针对二级倒立摆的LQR控制系统设计

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

目录

0. 前言 (1)

1. 倒立摆 (2)

1.1倒立摆的结构和工作原理 (2)

1.2 倒立摆的特性 (3)

1.3控制方法 (3)

1.4课设目的 (4)

2. 直线二级倒立摆的数学模型的建立与分析 (4)

2.1建立数学模型 (4)

2.2 系统的能控能观测性分析 (8)

3. LQR控制器的设计 (9)

3.1关于二次型最优控制(LQR) (9)

3.2 LQR的基本原理 (10)

3.3加权阵Q和R的选择 (11)

4. LQR控制器参数的调试与仿真 (12)

5. 总结与体会 (17)

参考文献 (18)

.

课设题目针对直线二级倒立摆的LQR控制系统设计

金万福沈阳航空航天大学自动化学院

摘要:倒立摆系统是一个典型的多变量、非线性、强耦合和快速运动的高阶不稳定系统,它是检验各种新的控制理论和方法有效性的典型理想模型。在其控制过程中,能有效地反映诸如镇定性、鲁棒性、随动性以及跟踪等许多关键问题。本文主要研究二级倒立摆LQR控制方法。首先建立了二级倒立摆的数学模型,然后对二级倒立摆的数学模型进行控制设计,应用遗传算法确定系统性能指标函数中的加权阵Q,R得到系统状态反馈控制矩阵。最后,用MATLAB进行了系统仿真。在几次凑试Q矩阵值后系统的响应结果都不尽如人意,于是采用遗传算法对Q矩阵优化。仿真结果证明:经过遗传算法优化后的系统响应能更加满足设计要求。

关键词:二级倒立摆;LQR控制;遗传算法

0. 前言

随着现代科学技术的快速发展,控制工程所面临的问题越来越复杂。许多系统具有严重非线性、模型不确定、大滞后等特点。倒立摆就是这样的复杂系统,对它的研究具有一般性。倒立摆源于火箭发射器,最初的研究开始于二十世纪50 年代,由美国麻省理工学院的控制理论专家根据火箭发射助推器原理设计出一级倒立摆实验设备。倒立摆的控制技巧同杂技运动员倒立平衡表演有异曲同工之处,这表明一个不稳定的被控对象,通过人的直觉、采取定性的手段,可以使之具有良好的稳定性。

在控制理论的发展过程中,某一理论的正确性及其在实际应用中的可行性需要一个按其理论设计的控制器去控制一个典型对象来验证。倒立摆系统作为一个实验装置,形象直观,结构简单,成本低廉;作为一个控制对象,他又相当复杂,同时就其本身而言,是一个高阶次、不稳定、多变量、非线性、强耦合系统,只有采取行之有效的控制方法才能使之稳定,因此倒立摆装置被公认为是自动控制理论中的典型实验设备[1]。

通过对倒立摆系统的研究,不仅可以解决控制中的理论问题,还能将控制理论所涉及的三个基础学科:力学、数学和电学有机的结合起来,在倒立摆系统中进行综合应用。对倒立摆系统进行控制,其稳定效果非常明了,可以通过角度、位移和稳定时间直接度量,控制好坏一目了然。理论是工程的先导,对倒立摆的研究不仅有其深远的理论意义,还有重要的工程背景。从日常生活中所见到的任何重心在上,支点在下的控制问题,到空间飞行器和各类伺服云台的稳定,都和

倒立摆的控制有很大的相似性,故对其的稳定控制在实际中有很多用场,如海上钻井平台的稳定控制、卫星发射架的稳定控制、火箭姿态控制、飞机安全着陆化工过程控制等都属于这类问题。针对上面的实际问题,启发了人们采用智能控制方法对倒立摆进行控制。因此对倒立摆机理的研究具有重要的理论和实际意义,成为控制理论中经久不衰的研究课题。

1.倒立摆

1.1倒立摆的结构和工作原理

倒立摆系统是一个多变量、快速非线性和自然不稳定系统。在控制过程中能有效地反映控制中的许多关键问题,如非线性问题系统的鲁棒性问题、随动问题、镇定问题及跟踪问题等。倒立摆系统作为一个实验装置形象直观结构简单构件组成参数和形状易于改变成本低廉。倒立摆系统的控制效果可以通过其稳定性直观地体现,也可以通过摆杆角度小车位移和稳定时间直接度量。如图1.1,系统包括计算机、运动控制卡、伺服机构、倒立摆本体(小车,上摆,下摆,皮带轮等)和光电码盘几大部分,组成了一个闭环系统。光电码盘1将小车的位移、速度信号反馈给伺服驱动器和运动控制卡,下面一节摆杆(和小车相连)的角度、角速度信号由光电码盘2反馈回控制卡和伺服驱动器,上面一节摆杆的角度和角速度信号则由光电码盘3反馈。计算机从运动控制卡中读取实时数据,确定控制决策(小车向哪个方向移动、移动速度、加速度等),并由运动控制卡来实现该控制决策,产生相应的控制量,使电机转动,带动小车运动,保持两节摆杆的平衡。

图1.1 系统结构和工作原理图

1.2 倒立摆的特性

a.非线性

倒立摆是一个典型的非线性复杂系统,实际中可以通过线性化得到系统的近似模型,线性化处理后再进行控制。也可以利用非线性控制理论对其进行控制。倒立摆的非线性控制正成为一个研究的热点。

b.不确定性

主要是模型误差以及机械传动间隙,各种阻力等,实际控制中一般通过减少各种误差来降低不确定性,如通过施加预紧力减少皮带或齿轮的传动误差,利用滚珠轴承减少摩擦阻力等不确定因素。

c.耦合性

倒立摆的各级摆杆之间,以及和运动模块之间都有很强的耦合关系,在倒立摆的控制中一般都在平衡点附近进行解耦计算,忽略一些次要的耦合量。

d.开环不稳定性

倒立摆的平衡状态只有两个,即在垂直向上的状态和垂直向下的状态,其中垂直向上为绝对不稳定的平衡点,垂直向下为稳定的平衡点。

e.约束限制

由于机构的限制,如运动模块行程限制,电机力矩限制等。为了制造方便和降低成本,倒立摆的结构尺寸和电机功率都尽量要求最小,行程限制对倒立摆的摆起影响尤为突出,容易出现小车的撞边现象。

1.3 控制方法

当前,倒立摆的控制方法可分为以下几类:

a.线性理论控制方法

将倒立摆系统的非线性模型进行近似线性化处理,获得系统在平衡点附近的线性化模型然后再利用各种线性系统控制器设计方法,得到期望的控制器PID

控制、状态反馈控制、LQR控制法是其典型代表这类方法对一、二级的倒立摆(线性化后误差较小模型较简单)控制时,可以解决常规倒立摆的稳定控制问题但对于像非线性较强模型较复杂的多变量系统(三四级以及多级倒立摆)线性系统设

计方法的局限性就十分明显,这就要求采用更有效的方法来进行合理的设计。

b.预测控制和变结构控制方法

由于线性控制理论与倒立摆系统多变量、非线性之间的矛盾,使人们意识到,针对多变量、非线性对象,采用具有非线性特性的多变量控制。解决多变量非线性系统的必由之路。人们先后开展了预测控制、变结构控制和自适应控制的研究。预测控制是一种优化控制方法,强调的是模型的功能而不是结构。变结构控制是一种非连续控制,可将控制对象从任意位置控制到滑动曲面上仍然保持系统的稳

相关文档
最新文档