球铁断口分析
球墨铸铁常见缺陷的分析与对策
球墨铸铁件常见缺陷的分析与对策一、常见的缺陷及分析球墨铸铁件常见缺陷的分析与对策 (1) 球铁是近40年来我国发展起来的重要铸造金属材料。
由于球状石墨造成的应力集中小,对基体的割裂作用也较小,故球铁的抗拉强度,塑性和韧性均高于其他铸铁。
与相应组织的钢相比,塑性低于钢,疲劳强度接近一般中碳钢,屈强比可达0 7~0 8,几乎是一般碳钢的2倍,而成本比钢低,因此其应用日趋广泛。
当然,球铁也不是十全十美的,它除了会产生一般的铸造缺陷外,还会产生一些特有的缺陷,如缩松、夹渣、皮下气孔、球化不良及衰退等。
这些缺陷影响铸件性能,使铸件废品率增高。
为了防止这些缺陷的发生,有必要对其进行分析,总结出各种影响因素,提出防止措施,才能有效降低缺陷的产生,提高铸件的力学性能及生产效益。
本文将讨论球铁件的主要常见缺陷:缩孔、缩松、夹渣、皮下气孔、石墨漂浮、球化不良及球化衰退。
1 缩孔缩松 1.1影响因素 (1)碳当量:提高碳量,增大了石墨化膨胀,可减少缩孔缩松。
此外,提高碳当量还可提高球铁的流动性,有利于补缩。
生产优质铸件的经验公式为C%+1/7Si%>3 9%。
但提高碳当量时,不应使铸件产生石墨漂浮等其他缺陷。
(2)磷:铁液中含磷量偏高,使凝固范围扩大,同时低熔点磷共晶在最后凝固时得不到补给,以及使铸件外壳变弱,因此有增大缩孔、缩松产生的倾向。
一般工厂控制含磷量小于0 08%。
(3)稀土和镁:稀土残余量过高会恶化石墨形状,降低球化率,因此稀土含量不宜太高。
而镁又是一个强烈稳定碳化物的元素,阻碍石墨化。
由此可见,残余镁量及残余稀土量会增加球铁的白口倾向,使石墨膨胀减小,故当它们的含量较高时,亦会增加缩孔、缩松倾向。
(4)壁厚:当铸件表面形成硬壳以后,内部的金属液温度越高,液态收缩就越大,则缩孔、缩松的容积不仅绝对值增加,其相对值也增加。
另外,若壁厚变化太突然,孤立的厚断面得不到补缩,使产生缩孔缩松倾向增大。
球铁凸轮轴脆断原因分析
66 现代铸铁 2006 / 4
参考文献 [1]中 国 机 械 工 程 学 会 铸 造 专 业 学 会.铸 造 手 册·铸 造 工 艺 卷
[M].北京: 机械工业出版社, 2000. [2]安 阁 英.高 级 铸 造 工 工 艺 学[M].北 京 : 机 械 工 业 出 版 社 ,
1992. [3] 彭春生.DF_11 机车空心轴套铸造裂纹原因浅析及改进
凸轮轴断裂形貌见图 1。从凸轮轴的断裂部位 观察, 轴的外观未见撞击痕迹, 也没有发现变形, 表 明断裂是在切削加工过程中形成的。图 2 为其宏观 断口形貌, 晶粒较细密, 色泽呈银灰色。断口表面受 到轻度油迹污染, 其宏观断口形貌清晰可辨。断口为 正断类型, 属于脆性断裂。
图 3 准解理断口 Fig.3 Quasi cleavage fracture
( 1) 浇注系统不合理和铸件壁厚不均匀是使焦
炉炉门框产生铸造裂纹的主要因素。
( 2) 降 低 浇 注 温 度 、改 进 浇 注 系 统 、改 进 耳 板 处
结构并在耳板下部安放内冷铁可以明显减少炉门框
的铸造裂纹。
图 4 改进后的浇注系统 Fig.4 Improved pouring system
( 3) 降低浇注温度 将浇注温度降为 1 300~1 320 ℃, 降低金属液的 凝固速度。GG25 的 w(C)量较高(3.2%~3.5%),流动性 较好,浇注温度还可以降低一些,但考虑到一包铁液 要浇注 2~3 件炉门框, 为 防 止 浇 注 后 期 因 铁 液 浇 注 温度过低而造成铸件轮廓不清晰、浇不足等现 象, 因
Gray and Nodular Irons
灰
铸
铁
及
球
金属材料断口分析的步骤与方法
金属材料断口分析的步骤与方法断口分析通常是一个从宏观到微观,从定性到定量的分析过程,并且是应用多种仪器联合测试检验的结果,是综合性很强的技术分析工作。
因此需要严格的科学态度,精心地、有步骤地进行研究分析。
断口分析步骤:(1)所有试样的选择、鉴定、保存以及清洗;(2)宏观检验和分析(断裂表面、二次裂纹以及其他的表面现象);(3)微观检验和分析;(4)金相剖面的检验和分析以及化学分析;(5)断口定量分析(断裂力学方法);(6)模拟试验。
1 断裂构件的处理及断口的保存在确定了断裂的金属构件后,就要采取措施把断口保存好,尽快制定分析计划。
通常金属构件的断裂不止一个断口,有时要立即判断主断口有困难,此时应该把所有断件收集好,在收集过程中切勿把断口碰伤或对接,也不要在断口上使用防蚀涂层。
保护和清理断口是断口分析的一个重要前提。
对断口和裂纹轨迹进行充分检查后方可进行清洗。
对于不同情况下的断口应该用不同方法处理:(1)大气中的新鲜断口,应立即放入干燥器内或真空干燥器内而不必清洗。
(2)对于带有油污的断口,首先用汽油,然后用丙酮、三氯甲烷、石油醚及苯等有机溶剂溶去油污,最后用无水乙醇清洗吹干。
当浸没处理还不能去除油污时,可使用蒸汽或超声波方法进一步去除。
(3)在腐蚀环境下发生断裂的断口,通常在断口上覆盖一层腐蚀产物,这层产物对于分析断裂原因是非常有用的,但对断口形貌观察常常带来很大的麻烦。
在这种情况下,需要用综合分析的方法来考虑。
因为有许多腐蚀产物容易水解或分解,因此进行产物分析要抓紧时间,同时不要进行任何清洗和处理。
通常把带有腐蚀产物的断口试样,先用X射线、电子探针、电子扫描显微镜或俄歇能谱仪进行产物分析,得出结论后去掉产物再观察断口形貌。
去掉腐蚀产物有时可采用干剥法。
用醋酸纤维纸(称AC纸,由7%的醋酸纤维素、丙酮溶液制成厚度0.1~1mm的均匀薄膜)复型进行清理是最有效的方法之一,尤其是断口表面已经受到腐蚀的时候。
球墨铸铁常见缺陷的分析与对策
球墨铸铁件常见缺陷的分析与对策一、常见的缺陷及分析球墨铸铁件常见缺陷的分析与对策 (1) 球铁是近40年来我国发展起来的重要铸造金属材料。
由于球状石墨造成的应力集中小,对基体的割裂作用也较小,故球铁的抗拉强度,塑性和韧性均高于其他铸铁。
与相应组织的钢相比,塑性低于钢,疲劳强度接近一般中碳钢,屈强比可达0 7~0 8,几乎是一般碳钢的2倍,而成本比钢低,因此其应用日趋广泛。
当然,球铁也不是十全十美的,它除了会产生一般的铸造缺陷外,还会产生一些特有的缺陷,如缩松、夹渣、皮下气孔、球化不良及衰退等。
这些缺陷影响铸件性能,使铸件废品率增高。
为了防止这些缺陷的发生,有必要对其进行分析,总结出各种影响因素,提出防止措施,才能有效降低缺陷的产生,提高铸件的力学性能及生产效益。
本文将讨论球铁件的主要常见缺陷:缩孔、缩松、夹渣、皮下气孔、石墨漂浮、球化不良及球化衰退。
1 缩孔缩松 1.1影响因素 (1)碳当量:提高碳量,增大了石墨化膨胀,可减少缩孔缩松。
此外,提高碳当量还可提高球铁的流动性,有利于补缩。
生产优质铸件的经验公式为C%+1/7Si%>3 9%。
但提高碳当量时,不应使铸件产生石墨漂浮等其他缺陷。
(2)磷:铁液中含磷量偏高,使凝固范围扩大,同时低熔点磷共晶在最后凝固时得不到补给,以及使铸件外壳变弱,因此有增大缩孔、缩松产生的倾向。
一般工厂控制含磷量小于0 08%。
(3)稀土和镁:稀土残余量过高会恶化石墨形状,降低球化率,因此稀土含量不宜太高。
而镁又是一个强烈稳定碳化物的元素,阻碍石墨化。
由此可见,残余镁量及残余稀土量会增加球铁的白口倾向,使石墨膨胀减小,故当它们的含量较高时,亦会增加缩孔、缩松倾向。
(4)壁厚:当铸件表面形成硬壳以后,内部的金属液温度越高,液态收缩就越大,则缩孔、缩松的容积不仅绝对值增加,其相对值也增加。
另外,若壁厚变化太突然,孤立的厚断面得不到补缩,使产生缩孔缩松倾向增大。
铸铁缺陷原因介绍
6、适当增加加工余量
缩松
铸件内部有许多分散小缩孔,其表面粗糙,水压试验渗水
一般认为由于球铁凝固特性所决定的,其影响因素有
1、碳、硅含量低;磷含量高
2、残留镁量偏高
3、浇注温度低,影பைடு நூலகம்冒口补缩效果
4、铸型紧实度低
1、适当提高铁液碳、硅含量,尽量降低磷含量。铁液球化处理后应充分孕育保证石墨充分析出,提高自身补缩能力
球墨铸铁件缺陷分析
在球墨铸铁件生产中,常见的铸件缺陷除有灰铸铁件的一般缺陷外,还有球化不良、球化衰退、夹渣、缩松、石墨漂浮、皮下气孔等。通常,产生这些缺陷的原因不单是球化处理问题,有时还有造型制芯、熔炼浇注、配砂质量、落砂清理等许多工序的问题,因此必须具体分析、以便采取相应的合理措施加以解决。
球铁特有的缺陷分析
6、在铸型表面喷涂锭子油碳质材料,使铁液与铸型界面造成还原性气氛、在铁液表面或铸型表面撒上少量冰晶石粉或氟硅酸钠等能减少或消除皮下气孔
碎块状石墨
显微组织为少量大块石墨球周围共晶团边界均匀分布碎块状石墨和铁素体,石墨球也生长成连接成分枝石墨,其宏观断面为界限分明的暗灰色斑点,主要产生在大断面铸件热节部位或冒口颈下
铁液碳当量超过共晶点,初生的球状石墨从高温液态中析出,由于密度的差别和镁蒸汽泡上浮使部分石墨上浮至铸件上表面聚集,随后在共晶转变时迅速变大,形成石墨漂浮。因此碳当量越高、铸件越厚、铁液残留镁含量越低,浇注温度越高,越容易产生
1、严格控制碳当量,当壁厚大于70mm的铸件,碳当量必须小于4.55%,当壁厚小于30mm,碳当量必须小于4.70%,其余按这个范围适当调整
4、在铁液表面加覆盖剂,如石墨粉、木炭粉、冰晶石粉等
夹渣
球铁常见缺陷及特征
1.常见缺陷及特征:1.1球化不良和球化衰退球化不良指球化处理未达到球化等级要求。
球化衰退指浇注后期的磨球球化元素残留量过低引起球化不合格。
二者缺陷特征相同。
宏观特征:铸件断口为银灰色上分布芝蔴状黑色斑点,其数量多,直径大,表明程度严重。
全部呈暗灰色粗晶粒,表明完全不球化。
金相组织:集中分布大量厚片状石墨,其数量越多、面积率增加,表明程度严重,完全不球化者呈片状石墨。
产生原因:原铁液含硫高、严重氧化的炉料中含有过量反球化元素;处理后铁液残留镁和稀土量过低。
铁液中溶解氧量偏高是球化不良的重要原因。
选用低硫焦炭、低硫金属炉料,必要时进行脱硫处理,废钢除锈,必要时增加球化剂中稀土元素用量,严格控制球化工艺。
1.2缩孔和缩松特征和产生原因:缩孔产生于铁液温度下降发生一次收缩阶段。
如大气压把表面疑固薄层压陷,则呈现表面凹陷及局部热节凹陷,否则铁液中气体析出至顶部壳中聚集成含气孔的内壁光滑的暗缩孔,也有时与外界相通形成明缩孔,则内表面虽也光滑,但已被氧化。
球墨铸铁共晶凝固时间比灰铸铁长,呈粥状凝固,凝固外壳较薄弱,在二次膨胀时在石墨化膨胀力作用下使外壳膨胀,松弛了内部压力。
因此在第二次收缩过程中,最后凝固的热节部位内部压力低于大气压,被树枝晶分隔的小溶池处成为真空区,完全凝固后成为孔壁粗糙,排满树枝晶的疏松孔,即缩松缺陷。
肉眼可见的称为宏观缩松,它产生于热节区残余铁液开始大量凝固的早期,包括了残余铁液的一次收缩和二次收缩,因而尺寸略大而内壁排满枝晶,呈灰暗疏松孔或蝇脚痕状黑点。
显微镜下可见的称为微观缩松,它产生于二次收缩末期,共晶团或其集团间的铁液在负压下得不到补缩凝固收缩而成,常见于厚断面处。
1.3皮下气孔形貌特征:铸件表皮下2—3mm处均匀或蜂窝状分布的球形、椭圆球状或针孔状内壁光滑孔洞,直径0.5-3mm,可在热处理和抛丸清理后暴露或机加工时发现,小件中较多。
形成原因:含镁铁液表面张力大,易形成氧化膜,阻碍析出气体和侵入气体排出,滞留于皮下而形成。
QT400_18铸态高韧性球墨铸铁拉伸断口特征与断裂机理[1]
收稿日期:2003-11-20收到初稿,2003-12-12收到修订稿。
作者简介:周惦武(1971-),男,湖北浠水县人,讲师,博士研究生,主要从事材料制备与材料加工的研究。
E -mail:ZDWe -mai l@163 netQT400-18铸态高韧性球墨铸铁拉伸断口特征与断裂机理周惦武1,彭 平1,赖海萍1,胡艳军1,赵占伟2,刘金水1(1 湖南大学材料科学与工程学院,湖南长沙410082;2 世林冶金设备有限公司,河南漯河462000)摘要:通过对Q T 400-18铸态高韧性拉伸断口特征及断裂机理的分析,发现伸长率超过20%时,试样断口具有韧性断裂的微观特征,在断口上留下较大、较深的韧窝,甚至有撕裂带。
而伸长率为15%~16%时,试样断口具有混合型断裂的微观特征,在尖角处易形成微裂纹源,受外力作用时,裂纹源迅速扩展,造成局部穿晶断裂;同时由于铁素体含量减少,珠光体含量增多,基体塑性变形相对较差,在试样断口上留下大量较浅的韧窝。
关键词:铸态;高韧性球墨铸铁;断裂机理中图分类号:T G255 文献标识码:A 文章编号:1001-4977(2004)06-0443-04Fracture Character and Fracture Mechanism of the Tensile Sampleof QT 400-18As -cast High Toughness Ductile IronZH OU Dian -wu 1,PEN G Ping 1,LAI H a-i ping 1,H U Yan -jun 1,ZHAO Zhan -wei 2,LIU Jin -shui 1(1 Institu te of Material Science and Engin eering,Hunan University,C hangsha 410082,Hu nan,Chin a;2 Shilin Metallurgy Equipm ent CO.Ltd.,Lu ohe 462000,H enan,China)Abstract:A study onfracture character and fracture mechanism of the ten sile sam ple of QT 400-18as -cast high tou ghness du ctile iron was given in the paper.T he experim ent resu lts showed as the following:when the elongation of ten sile sample was over 20%,the micro -character of the tensile sample was toughness rapture (its fracture m echanism was given),first graphite was divorced from the ferrite matrix,then suff-icient plastic distortion occu rred in the ferrite matrix ,fin ally the greater and deeper toughness nest with teared surface layer left behind in the fracture of test sample;when the elon gation of tensile sam ple was between 15%an d 16%,due to many abnormality du ctile and white im purity ,som e tiny cracks were foun d at their tine corner.These cracks spread rapidly through the crystal if they suffered the outside force;at the same time it was rather difficu lt that the plastic distortion took place in the matrix thanks to the ferrite content decreasing an d the pearlite content raising ,at last the flat tou ghn ess nest left behind in the fractu re of test sample.Keywords:as -cast;high toughness ductile iron ;fracture mechanism 铸态球墨铸铁是指不经热处理直接获得所需性能的球墨铸铁。
球铁断口分析
球铁试棒断口分析问题提出:球铁试棒铸件成分基本相同,但两者的抗拉强度、延伸率相差很大,断口有两个不同断面形貌。
(1)断口明显有两个区域:白的具有金属光泽,黑的好像石墨的颜色。
断口比较平齐,约2/3部分呈亮色结晶状组织,1/3部分呈灰色纤维状组织。
(2)断口断裂面全部为灰黑色。
猜想:铸件成分基本相同,显微组织也基本相同,怀疑与成分无关,是力学上引起的上述现象。
1.正常断口当试样的珠光体量在20~30% 时,其断口宏观表现为暗灰色,断面上分布着亮点,其分布特征是:从裂纹起源区到快速扩展方向,亮点依次增多。
它对应的力学性能表现为:抗拉强度= 500MPa左右,延伸率在l5~I 8% 之间。
所检测试样的力学性能为Rm=520MPa,A=15.4% 。
电镜观察结果:呈暗灰色,裂纹起源区为韧窝,断口中部区为韧窝+ 解理,而裂纹快速扩展区,也即亮点区,为解理断口。
光镜观察结果,暗灰区与亮点区基体组织分布一样。
当珠光体含量≥40%时,断口基本上呈银亮色。
此时试样的强度高,伸长率较低。
所考察断口对应的力学性能为Rm=570MP A=10.4%,从断口检测结果可见银亮色断口在宏观上呈解理形貌。
从上述试验结果可知,在正常球化级别的条件下,随着珠光体含量的增加。
拉伸试样断口宏观上由暗灰色向银亮色发展,微观由韧窝为主的断裂机制向以解理为主的断裂机制发展。
2.异常断口若基体中存在少量的缩松或拉伸夹具偏倾等情况,在拉应力处也会产生灰斑。
含有较多磷共晶和缩松的黑斑断口。
这类断口的宏观特征为:黑斑区内呈现放射状块状物,对该区域作大面积能谱分析-磷含量高达1.41%。
缩松一般伴随着磷共晶产生。
厚壁球铁断口与基体组织及力学性能存在对应关系,随着组织中珠光体量的增加,断口上由暗灰色向银亮色发展,微观上则由韧窝断裂向解理断裂发展,当然,力学性能方面是伸长率下降,强度增加。
灰斑是由于非包含物和缺口效应引起的应力集中所致,灰斑区微观形貌为韧窝,它对力学性能影响不大。
论文球铁900-5和900-2微观组织与断口形貌观察(1)
球铁900-5和900-2微观组织与断口形貌观察崔文超1陶成2王丽1(1.山东大学威海分校,山东威海 264209;2. 威海鲁海精密机械有限公司,山东威海 264211)摘要:本文对QT900-5(1#试样)和QT900-2(2#试样)的微观组织及断口形貌进行了扫描电镜分析。
结果表明,1#试样石墨球细小,且形状较为圆整;2#试样石墨球数量较少,比较粗大。
对断口的扫描结果发现,1#试样的微观断裂特征为石墨球与基体形成圆整的韧窝;而2#试样石墨球表面粗糙,且极不规整,断口处出现部分团絮状的硅酸盐。
对两组试样的湿化学分析结果表明,1#和2#试样残留Mg含量分别为0.056%和0.035%;而P含量分别为0.036%和0.051%。
2#试样较低的Mg残留量和较高的含P量也是其韧性较低的原因之一。
关键词:球铁900-5, 900-2; 石墨球形状; 断口形貌; Mg含量; P含量Observation on Microstructure and Fractography of Nodular Iron 900-5and 900-2Cui Wenchao1Tao Cen 2Wang Li1(1.Shandong University at Weihai, Weihai, China 264209;2. Weihai Luhai Precision Machinery co.,ltd,Weihai, China 264211)QT900-5and QT900-2 samples are made to explore the microstructure and fractography of nodular iron by SEM. The finding indicates that the size of graphite nodules in sample 1 is finer, the shape is rounder than that of sample 2. Fracture surface of sample 1 shows dolly dimple between the matrix and graphite nodules; while the surface of sample 2 is so coarse and the silicate with aggregate structure is found at the fracture surface. The chemical ingredient analysis indicates that the remains of Mg in the nodule iron is 0.056%, 0.035% respectively and the P content is 0.036%, 0.051% respectively. The lower quantity of Mg and higher quantity of P can also be considered as the poor elongation.Key words: Nodule iron 900-5, 900-2; the shape of graphite nodule; fractography; the remains of Mg; the quantity of P1 介绍球铁(QT900)以其较高的刚性,疲劳强度以及良好的耐磨性能而被广泛应用于汽车等发动机曲轴的制造。
球铁铸件断口灰斑分析_蔡一法
笔者公司在生产球铁凸轮轴过程中,偶尔发生过凸轮轴毛坯断裂,断口上也有“灰斑”出现,于是对该“灰斑”的性质及产生原因进行了详细的分析。
1铸件断口“灰斑”特征笔者公司生产的铸态球铁凸轮轴牌号为QT700-2,实际抗拉强度很高,一般为800~900MPa ,珠光体体积分数在90%以上,伸长率在3%~6%,正常断口呈银色。
凸轮轴断裂件“灰斑”断口如图1所示,上部外圆处有一扇形区域呈灰色,其他区域为正常断口颜色(银色)。
为了查明“灰斑”的缺陷性质及产生原因,对断口进行了详细的检查分析。
收稿日期:2009-11-02修定日期:2009-12-09作者简介:蔡一法(1962-),男,高工,从事铸造工艺、熔炼工作。
球铁铸件断口灰斑分析蔡一法,郜洪富,逯英杰,李曙光,袁珍(上海通用东岳动力总成有限公司铸锻技术部,山东烟台264006)摘要:QT700铸态球铁凸轮轴断口出现灰斑,扫描电镜观察发现灰斑区石墨球数量和w (C )量明显高于银色区,但金相组织观察显示,黑斑区球化情况良好,无组织缺陷。
断口扫描电镜确定灰斑区断口为韧性断裂,银色区断口为解理或准解理脆性断裂。
断口灰斑再现试验证明,球铁铸件断口上的灰斑说明该区域是韧性断裂区域,并非组织异常,也并非是铸造缺陷。
关键词:球铁;灰斑;韧性断裂中图分类号:TG250.6文献标识码:B文章编号:1003-8345(2010)01-0078-04Analysis of Gray Spot in Fracture of Nodular Iron Casting CAI Yi-fa,GAO Hong-fu,LU Ying-jie,LI Shu-guang,YUAN Zhen(Foundry &Forging Technology Department,Dongyue Power Assembly Co.Ltd.,Shanghai General Motor Group,Yantai264006,China )Abstract:There was gray spot appearing in the fracture of QT 700-2grade as -cast nodular iron camshaft and SEM observation revealed that the nodule count and w (C )in the gray spot area was obviously higher than the silver area.However,the metallographical observation showed that the nodularity of the gray area was all right and no structure defect was found.Based on the SEM analysis inspection,it was considered that the fracture of the gray area was of the tough fracture,and the fracture of the silver area was of the cleavage or quasi-cleavage fracture.By the gray spot reappearing test,it was testified that gray spot appearing in the fracture of the nodular iron casting only indicated that the area is of the tough fracture area,but not the abnormal structure area,and also not casting defects.Key words:nodular iron;gray spot;tough fracture2断口“灰斑”分析进行断口灰斑分析时,先进行断口原貌检查(扫描电镜分析)、再进行断口金相分析,以保证同一个断口可以得到全面的检测分析。
球墨铸铁件常见缺陷的分析与对策(1)
缩孔缩松影响因素(1)碳当量:提高碳量,增大了石墨化膨胀,可减少缩孔缩松。
此外,提高碳当量还可提高球铁的流动性,有利于补缩。
生产优质铸件的经验公式为C%+1/7Si%>3 9%。
但提高碳当量时,不应使铸件产生石墨漂浮等其他缺陷。
(2)磷:铁液中含磷量偏高,使凝固范围扩大,同时低熔点磷共晶在最后凝固时得不到补给,以及使铸件外壳变弱,因此有增大缩孔、缩松产生的倾向。
一般工厂控制含磷量小于0 08%。
(3)稀土和镁:稀土残余量过高会恶化石墨形状,降低球化率,因此稀土含量不宜太高。
而镁又是一个强烈稳定碳化物的元素,阻碍石墨化。
由此可见,残余镁量及残余稀土量会增加球铁的白口倾向,使石墨膨胀减小,故当它们的含量较高时,亦会增加缩孔、缩松倾向。
(4)壁厚:当铸件表面形成硬壳以后,内部的金属液温度越高,液态收缩就越大,则缩孔、缩松的容积不仅绝对值增加,其相对值也增加。
另外,若壁厚变化太突然,孤立的厚断面得不到补缩,使产生缩孔缩松倾向增大。
(5)温度:浇注温度高,有利于补缩,但太高会增加液态收缩量,对消除缩孔、缩松不利,所以应根据具体情况合理选择浇注温度,一般以1300~1350℃为宜。
(6)砂型的紧实度:若砂型的紧实度太低或不均匀,以致浇注后在金属静压力或膨胀力的作用下,产生型腔扩大的现象,致使原来的金属不够补缩而导致铸件产生缩孔缩松。
移砂缩松(7)浇冒口及冷铁:若浇注系统、冒口和冷铁设置不当,不能保证金属液顺序凝固;另外,冒口的数量、大小以及与铸件的连接当否,将影响冒口的补缩效果。
缩松缩孔防止措施(1)控制铁液成分:保持较高的碳当量(>3 9%);尽量降低磷含量(<0 08%);降低残留镁量(<0 07%);采用稀土镁合金来处理,稀土氧化物残余量控制在0 02%~0 04%。
(2)工艺设计要确保铸件在凝固中能从冒口不断地补充高温金属液,冒口的尺寸和数量要适当,力求做到顺序凝固。
(3)必要时采用冷铁与补贴来改变铸件的温度分布,以利于顺序凝固。
球墨铸铁曲轴断裂失效分析_陈富强
第 36 卷
A 处开裂, 裂纹扩展过程中, 整个曲轴的应力分布也将 相邻连杆轴颈圆角处的交变应力将大大增 明显变化, 。 A 加 当 处断裂后, 曲轴成了悬臂梁, 当外部的冲击 最终导致曲轴在 载荷引起的应力超过曲轴的强度时, B 处最后断裂。
3
结论
曲轴断裂存在两种机制, 即疲劳断裂和一般断裂。 疲劳断裂首先发生, 疲劳裂纹萌生于曲轴和曲拐过渡圆 处, 裂纹源是曲轴在加工过程中损伤形成的。而圆角过 渡处的应力集中, 在工作交变扭转应力作用下萌生疲劳 裂纹并扩展, 导致曲轴发生早期疲劳断裂。为了使曲轴 有较长的疲劳寿命, 需要对曲轴的过渡处圆角质量进行 严格的控制并进行强化措施, 如滚压、 喷丸处理等。
分析, 其结果见表 1 。 分析结果表明, 曲轴材质符合 GB / T 1348 —1988《球墨铸铁件》 标准。
第 12 期
陈富强, 等: 球墨铸铁曲轴断裂失效分析
125
Fig. 3
图 3 曲轴的基体组织 Microstructure of the crankshaft
1. 4
扫描电镜断口分析
曲轴试样断口的微观形貌如图 4 所示。由图 4 中 可以看出, 球墨铸铁的断裂面上分布河流花样 、 舌状花 鱼骨状花样、 扇形花样及瓦纳线等, 符合准解理断 样、 裂特征, 显示断裂面为典型的解理面。 解理断裂是金
檴檴檴檴檴檴檴檴檴檴檴檴檴檴檴檴檴檴檴檴檴檴檴檴檴檴檴檴檴檴檴檴檴檴檴檴檴檴檴檴檴檴檴檴檴檴檴檴
根据金碳比确定高铬铸铁淬火工艺
目前, 高铬铸铁作为一种重要的耐磨材料, 得到越来越广泛的应用 。 为了进一步提高硬度、 改善组织与性能, 从而提高其耐磨 W、 V、 Nb、 Ti 等强碳化物形成元素, — —退火、 性能和使用寿命, 往往复合加入 Mo、 并对其进行热处理— 淬火、 回火。如何确定高铬铸 铁的淬火工艺, 经查阅很多资料, 没有发现一种适用的方法 。作者经过数年试验研究和生产实践, 找到一种行之有效的方法, 即用 金碳比确定淬火温度和保温时间 。 Mo、 W、 V、 Nb、 Ti 这些较强 / 强碳化物形成元素含量之和与碳含量之比 。设这些合金元素含量 所谓金碳比, 即是高铬铸铁中 Cr、 碳含量为 C, 金碳比为 K, 则: K = ∑M / C。K 值越大, 淬火温度越高, 保温时间越长。K 值越小, 淬火温度越低, 保温时间 之和为∑M, 越短。这里所说保温时间是指工件达到淬火温度烧透后在此温度保持的时间 。 当 K 为 6. 8 ~ 7. 3 时, 淬火温度为 1010 ℃ , 保温时间为 30 min。 当 K 为 7. 8 ~ 8. 3 时, 淬火温度为 1030 ℃ , 保温时间为 30 min。 当 K 为 8. 8 ~ 9. 3 时, 淬火温度为 1050 ℃ , 保温时间为 35 min。 当 K 为 9. 8 ~ 10. 5 时, 淬火温度为 1070 ℃ , 保温时间为 40 min。 如果 K 处于上述相邻两种情况之间, 可参考两种情况下淬火温度与保温时间做适当调整 。 淬火冷却宜风冷, 如铁水经良好变质处理, 共晶碳化物呈团块状, 工件形状简单, 也可用热油冷却。 经以上工艺淬火后, 工件硬度一般都能达到 63 ~ 67 HRC。如果低于以上温度或时间淬火, 硬度将达不到这个水平, 有时甚至 只有 50 HRC 左右。 淬火冷却后应及时回火, 回火应视工件要求的硬度, 在 400 ~ 700 ℃ 之间选择合适的回火工艺, 应回火 2 ~ 3 次。 必须说明几点: ①以上所有试验与生产都是在箱式炉中进行; ② 淬火前工件必须经充分的退火; ③ 淬火加热升温速度要控制, 实现缓慢升温, 或进行预热。 ( 安徽省中小企业局培训中心 吴邦富)
球铁断口分析
球铁试棒断口分析问题提出:球铁试棒铸件成分基本相同,但两者的抗拉强度、延伸率相差很大,断口有两个不同断面形貌。
(1)断口明显有两个区域:白的具有金属光泽,黑的好像石墨的颜色。
断口比较平齐,约2/3部分呈亮色结晶状组织,1/3部分呈灰色纤维状组织。
(2)断口断裂面全部为灰黑色。
猜想:铸件成分基本相同,显微组织也基本相同,怀疑与成分无关,是力学上引起的上述现象。
1.正常断口当试样的珠光体量在20~30% 时,其断口宏观表现为暗灰色,断面上分布着亮点,其分布特征是:从裂纹起源区到快速扩展方向,亮点依次增多。
它对应的力学性能表现为:抗拉强度= 500MPa左右,延伸率在l5~I 8% 之间。
所检测试样的力学性能为Rm=520MPa,A=% 。
电镜观察结果:呈暗灰色,裂纹起源区为韧窝,断口中部区为韧窝+ 解理,而裂纹快速扩展区,也即亮点区,为解理断口。
光镜观察结果,暗灰区与亮点区基体组织分布一样。
当珠光体含量≥40%时,断口基本上呈银亮色。
此时试样的强度高,伸长率较低。
所考察断口对应的力学性能为Rm=570MP A=%,从断口检测结果可见银亮色断口在宏观上呈解理形貌。
从上述试验结果可知,在正常球化级别的条件下,随着珠光体含量的增加。
拉伸试样断口宏观上由暗灰色向银亮色发展,微观由韧窝为主的断裂机制向以解理为主的断裂机制发展。
2.异常断口若基体中存在少量的缩松或拉伸夹具偏倾等情况,在拉应力处也会产生灰斑。
含有较多磷共晶和缩松的黑斑断口。
这类断口的宏观特征为:黑斑区内呈现放射状块状物,对该区域作大面积能谱分析-磷含量高达%。
缩松一般伴随着磷共晶产生。
厚壁球铁断口与基体组织及力学性能存在对应关系,随着组织中珠光体量的增加,断口上由暗灰色向银亮色发展,微观上则由韧窝断裂向解理断裂发展,当然,力学性能方面是伸长率下降,强度增加。
灰斑是由于非包含物和缺口效应引起的应力集中所致,灰斑区微观形貌为韧窝,它对力学性能影响不大。
球铁铸件断口灰斑分析
2 4 0 , hn ) 60 6 C i a
A s at hr a ry so a pa n n tef c r fQ 0 — rd s— s nd l rn cm h f a d S M bt c:T ee sga pt p er g i h r t e o T 7 0- gae a —at oua i a ae h t h o uec u t n C)i h ryso rawa b iu l ih r h ntesle ra Ho e e b evt e e ldta en d l o n dW( o t a n tega p tae so vo syhg e a h i rae . w v r t v
b t o h b oma tu t r r a a d a s o a t g d fc s u t e a n r l r cu e a e , n lo n tc si ee t. n t s n
Ke r s n d l ri n g a p t t u h fa tr y wo d : o u a r ; r y s o ; o g r cu e o
( o n  ̄ & F rigT c n lg e at n, n y eP w rAse l . t.S a g a n rl trGru , na Fu d ogn e h oo yD p r me tDo g u o e smbyCo Ld, h n h i Ge ea o o p Ya ti Mo
1 铸件断 口“ 灰斑” 特征
笔 者 公 司生 产 的铸 态 球 铁 凸 轮 轴 牌 号 为 Q 70 2 T 0— ,实际抗拉 强度很 高 ,一般 为 80 90 0~ 0
t e me alg a h c lo s r ai n s o e h tte n d lr y o e g a r a wa l r h n o sr cu e d f c s fu d h tl r p ia b e v t h w d t a h o ua i ft r y a e sa Ii ta d n t t r e e twa o n . o o t h g u B s d o h E a ay i n p cin i w sc n ie e h tt e fa t r ft e g a r a w s o e tu h f c u e a d t e a e n te S M n lssi s e t , t a o sd r d t a h r c u e o r y a e a ft o g r t r , n h o h h a f cu e o e sle r a w s o e c e v g r q a i ce v g r cu e B h r y s o e p e r g ts,i wa e t id r t r ft i r ae a ft l a a e o u s— l a a e fa tr . y t e ga p tr a p a i e t t st si e a h v h n f t a g a p ta p a n n t e fa t r ft e n d l ri n c sig o l n i ae h tt e a e s o h o g r cu e a e , h t r y s o p e r g i h r cu e o h o u a o a t ny i d c t d t a h r a i ft e t u h f t r r a i r n a
球铁铸件断口灰斑分析_蔡一法
笔者公司在生产球铁凸轮轴过程中,偶尔发生过凸轮轴毛坯断裂,断口上也有“灰斑”出现,于是对该“灰斑”的性质及产生原因进行了详细的分析。
1铸件断口“灰斑”特征笔者公司生产的铸态球铁凸轮轴牌号为QT700-2,实际抗拉强度很高,一般为800~900MPa ,珠光体体积分数在90%以上,伸长率在3%~6%,正常断口呈银色。
凸轮轴断裂件“灰斑”断口如图1所示,上部外圆处有一扇形区域呈灰色,其他区域为正常断口颜色(银色)。
为了查明“灰斑”的缺陷性质及产生原因,对断口进行了详细的检查分析。
收稿日期:2009-11-02修定日期:2009-12-09作者简介:蔡一法(1962-),男,高工,从事铸造工艺、熔炼工作。
球铁铸件断口灰斑分析蔡一法,郜洪富,逯英杰,李曙光,袁珍(上海通用东岳动力总成有限公司铸锻技术部,山东烟台264006)摘要:QT700铸态球铁凸轮轴断口出现灰斑,扫描电镜观察发现灰斑区石墨球数量和w (C )量明显高于银色区,但金相组织观察显示,黑斑区球化情况良好,无组织缺陷。
断口扫描电镜确定灰斑区断口为韧性断裂,银色区断口为解理或准解理脆性断裂。
断口灰斑再现试验证明,球铁铸件断口上的灰斑说明该区域是韧性断裂区域,并非组织异常,也并非是铸造缺陷。
关键词:球铁;灰斑;韧性断裂中图分类号:TG250.6文献标识码:B文章编号:1003-8345(2010)01-0078-04Analysis of Gray Spot in Fracture of Nodular Iron Casting CAI Yi-fa,GAO Hong-fu,LU Ying-jie,LI Shu-guang,YUAN Zhen(Foundry &Forging Technology Department,Dongyue Power Assembly Co.Ltd.,Shanghai General Motor Group,Yantai264006,China )Abstract:There was gray spot appearing in the fracture of QT 700-2grade as -cast nodular iron camshaft and SEM observation revealed that the nodule count and w (C )in the gray spot area was obviously higher than the silver area.However,the metallographical observation showed that the nodularity of the gray area was all right and no structure defect was found.Based on the SEM analysis inspection,it was considered that the fracture of the gray area was of the tough fracture,and the fracture of the silver area was of the cleavage or quasi-cleavage fracture.By the gray spot reappearing test,it was testified that gray spot appearing in the fracture of the nodular iron casting only indicated that the area is of the tough fracture area,but not the abnormal structure area,and also not casting defects.Key words:nodular iron;gray spot;tough fracture2断口“灰斑”分析进行断口灰斑分析时,先进行断口原貌检查(扫描电镜分析)、再进行断口金相分析,以保证同一个断口可以得到全面的检测分析。
球铁断口分析范文
球铁断口分析范文首先,我们需要了解球铁的组织结构。
球铁由固溶组织和石墨组织组成。
固溶体主要由铁和一些合金元素构成,具有高强度和硬度;石墨则呈片状或球状分布在固溶体中,具有一定的韧性和可塑性。
球铁的力学性能依赖于固溶体和石墨的相对含量、形态以及其相互作用。
球铁的断口形式多种多样,可以分为脆性断口和韧性断口两类。
脆性断口表现为呈灰白色的光洁面,断口的形貌一般为平直且较光滑,没有明显的塑性变形迹象;韧性断口则表现为呈灰黑色的粗糙面,有着大量的韧性骨架和断裂金属表面上碎的石墨片。
球铁发生断裂的原因很多,下面将就几种常见的断裂原因进行分析。
1.冷脆断口:球铁在低温下易发生冷脆断裂。
冷脆断口的特点是断口呈光洁面,并且一般呈45°角与铸件表面相交。
冷脆断口的形成与材料中的残余应力和低温下的晶格结构有关。
当材料中的残余应力超过其抗拉强度时,在低温下就会出现脆性断裂。
2.碳化物断口:球铁中的碳化物是一种脆性相,当其含量过高时,易使球铁产生碳化物断裂。
碳化物断口的特点是断口呈光洁面,且周围有大量的碳化物析出。
碳化物的主要源于铸件的过分过冷,使得碳元素浓度大于固溶度极限,导致碳元素析出形成碳化物。
3.组织缺陷断口:球铁的组织中存在一些缺陷,如气孔、夹杂物等,这些缺陷会导致球铁在受力时出现应力集中,从而造成断裂。
这种断口的特点是断口周围有大量的气孔或夹杂物,同时断口一般呈光洁面。
4.疲劳断口:在球铁长时间的循环载荷下,会引起材料的疲劳断裂。
疲劳断口的形貌一般呈河流状,且断口表面有明显的疲劳裂纹和塑性波纹。
球铁的疲劳断口形成与材料中的缺陷、应力集中、载荷频率等因素有关。
综上所述,球铁的断口形式多样,每种断口形式都与特定的断裂原因有关。
通过对球铁断口的详细分析,可以帮助我们确定断裂的原因,进而采取有效的措施来预防和解决断裂问题。
值得注意的是,在实际生产中,球铁的断裂往往同时受多种因素的影响,因此需要综合考虑各种可能的原因,并进行相应的改进和优化。
球铁及其球化不良问题探讨分析解读
球铁及其球化不良问题探讨分析岗铁的应用使人类文明进入了铁器时代。
球墨铸铁的诞生,是继人类发明炼钢技术之后,在黑色金属应用技术方面又一次大的技术创新,是20世纪材料科学最重大的技术进展之一。
我国古代工匠早在2000年前就已制造出具有球状石墨的铸铁,分析表明上述铸铁件不含镁或稀土元素,是采用高纯木炭生铁熔剂,在金属型中浇注,经热处理后制成。
但由于这种工艺难于大量生产,因而这种古代球铁的独特技艺没有流传至今。
现代球墨铸铁采用向铁液中添加球化剂的方法使其在铸态下析出球状石墨,使得球墨铸铁真正登上了工业应用的舞台。
世界铸铁件的生产状况和趋势是,灰铸铁件的比例明显下降,但仍占优势。
球墨铸铁件的产量持续增长,蠕墨铸铁和特种铸铁也有了较大的发展。
我国球墨铸铁件在质量和生产稳定性方面的差距也较大。
我国球墨铸铁生产较突出的问题是材质强韧性上、缺陷多,其原因除炉料、球化处理方法和球化剂等因素外,主要是球化处理前对铁液含硫量要求过松。
因此,为使我国球墨铸铁生产能有大幅度的增长,必须大力实施能稳定提供质量可靠的优质球墨铸铁件的配套技术。
现在就球铁常见的缺陷球化不良结合我们单位的实际系统地进行论述一下。
球化剂的合理选用和稀土(RE)元素的加入是实现高强度薄壁球墨铸铁铸造的关键。
⑴该技术的核心是在铸造(熔炼)工艺中要保证RE/S=2~2.5。
球化剂要选用Fe-Si-Mg-RE-Ca 系材料,其中稀土元素(Ce、La、Pr)的加入并使之与硫保持一定比例是球化技术的关键。
试验证实,当RE/S<2时,出现球化不良;RE/S>2.5、Mg/S>5时,易出现白口,同时严格控Wp<0.04%、WBi=0.003%~0.007%。
灰铸铁铸件所产生的各种铸造缺陷(如缩孔、气孔、渣孔、夹砂、冷隔、浇不足等)都会在生产稀土镁球墨铸铁时产生。
球墨铸铁常见缺陷有球化不良(球铁处理不成)、球化衰退、缩松、皮下气孔等缺陷。
球化不良是稀土镁球墨铸铁经常遇到的问题之一。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
球铁试棒断口分析
问题提出:球铁试棒铸件成分基本相同,但两者的抗拉强度、延伸率相差很大,断口有两个不同断面形貌。
(1)断口明显有两个区域:白的具有金属光泽,黑的好像石墨的颜色。
断口比较平齐,约2/3部分呈亮色结晶状组织,1/3部分呈灰色纤维状组织。
(2)断口断裂面全部为灰黑色。
猜想:铸件成分基本相同,显微组织也基本相同,怀疑与成分无关,是力学上引起的上述现象。
1.正常断口
当试样的珠光体量在20~30% 时,其断口宏观表现为暗灰色,断面上分布着亮点,其分布特征是:从裂纹起源区到快速扩展方向,亮点依次增多。
它对应的力学性能表现为:抗拉强度= 500MPa左右,延伸率在l5~I 8% 之间。
所检测试样的力学性能为Rm=520MPa,
A=15.4% 。
电镜观察结果:呈暗灰色,裂纹起源区为韧窝,断口中部区为韧窝+ 解理,而裂纹快速扩展区,也即亮点区,为解理断口。
光镜观察结果,暗灰区与亮点区基体组织分布一样。
当珠光体含量≥40%时,断口基本上呈银亮色。
此时试样的强度高,伸长率较低。
所考察断口对应的力学性能为Rm=570MP A=10.4%,从断口检测结果可见银亮色断口在宏观上呈解理形貌。
从上述试验结果可知,在正常球化级别的条件下,随着珠光体含量的增加。
拉伸试样断口宏观上由暗灰色向银亮色发展,微观由韧窝为主的断裂机制向以解理为主的断裂机制发展。
2.异常断口
若基体中存在少量的缩松或拉伸夹具偏倾等情况,在拉应力处也会产生灰斑。
含有较多磷共晶和缩松的黑斑断口。
这类断口的宏观特征为:黑斑区内呈现放射状块状物,对该区域作大面积能谱分析-磷含量高达1.41%。
缩松一般伴随着磷共晶产生。
厚壁球铁断口与基体组织及力学性能存在对应关系,随着组织中珠光体量的增加,断口上由暗灰色向银亮色发展,微观上则由韧窝断裂向解理断裂发展,当然,力学性能方面是伸长率下降,强度增加。
灰斑是由于非包含物和缺口效应引起的应力集中所致,灰斑区微观形貌为韧窝,它对力学性能影响不大。
黑斑是试样中包含物,如变异石墨、夹杂、磷共晶等引起应力集中所致,它使力学性能特别是伸长率大幅度下降,黑斑的出现标志铸造缺陷的产生。
球墨铸铁灰斑断口分析
摘要:用电镜检验了球铁断口中灰斑区的形貌与化学成分,并探索了灰斑区的形成机理。
通过对灰斑区的研究,论证了一些影响球铁强度的因素,还发现了球铁中Al成分的偏析。
关键词:球墨铸铁;断口分析;灰斑
球墨铸铁断口通常为银灰色,但在某些球墨铸铁宏观断口中除有正常的银灰色区域外,还可观察到色泽灰暗的灰斑区。
图1是一些存在有灰斑区的试样断口。
图1有灰斑断口的拉伸试样
断口中这种灰斑区域,一般来讲,并非铸造缺陷,也非组织缺陷。
在GB5601-85“铸造名词术语”中也未对此命名,因而暂称为“灰斑断口”。
1 概述
在球墨铸铁拉伸试样,冲击试样及球铁铸件的断口中都可能出现灰斑区。
经实验室长期对拉伸试样断口观察分析的结果,发现灰斑断口出现具有以下几个特征点
1.1 断口中,灰斑区的大小、分布位置没有一定规律,可能出现在试样断口的中心,也可能出现在断口边沿,并多数出现在断口边沿。
1.2 有灰斑区的试样与无此现象的试样相比,通常拉伸强度较低,而延伸率较高。
1.3 灰斑断口多出现在铁素体珠光体混合基体的球铁中。
1.4 对同一试样的灰斑区与银灰色区同时作金相检查,并未发现两者之间出现金相组织上的差别,也即石墨形态、数量、分布与基体组织均无明显变化。
在两个区域上取样化验,也未发现化学成分的明显差异。
正因为常规检验无法查明灰斑区的形成原因,因而进一步作了扫描电镜观察及电子探针分析。
2 实验方法与结果
对牌号为QT600-3球铁拉伸试样灰斑断口用台式扫描电子显微镜观察。
图2为100×下的断口形貌比较,图中黑色圆球为石墨,明显可以看出灰斑区中的石墨多于银灰色区中的石墨,并且比较密集。
图3为500×下的断口形貌比较,在灰斑区中微观断裂特征为石墨球周围形成的大韧窝和基体中形成的小韧窝,属于微孔聚集型的韧性断裂。
在银灰色区中微观断裂特征出现河流花样,属于脆性解理断裂。
图3断口扫描电镜照片 500×
对QT600-3灰斑断口进行元素含量定量测定,结果如表1所示。
从表1中可以看出,Al 在灰斑区中含量明显高于银灰色区。
3对实验结果的讨论与分析
3.1 断裂过程分析
灰斑断口试样的整个断裂过程可以理解为试样中的夹渣、表面刀痕等作为裂纹源,球状石墨看成显微空洞,随着应力增加,裂纹沿着石墨球之间发展,并使石墨球之间的金属基体产生撕裂或剪切断裂,从而形成韧窝断口形貌,此一时期为韧性断裂。
当夹渣出现在试样心部时,则在试样中心产生灰斑区。
在试样边沿的灰斑区则可能由夹渣或刀痕作为裂纹源而引起。
所以,灰斑区的分布具有随机性。
当韧性断裂断口尺寸增大到某一临界时,裂纹以极快速并呈近似直线方向扩展,发生脆性断裂。
由于韧性断裂是在较低应力状态下产生,并且裂纹扩展速度缓慢,所以出现带灰斑区断口试样拉伸强度较低,而延伸率较高的现象,并由此可知,减少球铁中夹渣,提高球铁球化等级,细化石墨和提高试样表面粗糙度都可以使韧性断裂在较高应力水平下产生,从而提高球铁的拉伸强度。
3.2 断口中色泽差异的原因
韧性断裂中裂纹走向是在石墨球之间进行,因而可将不同晶面的石墨球裸露出来,使石墨裸露程度较多,这是造成宏观观察中该区色泽灰暗的原因之一。
在银灰色区中,是脆性穿晶断裂,断面为解理面或解理台阶,石墨的裸露程度与普通金相照片比较接近,显得较为稀疏。
另外,由于韧窝断口对光的散射较解理断面多,也是灰斑区色泽较暗的原因之一。
3.3 铝元素的偏析
韧窝中的石墨往往易于剥落,从而暴露出石墨相与金属基本相的相界面。
在灰斑区中,用电子探针定量分析化学成分时,这种相界面的成分占有一定比例。
而在银灰色区,因是解理断面,电子探针分析的成分可以认为是金属基体成分。
从表1可知,两者之间主要是Al成分的差异。
因而可以认为Al在石墨与金属基体的相界面上产生偏析。
为了减少这种偏析,在球铁生产过程中,应使用低铝含量的球化剂与孕育剂。
4 结论
灰斑不是一种铸造缺陷,而是两种断裂方式引起的色泽差异。
断口中灰斑区的出现是由于在该区域石墨裸露较多,以及韧窝形貌对光线散射较多的缘故。
通过对灰斑断口的研究,论证了可以通过以下途径来提高球铁的功能。
4.1 减少球铁中夹渣,提高球铁球化等级,细化石墨和提高试样或工件的表面粗糙度,都将提高球铁的拉伸强度。
4.2 球铁中的Al元素易在石墨与金属基体相界面上产生偏析。
因而使用低Al含量的球化剂与孕育剂对提高球铁性能有利。