121b b a a ≠(即a 1b 2-a 2b 1≠0)时,方程组有唯一的解: ⎪⎪⎩⎪⎪⎨⎧--=--=1221211212211221b a b a a c a c y b a b a b c b c x (这个解可用加减消元法求得)2. 方程的个数少于未知数的个数时,一般是不定解,即有无数多解,若要求整数解,可按二元一次方程整数解的求法进行。

3. 求方程组中的待定系数的取值,一般是求出方程组的解(把待定系数当己知数),再解含待定系数的不等式或加以讨论.(见例2、3)例题例1。

掇刀区三中七年级数学下册第六章二元一次方程组6.3二元一次方程组的应用典型例题2新版冀教版

掇刀区三中七年级数学下册第六章二元一次方程组6.3二元一次方程组的应用典型例题2新版冀教版

二元一次方程组的应用例1 小明家去年结余5000元,估计今年可结余9500元,并且今年收入比去年高15%,支出比去年低10%,求去年的收入与支出各是多少?例2 要配制成浓度为30%的烧碱溶液50千克,需要浓度为10%和60%的两种烧碱溶液多少千克?例3 一辆汽车在相距70千米的甲、乙两地往返行驶,由于行驶中有一坡度均匀的小山,该汽车由甲地到乙地需用2小时30分,而从乙地回到甲地需用2小时18分.若汽车在平地上的速度为30千米/时,上坡的速度为20千米/时,下坡的速度为40千米/时,求从甲地到乙地的行程中,平路、上坡路、下坡路各多少千米?例4 某中学初三(1)班计划用66元钱同时购买单价分别为3元、2元、1元的甲、乙、丙三种纪念品,奖励参加艺术节活动的同学,已知购买乙种纪念品的件数比购买甲种纪念品的件数多2件,而购买甲种纪念品的件数不少于10件,且购买甲种纪念品的费用不超过总费用的一半.若购买甲、乙、丙三种纪念品恰好用了66元钱,那么可有几种购买方案?每种方案中,购买的甲、乙、丙三种纪念品各是多少件?例5 某工程队计划在695米线路上分别装25.8米和25.6米长两种规格的水管共100根,问这两种水管各需多少根?例6 若甲、乙两库共存粮95吨,现从甲库运出存粮的32,从乙库运出存粮的40%,那么乙库所余粮食是甲库的2倍,问甲、乙两库原各存多少吨粮食?例7 甲、乙两人从相距36千米的两地相向而行.如果甲比乙先走2小时,那么他们在乙出发后经2.5小时相遇;如果乙比甲先走2小时,那么他们在甲出发后经3小时相遇;求甲、乙两人的速度.例8 通讯员在规定的时间内由A 地前往B 地.如果他每小时走35公里,那么他就要迟到2小时;如果他每小时走50公里,那么他就可以比规定时间早到1小时,求A.B两地间的距离.例9 某车间加工螺钉和螺母,当螺钉和螺母恰好配套(一个螺钉配一个螺母)时就可以运进库房.若一名工人每天平均可以加工螺钉120个或螺母96个,该车间共有工人81名.问应怎样分配人力,才能使每天生产出来的零件及时包装运进库房?例10 要修一段420千米长的公路.甲工程队先干2天乙工程队加入,两队再合干2天完成任务;如果乙队先干2天,甲、乙两队再合干3天完成任务,问甲、乙两个工程队每天各能修路多少千米?例11 甲乙两物体分别以均匀的速度在周长为600米的圆形轨道上运动,甲的速度较快,当两物体反向运动时,每15秒钟相遇一次,当两物体同向运动时,每1分钟相遇一次,求各物体的速度?参考答案例1 分析 若设去年收收x 元,支出y 元,则可由去年结余5000元,今年结余9500元这两个条件列出两个方程.解 设去年收入x 元,支出y 元,根据题意,得⎩⎨⎧=--+=-)2(.9500%)101(%)151()1( ,5000y x y x 解得⎩⎨⎧==.15000,20000y x 答:去年小明家收入20000元,支出15000元.例2 分析 本题中要抓住两个数量关系,一是两种烧碱溶液重量和为50千克,二是10%和60%的烧碱溶液中纯烧碱的量的和等于50千克30%的烧碱溶液中的纯烧碱量.解 设需要浓度为10%的烧碱溶液x 千克,浓度为60%的烧碱溶液y 千克,根据题意,得⎩⎨⎧+=+=+)2().%(30%60%10)1( ,50y x y x y x 解得 ⎩⎨⎧==.20,30y x 答:需要浓度为10%的烧碱溶液30千克,浓度为60%的烧碱溶液20千克.例3 解 设甲地到乙地的上坡路为x 千米,下坡路为y 千米,则平路为)70(y x --千米, 根据题意,得⎪⎪⎩⎪⎪⎨⎧=--++=--++.3.230702040,5.230704020y x y x y x y x解得 ⎩⎨⎧==,4,12y x 则.5470=--y x 答:从甲地到乙地上坡路12千米,下坡路4千米,平路54千米.例4 分析 可设购买甲、乙、丙三种纪念品的件数分别为x 、y 、z.在题目中有两个相等关系:“购买乙种纪念品的件数比购买甲种纪念品的件数多2件”,“购买甲、乙、丙三种纪念品恰好用了66元钱”.根据这两个相等关系可以列出两个关于x 、y 、z 的方程.但这里有三个未知数,只列出了两个方程是无法求出它们的解的,注意到题目中还有两个限制条件:“购买甲种纪念品的件数不少于10件”,“购买甲种纪念品的费用不超过总费用的一半”.有了这两个条件,就确定了x 的取值范围,而x 必为正整数,因此可求出x 的值,从而求出另外两个求知数.解 设购买的甲、乙、丙三种纪念品的件数分别为x 、y 、z ,根据题意,有⎩⎨⎧+==++.2,6623x y z y x 则⎩⎨⎧-=+=.562,2x z x y ∵ 10≥x ,且2663≤x ,∴ 1110≤≤x ,又∵ x 为整数,∴ 10=x 或11=x .(1)当10=x 时,;121056212210=⨯-==+=z y ,(2)当11=x 时,.71156213211=⨯-==+=z y ,答:可有两种购买方案:第一种方案:购买甲种纪念品10件、乙种12件、丙种12件;第二种方案:购买甲种纪念品11件、乙种13件、丙种7件.例5 分析 本题中有两个未知数——规格为25.8米长水管的根数与规格为25.6米长水管的根数.题目中恰有两个相等关系:(1) 25.8米长的水管根数十25.6米长水管根数=100根(2) 25.8米长水管总米数十25.6米长水管的总米数=线路的总米数解 设25.8米长规格的水管需x 根,25.6米长规格的水管y 根,根据题意,得⎩⎨⎧=+=+69525.625.8100y x y x 解这个方程组,得⎩⎨⎧==6535y x 答:需规格为25.8米长的水管35根,需规格为25.6米长的水管65根.说明:在实际生活中,我们常常遇到象例1这样的问题,我给出的解法是列出二元一次方程组求解.同学们想一想,还有没有其他的方法?能不能列出一元一次方程来解呢?如果能,比较两者的不同,看一看哪种方法简单?然后自己归纳出列二元一次方程组解应用题的步骤.例6 分析 本题有两个未知数——甲仓库原存粮与乙库原存粮;有两个相等关系:(1)甲仓库原存粮吨数+乙仓库原存粮吨数=95吨(2)乙仓库剩余粮食吨数=2倍甲库剩余粮食吨数解 设甲仓库原存粮食x 吨,乙仓库原存粮食y 吨, 根据题意,得⎪⎩⎪⎨⎧-=-=+xy y x )321(2%)401(95解这个方程组,得 ⎩⎨⎧==4045y x答:甲仓库原存粮食45吨,乙仓库原存粮食50吨.例7 分析 这里有两个未知数——甲、乙两人的速度.有两个相等关系:(1)甲先走2小时的行程+甲乙在2.5小时内走的行程=36千米(2)甲乙3小时走的行程+乙在2小时内走的行程=36千米解 设甲的速度为x 千米/小时,乙的速度为y 千米/小时,根据题意,得⎩⎨⎧=+=+3653365.25.4y x y x解方程组,得 ⎩⎨⎧==6.36y x答:甲的速度为6千米/小时,乙的速度为3.6千米/小时.例8 分析 这里有两个未知数——规定时间和A.B 两地间距离.有两个相等关系:(1)员速度以35公里/小时走完全程用的时间-2小时=规定时间(2)通讯员速度为50公里/小时走完全程用的时间+1小时=规定时间解 设A.B 两地间的距离为x 公里,规定时间为y 小时.根据题意,得⎪⎪⎩⎪⎪⎨⎧=+=-y x y x 150235解方程组,得 ⎩⎨⎧==8350y x 答:A.B 两地间的距离为350公里.例9 分析 这里有两个未知数——生产螺钉的人数和生产螺母的人数.有两个相等关系:(1)生产螺钉的人数+生产螺母的人数=总人数(81名)(2)每天生产的螺钉数=每天生产的螺母数解 设生产螺钉的工人有x 名,生产螺母的工人有y 名,根据题意,得⎩⎨⎧==+y x y x 9612081 解方程组,得 ⎩⎨⎧==4536y x 答:生产螺钉的工人有36名,有45名工人生产螺母,才能使每天生产出来的零件及时包装运进库房.例10 分析 这里有两个未知数——甲工程队每天修路的千米数和乙工程队每天修路的千米数;有两个相等关系:(1)甲2天修路的长+甲、乙合修2天的公路长=公路总长(2)乙2天修路的长+甲、乙合修3天的公路长=公路总长解 设甲每天修公路x 千米,乙每天修公路y 千米,根据题意,得 ⎩⎨⎧=++=++420)(32420)(22y x y y x x 解方程组,得 ⎩⎨⎧==3090y x 答:甲每天修公路90千米,乙每天修公路30千米.例11 分析 题中有两个未知数,即甲乙两物体速度,题中“每15秒相遇一次”就是15秒两物体经过路程之和是600米,“每分钟相遇一次”就是60秒甲物体要比乙物体多运动一周,故有两个等量关系.解 设甲物体速度为x 米/秒,乙物体为y 米/秒.根据题意得解得⎩⎨⎧=-=+,60060606001515y x y x 解得⎩⎨⎧==.1525y x 答:甲乙两物体速度为25米/秒,15米/秒.说明:解此题关键是找出甲、乙两物体同向、反向运动路程之间的相等关系,必要时可画出两物体运动的轨迹示意图,帮助找相等关系.有理数加法的运算律知识点 1 有理数加法的交换律1.交换算式(-2)+(+3)+(-4)+(+5)中加数的位置,使负加数在前:_______________________________________________________2.下列交换加数的位置的变形中,错误的是( )A .30+(-20)=(-20)+30B .(-5)+(-13)=(-13)+(-5)C .(-37)+16=16+(-37)D .10+(-20)=20+(-10)知识点 2 有理数加法的结合律3.计算6+(-3.5)+(+2.5)时,较好的方法是( )A .按顺序进行计算B .同号的数先相加C .后面的两个数先相加D .以上的方法都不对4.计算16+(-25)+24的结果是( )A .15B .-15C .3D .-35.计算:(-0.19)+⎝ ⎛⎭⎪⎫-215+215=________. 知识点 3 有理数加法运算律的综合6.计算:(+16)+(-25)+(+24)+(-35)=[____+____]+[____+____]=(+40)+(-60)=______.7.计算(-20)+379+20+⎝ ⎛⎭⎪⎫-79,比较合适的做法是( ) A .把第一、三两个加数结合,第二、四两个加数结合B .把第一、二两个加数结合,第三、四两个加数结合C .把第一、四两个加数结合,第二、三两个加数结合D .把第一、二、四这三个加数结合8.小明解题时,将式子⎝ ⎛⎭⎪⎫-16+(-7)+56+(-4)先变成[⎝ ⎛⎭⎪⎫-16+56]+[(-7)+(-4)],再计算结果,则小明运用了( )A .加法交换律B .加法交换律和加法结合律C .加法结合律D .无法判断9.下列各式能用加法运算律简化计算的是( )A .313+⎝⎛⎭⎪⎫-414 B .825+12+13C .(-7)+(-6.8)+(-3)+(+6.8)D .412+⎝ ⎛⎭⎪⎫-27+⎝ ⎛⎭⎪⎫-313+⎝ ⎛⎭⎪⎫-215 10.小华计划在十一长假期间每天做5道数学题,超过的题数记为正数,不足的题数记为负数.七天中的实际做题数记录如下:+3,+5,-4,-2,-1,+7,0.则小华七天共做了________道数学题.11.计算:(1)316+⎝⎛⎭⎪⎫-517+⎝ ⎛⎭⎪⎫-216+⎝ ⎛⎭⎪⎫-467;(2)25.7+(-7.3)+(-13.7)+7.3;(3)(-2.125)+⎝ ⎛⎭⎪⎫+315+⎝ ⎛⎭⎪⎫+518+(-3.2);(4)(-0.8)+6.4+(-9.2)+3.6+(-1).12.八袋大米,以每袋25千克为标准,称重记录如下(超过标准的千克数记为正数,不足标准的千克数记为负数):+2,-0.5,+3,-1,+2,-1.5,+2.5,+4.这八袋大米总共有多少千克?13.如图2-6-3,四个小三角形中所填四个数之和等于零,则中间的三角形中的数是________,这四个数的绝对值之和等于________.图2-6-314.小明写作业时不慎将污渍弄在数轴上,根据图2-6-4中的数据,判断污渍盖住部分的整数的和是________.图2-6-415.教材习题2.6第5题变式王先生到市行政中心大楼办事,假定乘电梯向上一楼记作+1,向下一楼记作-1,王先生从1楼出发,电梯上下楼层依次记录如下(单位:层):+6,-3,+10,-8,+12,-7,-10.(1)请你通过计算说明王先生最后是否回到出发点1楼;(2)该中心大楼每层高3 m,电梯每向上或下1 m需要耗电0.2度,根据王先生现在所处位置,请你算算,他办事时电梯需要耗电多少度?16.“九宫图”传说是远古时代洛河中的一个神龟背上的图案,故又称“龟背图”,中国古代数学史上经常研究这一神话.(1)现有1,2,3,4,5,6,7,8,9共九个数,请将它们分别填入图2-6-5①的九个方格中,使得每行的三个数、每列的三个数、斜对角的三个数之和都等于15;(2)通过研究问题(1),利用你发现的规律,将3,5,-7,1,7,-3,9,-5,-1这九个数分别填入图2-6-5②的九个方格中,使得横、竖、斜对角的所有三个数的和都相等.图2-6-517.阅读下面文字:对于⎝ ⎛⎭⎪⎫-556+⎝ ⎛⎭⎪⎫-923+1734+⎝ ⎛⎭⎪⎫-312,可以按如下方法计算:原式=⎣⎢⎡⎦⎥⎤(-5)+⎝ ⎛⎭⎪⎫-56+[(-9)+⎝ ⎛⎭⎪⎫-23]+⎝ ⎛⎭⎪⎫17+34+⎣⎢⎡⎦⎥⎤(-3)+⎝ ⎛⎭⎪⎫-12=[(-5)+(-9)+17+(-3)]+[⎝ ⎛⎭⎪⎫-56+⎝ ⎛⎭⎪⎫-23+34+⎝ ⎛⎭⎪⎫-12]=0+⎝ ⎛⎭⎪⎫-114 =-114.上面这种方法叫拆项法. 仿照上面的方法,请你计算:(-201856)+(-201723)+(-112)+4036.参考答案1.(-2)+(-4)+(+3)+(+5)2.D [解析] A ,B ,C 都是正确的,D 项中,10+ (-20)=(-20)+10,故错误.故选D. 3.C4.A [解析] 16+(-25)+24=24+16-25=15.故选A. 5.-0.196.(+16) (+24) (-25) (-35) -20 7.A 8.B9.C [解析] (-7)+(-6.8)+(-3)+(+6.8)=[(-7)+(-3)]+[(-6.8)+(+6.8)]=-10.10.43 [解析] (+3)+(+5)+(-4)+(-2)+(-1)+(+7)+0+5×7=43(道).11.解:(1)原式=⎣⎢⎡⎦⎥⎤316+⎝ ⎛⎭⎪⎫-216+⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫-517+⎝ ⎛⎭⎪⎫-467=-9. (2)原式=[25.7+(-13.7)]+[(-7.3)+7.3]=12+0=12.(3)原式=⎣⎢⎡⎦⎥⎤()-2.125+⎝ ⎛⎭⎪⎫+518+[⎝ ⎛⎭⎪⎫+315+()-3.2]=3+0=3. (4)原式=[](-0.8)+(-9.2)+(-1)+(6.4+3.6)=(-11)+10=-1. [点评] 运用运算律,通常有下列规律: (1)互为相反数的两个数可以先相加; (2)符号相同的数可以先相加; (3)分母相同的数可以先相加;(4)几个数相加能得到整数的可以先相加.12.解:25×8+[(+2)+(-0.5)+(+3)+(-1)+(+2)+(-1.5)+(+2.5)+(+4)] =200+10.5 =210.5(千克).答:这八袋大米总共有210.5千克. 13.4.3 13.4 14.-415.解:(1)(+6)+(-3)+(+10)+(-8)+(+12)+(-7)+(-10) =6-3+10-8+12-7-10 =28-28=0,∴王先生最后回到出发点1楼. (2)王先生走过的路程是3×(|+6|+|-3|+|+10|+|-8|+|+12|+|-7|+|-10|) =3×(6+3+10+8+12+7+10) =3×56 =168(m),∴他办事时电梯需要耗电168×0.2=33.6(度). 16.解:(1)答案不唯一,如图①所示.(2)答案不唯一,如图②所示.17.解:原式=⎣⎢⎡⎦⎥⎤(-2018)+⎝ ⎛⎭⎪⎫-56+[(-2017)+⎝ ⎛⎭⎪⎫-23]+[(-1)+(-12)]+4036=[(-2018)+(-2017)+(-1)+4036]+[(-56)+(-23)+(-12)]=0+[(-56)+(-23)+(-12)]=-2.阶段能力测试(十四)(第五章)(时间:45分钟满分:100分)一、选择题(每小题5分,共30分)1.(2018·邵阳)下列图形中,是轴对称图形的是(B)2.点P在∠AOB的平分线上,点P到OA边的距离等于6,点Q是OB边上的任意一点,则下列正确的是(B)A.PQ>6 B.PQ≥6C.PQ<6 D.PQ≤63.下列四个图形,其中是轴对称图形,且对称轴的条数为2的图形的个数是(B)A.4个 B.3个 C.2个 D.1个4.如图,将△ABC沿直线DE折叠后,使点B与点A重合,已知AC=4 cm,△ADC的周长为11 cm,则BC的长(C)A.11 cmB.15 cmC.7 cmD.10 cm5.如图,C,D两点分别在AE,AB上,BC与DE相交于F点.若BD=CD=CE,∠ADC+∠ACD=114°,则∠DFC的度数为(B)A.114° B.123° C.132° D.147°,第5题图) ,第6题图)6.如图,过边长为1的等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC延长线上一点,当PA=CQ时,连PQ交AC边于D,则DE的长为(B)A.13B.12C.23D.不能确定二、填空题(每小题5分,共20分)7.正方形有4条对称轴.8.如图是小明制作的风筝,为了平衡制成了轴对称图形,已知OC是对称轴,∠A=35°,∠BCO=30°,那么∠AOB=130度.,第8题图) ,第9题图) 9.如图所示,△ABC为等边三角形,AD⊥BC,AE=AD,则∠ADE=75°.10.如图,在Rt△ABC中,∠C=90°,以A为圆心,任意长为半径画弧,分别交AC、AB于点M、N,再分别以M、N为圆心,任意长为半径画弧,两弧交于点G,作射线AG交BC 于点D,若CD=2,P为AB上一动点,则PD的最小值为2.三、解答题(共50分)11.(12分)如图,在△ABC中,AB=AC,点E在BA的延长线上,过点A作AD∥BC.则AD平分∠CAE吗?解:AD平分∠CAE,因为AD∥BC,所以∠EAD=∠B,∠CAD=∠C.因为AB=AC,所以∠C=∠B,所以∠EAD=∠CAD,所以AD平分∠CAE.12.(12分)如图,已知△ABC,过点A作直线l.求作:△A′B′C′,使它与△ABC关于直线l对称.解:分别画出点B,C关于直线l的对称点B′,C′,再依次连接AB′,B′C′,C′A,则△AB′C′即为所求,作图略.13.(12分)如图,AD⊥BC,BD=CD,点C在AE的垂直平分线上,若AB=5 cm,BD=3 cm,求BE的长.解:因为AD⊥BC,BD=CD,所以AD垂直平分BC,所以AB=AC.因为点C在AE的垂直平分线上,所以AC=CE.因为AB=5 cm,BD=3 cm,所以CE=AC=AB=5 cm,CD=3 cm,所以BE=BD+DC+CE=11 cm.14.(14分)如图,在△ABC中,AC=2AB,AD交BC于点D,点E是AD上一点,且∠BAD =∠ACE,EA=EC,试说明:EB⊥AB.证明:过点E 作EF⊥AC 于点F , 因为EA =EC , 所以AF =FC =12AC ,∠DAC =∠ACE.因为AC =2AB ,所以AF =AB. 因为∠BAD=∠ACE, 所以∠BAD=∠CAD. 在△BAE 和△FAE 中, 因为⎩⎪⎨⎪⎧AB =AF ,∠BAD =∠CAD,AE =AE ,所以△ABE≌△AFE(SAS). 所以∠ABE=∠AFE=90°. 所以EB⊥AB.。

4.4齐次线性非齐次线性方程组方程典型例题

4.4齐次线性非齐次线性方程组方程典型例题

6 6
3
a 3
0
1
2
2
6
b 5
1 1 1 1 1 1
r3 r2
~~
r4 r2
0 0
1 0
2 0
2 0
6 0
3
a
0
0
0
0
0
b
2
由此可看 R( A) 2
(1)当 a 0 或 b 2 时,R( A) R( A) ,方程组无解;
(2)当 a 0且 b 2 时,R( A) R( A) 2 5
1
1 1 2
1
1
:
0
1
a
1
:
0
1
a
1
0 0 (a 3)(a 1) a 3 0 0 a2 2a 3 a 3
• 因为该线性方程组无解,所以r(A) r(A b),应有 R(A)<3. 故必有(a-3)(a+1)=0 ,即a=3或a=-1.
• 当a=3时,r( A) r( A b) 2,方程组有解(舍 去);
方程组有无穷多解。
1 1 1 1 1 1
当a 0,b 2 时, 得 A 0 1 2 2 6 3
0 0 0 0 0 0
0 0 0 0 0 0
得同解方程组
x1 x2
x2 1 3 2x3
x3 x4 2x4
6
x5 x5
取x3
x4
x5
0
, 得非齐次方程组的特解
0 (2,3,0,0,0)T
解 对增广矩阵作初等行变换
1 1 1 1 1 1
1 1 1 1 1 1
A
3
0 5
2 1 4
1 2 3

用代入法解二元一次方程组典型例题

用代入法解二元一次方程组典型例题

用代入法解二元一次方程组典型例题[例1]解方程组⎪⎩⎪⎨⎧=+=+0214143y x y x 分析:题中方程①x 的系数为1,则用含y 的代数式表示x ,代入第②个方程;得到一个关于y 的一元一次方程,求出y ,进而再求出x ;题中方程②出现常数项为零的情况,则由②得x =-2y ,再代入①中消去x ,进而求出方程组的解.解法一:由②得x +2y =0即x =-2y .把③代入①得-2y +3y =4,得y =4把y =4代入③得x =-2×4=-8所以原方程的解为⎩⎨⎧=-=48y x 解法二:由①得x =4-3y③ 把③代入②得y y 21)34(41+-=0 即y =4把y =4代入③得x =4-3×4=-8所以原方程组的解为⎩⎨⎧=-=48y x 评注:解二元一次方程组的基本思想是“消元”,把二元一次方程组转化为我们已熟悉的一元一次方程来解.“代入法”是消元的一种方法,用代入法解二元一次方程组,首先要观察方程组中未知数系数的特点,尽可能选择变形后的方程比较简单和代入后化简比较容易的方程变形,这是很关键的一步.[例2]解方程组⎪⎩⎪⎨⎧+=+=-4132123y x x y 分析:先把方程②整理为一般形式4x -3y =-5③,通过观察发现方程①和③中y 的系数是“+3”和“-3”,可以用整体代入法将①变形为3y =1+2x 后代入③,得出关于x 的一元一次方程,进而得到方程组的解.解:原方程整理为 ⎩⎨⎧-=-=-534123y x x y 由①得3y =1+2x ④把④代入③得4x -(2x +1)=-5解得x =-2把x =-2代入④,得3y =2×(-2)+1y =-1 ①②①②①③所以原方程的解为⎩⎨⎧-=-=12y x评注:①解二元一次方程组一般要整理成标准形式,这样有利于确定消去哪个未知数;②用代入法解方程组,关键是灵活“变形”和“代入”,以达到“消元”的目的,要认真体会此题代入的技巧和方法.[例3]已知关于x 、y 的方程组⎩⎨⎧=+=+⎩⎨⎧-=+=-33211231332by ax y x by ax y x 和的解相同,求a 、b 的值. 分析:既然两个方程组的解相同,那么两个方程组的解也应与方程组⎩⎨⎧=+=-1123332y x y x 的解相同,将此方程组的解代入含有a 、b 的另两个方程,则解关于a 、b 的二元一次方程组,从而求出a 、b 的值.解:求得方程组⎩⎨⎧=+=-1123332y x y x 解为⎩⎨⎧==,13y x 将其代入ax +by =-1,2ax +3by =3,可得 ⎩⎨⎧=+-=+33613b a b a 由①得,b =-3a -1 ③把③代入②,得6a +3(-3a -1)=3.解得a =-2把a =-2代入④,得b =5所以a =-2,b =5①②。

人教版初中数学二元一次方程组典型例题及答题技巧

人教版初中数学二元一次方程组典型例题及答题技巧

人教版初中数学二元一次方程组典型例题及答题技巧单选题1、若x+y+z≠0且2y+zx =2x+yz=2z+xy=k,则k的值为()A.1B.2C.3D.4答案:C解析:利用已知得出2y+z=kx① ,2x+y=kz② ,2z+x=ky③,进而求出3(x+y+z)=k(x+y+z),再利用提取公因式法分解因式进而求出即可.:解:∵2y+zx =2x+yz=2z+xy=k,∴{2y+z=kx①2x+y=kz②2z+x=ky③,∴①+②+③得:3(x+y+z)=k(x+y+z),3(x+y+z)−k(x+y+z)=0,3(x+y+z)(3−k)=0,因为x+y+z不等于0,所以3−k=0,即k=3.故选:C.小提示:此题主要考查了三元一次方程组、比例的性质,正确将已知变形得出3(x+y+z)=k(x+y+z)是解题关键.2、以方程组{x +y =2x −y =1的解为坐标的点(x ,y )在平面直角坐标系中的位置是( ) A .第一象限B .第二象限C .第三象限D .第四象限答案:A解析:先求出方程组的解,然后即可判断点的位置.解:解方程组{x +y =2x −y =1, 得{x =1.5y =0.5, ∴点(1.5,0.5)在第一象限.故选:A .小提示:本题考查了二元一次方程组的解法和坐标系中点的坐标特点,属于基本题型,解题的关键是熟练掌握上述基础知识.3、某气象台发现:在某段时间里,如果早晨下雨,那么晚上是晴天;如果晚上下雨,那么早晨是晴天,已知这段时间有9天下了雨,并且有6天晚上是晴天,7天早晨是晴天,则这一段时间有( )A .9天B .11天C .13天D .22天答案:B解析:解:根据题意设有x 天早晨下雨,这一段时间有y 天,有9天下雨,即早上下雨或晚上下雨都可称之为当天下雨,①总天数﹣早晨下雨=早晨晴天;②总天数﹣晚上下雨=晚上晴天;列方程组{y −x =7y −(9−x)=6, 解得{x =4y =11, 所以一共有11天,故选B .小提示:本题考查二元一次方程组的应用.4、已知{x =−1y =2 是二元一次方程组{3x +2y =m nx −y =1的解,则m ﹣n 的值是( ) A .1B .2C .3D .4答案:D解析:根据已知将{x =−1y =2 代入二元一次方程组{3x +2y =m nx −y =1得到m ,n 的值,即可求得m-n 的值. ∵{x =−1y =2 是二元一次方程组{3x +2y =m nx −y =1∴{−3+4=m −n −2=1∴m=1,n=-3m-n=4故选:D小提示:本题考查了二元一次方程组解的定义,已知二元一次方程组的解,可求得方程组中的参数.5、二元一次方程x +3y =4有一组解互为相反数,则y 的值为( )A .2B .1C .0D .-1解析:由题意,则x +y =0,然后结合x +3y =4,即可求出y 的值.解:根据题意,∵二元一次方程x +3y =4有一组解互为相反数,∴x +y =0,∴x +3y =(x +y)+2y =4,∴2y =4,解得:y =2;故选:A .小提示:本题考查了二元一次方程组,二元一次方程的解,以及相反数的定义,解题的关键是掌握解二元一次方程组的方法,正确得到x +y =0是突破口.6、已知{x =1y =1是方程2x +my =3的一个解,那么m 的值是( ) A .1B .3C .﹣1D .﹣3答案:A解析:根据方程的解满足方程,将{x =1y =1代入方程,得到关于m 的一元一次方程,解方程求解即可. 把{x =1y =1代入方程得:2+m =3, 解得:m =1.故选:A .本题考查了二元一次方程组的解的定义,理解二元一次方程组的解的定义是解题的关键.7、如图,AB ⊥BC ,∠ABD 的度数比∠DBC 的度数的两倍少15°,设∠ABD 和∠DBC 的度数分别为x°、y°,那么下面可以求出这两个角的度数的方程组是( )A .{x +y =90x =y −15B .{x +y =90x =2y −15C .{x +y =90x =15−2yD .{2x =90x =2y −15 答案:B解析:∵AB ⊥BC ,∴∠ABD+∠DBC=90°,又∵∠ABD 的度数比∠DBC 的度数的两倍少15度,∴当设∠ABD 和∠DBC 度数分别为x 、y 时,由题意可得:{x +y =90x =2y −15. 故选:B.8、小亮解方程组{2x +y =●2x −y =12 的解为{x =5y =Δ,由于不小心滴上了两滴墨水,刚好遮住了两个数●和△,则两个数●与△的值为( )A .{●=8Δ=2B .{●=−8Δ=−2C .{●=−8Δ=2D .{●=8Δ=−2答案:D根据题意可以分别求出●与△的值,本题得以解决.∵方程组{2x+y=●2x−y=12的解为{x=5y=Δ,∴将x=5代入2x﹣y=12,得:y=﹣2,∴△=﹣2.将x=5,y=﹣2代入2x+y得:2x+y=2×5+(﹣2)=8,∴●=8,∴●=8,△=﹣2.故选:D.小提示:本题考查了二元一次方程组的解,解答本题的关键是明确题意,求出所求数的值.填空题9、方程2x−3y=5,xy=3,x+3y=3,3x−y+2z=0,x2+y=6中是二元一次方程的有___个.答案:1解析:二元一次方程满足的条件:整式方程;含有2个未知数;未知数的最高次项的次数是1.解:符合二元一次方程的定义的方程只有2x−3y=5;xy=3,x2+y=6的未知数的最高次项的次数为2,不符合二元一次方程的定义;x+3y=1不是整式方程,不符合二元一次方程的定义;3x−y+2z=0含有3个未知数,不符合二元一次方程的定义;由上可知是二元一次方程的有1个.所以答案是:1.小提示:主要考查二元一次方程的概念.要求熟悉二元一次方程的形式及其特点:含有2个未知数,未知数的最高次项的次数是1的整式方程.10、古代《张丘建算经》中有一个问题,意思是:甲、乙两人各有钱若干,如果甲得到乙的10个钱,那么甲所有的钱就比乙所剩的多4倍;如果乙得到甲的10个钱,那么两人所有的钱相等,甲原有钱_______个,乙原有钱_________个.答案: 40 20解析:设甲有钱x 个,乙有钱y 个,根据题意列出方程组,解方程组即可.解:设甲有钱x 个,乙有钱y 个.根据题意得{x +10=(4+1)×(y −10)x −10=y +10, 解得{x =40y =20. 所以答案是:40;20小提示:本题考查了列方程组解实际问题,根据题意列出方程组是解题关键.11、某水果基地为提高效益,对甲、乙、丙三种水果品种进行种植对比研究.去年甲、乙、丙三种水果的种植面积之比为5:3:2,甲、乙、丙三种水果的平均亩产量之比为6:3:5.今年重新规划三种水果的种植面积,三种水果的平均亩产量和总产量都有所变化.甲品种水果的平均亩产量在去年的基础上提高了50%,乙品种水果的平均亩产量在去年的基础上提高了20%,丙品种的平均亩产量不变.其中甲、乙两种品种水果的产量之比为3:1,乙、丙两种品种水果的产量之比为6:5,丙品种水果增加的产量占今年水果总产量的587,则三种水果去年的种植总面积与今年的种植总面积之比为______.答案:5:7##57 解析:设去年甲、乙、丙三种水果的种植面积分别为:5x,3x,2x, 设去年甲、乙、丙三种水果的平均亩产量分别为:6a,3a,5a, 设今年的种植面积分别为:m,n,f, 再根据题中相等关系列方程:9a·m 3.6a·n =3①,3.6a·n 5a·f =65②,求解:m =1.2n,f =0.6n, 再利用丙品种水果增加的产量占今年水果总产量的587,列方程5a ·f −5a ·2x =587(9a ·m +3.6a ·n +5a ·f), 求解x =15n, 从而可得答案.解:∵ 去年甲、乙、丙三种水果的种植面积之比为5:3:2,设去年甲、乙、丙三种水果的种植面积分别为:5x,3x,2x,∵去年甲、乙、丙三种水果的平均亩产量之比为6:3:5,设去年甲、乙、丙三种水果的平均亩产量分别为:6a,3a,5a,则今年甲品种水果的平均亩产量为:6a ×(1+50%)=9a,乙品种水果的平均亩产量为:3a(1+20%)=3.6a, 丙品种的平均亩产量为5a,设今年的种植面积分别为:m,n,f,∵ 甲、乙两种品种水果的产量之比为3:1,乙、丙两种品种水果的产量之比为6:5,∴9a·m 3.6a·n =3①,3.6a·n 5a·f =65②,解得:m =1.2n,f =0.6n,又丙品种水果增加的产量占今年水果总产量的587,∴5a ·f −5a ·2x =587(9a ·m +3.6a ·n +5a ·f),∴87×5a ·0.6n −87×5a ·2x =45a ×1.2n +18an +15an,解得:x =15n,所以三种水果去年的种植总面积与今年的种植总面积之比为:10x m+n+f =2n1.2n+n+0.6n=57.所以答案是:5:7.小提示:本题考查的是三元一次方程组的应用,设出合适的未知数与参数,确定相等关系,建立方程组,寻求未知量之间的关系是解本题的关键.12、已知∠α和∠β互为补角,且∠β比∠α小30°,则∠β等于____°答案:75°.解析:根据题目中的等量关系列方程组求解即可.∵∠α和∠β互为补角,且∠β比∠α小30°,∴{∠α+∠β=180°∠β=∠α−30°,解得:∠α=105°,∠β=75°,故答案为75°.小提示:本题考查补角的定义以及二元一次方程组的应用,根据题意列出方程组是解题关键.13、《算法统宗》是中国古代数学名著,作者是明代著名数学家程大位.在其中有这样的记载“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”,译文:有100名和尚分100个馒头,正好分完.如果大和尚一人分3个,小和尚3人分一个,试问大、小和尚各有几人?设有大和尚x人,小和尚y人,可列方程组为______.答案:{x +y =1003x +13y =100 解析:设大和尚有x 人,则小和尚有y 人,根据“有100个和尚”和大和尚一人分3只,小和尚3人分一只刚好分完100个馒头”列出方程组即可.设大和尚有x 人,则小和尚有y 人,根据题意得{x +y =1003x +13y =100, 故答案为:{x +y =1003x +13y =100 . 小提示:本题考查了二元一次方程组的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程组.解答题14、在解方程组{bx +ay =10①x −cy =14②时,甲正确地解{x =4y =−2,乙把c 写错得到{x =2y =4.若两人的运算过程均无错误,求a ,b ,c 的值.答案:a =1, b =3, c =5.解析:先将甲的解代入原式解出c,再将乙的解代入原式解出a 、b 即可.因为甲得到的解正确,所以把甲得到的{x =4y =−2代入原方程组,得 {4b −2a =10③4+2c =14④ , 由④,解得c =5.已知乙将c 写错得到{x =2y =4,因为a ,b 没有写错,所以将这个解代入方程①,得2b+4a=10.⑤解由③⑤组成的方程组,得a=1,b=3所以a=1,b=3,c=5.小提示:本题考查二元一次方程组与解的关系,关键在于代入原式求出参数.15、春节临近,坚果和炒货都进入销售旺季,某批发商去年12月售出一批开心果和夏威夷果,其中开心果的售价为60元/千克,夏威夷果的售价为50元/千克,开心果的销量比夏威夷果的销量多500千克,总销售额为85000元.(1)该批发商去年12月开心果和夏威夷果的销量分别为多少千克?(2)由于供不应求,该批发商开始调整价格,今年1月开心果销售价格在去年12月基础上增长了2a%,销量减少了100千克;今年1月夏威夷果销售价格在去年12月基础上增加了45a元,销量下降了10%,最终今年每月总销售额比去年12月总销售额多了5900元,求a的值.答案:(1)该批发商去年12月开心果和夏威夷果的销量分别为1000千克,500千克;(2)a=10.解析:(1)设该批发商去年12月开心果的销量为x千克,夏威夷果的销量分别为y千克,根据等量关系开心果的销量比夏威夷果的销量多500千克,总销售额为85000元.列方程组{x−y=50060x+50y=85000,解方程组即可;(2)根据开心果涨价后销售价格×减少后销量+夏威夷果涨价后的销售价格×降低10%后的销量=12月份销售额+5900,列方程,然后解方程即可.(1)解:设该批发商去年12月开心果的销量为x千克,夏威夷果的销量分别为y千克根据题意,得{x−y=50060x+50y=85000,解得{x =1000y =500, 答该批发商去年12月开心果和夏威夷果的销量分别为1000千克,500千克;(2)解:60(1+2%a )×(1000−100)+(50+45a)×500(1−10%)=85000+5900,整理得76500+1440a =90900,解得:a =10,经检验a =10是原方程的根,并符合题意.小提示:本题考查列二元一次方程组解应用题,一元一次方程解销售问题应用题,掌握列二元一次方程组解应用题,一元一次方程解销售问题应用题的方法与步骤是解题关键.。

初一数学二元一次方程组典型例题详解

初一数学二元一次方程组典型例题详解

初一数学二元一次方程组典型例题详解一、和差倍数问题知识梳理:和差问题是已知两个数的和或这两个数的差,以及这两个数之间的倍数关系,求这两个数各是多少。

典型例题:甲、乙两人分别以不变的速度打字,2分钟共打了240个字,已知甲每分钟比乙多打10个字。

问甲、乙两人每分钟各打多少个?解:设甲每分钟打x个字,乙每分钟打y个字。

根据题意可列方程组为2(x+y)=240①x-y=10②由①得x+y=120 ③,②+③得2x=130,解得x=65,将x=65代入②得:y=55。

答:甲每分钟打65个字,乙每分钟打55个字。

思路点拨:由甲乙两人2分钟共打了240个字可以得到第一个等量关系式2(x+y)=240,再由甲每分钟比乙多打10个字可以得到第二个等量关系式x-y=10,组成方程组求解即可。

二、产品配套问题典型例题:某车间有22名工人生产螺钉和螺母,每人每天平均生产螺钉1200个,螺母2000个,一个螺钉要配两个螺母,为了使每天生产的产品正好配套,应该分配多少名工人生产螺钉,多少名工人生产螺母?解:设分配x名工人生产螺钉,y名工人生产螺母。

由题意可列方程组为x+y=22①2x1200x=2000y②由②得6x=5y③,由①得x=22-y,代入③得6(22-y)=5y,整理得11y=132,解得y=12,则x=22-12=10。

答:应该分配10名工人生产螺钉,12名工人生产螺母。

思路点拨:本题的第一个等量关系比较容易得出:生产螺钉和螺母的工人共有22名;第二个等量关系的得出要弄清螺钉与螺母是如何配套的,即螺母的数量是螺钉的数量的2倍(注意:别把2倍的关系写反)。

三、工作量问题知识梳理:我们在解决工程问题时通常把工作总量看成1;工作量=工作效率×工作时间;总工作量=每个个体工作量之和;工作效率=工作量÷工作时间(即单位时间的工作量);工作效率=1÷完成工作的总时间。

典型例题:现要整理一批文件,由1个人完成需要40个小时,计划由一部分人先做4小时,再增加2人和他们一起再做8小时,完成这项任务,假设这些人的工作效率都相同,则应先安排多少人工作?解:设总工作量为1,应先安排x人工作。

三元一次方程组典型例题

三元一次方程组典型例题

x + y+ z =12
x+2y+5 z =22
x=4y
《三元一次方程组》典型例题
例1.小明手头有12张面额分别为1元、2元、5元的纸币,共计22元,其中1元纸币的数量是2元纸币数量的4倍.求1元、2元、5元纸币各多少张.
分析:设1元、2元、5元的纸币分别为x 张、y 张、z 张
根据等量关系可列方程组:
技巧:根据等量关系列方程组即可.
例2. 解方程组
分析:观察三元一次方程组中三个三元一次方程系数的特点
分析:把a,b,c看作三个未知数,分别把已知的x,y值代入原等式,就可以得到一个三元一次方程组.
c
bx
ax
y+
+
=2
34
2312
6
x y z
x y z
x y z
-+=


+-=

⎪++=

例3.在等式中,当x=-1时,y=0;当x=2时,y=3;当x=5时,y=60.求,a,b,c的值.。

新编【人教版】初一数学下册《期末复习(四) 二元一次方程组》(解析版)

新编【人教版】初一数学下册《期末复习(四)  二元一次方程组》(解析版)

人教版初一数学下册期末复习(四) 二元一次方程组(典型例题+复习试卷配解析)考点一 二元一次方程(组)的解的概念【例1】已知2,1x y ==⎧⎨⎩是二元一次方程组8,1mx ny nx my +=-=⎧⎨⎩的解, 则2m-n 的算术平方根为( )A.4B.2D.±2【解析】把2,1x y ==⎧⎨⎩代入方程组8,1mx ny nx my +=-=⎧⎨⎩得28,2 1.m n n m +=-=⎧⎨⎩解得3,2.m n ==⎧⎨⎩ 所以2m-n=4,4的算术平方根为2.故选B.【方法归纳】方程(组)的解一定满足原方程(组),所以将已知解代入含有字母的原方程(组),得到的等式一定成立,从而转化为一个关于所求字母的新方程(组),解这个方程(组)即可求得待求字母的值.1.若方程组,ax y b x by a+=-=⎧⎨⎩的解是1,1.x y ==⎧⎨⎩求(a+b)2-(a-b)(a+b)的值.考点二 二元一次方程组的解法【例2】解方程组:128.x y x y =++=⎧⎨⎩,①②【分析】可以直接把①代入②,消去未知数x ,转化成一元一次方程求解.也可以由①变形为x-y=1,再用加减消元法求解.【解答】方法一:将①代入到②中,得2(y+1)+y=8.解得y=2.所以x=3.因此原方程组的解为3,2.x y ==⎧⎨⎩ 方法二:1,28.x y x y =++=⎧⎨⎩①② 对①进行移项,得x-y=1.③②+③得3x=9.解得x=3.将x=3代入①中,得y=2.所以原方程组的解为3,2.x y ==⎧⎨⎩ 【方法归纳】二元一次方程组有两种解法,我们可以根据具体的情况来选择简便的解法.如果方程中有未知数的系数是1时,一般采用代入消元法;如果两个方程的相同未知数的系数相同或互为相反数时,一般采用加减消元法;如果方程组中的系数没有特殊规律,通常用加减消元法.2.方程组 25,7213x y x y +=--=⎧⎨⎩的解是__________.3.解方程组:3419,4.x y x y +=-=⎧⎨⎩①②考点三 由解的关系求方程组中字母的取值范围【例3】若关于x 、y 的二元一次方程组31,33x y a x y +=++=⎧⎨⎩①②的解满足x+y<2,则a 的取值范围为( )A.a<4B.a>4C.a<-4D.a>-4【分析】本题运用整体思想,把二元一次方程组中两个方程相加,得到x 、y 的关系,再根据x+y<2,求得本题答案;也可以按常规方法求出二元一次方程组的解,再由x+y<2求出a 的取值范围,但计算量大.【解答】由①+②,得4x+4y=4+a,x+y=1+4a ,由x+y<2,得1+4a <2,解得a<4.故选A. 【方法归纳】通过观察两个方程,运用整体思想解题,这是中考中常用的解题方法.4.已知x 、y 满足方程组25,24,x y x y +=+=⎧⎨⎩则x-y 的值为__________.考点四 二元一次方程组的应用【例4】某中学拟组织九年级师生去黄山举行毕业联欢活动.下面是年级组长李老师和小芳、小明同学有关租车问题的对话:李老师:“平安客运公司有60座和45座两种型号的客车可供租用,60座客车每辆每天的租金比45座的贵200元.”小芳:“我们学校八年级师生昨天在这个客运公司租了4辆60座和2辆45座的客车到韶山参观,一天的租金共计5 000元.”小明:“我们九年级师生租用5辆60座和1辆45座的客车正好坐满.”根据以上对话,解答下列问题:(1)平安客运公司60座和45座的客车每辆每天的租金分别是多少元?(2)按小明提出的租车方案,九年级师生到该公司租车一天,共需租金多少元?【分析】(1)根据题目给出的条件得出的等量关系是60座客车每辆每天的租金-45座客车每辆每天的租金=200元,4辆60座一天的租金+2辆45座的一天的租金=5 000元;由此可列出方程组求解;(2)可根据“我们九年级师生租用5辆60座和1辆45座的客车正好坐满”以及(1)的结果来求出答案.【解答】(1)设平安公司60座和45座客车每辆每天的租金分别为x 元,y 元.由题意,得200,425000.x y x y -=+=⎧⎨⎩解得900,700.x y ==⎧⎨⎩ 答:平安客运公司60座和45座的客车每辆每天的租金分别为900元和700元.(2)5×900+1×700=5 200(元).答:九年级师生租车一天共需资金5 200元.【方法归纳】列方程解决实际问题的解题步骤是:1.审题:弄清已知量和未知量;2.列未知数,并根据相等关系列出符合题意的方程;3.解这个方程;4.验根并作答:检验方程的根是否符合题意,并写出完整的答.5.如图是一个正方体的展开图,标注了字母“a ”的面是正方体的正面.如果正方体相对两个面上的代数式的值相等,求x,y 的值.6.在某次亚运会中,志愿者们手上、脖子上的丝巾非常美丽.车间70名工人承接了制作丝巾的任务,已知每人每天平均生产手上的丝巾1 800条或者脖子的丝巾1 200条,一条脖子上的丝巾要配两条手上的丝巾.为了使每天生产的丝巾刚好配套,应分配多少名工人生产脖子上的丝巾,多少名工人生产手上的丝巾?复习测试一、选择题(每小题3分,共30分)1.下列方程组中,是二元一次方程组的是( )A.212x y y z +=-+=⎧⎨⎩B.53323x y y x -==+⎧⎨⎩C.512x y xy -==⎧⎨⎩D.2371x y x y -=+=⎧⎨⎩ 2.方程2x+y=9的正整数解有( )A.1组B.2组C.3组D.4组3.方程组32,3211x y x y -=+=⎧⎨⎩①②的最优解法是( ) A.由①得y=3x-2,再代入② B.由②得3x=11-2y ,再代入①C.由②-①,消去xD.由①×2+②,消去y4.已知21x y ==⎧⎨⎩,是方程组4,0ax by ax by +=--=⎧⎨⎩的解,那么a ,b 的值分别为( ) A.1,2 B.1,-2 C.-1,2 D.-1,-25.A 、B 两地相距6 km ,甲、乙两人从A 、B 两地同时出发,若同向而行,甲3 h 可追上乙;若相向而行,1 h 相遇,求甲、乙两人的速度各是多少?若设甲的速度为x km/h ,乙的速度为y km/h ,则得方程组为( )A.6336x y x y +=+=⎧⎨⎩B.636x y x y +=-=⎧⎨⎩C.6336x y x y -=+=⎧⎨⎩D.6336x y x y +=-=⎧⎨⎩ 6.足球比赛的记分为:胜一场得3分,平一场得1分,负一场得0分,一队打了14场比赛,负5场,共得19分,那么这个队胜了( )A.3场B.4场C.5场D.6场7.已知a 、b 满足方程组22,26,a b a b -=+=⎧⎨⎩则3a+b 的值为( ) A.8 B.4 C.-4 D.-88.方程组24,31,7x yx zx y z+=+=++=⎧⎪⎨⎪⎩的解是( )A.221xyz===⎧⎪⎨⎪⎩B.211xyz===⎧⎪⎨⎪⎩C.281xyz⎧=-==⎪⎨⎪⎩D.222 xyz===⎧⎪⎨⎪⎩9.某车间有90名工人,每人每天平均能生产螺栓15个或螺帽24个,已知一个螺栓配套两个螺帽,应该如何分配工人才能使生产的螺栓和螺帽刚好配套?则生产螺栓和生产螺帽的人数分别为( )A.50人,40人B.30人,60人C.40人,50人D.60人,30人10.甲、乙二人收入之比为4∶3,支出之比为8∶5,一年间两人各存5 000元(设两人剩余的钱都存入银行),则甲、乙两人年收入分别为( )A.15 000元,12 000元B.12 000元,15 000元C.15 000元,11 250元D.11 250元,15 000元二、填空题(每小题4分,共20分)11.已知a、b12.已知2,1xy==⎧⎨⎩是二元一次方程组7,1mx nynx my+=-=⎧⎨⎩的解,则m+3n的立方根为__________.13.孔明同学在解方程组,2y kx by x=+=-⎧⎨⎩的过程中,错把b看成了6,他其余的解题过程没有出错,解得此方程组的解为1,2,xy=-=⎧⎨⎩又已知3k+b=1,则b的正确值应该是__________.14.已知|x-8y|+2(4y-1)2+|8z-3x|=0,则x=__________,y=__________,z=__________.15.一个两位数的十位数字与个位数字的和为8,若把这个两位数加上18,正好等于将这个两位数的十位数字与个位数字对调后所组成的新两位数,则原来的两位数为__________.三、解答题(共50分)16.(10分)解方程组:(1)251x yx y+=-⎧=⎨⎩,①;②(2)1151.x y zy z xz x y+-=+-=+-⎪⎨=⎧⎪⎩,①,②③17.(8分)(2013·吉林)吉林人参是保健佳品.某特产商店销售甲、乙两种保鲜人参,甲种人参每棵100元,乙种人参每棵70元.王叔叔用1 200元在此特产商店购买这两种人参共15棵,求王叔叔购买每种人参的棵数.18.(9分)已知方程组53,54x yax y+=+=⎧⎨⎩与方程组25,51x yx by-=+=⎧⎨⎩有相同的解,求a,b的值.19.(11分)食品安全是关乎民生的问题,在食品中添加过量的添加剂对人体有害,但适量的添加剂对人体无害且有利于食品的储存和运输.某饮料加工厂生产的A、B两种饮料均需加入同种添加剂,A饮料每瓶需加该添加剂2克,B饮料每瓶需加该添加剂3克,已知270克该添加剂恰好生产了A、B两种饮料共100瓶,问A、B两种饮料各生产了多少瓶?20.(12分)某商场计划拨款9万元从厂家购进50台电冰箱,已知该厂家生产三种不同型号的电冰箱,出厂价分别为:甲种每台1 500元,乙种每台2 100元,丙种每台2 500元. (1)某商场同时购进其中两种不同型号电冰箱共50台,用去9万元,请你研究一下商场的进货方案;(2)该商场销售一台甲种电冰箱可获利150元,销售一台乙种电冰箱可获利200元,销售一台丙种电冰箱可获利250元,在同时购进两种不同型号的方案中,为使销售时获利最多,你选择哪种进货方案?参考答案变式练习1.把1,1x y ==⎧⎨⎩代入方程组,ax y b x by a +=-=⎧⎨⎩,得1,1.a b b a +=-=⎧⎨⎩整理,得1,1.a b a b -=-+=⎧⎨⎩ ∴(a+b)2-(a-b)(a+b)=12-(-1)×1=2.2.13x y ==-⎧⎨⎩, 3.由②,得x=4+y.③把③代入①,得3(4+y)+4y=19.解得y=1.把y=1代入③,得x=4+1=5.∴原方程组的解为51.x y ==⎧⎨⎩, 4.15.根据题意,得25,5 1.x y x y -=-=+⎧⎨⎩解得3,1.x y ==⎧⎨⎩ 6.设应分配x 名工人生产脖子上的丝巾,y 名工人生产手上的丝巾,由题意得70,120021800.x y x y +=⨯=⎧⎨⎩解得30,40.x y ==⎧⎨⎩ 答:应分配30名工人生产脖子上的丝巾,40名工人生产手上的丝巾.复习测试1.B2.D3.C4.D5.D6.C7.A8.C9.C 10.C11.6 12.2 13.-11 14.2 14 3415.35 16.(1)①+②,得3x=6.解得x=2.把x=2代入②,得y=1.所以原方程组的解为21.x y ==⎧⎨⎩, (2)①+②+③,得x+y+z=17.④④-①,得2z=6,即z=3.④-②,得2x=12,即x=6.④-③,得2y=16,即y=8.所以原方程组的解是683.x y z ⎧⎪=⎩==⎪⎨,,17.设王叔叔购买甲种人参x 棵,乙种人参y 棵.根据题意,得151********.x y x y +=+=⎧⎨⎩,解得510.x y =⎩=⎧⎨, 答:王叔叔购买甲种人参5棵,乙种人参10棵.18.解方程组53,25x y x y +=-=⎧⎨⎩,得1,2.x y ==-⎧⎨⎩ 将x=1,y=-2代入ax+5y=4,得a=14.将x=1,y=-2代入5x+by=1,得b=2.19.设A 饮料生产了x 瓶,B 饮料生产了y 瓶,依题意得100,23270.x y x y +=+=⎧⎨⎩解得30,70.x y ==⎧⎨⎩ 答:A 饮料生产了30瓶,B 饮料生产了70瓶.20.(1)①设购进甲种电冰箱x 台,购进乙种电冰箱y 台,根据题意,得50,1500210090000.x y x y +=+=⎧⎨⎩解得25,25.x y ==⎧⎨⎩ 故第一种进货方案是购甲、乙两种型号的电冰箱各25台.②设购进甲种电冰箱x 台,购进丙种电冰箱z 台,根据题意,得50,1500250090000.x z x z +=+=⎧⎨⎩解得35,15.x z ==⎧⎨⎩ 故第二种进货方案是购进甲种电冰箱35台,丙种电冰箱15台. ③设购进乙种电冰箱y 台,购进丙种电冰箱z 台,根据题意,得 50,2100250090000.y z y z +=+=⎧⎨⎩解得87.5,37.5.y z ==-⎧⎨⎩不合题意,舍去. 故此种方案不可行.(2)上述的第一种方案可获利:150×25+200×25=8 750(元),第二种方案可获利:150×35+250×15=9 000(元),因为8 750<9 000,故应选择第二种进货方案,即购进甲种电冰箱35台,乙种电冰箱15台.。

列方程组解应用题1

列方程组解应用题1

典型例题【例1】某种仪器由1种A部件和1个B部件配套构成.每个工人每天可以加工A部件1000个或者加工B部件600个,现有工人16名,应怎样安排人力,才能使每天生产的A部件和B部件配套?【例2】根据图中给出的信息,解答下列问题:(1)放入一个小球水面升高cm,放入一个大球水面升高cm;(2)如果要使水面上升到50cm,应放入大球、小球各多少个?【例3】某校住校生宿舍有大小两种寝室若干间,据统计该校高一年级男生740人,使用了55间大寝室和50间小寝室,正好住满;女生730人,使用了大寝室50间和小寝室55间,也正好住满.求该校的大小寝室每间各住多少人?【例4】某文具店准备购进甲,乙两种铅笔,若购进甲种钢笔100支,乙种铅笔50支,需要1000元,若购进甲种钢笔50支,乙种钢笔30支,需要550元.求购进甲,乙两种钢笔每支各需多少元?【例5】某学校将周三“阳光体育”项目定为跳绳活动,为此学校准备购置长、短两种跳绳若干.已知长跳绳的单价比短跳绳单价的两倍多4元,且购买2条长跳绳与购买5条短跳绳的费用相同.两种跳绳的单价各是多少元?【例6】某镇水库的可用水量为12000立方米,假设年降水量不变,能维持该镇16万人20年的用水量.实施城市化建设,新迁入4万人后,水库只够维持居民15年的用水量.(1)问:年降水量为多少万立方米?每人年平均用水量多少立方米?(2)政府号召节约用水,希望将水库的保用年限提高到25年,则该镇居民人均每年需节约多少立方米才能实现目标?【例7】甲、乙二人在一环形场地上从A点同时同向匀速跑步,甲的速度是乙的2.5倍,4分钟两人首次相遇,此时乙还需要跑300米才跑完第一圈,求甲、乙二人的速度及环形场地的周长.(列方程组求解)【例8】某校举办八年级学生数学素养大赛,比赛共设四个项目:七巧板拼图,趣题巧解,数学应用,魔10%,40%,20%,30%折算记入总分,根据猜测,求出甲的总分;(2)本次大赛组委会最后决定,总分为80分以上(包含80分)的学生获一等奖,现获悉乙,丙的总分分别是70分,80分.甲的七巧板拼图、魔方复原两项得分折算后的分数和是20分,问甲能否获得这次比赛的一等奖?课堂练习1、“二广”高速在益阳境内的建设正在紧张地进行,现有大量的沙石需要运输.“益安”车队有载重量为8吨、10吨的卡车共12辆,全部车辆运输一次能运输110吨沙石.求“益安”车队载重量为8吨、10吨的卡车各有多少辆?2、为了抓住2013年凉都消夏文化节的商机,某商场决定购进甲,乙两种纪念品,若购进甲种纪念品1件,乙种纪念品2件,需要160元;购进甲种纪念品2件,乙种纪念品3件,需要280元.购进甲乙两种纪念品每件各需要多少元?3、夏季来临,天气逐渐炎热起来,某商店将某种碳酸饮料每瓶的价格上调了10%,将某种果汁饮料每瓶的价格下调了5%,已知调价前买这两种饮料个一瓶共花费7元,调价后买上述碳酸饮料3瓶和果汁饮料2瓶共花费17.5元,问这两种饮料在调价前每瓶各多少元?4、苏州某旅行社组织甲乙两个旅游团分别到西安、北京旅行,已知这两旅游团共有55人,甲旅游团的人数比乙旅游团的人数的2倍少5人.问甲、乙两个旅游团个有多少人?5、如图,两根铁棒直立于桶底水平的木桶中,在桶中加入水后,一根露出水面的长度是它的,另一根露出水面的长度是它的.两根铁棒长度之和为220cm,此时木桶中水的深度是多少?6、我国古代数学名著《孙子算经》中有这样一题,今有鸡兔同笼,上有35头,下有94足,问鸡兔各几何?此题的答案是:鸡有23只,兔有12只,现在小敏将此题改编为:今有鸡兔同笼,上有33头,下有88足,问鸡兔各几何?7、2013年4月20日,我省芦山县发生7.0级强烈地震,造成大量的房屋损毁,急需大量帐篷.某企业接到任务,须在规定时间内生产一批帐篷.如果按原来的生产速度,每天生产120顶帐篷,那么在规定时间内只能完成任务的90%.为按时完成任务,该企业所有人员都支援到生产第一线,这样,每天能生产160顶帐篷,刚好提前一天完成任务.问规定时间是多少天?生产任务是多少顶帐篷?家庭作业1、为了研究吸烟是否对肺癌有影响,某肿瘤研究所随机地调查了10000人,并进行统计分析.结果显示:在吸烟者中患肺癌的比例是2.5%,在不吸烟者中患肺癌的比例是0.5%,吸烟者患肺癌的人数比不吸烟者患肺癌的人数多22人.如果设这10000人中,吸烟者患肺癌的人数为x ,不吸烟者患肺癌的人数为y ,根据题意,下面列出的方程组正确的是( ).A.⎩⎨⎧=⨯+⨯=-10000%5.0%5.222y x y xB.⎪⎩⎪⎨⎧=+=-10000%5.0%5.222y xy x C.⎩⎨⎧=⨯-⨯=+22%5.0%5.210000y x y x D.⎪⎩⎪⎨⎧=-=+22%5.0%5.210000y x y x 2、陈老师打算购买气球装扮学校“六一”儿童节活动会场,气球的种类有笑脸和爱心两种,两种气球的价格不同,但同一种气球的价格相同,由于会场布置需要,购买时以一束(4个气球)为单位,已知第一、二束气球的价格如图所示,则第三束气球的价格为( )篷恰好(即不多不少)能容纳这60名灾民,则不同的搭建方案有A.4种B.11种C.6种D.9种4、成渝路内江至成都段全长170千米,一辆小汽车和一辆客车同时从内江、成都两地相向开出,经过1小时10分钟相遇,小汽车比客车多行驶20千米.设小汽车和客车的平均速度为x 千米/小时和y 千米/小时,则下列方程组正确的是( )5、雅安地震后,灾区急需帐篷.某企业急灾区之所急,准备捐助甲、乙两种型号的帐篷共1500顶,其中甲种帐篷每顶安置6人,乙种帐篷每顶安置4人,共安置8000人.设该企业捐助甲种帐篷x顶、乙种帐BD元,乙种药材每斤60斤,且甲种药材比乙种药材多买了2斤.设买了甲种药材x斤,乙种药材y斤,你根据上文,判断布丁和棒棒糖的单价相差多少元?()A.20 B.30 C.40 D.508、图(①)的等臂天平呈平衡状态,其中左侧秤盘有一袋石头,右侧秤盘有一袋石头和2个各10克的砝码.将左侧袋中一颗石头移至右侧秤盘,并拿走右侧秤盘的1个砝码后,天平仍呈平衡状态,如图(②)所示.求被移动石头的重量为多少克?()A、5B、10C、15D、209、某单位组织34人分别到井冈山和瑞金进行革命传统教育,到井冈山的人数是到瑞金的人数的2倍多1人,求到两地的人数各是多少?设到井冈山的人数为x人,到瑞金的人数为y人,请列出满足题意的方程组是.。

椭圆》方程典型例题20例(含标准答案)

椭圆》方程典型例题20例(含标准答案)

椭圆》方程典型例题20例(含标准答案)典型例题一已知椭圆的一个顶点为A(2.0),其长轴长是短轴长的2倍,求椭圆的标准方程。

分析:题目没有指出焦点的位置,要考虑两种位置。

解:(1)当A(2.0)为长轴端点时,a=2,b=1,椭圆的标准方程为:x^2/4+y^2/1=1;(2)当A(2.0)为短轴端点时,b=2,a=4,椭圆的标准方程为:x^2/16+y^2/4=1.说明:椭圆的标准方程有两个,给出一个顶点的坐标和对称轴的位置,是不能确定椭圆的横竖的,因而要考虑两种情况。

典型例题二一个椭圆的焦点将其准线间的距离三等分,求椭圆的离心率。

解:设椭圆长轴长为2a,焦点到准线的距离为c,则2c/3=a,即c=3a/2.由椭圆定义可得c^2=a^2-b^2,代入c=3a/2中得到9a^2/4=a^2-b^2,化简得b^2=3a^2/4.再由离心率的定义e=c/a得到e=√(1-b^2/a^2)=√(1-3/4)=√(1/4)=1/2.说明:求椭圆的离心率问题,通常有两种处理方法,一是求a,求c,再求比。

二是列含a和c的齐次方程,再化含e的方程,解方程即可。

典型例题三已知中心在原点,焦点在x轴上的椭圆与直线x+y-1=0交于A、B两点,M为AB中点,OM的斜率为0.25,椭圆的短轴长为2,求椭圆的方程。

解:由题意,设椭圆方程为x^2/4+y^2/a^2=1,直线方程为y=1-x。

将直线方程代入椭圆方程得到x^2/4+(1-x)^2/a^2=1,化简得到(4+a^2)x^2-8ax+(4-a^2)=0.设AB的中点为M(x1.y1),则M的坐标为[(x1+x2)/2.(y1+y2)/2],其中x2为方程(4+a^2)x^2-8ax+(4-a^2)=0的另一个解。

由OM的斜率为0.25可得到y1=0.25x1.又因为M在直线x+y-1=0上,所以有y1=1-x1.解以上两个方程可得到M的坐标为(4/5.1/5)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
m n ,则 r ( A) min{m, n} m n ,故选(B).

AX 0 有无穷多解并不意味着 AX β 有无穷多解, AX β 也可能无解. 例 2. 适用于任一线性方程组的解法是( ) (A) 逆矩阵求法 (B) Cramer 法则 (C) 消元法 (D) 以上方法都不对 解 应选(C). 因为方程组的系数矩阵未必是方阵,即使是方阵,也未必可逆. 例 3. 通过消元法得到的阶梯形线性方程组与原方程组是 . 解 应填等价或同解. 消元法实际上就是对 ( A, β ) (或 A )作初等行变换.
唯一解: x4 4, x3 3 x4 1, x2 2 x3 3, x1 1 .
例 7. 非齐次线性方程组 AX β ,对增广矩阵 A ( A, β ) 施以初等行变换得
1 1 1 1 1 1 0 1 2 3 4 5 ,则其通解为 0 0 0 0 0 0
x1 1 1 6 7 3 1 A 1 2 1 ,唯一解 x2 A 2 0 . x 3 0 3 3 1 3
1
方法二(Cramer 法则)
数 安 学 交 与 通 统 大 计 学 学 院
.
(4,5,0,0,0)T k1 (1,2,1,0,0)T k 2 (2,3,0,1,0)T k3 (3,4,0,0,1)T
西
西安交通大学
线性代数与解析几何
典型例题
x1 1 2 3 4 x2 2 3 4 5 x x 1 x 0 x 0 0 3 3 4 5 x4 0 1 0 0 0 0 1 0 x5

应 填
( k1 , k2 , k3 为任意常数).
因 r ( A, β ) r ( A) 2 ,而未知量个数 n 5 ,又
1 1 1 1 1 0 1 2 3 4 1 1 r1 r2 则有等价 (同解) 3 4 5 , 0 1 2 0 1 2 3 4 5 ( 1) r2 0 0 0 0 0 0 0 0 0 0 0 0
1 ri ( 1) r2 0 i 3, 4 0 0
所以,当 a 1 ,则 b 2a 2 时,方程组有解.
(2) 由(1)知,将 a 1, b 2 代入 B 中,再作初等行变换
x1 x3 2 x4 3 x5 3 x 2 x 3 x 4 x 2 2 3 4 5 x1 x3 2 x4 3 x5 3 ,即 x3 x3 0 x4 0 x5 0 ,则 x2 2 x3 3 x4 4 x5 2 x 0 x x 0 x 0 3 4 5 4 x5 0 x3 0 x4 x5 0
r2 r3 1 0 0 6 7 3 1 0 0 r 1 2 1 1 ( 1) r3 0 1 1 2 1 0 0 1 0 1 2 1 , 则 r ( 2 ) r2 ( 1) r2 1 0 0 1 3 3 1 ( 1) r3 0 0 1 3 3 1
西安交通大学
线性代数与解析几何
典型例题
第4章
n 维向量与线性方程组
第一节 消元法 典型例题 (A)
例 1. 若线性方程组 AX β 中, 方程的个数少于未知量的个数, 则有( (A) AX β 必有无穷多解 (B) AX 0 必有非零解 )
(C) AX 0 仅有零解 (D) AX 0 必无解 解 应选(B). 方程的个数即系数矩阵 A 的行数 m ,未知量的个数即 A 的列数 n ,已知
例 4. 在线性方程组 AX β 中, A (aij ) n n , Aij 为 aij 的代数余子式,
西
β (b1 , b2 ,, bn )T ,又已知 a2 j A2 j 2, bi Ai 2 4 ,则未知量 x2
j 1 i 1
数 安 学 交 与 通 统 大 计 学 学 院
( x3 , x4 , x5 为任意常数)
例 8. 非 齐 次 线 性 方 程 组 AX β , 对 增 广 矩 阵 施 以 初 等 行 变 换 得
1 2 3 4 0 1 2 0 ,则其通解为 0 0 0 1
.

应填无解. 因为 r ( A, β ) 3 r ( A) 2 ,故 AX β 无解.
1 1
1 a r4 a 1 r3 0 4 1 a 0 0 1 a 0 0 a 1 b a 1 0 4
1 1 0
1 0 0
0 4
1 a 1 a 1 [4b (a 1) 2 ] 4 a
n n
.
4 2 . 2 例 5. 下列齐次线性方程组有非零解需满足
解 应填-2. 由 Cramer 法则即知 x2
x1 x2 x3 ax4 0 x 2x x x 0 1 2 3 4 x1 x2 3 x3 x4 0 x1 x2 ax3 bx4 0
.
解 应填 4b (a 1) 2 . 齐次线性方程组有非零解的充要条件是系数矩阵的秩小于未知量个数,而
西安交通大学
线性代数与解析几何
典型例题
1 1 1 1
1 a 1 1 1 ri ( 1) r1 0 1 3 1 i 2 , 3, 4 0 0 1 a b 1 2
x1 x3 2 x4 3 x5 4 x 2 x 3 x 4 x 5 2 3 4 5 x1 x3 2 x4 3 x5 4 方程组 ,于是有 x3 x3 0 x4 0 x5 0 ,即 x2 2 x3 3 x4 4 x5 5 x 0 x x 0 x 0 3 4 5 4 x x x x 0 0 3 4 5 0 5
a 1 4 2a 记作 B 0 b 2a 0 2 2a
1 2 ( A, β ) 0 4
1 1 1 1
1 2 2 2
1 3 3 3
a 1 4 2a b 4 4 2 4a
第二节 向量组的线性相关性 典型例题(A)
则 4b (a 1) 2 . 例 6. 非齐次线性方程组 AX β ,对增广矩阵 A ( A, β ) 施以初等行变换得
1 0 0 0
0 1 0 0

0 1 1 0
0 0 1 1
1 2 ,则其解为 3 4
.
应填 (1,3,1,4)T . 因 r ( A, β ) r ( A) 4 (也为未知量个数) ,故方程组有
1 2 1 3 3 5 1 1 1 3 3 5 1 2 1 3 3 3 | A | 1, 2 3 3 1, 2 2 3 0, 2 3 2 0 唯一解 x1 1, x2 0, x3 0 .
方法三(消元法) :
1 2 1 1 r ( 2) r 1 2 1 1 r ( 3) r 1 2 1 1 2 1 2 3 ( A, β ) 2 3 3 2 0 1 1 0 0 1 1 0 r ( 3) r1 3 3 5 3 3 0 3 2 0 0 0 1 0
西安交通大学
线性代数与解析几何
典型例题
例 1. 设向量 β 可由向量组 α1 , α2 , , αm 线性表示,但不能由向量组 I :
x1 1 2 3 3 x2 2 3 4 2 x x 1 x 0 x 0 0 ,其中 x , x , x 为任意常数,此即为通解. 3 4 5 3 3 4 5 x4 0 1 0 0 1 0 0 0 x5
西
r3 ( 3) r2
数 安 学 交 与 通 统 大 计 学 学 院
西安交通大学线性代数与源自析几何典型例题1 0 0 1 则 r ( A, β ) r ( A) 3 , 有唯一解 x3 0, x2 0, x1 1 . 0 1 0 0 , r1 2 r1 ( 1) r3 ,( 1)r2 0 0 1 0
x1 2 x2 x3 1 2 x1 3 x2 3 x3 2 3 x 3 x 5 x 3 2 3 1
例 9. 试用三种方法求下列线性方程组的解:

因系数矩阵为方阵,且其行列式易算得 | A | 1 0 ,故有:
方法一(逆矩阵法)
1 2 1 1 0 0 r ( 2 ) r 1 2 1 1 0 0 1 2 ( A, E ) 2 3 3 0 1 0 0 1 1 2 1 0 r ( 3) r1 3 3 5 0 0 1 3 0 3 2 3 0 1
r2 r3 r1 r3
例 10. 设线性方程组
x1 x2 x3 x4 x5 a 2 x 3 x 4 x 5 x 6 x 0 1 2 3 4 5 x2 2 x3 3 x4 4 x5 b 4 x1 5 x2 6 x3 7 x4 8 x5 2
(1) a, b 为何值时,该方程组有解? (2) 求其通解.

(1) 对增广矩阵作初等行变换 1 3 1 5 1 4 2 6 1 5 3 7 1 6 4 8
相关文档
最新文档