粒子群优化算法的改进
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 1 o 模糊惯性权重(fuzzy inertia weight)法
・Shi等提出用模糊控制器来动态自适应地改变惯性权重的技
术。控制器的输入是当前惯性权重将口当前最好性能评价值
(CBPE) , CBPE衡量PS0目前找到的最好候选解的性能
[输出建〃的改变量。由于不同的问题有不同范围的性能铮价值,因此需要对CBPE进行如下的规范化NCBPE =(CBPE-
CBPEmin) / (CBPEmax - CBPEmin)
NCBPE是规范化后的评价值,CBPEmin和CBPEmax依问题而定,且需事先得知或者可估计。模糊w法与线性下降W方法的比较结果显示,后者不知道应该降低W的合适时机,而自适应模糊控制器能预测使用什么样的W更合适,可以动态地平衡全局和局部搜索能力。但是由于需知道CBPEmin和CBPEmax等,使得模糊权重法的实现较为困难,因而无法广泛使用。
・ 20压缩因子(constrietion factor) 法
・Clerc得出结论:压缩因子有助于确保PSO算
法收敛。这种方法的速度更新方程为
好二岭+处叫+的/ (龙一琦)+ (2勺・(必一琦)]•其中,T 冲为压缩因子,妇心2 ,且卩
>4o约束因子法控制系统行为最终收敛,且可以有
效搜索不同的区域, 该法能得到高质量的解。
・3o基于遗传思想改进的PSO算法一选择(selection)法
・主要应用PSO的基本机制以及演化计算所采用的自然选择机制。由于PSO搜索过程依赖pbest和gbest,所以搜索区域有可能被他们限制住了。选择PSO算法•在一般粒子群算法审,
每个粒子的最优位置的确定相当于隐含的选择机制•为
此,Angeline将选择算子引入进了PSO算法中,选择每次迭代后较好的粒子复制到下一代,以保证每次迭代的粒子群都具有较好的性能,实验表明这种算法对某些测试函数具有优越性.自然选择机制的引入将会逐渐减弱其影响。测试结果显示,虽然在大多数测试函数中选择法取得了比基本PSO更好的效果,却在Griewank函数上得到了较差的结果。因此该法提高了PSO的局
部搜索能力,但同时削弱了全局搜索能力。
• 4o线性减少权系数法
•Shi Y提出了带有惯性权重的改进PSO算法,进化方程为・必+1 二w%+C | G (M-A0 + C2 勺(龙-对)
・式中”〉0,称为惯性因子•它随着迭代次数的增加而线性递减,
使算法在初期具有较强的全局寻优能力,而晚期具有较强的局部
收敛能力,一定程度上提高了算法的性能•如0 (t)= (w^ -
izi/2 丿x (/©max 一 iter) / /tezmax+ IZI/2式中:和
是惯性权重的初始值和最终{1, /term ax和/7刃分别为IZI/2
最大迭代次数和当前迭代次数.
•通过经验发现惯性权重为0.7298、加速系数为1. 49618时,总能导致收敛的轨迹。
•朱小六等人提出的动态自适应惯性权重改变方法:羌引入两个麦量粒子进化度e二诃/粒子聚合度然后,定义权
重变换公式:w二w0-0. 5*e+0. 1*8其中,wO为w的初始值,一般取0.9;由e、a的定义可知0