数列的概念经典例题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、数列的概念选择题
1.设n a 表示421167n n +的个位数字,则数列{}n a 的第38项至第69项之和
383969a a a ++⋅⋅⋅+=( )
A .180
B .160
C .150
D .140
2.设{}n a 是等差数列,且公差不为零,其前n 项和为n S .则“*n N ∀∈,1n n S S +>”是“{}n a 为递增数列”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件
D .既不充分也不必要条件
3.数列{}n a 满足()1
1121n n n a a n ++=-+-,则数列{}n a 的前48项和为( )
A .1006
B .1176
C .1228
D .2368
4.已知数列{}
ij a 按如下规律分布(其中i 表示行数,j 表示列数),若2021ij a =,则下列结果正确的是( )
A .13i =,33j =
B .19i =,32j =
C .32i =,14j =
D .33i =,14j =
5.数列{}n a 中,11a =,12n n a a n +=+,则n a =( ) A .2n n 1-+
B .21n +
C .2(1)1n -+
D .2n
6.的一个通项公式是( )
A .n a =
B .n a =
C .n a =
D .n a =7.已知数列{}n a 满足11a =,()*11
n
n n a a n N a +=
∈+,则2020a =( )
A .
1
2018
B .
1
2019
C .
1
2020
D .
1
2021
8.已知等差数列{}n a 中,13920a a a ++=,则574a a -=( ) A .30
B .20
C .40
D .50
9.已知数列{}n a 的前n 项和2
23n S n n =-,则10a =( )
A .35
B .40
C .45
D .50
10.
函数()2cos 2f x x x =-{}n a ,则3a =( ) A .
1312
π
B .
54
π C .
1712
π
D .
76
π 11.已知数列{}n a 的前n 项和为n S ,已知1
3n n S +=,则34a a +=( )
A .81
B .243
C .324
D .216
12.已知数列{}n a 的前n 项和2n S n n =+,则4a 的值为( ) A .4
B .6
C .8
D .10
13.定义:在数列{}n a 中,若满足
21
1n n n n
a a d a a +++-=( *,n N d ∈为常数),称{}n a 为“等差比数列”,已知在“等差比数列”{}n a 中,1231,3a a a ===,则2020
2018
a a 等于( )
A .4×20162-1
B .4×20172-1
C .4×20182-1
D .4×20182
14.已知数列{}n a 满足111n n n n a a a a ++-=+,且11
3
a =,则{}n a 的前2021项之积为( ) A .
23
B .
13
C .2-
D .3-
15.正整数的排列规则如图所示,其中排在第i 行第j 列的数记为,i j a ,例如4,39a =,则
645a ,等于( )
123
456
78910
A .2019
B .2020
C .2021
D .2022
16.设数列{}n a 的通项公式为2
n n a n
+=,要使它的前n 项的乘积大于36,则n 的最小值为( ) A .6
B .7
C .8
D .9
17.已知数列{}n a 满足00a =,()11i i a a i +=+∈N ,则20
1
k
k a
=∑的值不可能是( ) A .2
B .4
C .10
D .14
18.公元13世纪意大利数学家斐波那契在自己的著作《算盘书》中记载着这样一个数列:1,1,2,3,5,8,13,21,34,…满足21(1),n n n a a a n ++=+≥那么
24620201a a a a ++++
+=( )
A .2021a
B .2022a
C .2023a
D .2024a
19.数列{}n a 满足:12a =,111n
n n
a a a ++=-()*n N ∈其前n 项积为n T ,则2018T =( ) A .6-
B .1
6-
C .
16
D .6
20.已知数列{}n a 的首项为1,第2项为3,前n 项和为n S ,当整数1n >时,
1
1
12()n
n
n S S S S 恒成立,则15S 等于( )
A .210
B .211
C .224
D .225
二、多选题
21.意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数:1,1,2,3,5,…,其中从第三项起,每个数等于它前面两个数的和,后来人们把这样的一列数组成的数列{a n }称为“斐波那契数列”,记S n 为数列{a n }的前n 项和,则下列结论正确的是( ) A .a 8=34 B .S 8=54
C .S 2020=a 2022-1
D .a 1+a 3+a 5+…+
a 2021=a 2022
22.设数列{}n a 满足11
02
a <<,()1ln 2n n n a a a +=+-对任意的*n N ∈恒成立,则下列说法正确的是( ) A .
21
12
a << B .{}n a 是递增数列 C .2020312
a <<
D .
20203
14
a << 23.已知数列{}n a 满足0n a >,
121
n n n a n
a a n +=+-(N n *∈),数列{}n a 的前n 项和为n S ,则( )
A .11a =
B .121a a =
C .201920202019S a =
D .201920202019S a >
24.若数列{}n a 满足112,02
121,1
2
n n n n n a a a a a +⎧≤≤⎪⎪=⎨⎪-<<⎪⎩,135a =,则数列{}n a 中的项的值可能为