现代控制理论实验

合集下载

现代控制理论实验指导书

现代控制理论实验指导书

现代控制理论实验指导书实验⼀多变量时域响应⼀、实验⽬的1、掌握多输⼊多输出(MIMO )系统传递函数的建⽴2、分析MIMO 系统时域响应的特点⼆、实验仪器1、 TDN —AC/ACS 型⾃动控制系统实验箱⼀台2、⽰波器3、万⽤表三、实验原理与电路1、传递函数矩阵关于传递函数矩阵的定义是当初始条件为零时,输出向量的拉⽒变换式与输⼊向量的拉⽒变换式之间的传递关系。

设系统动态⽅程为()()x Ax t Bu t ?=+,()()()y t Cx t Du t =+令初始条件为零,进⾏拉⽒变换,有()()()()()()sX s AX s BU s Y s CX s DU s =+=+则11()()()()[()]()()()X s sI A BU s Y s C sI A B D U s G s U s --=-=-+=系统的传递函数矩阵表达式为1()()G s C sI A B D -=-+设多输⼊多输出系统结构图如图1-1。

图1-1多输⼊多输出系统结构图它是由传递函数矩阵为()G s 和()H S 的两个⼦系统构成。

由于()()()()[()()]()[()()()]Y s G s E s G s U s Z s G s U s H s Y s ==-=-1()[()()]()()Y s I G s H s G s U S -=+闭环传递矩阵为:1()[()()]()s I G s H s G s -Φ=+ 2、实验题⽬某⼀控制系统如图1-2,为⼆输⼊⼆输出系统的结构图。

图1-2 ⼆输⼊⼆输出系统的结构图由系统结构图可知,控制器的传递函数阵()c G s 为10()01c G s ??=被控对象的传递函数阵()p G s 为1/(0.11)0()1/(0.11)1/(0.11)p s G s s s +??=??++??反馈传递函数阵()H s 为10()01H s ??=?于是根据闭环传递矩阵公式得1()[()()()]()()c p c p s I G s G s H s G s G s -Φ=+ 将(),(),()c p G s G s H s 代⼊上式可得1101/(0.11)01010()011/(0.11)1/(0.11)0101s s s s -?+Φ=+++1/(0.11)0101/(0.11)1/(0.11)01s s s +++化简得21/(0.12)0()(0.11)/(0.12)1/(0.12)s s s s s +??Φ=??+++??由上式可得系统的输出量()()0.12Y s U s s =+21220.111()()()(0.12)0.12s Y s U s U s s s +=+++ 四、实验内容及步骤1、根据图1-2设计模拟电路图1-3,并按图1-3搭接线路图1-3 系统模拟电路图2、令u1为⼀阶跃信号,观察并记录系统输出的波形。

现代控制理论基础实验

现代控制理论基础实验

现代控制理论基础实验一、 实验目的1. 熟悉MATLAB 的编程以及SIMULINK 仿真工具的使用。

2. 通过实验掌握极点配置及设计状态反馈控制器K 的方法。

3. 深入了解电动机速度控制系统的综合控制方法。

二、 实验内容电动机速度控制系统,设计状态反馈控制器K ,使得系统跟踪单位阶跃指令时无静态误差,超调量s t s 1%,5%<≤σ。

要求写出详细的设计步骤,给出仿真设计系统原理框图,给出仿真的输出波形图和误差波形图。

三、 实验原理控制系统最基本的结构形式是由受控系统和实现反馈控制规律的反馈环节所构成的反馈控制系统。

现代控制理论中,存在两种基本的反馈形式,即状态反馈和输出反馈。

实际情况中,状态反馈具有更好的特性和适应性。

系统动力学的各种特性或各种品质指标,在很大程度上是由系统的极点决定的。

所谓极点配置问题,就是通过状态反馈矩阵K 的选择,使闭环系统的极点,恰好处于所希望的位置。

从线性定常系统运动分析可知,如时域中超调量、过渡过程时间及频域中增益稳定裕度、相位稳定裕度,都被认为等价于系统极点位置,相应综合问题可视为极点配置问题。

四、系统设计1、根据图1计算出电机控制系统的传递函数,并化为状态空间模型图一 受控系统方块图(简化))(1)10s(0.4s )(5.0]10.05s )(U 3.0)(U 4.0[s Y s Y s s =+-+-可求得受控系统的传递函数:5.2125.502^5.223^5.01.0)()()(++++==s s s s s U s Y s G 系统有一个零点z 1 = -5;用求根函数roots()计算函数极点 >> C=[1 22.5 50.125 2.5];>> roots(C) ans =-20.0000 -2.4490 -0.0510由题意设状态分别为:系统simulink 仿结构如下图二 受控系统simulink 仿真结构图⎪⎪⎪⎩⎪⎪⎪⎨⎧=+--=+=233121*10114.01*]*5.0)4.0[(1005.03.0x s x s x x u x u s x 化为标准形式可得:⎪⎪⎪⎭⎫ ⎝⎛'3'2'1x x x =⎪⎪⎪⎭⎫ ⎝⎛----01.0025.15.25.20020⎪⎪⎪⎭⎫ ⎝⎛321x x x +⎪⎪⎪⎭⎫ ⎝⎛016y=()100 x系统的性能指标:调节时间t s = 76.6s ,上升时间t r = 42.8s ,超调量0%=σ2、确定希望的极点希望的极点数为3,由系统要求超调量低于5%,ts 小于1秒选其中一对为主导极点1s 和2s ,另一个为远极点,并且认为系统的性能主要是由主导极点决定的,远极点所产生的影响很小,可以忽略不计。

现代控制理论实训报告

现代控制理论实训报告

一、前言随着科技的飞速发展,自动化、智能化已成为现代工业生产的重要特征。

为了更好地掌握现代控制理论,提高自己的实践能力,我参加了现代控制理论实训课程。

本次实训以状态空间法为基础,研究多输入-多输出、时变、非线性一类控制系统的分析与设计问题。

通过本次实训,我对现代控制理论有了更深入的了解,以下是对本次实训的总结。

二、实训目的1. 巩固现代控制理论基础知识,提高对控制系统的分析、设计和调试能力。

2. 熟悉现代控制理论在工程中的应用,培养解决实际问题的能力。

3. 提高团队合作意识,锻炼动手能力和沟通能力。

三、实训内容1. 状态空间法的基本概念:状态空间法是现代控制理论的核心内容,通过建立状态方程和输出方程,描述系统的动态特性。

2. 状态空间法的基本方法:包括状态空间方程的建立、状态转移矩阵的求解、可控性和可观测性分析、状态反馈和观测器设计等。

3. 控制系统的仿真与实现:利用MATLAB等仿真软件,对所设计的控制系统进行仿真,验证其性能。

4. 实际控制系统的分析:分析实际控制系统中的控制对象、控制器和被控量,设计合适的控制策略。

四、实训过程1. 理论学习:首先,我对现代控制理论的相关知识进行了复习,包括状态空间法、线性系统、非线性系统等。

2. 实验准备:根据实训要求,我选择了合适的实验设备和软件,包括MATLAB、控制系统实验箱等。

3. 实验操作:在实验过程中,我按照以下步骤进行操作:(1)根据实验要求,建立控制系统的状态空间方程。

(2)求解状态转移矩阵,并进行可控性和可观测性分析。

(3)设计状态反馈和观测器,优化控制系统性能。

(4)利用MATLAB进行仿真,观察控制系统动态特性。

(5)根据仿真结果,调整控制器参数,提高控制系统性能。

4. 结果分析:通过对仿真结果的分析,我对所设计的控制系统进行了评估,并总结经验教训。

五、实训成果1. 掌握了现代控制理论的基本概念和方法。

2. 提高了控制系统分析与设计能力,能够独立完成实际控制系统的设计。

现代控制理论实验报告

现代控制理论实验报告

现代控制理论实验报告实验一系统能控性与能观性分析一、实验目的1.理解系统的能控和可观性。

二、实验设备1.THBCC-1型信号与系统·控制理论及计算机控制技术实验平台;三、实验容二阶系统能控性和能观性的分析四、实验原理系统的能控性是指输入信号u对各状态变量x的控制能力,如果对于系统任意的初始状态,可以找到一个容许的输入量,在有限的时间把系统所有的状态引向状态空间的坐标原点,则称系统是能控的。

对于图21-1所示的电路系统,设iL和uc分别为系统的两个状态变量,如果电桥中则输入电压ur能控制iL和uc状态变量的变化,此时,状态是能控的。

反之,当时,电桥中的A点和B点的电位始终相等,因而uc不受输入ur的控制,ur只能改变iL的大小,故系统不能控。

系统的能观性是指由系统的输出量确定所有初始状态的能力,如果在有限的时间根据系统的输出能唯一地确定系统的初始状态,则称系统能观。

为了说明图21-1所示电路的能观性,分别列出电桥不平衡和平衡时的状态空间表达式:平衡时:由式(2)可知,状态变量iL和uc没有耦合关系,外施信号u只能控制iL的变化,不会改变uc的大小,所以uc不能控。

基于输出是uc,而uc与iL无关连,即输出uc中不含有iL的信息,因此对uc的检测不能确定iL。

反之式(1)中iL与uc有耦合关系,即ur的改变将同时控制iL和uc的大小。

由于iL与uc的耦合关系,因而输出uc的检测,能得到iL 的信息,即根据uc的观测能确定iL(ω)五、实验步骤1.用2号导线将该单元中的一端接到阶跃信号发生器中输出2上,另一端接到地上。

将阶跃信号发生器选择负输出。

2.将短路帽接到2K处,调节RP2,将Uab和Ucd的数据填在下面的表格中。

然后将阶跃信号发生器选择正输出使调节RP1,记录Uab和Ucd。

此时为非能控系统,Uab和Ucd没有关系(Ucd始终为0)。

3.将短路帽分别接到1K、3K处,重复上面的实验。

现代控制理论实验报告

现代控制理论实验报告

现代控制理论实验指导书实验一:线性系统状态空间分析1、模型转换图1、模型转换示意图及所用命令传递函数一般形式:)()(11101110n m a s a s a s a b s b s b s b s G n n n n m m m m ≤++++++++=----K KMATLAB 表示为:G=tf(num,den),其中num,den 分别是上式中分子,分母系数矩阵。

零极点形式:∏∏==--=n i j mi i ps z s K s G 11)()()( MATLAB 表示为:G=zpk(Z,P ,K),其中 Z ,P ,K 分别表示上式中的零点矩阵,极点矩阵和增益。

传递函数向状态空间转换:[A,B,C,D] = TF2SS(NUM,DEN);状态空间转换向传递函数:[NUM,DEN] = SS2TF(A,B,C,D,iu)---iu表示对系统的第iu个输入量求传递函数;对单输入iu为1;验证教材P438页的例9-6。

求P512的9-6题的状态空间描述。

>> A=[0 1;0 -2];>> B=[1 0;0 1];>> C=[1 0;0 1];>> D=[0 0;0 0];>> [NUM,DEN] = ss2tf(A,B,C,D,1)NUM =0 1 20 0 0DEN =1 2 0>> [NUM,DEN] = ss2tf(A,B,C,D,2)NUM =0 0 10 1 0DEN =1 2 0给出的结果是正确的,是没有约分过的形式P512 9-6>> [A,B,C,D]=tf2ss([1 6 8],[1 4 3])A =-4 -31 0B =1C =2 5D =12、状态方程求解单位阶跃输入作用下的状态响应:G=ss(A,B,C,D);[y,t,x]=step(G);plot(t,x). 零输入响应[y,t,x]=initial(G,x0)其中,x0为状态初值。

现代控制理论实验程序精品文档6页

现代控制理论实验程序精品文档6页

实验一 倒立摆系统状态空间模型设小车位移为y ,倒立摆偏角为θ,由动力学方程可得倒立摆动态方程: 1) 写出倒立摆系统非线性状态方程2) 对非线性方程进行线性化,得到线性化系统状态方程 3) 在simulink 中搭建倒立摆系统非线性及线性仿真模型 [实验步骤]: (1)将微分方程化简,得到:u ml ml ym M =-++2sin cos )(θθθθ θθθsin cos mg ml ym =+ 取如下状态变量:θθ ====4321,,,x x yx y x 可得非线性状态方程:323324334433233324221sin cos sin cos sin )(1sin cos sin sin x m M x x mlx x u x g m M l xx xx m M x x mg u x mlx xx x+--+==+-+==考虑平衡点)0,0,0,0(40302010====x x x x 附近状态的小扰动变化:4044303320221011,,,x x x x x x x x x x x x -=-=-=-=δδδδ可得:u Mlx Ml g m M xx x u M x M mg x x xδδδδδδδδδδ1)(134433221-+==+-==从而得到倒立摆线性状态空间模型:u Ml M x x x x Ml g m M Mmgx x x xδδδδδδδδδ⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡-+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡+-=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡10100)(001000000001043214321 线性模型在simulink 仿真图如下所示:非线性模型在simulink 仿真图如下所示:实验二 倒立摆系统状态反馈设计与仿真倒立摆系统的线性状态空间表达式为:u x x x x xx x x δδδδδδδδδ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡10100110010000100001043214321其中,θθ ====4321,,,x x yx y x 试利用matlab 进行以下分析:(1)分析系统的能控性;● 如果系统输出为小车的位移y ,试分析系统的能观性; ● 如果系统输出为倒立摆的摆角θ,试分析系统的能观性;(2)对该系统设计状态反馈控制,对比倒立摆非线性模型与线性化模型在小扰动及大扰动两种情况下的响应曲线,并分析结果;(3)设系统输出为小车的位移y ,对该系统设计基于观测器的状态反馈控制,对比倒立摆非线性模型与线性化模型在小扰动及大扰动两种情况下的响应曲线,并分析结果。

现代控制理论实验内容

现代控制理论实验内容

现代控制理论实验一一、实验目的:1.熟悉MATLAB,掌握Simulink 工具的使用方法;2.根据传递函数设计出对应的能控、串联结构图;3.掌握极点配置状态反馈方法设计控制器技术;4.学会设计全维观测器。

二、实验内容: 已知系统传递函数)3)(2()1(6)(+++=s s s s s W 1. 用Simulink 对该系统进行实现(1)能控性实现(2)串联实现2. 以上述系统的串联实现为基础,实验研究:(1)系统在初始条件作用下的状态响应和输出响应(2)系统在阶跃输入信号作用下的状态响应和输出响应(3)分析系统在状态空间坐标原点的稳定性3. 以上述系统的能控实现为基础,设计状态反馈控制器要求:系统输出的最大超调量8.16%=δ,调节时间1=s t 秒仿真分析系统的实际工作效果,由系统输出的实际阶跃响应曲线计算最 大超调量、调节时间、稳态误差等系统的性能参数分析该系统在输出比例控制下是否会存在稳态误差?状态反馈控制下是否会存在稳态误差?分析出现这种差异的原因,讨论消除状态反馈稳态误差的方 法。

4. 以上述系统的串联实现为基础,设计系统的全维状态观测器,观测器极点全为-4。

仿真分析在原系统和观测器系统初始条件相同和不同时,观测状态与原状态变量的差值随时间变化的情况,例如改变观测器极点配置到-9,结果有何不同?5. 结合以上 3、4 的结果,应用观测状态实现状态反馈控制对比分析实际状态反馈与观测状态反馈系统控制效果的异同三、实验装置:1.微型计算机2.实验平台采用MATLAB 及Simulink 工具四、实验数据及分析1.(1)能控性实现根据状态空间表达式直接写出系统的能控标准I 型:[]066,100560100010=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=y u x x输出响应:(2)串联实现输出响应:2.(1)初始条件下的状态响应和输出响应:状态响应:输出响应:(2)阶跃信号作用下的状态响应和输出响应:状态响应:输出响应:分析系统在坐标原点的稳定性:在(1)中设置的初始值为1,1,1,由状态响应曲线可以看出X1并不能最终稳定在零点,其他两条输出曲线虽可稳定,但系统仍可认为在原点处是不稳定的。

现代控制理论实验体会

现代控制理论实验体会

现代控制理论在工程领域中扮演着至关重要的角色,通过实验可以帮助我们更好地理解和应用这些理论。

进行现代控制理论的实验可以让我们验证理论模型的准确性,调节控制器参数以实现系统稳定性和性能要求,并且深入理解各种控制策略的优缺点。

以下是一些可能的实验体会:
1. 系统响应特性:通过实验观察不同控制器对系统的响应特性的影响,包括超调量、调节时间、稳态误差等。

比较不同控制器(如P、PI、PD、PID控制器)的性能表现,理解各自的优劣。

2. 鲁棒性分析:实验中可以考虑引入干扰或参数变化,观察系统的鲁棒性能。

了解控制系统对外界干扰的抵抗能力,以及参数变化对系统性能的影响。

3. 系统优化:通过调节控制器参数,优化系统的性能指标。

比如,通过自整定控制器(Self-Tuning Controller)实现对系统动态性能的在线调节和优化。

4. 状态空间分析:利用状态空间方法建立系统模型,实现状态反馈控制。

通过实验验证状态反馈控制对系统性能的改善效果。

5. 非线性控制:尝试应用现代非线性控制理论,如模糊控制、神经
网络控制等,对非线性系统进行控制。

观察非线性控制方法相比传统控制方法的优势。

通过实验,可以更深入地理解现代控制理论的原理和方法,掌握控制系统设计和调试的技巧,提升工程实践能力。

同时,实验也有助于培养工程师的创新思维和问题解决能力。

《现代控制理论》实验报告

《现代控制理论》实验报告

.现代控制理论实验报告组员:院系:信息工程学院专业:指导老师:年月日实验1 系统的传递函数阵和状态空间表达式的转换[实验要求]应用MATLAB 对系统仿照[例1.2]编程,求系统的A 、B 、C 、阵;然后再仿照[例1.3]进行验证。

并写出实验报告。

[实验目的]1、学习多变量系统状态空间表达式的建立方法、了解系统状态空间表达式与传递函数相互转换的方法;2、通过编程、上机调试,掌握多变量系统状态空间表达式与传递函数相互转换方法。

[实验内容]1 设系统的模型如式(1.1)示。

p m n R y R u R x DCx y Bu Ax x ∈∈∈⎩⎨⎧+=+= (1.1)其中A 为n ×n 维系数矩阵、B 为n ×m 维输入矩阵 C 为p ×n 维输出矩阵,D 为传递阵,一般情况下为0,只有n 和m 维数相同时,D=1。

系统的传递函数阵和状态空间表达式之间的关系如式(1.2)示。

D B A SI C s den s num s G +-==-1)()()(()( (1.2)式(1.2)中,)(s num 表示传递函数阵的分子阵,其维数是p ×m ;)(s den 表示传递函数阵的按s 降幂排列的分母。

2 实验步骤① 根据所给系统的传递函数或(A 、B 、C 阵),依据系统的传递函数阵和状态空间表达式之间的关系如式(1.2),采用MATLA 的file.m 编程。

注意:ss2tf 和tf2ss 是互为逆转换的指令;② 在MATLA 界面下调试程序,并检查是否运行正确。

③ [1.1] 已知SISO 系统的状态空间表达式为(1.3),求系统的传递函数。

,2010050010000100001043214321u x x x x x x x x ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡ []⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=43210001x x x x y (1.3)程序:A=[0 1 0 0;0 0 -1 0;0 0 0 1;0 0 5 0]; B=[0;1;0;-2]; C=[1 0 0 0]; D=0;[num,den]=ss2tf(A,B,C,D,1)程序运行结果:num =0 -0.0000 1.0000 -0.0000 -3.0000 den =1.0000 0 -5.0000 0 0从程序运行结果得到:系统的传递函数为:24253)(ss s S G --= ④ [1.2] 从系统的传递函数式求状态空间表达式。

现代控制实验

现代控制实验

经典控制理论的研究对象主要是单输入单输出的系统,控制器设计时一般需要有关被控对象的较精确模型,现代控制理论主要是依据现代数学工具,将经典控制理论的概念扩展到多输入多输出系统。

极点配置问题就是通过选择反馈增益矩阵,将闭环系统的极点恰好配置在根平面上所期望的位置,以获得所希望的动态性能。

1、状态空间分析对于控制系统 X=AX+Bu 式中 X 为状态向量(n 维) u 控制向量(纯量) A n × n 维常数矩阵 B n ×1维常数矩阵 选择控制信号为: u = KX求解上式,得到 X(t )= (A +BK )x (t ) 方程的解为: x (t ) = e ( A +BK )t x (0)可以看出,如果系统状态完全可控,K 选择适当,对于任意的初始状态,当t 趋于无穷时,都可以使x (t )趋于0。

状态反馈闭环控制原理图如下所示:极点配置的设计步骤: (1)检验系统的可控性条件 (2)从矩阵 A 的特征多项式 αααn 1n 1n 1nS A sI s s ++++=---来确定ααn1的值。

(3)确定使状态方程变为可控标准型的变换矩阵 T T=WM 其中 =M []b b bAA2n 1n --W=⎥⎥⎥⎥⎥⎦⎢⎢⎢⎢⎢⎣---11n 2n 11n αααα (4)利用所期望的特征值,写出期望的多项式 ()()()=---μμμn21s s s αααn 1n 1n 1ns ss ++++--并确定αααn21,,的值。

(5)需要的状态反馈增益矩阵K 由以下方程确定2、极点配置及仿真直线一级倒立摆的状态空间模型,以小车加速度作为输入的系统状态方程为:μφφφφ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡X X ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡X X .820100.82800100000000010 μφφφ⎥⎦⎤⎢⎣⎡+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡X X ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡X =Y 0001000001 则有:⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=B ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=A 00D 01000001C .820100.82800100000000010 直线一级倒立摆的极点配置转化为:对于如上所述的系统,设计控制器,要求系统具有较短的调整时间(约3秒)和合适的阻尼(阻尼比ς = 0.5)。

现代控制理论实验报告

现代控制理论实验报告

现代控制理论实验报告实验⼀线性定常系统模型⼀实验⽬的1. 掌握线性定常系统的状态空间表达式。

学会在MATLAB 中建⽴状态空间模型的⽅法。

2. 掌握传递函数与状态空间表达式之间相互转换的⽅法。

学会⽤MATLAB 实现不同模型之间的相互转换。

3. 熟悉系统的连接。

学会⽤MA TLAB 确定整个系统的状态空间表达式和传递函数。

4. 掌握状态空间表达式的相似变换。

掌握将状态空间表达式转换为对⾓标准型、约当标准型、能控标准型和能观测标准型的⽅法。

学会⽤MATLAB 进⾏线性变换。

⼆实验内容1. 已知系统的传递函数,(1)建⽴系统的TF 或ZPK 模型。

(a) )3()1(4)(2++=s s s s G(b) 3486)(22++++=s s s s s G(2)将给定传递函数⽤函数ss( )转换为状态空间表达式。

再将得到的状态空间表达式⽤函数tf( )转换为传递函数,并与原传递函数进⾏⽐较2. 已知系统的状态空间表达式(a) u x x+--=106510 []x y 11= (1)建⽴给定系统的状态空间模型。

⽤函数eig( ) 求出系统特征值。

⽤函数tf( ) 和zpk( )将这些状态空间表达式转换为传递函数,记录得到的传递函数和它的零极点。

⽐较系统的特征值和极点是否⼀致,为什么?给定系统的状态空间模型⽤函数eig( ) 求出系统特征值⽤函数tf( ) 将状态空间表达式转换为传递函数⽤函数zpk( ) 将状态空间表达式转换为传递函数(b) u x x ??+---=7126712203010 []111=y 给定系统的状态空间模型⽤函数tf( ) 和zpk( )将状态空间表达式转换为传递函数实验⼆线性定常系统状态⽅程的解⼀、实验⽬的1. 掌握状态转移矩阵的概念。

学会⽤MA TLAB 求解状态转移矩阵。

2. 掌握线性系统状态⽅程解的结构。

学会⽤MATLAB 求解线性定常系统的状态响应和输出响应,并绘制相应曲线。

现代控制理论实验报告

现代控制理论实验报告

现代控制理论实验指导书实验一:线性系统状态空间分析1、模型转换图1、模型转换示意图及所用命令传递函数一般形式:)()(1111110nmasasasabsbsbsbsGnnnnmmmm≤++++++++=----MATLAB表示为:G=tf(num,den),其中num,den分别是上式中分子,分母系数矩阵。

零极点形式:∏∏==--=nijmiipszsKsG11)()()(MATLAB表示为:G=zpk(Z,P,K),其中Z,P,K分别表示上式中的零点矩阵,极点矩阵和增益。

传递函数向状态空间转换:[A,B,C,D] = TF2SS(NUM,DEN);状态空间转换向传递函数:[NUM,DEN] = SS2TF(A,B,C,D,iu)---iu表示对系统的第iu个输入量求传递函数;对单输入iu为1;验证教材P438页的例9-6。

求P512的9-6题的状态空间描述。

>> A=[0 1;0 -2];>> B=[1 0;0 1];>> C=[1 0;0 1];>> D=[0 0;0 0];>> [NUM,DEN] = ss2tf(A,B,C,D,1)NUM =0 1 20 0 0DEN =1 2 0>> [NUM,DEN] = ss2tf(A,B,C,D,2)NUM =0 0 10 1 0DEN =1 2 0给出的结果是正确的,是没有约分过的形式P512 9-6>> [A,B,C,D]=tf2ss([1 6 8],[1 4 3])A =-4 -31 0B =1C =2 5D =12、状态方程求解单位阶跃输入作用下的状态响应:G=ss(A,B,C,D);[y,t,x]=step(G);plot(t,x).零输入响应[y,t,x]=initial(G,x0)其中,x0为状态初值。

验证P435的例9-4,P437的例9-5。

9-4A=[0 1;-2 -3];B=[0;0];C=[0 0];D=[0];G=ss(A,B,C,D);[y,t,x]=initial(G,[1;2]);plot(t,x)(设初始状态为[1 ;2])零输入响应00.20.40.60.81 1.2 1.4 1.6 1.82-1-0.50.511.529-5零输入响应A=[0 1;-2 -3];B=[0;1];C=[0 0];D=[0];G=ss(A,B,C,D);[y,t,x]=initial(G,[1;2]);plot(t,x)00.20.40.60.81 1.2 1.4 1.6 1.82-1-0.50.511.52零状态响应,阶跃信号激励下>> A=[0 1;-2 -3];B=[0;1];C=[0 0];D=[0];>> G=ss(A,B,C,D);[y,t,x]=step(G);plot(t,x)00.20.40.60.81 1.2 1.4 1.6 1.8200.050.10.150.20.250.30.350.4总响应>> A=[0 1;-2 -3];B=[0;1];C=[0 0];D=[0];G=ss(A,B,C,D);[y1,t1,x1]=step(G);[y2,t2,x2]=initial(G,[1;2]);>> x=x1+x2;>> plot(t1,x)00.20.40.60.81 1.2 1.4 1.6 1.82-0.500.511.523、系统可控性和可观测性可控性判断:首先求可控性矩阵:co=ctrb(A ,B)。

现代控制理论实验指导书

现代控制理论实验指导书

现代控制理论基础实验报告姓名:余国宏学号:140741138班级:141142A指导老师:刘家学实验一:状态空间的实现及状态方程求解一、实验内容 已知某系统传递函数90391390)(23+++=Φs s s s 1. 列出可控标准形表达式以及状态图。

2. 选择合适的采样周期,对状态方程离散化。

3. 求T Z ]111[=时的单位阶跃响应。

4. 选取不同的采样周期,分析采样周期变化对暂态性能的影响。

二、实验步骤1、系统可控标准型u x x ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=∙100133990100010 []x y 0090= 状态图2、采样周期的选择由系统传递函数可得:)93()10(9090391390)(223++++=+++=Φs s s s s s s (1-1) 系统极点101-=λ,35.1*5.13,2j ±-=λ,取主导极点,对系统降阶处理,得到二阶特征方程:0932=++s s (1-2)由此可得振荡角频率3=n ω,阻尼比5.0=ζ,可计算出调节时间:s t n s 67.24==ζω ()02.0=∆ (1-3)为了观测到整个调节过程,取s t s 4=,取40个采样点,采样周期为0.1秒。

3、单位阶跃响应(1) 用Matlab 程序求离散化之后系统的阶跃响应A=[0 1 0;0 0 1;-90 -39 -13];B=[0;0;1];X0=[1;1;1];T=0.1; %采样周期为0.1秒[G,H]=c2d(A,B,T); %求离散化之后系统矩阵 S=zeros(3,100);S(:,1)=X0;for K=2:100;S(:,K)=G*S(:,K-1)+H;end;figure;subplot(2,2,1);plot(S(1,:));grid; %画出三个状态变量得曲线subplot(2,2,2);plot(S(2,:));grid;subplot(2,2,3);plot(S(3,:));grid(2)仿真曲线(3)改变采样周期为0.05秒,波形如下可以看出采样周期变小,状态变量的调节时间越长,而超调量,稳态值不变。

现代控制理论实验讲义

现代控制理论实验讲义

(10.7)
系统的状态方程:
= Ax + Bu T ⎧x T θ1 θ 2 θ1 θ2 ⎤ , y = [θ1 θ 2 ] ,其中x = ⎡ ⎨ ⎣ ⎦ ⎩ Y = Cx
⎡ 0 ×2 A = ⎢ −2 1 ⎣J M I 2×2 ⎤ ⎡0 ⎤ , B = ⎢ −21×1 ⎥, C = [I 2×2 −1 ⎥ − J F⎦ ⎣J K ⎦ 0 2×2 ]
§10 旋转式倒立摆数学模型建立及极点配置控制算法设计
一、实验名称:旋转式倒立摆数学模型建立及极点配置控制算法设计 二、实验目的: 1.认识 XZ-Ⅱ旋转式倒立摆系统,掌握系统构成、工作原理、使用方法、注意事项和 软件操作平台使用方法。 2.掌握一阶旋转式倒立摆系统建立数学模型,并利用 Matlab 对其进行仿真研究。 3.掌握一阶旋转式倒立摆系统的状态反馈控制(极点配置算法) ,在 MATLAB 平台上 进行仿真研究。 4.掌握实际系统的调试方法,对一阶旋转式倒立摆系统进行在线控制。 三、实验类型:综合 四、实验环境:计算机,XZ-II 型旋转式倒立摆 五、实验内容与实验步骤: 1.机理法建模 系统建模和参数测量是控制算法设计的第一步, 建立比较精确的数学模型是控制系统设 计的基础。下面,用牛顿力学对模型进行一个简单的分析: 如图 7.1 所示,根据牛顿力学,在非惯性系 S2 中,对摆杆有:
利用极点配置的方法求反馈矩阵 K 。任取一组期望极点 P ,在 MATLAB 中利用 place(A,B,P)函数求得 K=[Ka,Ko,Kva,Kvo]。 (2)建立旋转式倒立摆的非线性模型的微分方程 运行 MATLAB6.0 以上的版本,选择主菜单 file→new→m-file 建立文件 dlfun.m: Function xdot=dlfun(t,x); m1=0.200; m2=0.052; L1=0.10; L2=0.12; r=0.20; km=0.0236; ke=0.2865;

现代控制理论实验报告

现代控制理论实验报告

现代控制理论实验报告学院:机电学院学号:XXXXX姓名:XXXXX班级:XXXX实验一 系统的传递函数阵和状态空间表达式的转换一、实验目的1.熟悉线性系统的数学模型、模型转换。

2.了解MATLAB 中相应的函数 二、实验内容及步骤 1.给定系统的传递函数为1503913.403618)(23++++=s s s s s G 要求(1)将其用Matlab 表达;(2)生成状态空间模型。

2.在Matlab 中建立如下离散系统的传递函数模型y (k + 2) +5y (k +1) +6y (k ) = u (k + 2) + 2u (k +1) +u (k ) 3.在Matlab 中建立如下传递函数阵的Matlab 模型⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+++++++++++=726611632256512)(2322s s s s s s s s s s s s G 4.给定系统的模型为)4.0)(25)(15()2(18)(++++=s s s s s G求(1)将其用Matlab 表达;(2)生成状态空间模型。

5.给定系统的状态方程系数矩阵如下:[]0,360180,001,0100011601384.40==⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=D C B A用Matlab 将其以状态空间模型表示出来。

6.输入零极点函数模型,零点z=1,-2;极点p=-1,2,-3 增益k=1;求相应的传递函数模型、状态空间模型。

三、实验结果及分析 1. 程序代码如下:num = [18 36];den = [1 40.3 391 150]; tf(num,den) ss(tf(num,den))Transfer function:18 s + 36----------------------------s^3 + 40.3 s^2 + 391 s + 150a =x1 x2 x3x1 -40.3 -24.44 -2.344x2 16 0 0x3 0 4 0b =u1x1 1x2 0x3 0c =x1 x2 x3y1 0 1.125 0.5625d =u1y1 0Continuous-time model.2.2.程序代码如下:num=[1 2 1];den=[1 5 6];tf(num,den,-1)运行结果:Transfer function:z^2 + 2 z + 1-------------z^2 + 5 z + 6Sampling time: unspecified3.程序代码如下:num={[1 2 1],[1 5];[2 3],[6]};den={[1 5 6],[1 2];[1 6 11 6],[2 7]};tf(num,den)Transfer function from input 1 to output...s^2 + 2 s + 1#1: -------------s^2 + 5 s + 62 s + 3#2: ----------------------s^3 + 6 s^2 + 11 s + 6Transfer function from input 2 to output...s + 5#1: -----s + 26#2: -------2 s + 74. 程序代码如下:sys=zpk(-2,[-15 -25 -0.4],18)ss(sys)运行结果:1)Zero/pole/gain:18 (s+2)---------------------(s+15) (s+25) (s+0.4)2)a =x1 x2 x3x1 -0.4 1.265 0x2 0 -15 1x3 0 0 -25b =u1x1 0x2 0x3 8c =x1 x2 x3y1 2.846 2.25 0d =u1y1 0Continuous-time model.5.程序代码如下:A=[-40.4 -138 -160;1 0 0;0 1 0];B=[1 0 0]';C=[0 18 360];D=0;ss(A,B,C,D)运行结果:a =x1 x2 x3x1 -40.4 -138 -160x2 1 0 0x3 0 1 0b =u1x1 1x2 0x3 0c =x1 x2 x3y1 0 18 360d =u1y1 0Continuous-time model.6. 程序代码如下:sys=zpk([1 -2],[-1 2 -3],1) tf(sys)ss((sys)运行结果:Zero/pole/gain:(s-1) (s+2)-----------------(s+1) (s+3) (s-2)Transfer function:s^2 + s - 2---------------------s^3 + 2 s^2 - 5 s - 6a =x1 x2 x3x1 -1 2.828 1.414x2 0 2 2x3 0 0 -3b =u1x1 0x2 0x3 2c =x1 x2 x3y1 -0.7071 1 0.5d =u1y1 0Continuous-time model.四、实验总结本次实验主要是熟悉利用matlab建立线性系统数学模型以及模型间的相应转换(如状态空间、传递函数模型等)、并了解matlab中相应函数的使用,如tf、ss、zp2ss、ss2tf等。

中国石油大学现代控制理论实验(含详细程序和截图)资料

中国石油大学现代控制理论实验(含详细程序和截图)资料

一、实验目的熟悉线性系统的数学模型、模型转换。

掌握特征值和特征向量的求解掌握状态空间模型的线性变换,并求出约旦标准型使用Matlab Simulink 构建串联型和并联型实现掌握能控能观性判别方法,求出能控能观标准型掌握状态反馈极点配置的方法学习设计全维观测器和降维观测器二、实验内容1数学模型描述与转换编写程序如下:(1)给定系统的状态方程系数矩阵如下:A=40138160100010---⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦,B=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡1,C=[0 18 360], D=0在Matlab中以状态空间模型表示,并求出对应的传递函数数学模型。

程序:A=[-40 -138 -160;1 0 0;0 1 0]B=[1;0;0]C=[0 18 360]D=[0]sys=ss(A,B,C,D)%求状态空间[num,den]=ss2tf(A,B,C,D,1);%状态空间到传递函数tf(num,den)%显示传递函数结果如下:A =-40 -138 -1601 0 00 1 0B =1C =0 18 360D =a =x1 x2 x3 x1 -40 -138 -160x2 1 0 0x3 0 1 0b =u1x1 1x2 0x3 0c =x1 x2 x3y1 0 18 360d =u1y1 0Continuous-time model. Transfer function:1.421e-014 s^2 + 18 s + 360 ---------------------------s^3 + 40 s^2 + 138 s + 160(2)在Matlab并求出对应的状态空间数学模型。

说明:相关Matlab命令:tf,ss程序如下:Stf=tf({[1 2 1] [1 5];[2 3] [6]},{[1 5 6] [1 2];[1 6 11 6] [ 2 7]}); Sss=ss(Stf)结果如下:a =x1 x2 x3 x4 x5 x6 x7 x1 -5 -3 0 0 0 0 0x2 2 0 0 0 0 0 0x3 0 0 -6 -2.75 -1.5 0 0x4 0 0 4 0 0 0 0x5 0 0 0 1 0 0 0x6 0 0 0 0 0 -2 0x7 0 0 0 0 0 0 -3.5b =u1 u2x1 2 0x2 0 0x3 1 0x4 0 0x5 0 0x6 0 2x7 0 2c =x1 x2 x3 x4 x5 x6 x7 y1 -1.5 -1.25 0 0 0 1.5 0y2 0 0 0 0.5 0.75 0 1.5 d =u1 u2 y1 1 1 y2 0 0Continuous-time model.2系统线性变换与能控能观性分析[]120231*********x x u y x⎡⎤⎡⎤⎢⎥⎢⎥=-+⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦=(1)使用Matlab 软件求出上述系统的特征值和特征向量 (2)求出对应的约旦标准型(3) 判断系统的能控能观性,如果能控(或能观),则求出对应的能控(能观)标准型。

现代控制理论试验报告

现代控制理论试验报告

实验七 状态空间表达与求解的Matlab 实现1、 实验目的了解和熟悉Matlab 关于矩阵运算和状态空间表达及相关运算的常用命令和使用方法,以便在学习过程中能有效地应用Matlab 这个工具解决复杂系统的相关设计运算工作。

2、 实验内容(1)熟悉并使用以下常用的矩阵运算命令及运算符:det; eig; rank; inv; diag(v)和diag(v,k); poly; poly2symexp(A)和expm(A)A^n; A./B ; A.*B; A\B; A\B; A.’; A ’;(注:A ,B 均指任意矩阵)(2)熟悉系统的状态空间表达的Matlab 实现方法(SS 函数与tf 函数的应用和相互转换),并将相应的状态模型在Simulink 中表达成模拟结构图。

(3)利用实验(1)中的相关命令练习将一般的状态空间模型转换为约旦(Jordan )标准型;直接应用函数Jordan(A)求解状态空间的转换矩阵。

(4)利用符号变量和前述的相关函数计算状态方程的非齐次解,解题思路如下:若某系统的状态方程为:u B x A x +=,求系统在单位阶跃作用下的状态响应解,设初始状态为)0(x ,输入量为:)(1)(t t u = ,应用Matlab 的求解过程为:Syms t sExp1=expm(A*t)*x0;Exp2=int(expm(a*(t-s))*B*u,s,0,t);最后的总解:X=Exp1+Exp2;(5) 若只需知道已知系统各状态量随时间的响应曲线,则可以直接应用Simulink 进行仿真,也可以通过直接建立SS 模型,再利用系统响应函数(如:step,initial,lsim )获取状态响应值(曲线),后者代码可如下操作:已知系统为: u B x A x +=,u D x C y +=G=ss(A,B,C,D); [y,t,x]=lsim(G,u,t); //求任意输入响应,注:A,B,C,D,u,t 等应先赋值 G=ss(A,B,C,D); [y,t,x]=step(G,t); //阶跃响应G=ss(A,B,C,D); [y,t,x]=initial(G,x0,t); //零输入响应,x0为初始状态plot(t,x) //画出状态响应曲线实验报告(七)——状态空间表达于求解的Matlab 实现班级 自动化92 姓名 杨孝凌 学号32209209一、 已知系统的状态空间表达为:u x x ⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡--=023120 ,⎥⎦⎤⎢⎣⎡=11)0(x 试用Matlab 求出系统单位阶跃下的状态解,写出实现过程的相应代码。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

现代控制理论实验
引言
现代控制理论是在工程控制领域中发展起来的一种理论体系,其应用范围非常广泛。

为了帮助学生更好地理解和掌握现代控制理论,学校开设了现代控制理论实验课程。

该实验课程旨在通过具体的实验操作,帮助学生巩固理论知识,培养实际操作能力,并能应用现代控制理论解决实际问题。

本文将介绍现代控制理论实验的内容、目的、实验装置和实验步骤。

实验内容
现代控制理论实验主要包括以下内容: 1. PID控制器的设计与实现:通过调节比例、积分和微分参数,设计一个PID 控制器,并将其实现在实验装置上,观察控制效果。

2. 状态反馈控制器的设计与实现:利用状态观测器和状态反馈器,设计一个状态反馈控制器,并将其实现在实验装置上,观察控制效果。

3. 频域方法的应用:通过频域分析方法,设计一个控制器,使得实验装置的频率响应满足特定要求。

4. 鲁棒控制方法的应用:利用鲁棒控制方法设计一个控制器,能够在系统参数变化时保持系统的稳定性和性能。

实验目的
现代控制理论实验的主要目的是培养学生的实践能力和问
题解决能力。

具体目标包括: 1. 理解现代控制理论的基本原
理与方法; 2. 掌握现代控制理论的实验操作技巧; 3. 理解研
究现代控制理论的方法和途径; 4. 能够设计、实现和调试现
代控制器,并分析控制效果; 5. 学会通过实验结果验证和改
进控制算法。

实验装置
现代控制理论实验装置主要包括:电机系统、传感器、数
据采集卡、计算机控制软件和控制器实现装置。

电机系统是实验装置的核心部件,它模拟了真实的控制对象。

传感器用于感知电机系统的转速、位置或其他关键参数。

数据采集卡负责将传感器采集到的数据传输给计算机进行处理。

计算机控制软件包括了实验的开发工具和界面,可以实时控制电机系统并显示实验结果。

控制器实现装置是通过软件或硬件方式实现控制器,在实验中使用。

实验步骤
本节将介绍现代控制理论实验的基本步骤。

具体步骤如下:
步骤一:系统建模与参数辨识
首先需要对实验装置进行数学建模,并通过实验数据对模
型参数进行辨识。

步骤二:PID控制器实验
根据系统模型设计一个PID控制器的初值,并将其实现在
实验装置上。

通过实验观察和数据分析,不断调整PID参数,使系统达到预期的控制效果。

步骤三:状态反馈控制器实验
设计一个状态反馈控制器的初值,并将其实现在实验装置上。

观察系统响应和稳定性,并根据实验结果调整状态反馈控制器的参数。

步骤四:频域方法实验
利用频域方法设计一个控制器,使得实验装置的频率响应
满足特定要求。

通过实验测量和数据分析,验证设计的控制器的性能。

步骤五:鲁棒控制方法实验
利用鲁棒控制方法设计一个控制器,保持系统的稳定性和性能,即使系统参数发生变化。

通过实验观察和数据分析,验证设计的控制器的鲁棒性能。

结论
通过现代控制理论实验的学习,我们能够更深入地理解现代控制理论的基本原理与方法,并掌握其实际应用。

实验中的操作和数据分析能够帮助我们培养实践能力和问题解决能力。

通过实验中不断调整参数和改进控制算法,我们可以实时验证和改善控制器的性能。

总之,现代控制理论实验是一个综合应用理论知识和实际操作的学习平台,对于提高学生的综合素质和实际应用能力非常重要。

相关文档
最新文档