高三上学期第一次月考 2020届省名师联盟高三上学期第一次模拟考试数学(理)试题—附答案

合集下载

2020届名校联盟高三上学期第一次模拟考试数学(理)试题+解析答案+评分标准

2020届名校联盟高三上学期第一次模拟考试数学(理)试题+解析答案+评分标准

2020届名校联盟高三第一次模拟考试卷理 科 数 学一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}2340A x x x =-->,{}ln 0B x x =>,则()A B =R I ð( ) A .B .C .D .2.下列命题中正确的是( ) A .若,则 B .若,,则C .若,,则D .若,,则3.设方程的根为,表示不超过的最大整数,则( ) A .1 B .2C .3D .44.在中,已知,,,则等于( )A .或B .C .D .5.下列四个结论: ①命题“”的否定是“”;②若是真命题,则可能是真命题;③“且”是“”的充要条件; ④当时,幂函数在区间上单调递减.其中正确的是( ) A .①④B .②③C .①③D .②④6.已知正项等比数列的前项和为,若,则( )A .B .C .D .7.()()10121x x -+的展开式中10x 的系数为( ) A .B .C .D .8.直线与曲线有且仅有个公共点,则实数的取值范围是( )班级 姓名 准考证号 考场号 座位号A .B .C .D .9.某校有1000人参加某次模拟考试,其中数学考试成绩近似服从正态分布()()2105,0N σσ>,试卷满分150分,统计结果显示数学成绩优秀(高于120分)的人数占总人数的15,则此次数学考试成绩在90分到105分之间的人数约为( ) A .B .C .D .10.已知椭圆的右焦点为,短轴的一个端点为,直线与椭圆相交于,两点,若,点到直线的距离不小于,则椭圆离心率的取值范围是( ) A .B .C .D .11.若函数与都在区间上单调递减,则的最大值为( ) A .B .C .D .12.已知关于的方程恰有四个不同的实数根,则当函数时,实数的取值范围是( ) A .B .C .D .二、填空题:本大题共4小题,每小题5分.13.若平面向量a ,b 满足1+=a b ,+a b 平行于x 轴,()2,1=-b ,则=a .14.实数,满足约束条件:,则的取值范围为 . 15.半径为的球面上有,,,四点,且,,两两垂直,则,与面积之和的最大值为 .16.如图,,分别是椭圆的左、右顶点,圆的半径为,过点作圆的切线,切点为,在轴的上方交椭圆于点,则.三、解答题:本大题共6大题,共70分,解答应写出文字说明、证明过程或演算步骤.17.(12分)在数列中,,当时,其前项和满足.(1)求的表达式;(2)设,求的前项和.18.(12分)如图所示的三棱柱中,平面,,,的中点为,若线段上存在点使得平面.(1)求;(2)求二面角的余弦值.19.(12分)部门在同一上班高峰时段对甲、乙两座地铁站各随机抽取了名乘客,统计其乘车等待时间(指乘客从进站口到乘上车的时间,乘车等待时间不超过分钟).将统计数据按,,,…,分组,制成频率分布直方图:假设乘客乘车等待时间相互独立.(1)在上班高峰时段,从甲站的乘客中随机抽取人,记为;从乙站的乘客中随机抽取人,记为.用频率估计概率,求“乘客,乘车等待时间都小于分钟”的概率;(2)从上班高峰时段,从乙站乘车的乘客中随机抽取人,表示乘车等待时间小于分钟的人数,用频率估计概率,求随机变量的分布列与数学期望.20.(12分)已知为坐标原点,椭圆的左、右焦点分别为,,离心率,椭圆上的点到焦点的最短距离为.(1)求椭圆的标准方程;(2)设T 为直线3x =-上任意一点,过1F 的直线交椭圆C 于点P ,Q ,且为抛物线10TF PQ ⋅=u u u r u u u r,求1TF PQ u u u r u u u r 的最小值.21.(12分)已知函数,.(1)若存在极小值,求实数的取值范围;(2)设是的极小值点,且,证明:.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.(10分)【选修4-4:坐标系与参数方程】在平面直角坐标系中,曲线的参数方程为(为参数).以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求的普通方程和的直角坐标方程;(2)已知直线的极坐标方程为,是与的交点,是与的交点,且,均异于原点,,求的值.23.(10分)【选修4-5:不等式选讲】已知函数.(1)当,求不等式的解集;(2)设对恒成立,求的取值范围.2020届河南名校联盟高三第一次模拟考试卷理科数学答案一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.【答案】C2.【答案】C3.【答案】B4.【答案】C5.【答案】A6.【答案】B7.【答案】C8.【答案】C9.【答案】C10.【答案】C11.【答案】B12.【答案】B二、填空题:本大题共4小题,每小题5分.13.【答案】或14.【答案】15.【答案】816.【答案】三、解答题:本大题共6大题,共70分,解答应写出文字说明、证明过程或演算步骤.17.【答案】(1)121nSn=-;(2)21nnTn=+.【解析】(1)∵,,∴,即①,由题意得,①式两边同除以,得,∴数列是首项为,公差为2的等差数列,∴,∴.(2)∵,∴.18.【答案】(1)6;(2)6.【解析】(1)如图,在平面内过点作的垂线分别交和于,,连接,在平面内过点作的垂线交于,连接,依题意易得,,,,,五点共面,因为平面,所以①,在中,,,因此为线段靠近的三等分点,由对称性知,为线段靠近的三等分点,因此,,代入①,得.(2)由(1)可知,是平面的一个法向量且,,设平面111A BC的法向量为n,则BCAB⎧⋅=⎪⇒⎨⋅=⎪⎩u u u ru u u rnnn可以为()1,3,0,2363cos,3222OPOPOP⋅〈〉===⋅⨯u u u ru u u ru u u rnnn,因为二面角为锐角,故所求二面角的余弦值为.19.【答案】(1)15;(2)分布列见解析,()65E X=.【解析】(1)设表示事件“乘客乘车等待时间小于20分钟”,表示事件“乘客乘车等待时间小于分钟”,表示事件“乘客,乘车等待时间都小于分钟”.由题意知,乘客乘车等待时间小于分钟的频率为:,故的估计值为.乘客乘车等待时间小于分钟的频率为,故的估计值为.又,故事件的概率为.(2)由(1)可知,乙站乘客乘车等待时间小于分钟的频率为,所以乙站乘客乘车等待时间小于分钟的概率为.显然,的可能取值为0,1,2,3且)52,3(~BX,所以;;;.故随机变量的分布列为:.20.【答案】(1);(2).【解析】(1),而,又,得,,故椭圆的标准方程为.(2)由(1)知,∵10TF PQ ⋅=u u u r u u u r ,故1TF PQ ⊥u u u r u u u r , 设,∴,直线的斜率为,当时,直线的方程为,也符合方程; 当时,直线的斜率为,直线的方程为;设,,将直线的方程与椭圆的方程联立,得,消去,得,,,, ,,当且仅当,即时,等号成立,∴1TF PQ u u u r u u u r 的最小值为3. 21.【答案】(1);(2)证明见解析.【解析】(1),令,则,所以在上是增函数,又因为当时,;当时,,所以,当时,,,函数在区间上是增函数,不存在极值点;当时,的值域为,必存在使,所以当时,,,单调递减;当时,,,单调递增,所以存在极小值点,综上可知实数的取值范围是.(2)由(1)知,,即,所以,,由,得,令,显然在区间上单调递减,又,所以由,得,令,,当时,,函数单调递增;当时,,函数单调递减,所以,当时,函数取最小值,所以,即,即,所以,,所以,即.22.【答案】(1),;(2).【解析】(1)由消去参数,得的普通方程为,由,得,又,,所以的直角坐标方程为.(2)由(1)知曲线的普通方程为,所以其极坐标方程为.设点,的极坐标分别为,,则,,所以,所以,即,解得,又,所以.23.【答案】(1);(2).【解析】(1)当时,,即,当时,原不等式化为,得,即;当时,原不等式化为,即,即;当时,原不等式化为,得,即.综上,原不等式的解集为.(2)因为,所以,可化为,所以,即对恒成立,则,所以的取值范围是.。

2020届高三数学第一次模拟考试试题理(含解析)

2020届高三数学第一次模拟考试试题理(含解析)

2020届高三数学第一次模拟考试试题理(含解析)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回笭非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,监考人员将答题卡收回.第Ⅰ卷选择题一、单选题(本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合A={x|–1<x<2},B={x|x>1},则A∪B=A. (–1,1)B. (1,2)C. (–1,+∞)D. (1,+∞)【答案】C【解析】【分析】根据并集的求法直接求出结果.【详解】∵,∴,故选C.【点睛】考查并集的求法,属于基础题.2.复数 (i为虚数单位)的共轭复数是A. 1+iB. 1−iC. −1+iD. −1−i【答案】B【解析】分析:化简已知复数z,由共轭复数的定义可得.详解:化简可得z=∴z的共轭复数为1﹣i.故选B.点睛:本题考查复数的代数形式的运算,涉及共轭复数,属基础题.3.若函数的定义域为M={x|-2≤x≤2},值域为N={y|0≤y≤2},则函数的图像可能是()A. B. C.D.【答案】B【解析】因为对A不符合定义域当中的每一个元素都有象,即可排除;对B满足函数定义,故符合;对C出现了定义域当中的一个元素对应值域当中的两个元素的情况,不符合函数的定义,从而可以否定;对D因为值域当中有的元素没有原象,故可否定.故选B.4.已知等差数列中,,则()A. 10B. 16C. 20D. 2【答案】C【解析】【分析】由可得出,然后利用算出答案即可【详解】因为数列是等差数列所以,所以所以故选:C【点睛】本题考查的是等差数列的性质,较简单.5.为了得到函数的图象,只需把函数的图象上所有的点()A. 向左平移个单位长度B. 向右平移个单位长度C. 向左平移个单位长度D. 向右平移个单位长度【答案】D【解析】【分析】通过变形,通过“左加右减”即可得到答案.【详解】根据题意,故只需把函数的图象上所有的点向右平移个单位长度可得到函数的图象,故答案为D.【点睛】本题主要考查三角函数的平移变换,难度不大.6.已知函数是偶函数,当时,函数单调递减,设,,,则的大小关系为()A. B. C. D.【答案】A【解析】【分析】根据图象关于轴对称可知关于对称,从而得到在上单调递增且;再根据自变量的大小关系得到函数值的大小关系.【详解】为偶函数图象关于轴对称图象关于对称时,单调递减时,单调递增又且,即本题正确选项:【点睛】本题考查利用函数奇偶性、对称性和单调性比较函数值的大小关系问题,关键是能够通过奇偶性和对称性得到函数的单调性,通过自变量的大小关系求得结果.7.若实数x,y满足条件,目标函数,则z 的最大值为( )A. B. 1 C. 2 D. 0【答案】C【解析】【分析】画出可行域和目标函数,根据平移得到最大值.【详解】若实数x,y满足条件,目标函数如图:当时函数取最大值为故答案选C【点睛】求线性目标函数的最值:当时,直线过可行域且在轴上截距最大时,值最大,在轴截距最小时,z值最小;当时,直线过可行域且在轴上截距最大时,值最小,在轴上截距最小时,值最大.8.我国古代数学巨著《九章算术》中,有如下问题:“今有女子善织,日自倍,五日织五尺,问日织几何?”这个问题用今天的白话叙述为:有一位善于织布的女子,每天织的布都是前一天的2倍,已知她5天共织布5尺,问这位女子每天分别织布多少?根据上述问题的已知条件,若该女子共织布尺,则这位女子织布的天数是()A. 2B. 3C. 4D. 1【答案】B【解析】【分析】将问题转化为等比数列问题,最终变为求解等比数列基本量的问题.【详解】根据实际问题可以转化为等比数列问题,在等比数列中,公比,前项和为,,,求的值.因为,解得,,解得.故选B.【点睛】本题考查等比数列的实际应用,难度较易.熟悉等比数列中基本量的计算,对于解决实际问题很有帮助.9.某个命题与自然数有关,且已证得“假设时该命题成立,则时该命题也成立”.现已知当时,该命题不成立,那么()A. 当时,该命题不成立B. 当时,该命题成立C. 当时,该命题不成立D. 当时,该命题成立【答案】C【解析】【分析】写出命题“假设时该命题成立,则时该命题也成立”的逆否命题,结合原命题与逆否命题的真假性一致进行判断.【详解】由逆否命题可知,命题“假设时该命题成立,则时该命题也成立”的逆否命题为“假设当时该命题不成立,则当时该命题也不成立”,由于当时,该命题不成立,则当时,该命题也不成立,故选C.【点睛】本题考查逆否命题与原命题等价性的应用,解题时要写出原命题的逆否命题,结合逆否命题的等价性进行判断,考查逻辑推理能力,属于中等题.10.根据如图所示的程序框图,当输入的值为3时,输出的值等于()A. 1B.C.D.【答案】C【解析】【分析】根据程序图,当x<0时结束对x的计算,可得y值.【详解】由题x=3,x=x-2=3-1,此时x>0继续运行,x=1-2=-1<0,程序运行结束,得,故选C.【点睛】本题考查程序框图,是基础题.11.已知点在双曲线上,则该双曲线的离心率为()A. B. C. D.【答案】C【解析】分析】将点A坐标代入双曲线方程即可求出双曲线的实轴长和虚轴长,进而求得离心率.【详解】将,代入方程得,而双曲线的半实轴,所以,得离心率,故选C.【点睛】此题考查双曲线的标准方程和离心率的概念,属于基础题.12.若不等式对于一切恒成立,则的最小值是()A. 0B.C.D.【答案】C【解析】【详解】试题分析:将参数a与变量x分离,将不等式恒成立问题转化为求函数最值问题,即可得到结论.解:不等式x2+a x+1≥0对一切x∈(0,]成立,等价于a≥-x-对于一切成立,∵y=-x-在区间上是增函数∴∴a≥-∴a的最小值为-故答案为C.考点:不等式应用点评:本题综合考查了不等式的应用、不等式的解法等基础知识,考查运算求解能力,考查化归与转化思想,属于中档题第Ⅱ卷非选择题二、填空题(本题共4小题,每小题5分,共20分.)13.若,且,则的最小值是______.【答案】8【解析】【分析】利用的代换,将写成,然后根据基本不等式求解最小值.【详解】因为(即取等号),所以最小值为.【点睛】已知,求解()最小值的处理方法:利用,得到,展开后利用基本不等式求解,注意取等号的条件.14.已知向量,,若,则实数______.【答案】-2【解析】【分析】根据向量坐标运算可求得,根据平行关系可构造方程求得结果.【详解】由题意得:,解得:本题正确结果:【点睛】本题考查向量的坐标运算,关键是能够利用平行关系构造出方程.15.某中学高一年级有学生1200人,高二年级有学生900人,高三年级有学生1500人,现按年级用分层抽样的方法从这三个年级的学生中抽取一个容量为720的样本进行某项研究,则应从高三年级学生中抽取_____人.【答案】300.【解析】【分析】先求得高三学生占的比例,再利用分层抽样的定义和方法,即可求解.【详解】由题意,高三学生占的比例为,所以应从高三年级学生中抽取的人数为.【点睛】本题主要考查了分层抽样的定义和方法,其中解答中熟记分层抽样的定义和抽取的方法是解答的关键,着重考查了运算与求解能力,属于基础题.16.已知函数,则过原点且与曲线相切的直线方程为____________.【答案】【解析】【分析】设切点坐标为,利用导数求出曲线在切点的切线方程,将原点代入切线方程,求出的值,于此可得出所求的切线方程.【详解】设切点坐标为,,,,则曲线在点处的切线方程为,由于该直线过原点,则,得,因此,则过原点且与曲线相切的直线方程为,故答案为.【点睛】本题考查导数的几何意义,考查过点作函数图象的切线方程,求解思路是:(1)先设切点坐标,并利用导数求出切线方程;(2)将所过点的坐标代入切线方程,求出参数的值,可得出切点的坐标;(3)将参数的值代入切线方程,可得出切线的方程.三、解答题(共70分,解答应写出相应的文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生必须作答.第22、23题为选考题,考生根据要求作答.)(一)必考题:共60分17.的内角的对边分别为,已知.(1)求的大小;(2)若,求面积的最大值.【答案】(1);(2).【解析】【分析】(1)利用正弦定理将边化角,结合诱导公式可化简边角关系式,求得,根据可求得结果;(2)利用余弦定理可得,利用基本不等式可求得,代入三角形面积公式可求得结果.【详解】(1)由正弦定理得:,又,即由得:(2)由余弦定理得:又(当且仅当时取等号)即三角形面积的最大值为:【点睛】本题考查解三角形的相关知识,涉及到正弦定理化简边角关系式、余弦定理解三角形、三角形面积公式应用、基本不等式求积的最大值、诱导公式的应用等知识,属于常考题型.18.如图所示,在四棱锥中,底面是棱长为2的正方形,侧面为正三角形,且面面,分别为棱的中点.(1)求证:平面;(2)求二面角的正切值.【答案】(1)见证明;(2)【解析】【分析】(1)取PD中点G,可证EFGA是平行四边形,从而,得证线面平行;(2)取AD中点O,连结PO,可得面,连交于,可证是二面角的平面角,再在中求解即得.【详解】(1)证明:取PD中点G,连结为的中位线,且,又且,且,∴EFGA是平行四边形,则,又面,面,面;(2)解:取AD中点O,连结PO,∵面面,为正三角形,面,且,连交于,可得,,则,即.连,又,可得平面,则,即是二面角的平面角,在中,∴,即二面角的正切值为.【点睛】本题考查线面平行证明,考查求二面角.求二面角的步骤是一作二证三计算.即先作出二面角的平面角,然后证明此角是要求的二面角的平面角,最后在三角形中计算.19.“绿水青山就是金山银山”,为推广生态环境保护意识,高二一班组织了环境保护兴趣小组,分为两组,讨论学习.甲组一共有人,其中男生人,女生人,乙组一共有人,其中男生人,女生人,现要从这人的两个兴趣小组中抽出人参加学校的环保知识竞赛.(1)设事件为“选出的这个人中要求两个男生两个女生,而且这两个男生必须来自不同的组”,求事件发生的概率;(2)用表示抽取的人中乙组女生的人数,求随机变量的分布列和期望【答案】(Ⅰ);(Ⅱ)分布列见解析,.【解析】【分析】(Ⅰ)直接利用古典概型概率公式求 . (Ⅱ)先由题得可能取值为,再求x的分布列和期望.【详解】(Ⅰ)(Ⅱ)可能取值为,,,,,的分布列为.【点睛】本题主要考查古典概型的计算,考查随机变量的分布列和期望的计算,意在考查学生对这些知识的理解掌握水平和分析推理能力.20.已知函数,当时,有极大值3;(1)求,的值;(2)求函数的极小值及单调区间.【答案】(1);(2)极小值为,递减区间为:,递增区间为.【解析】【分析】(1)由题意得到关于实数的方程组,求解方程组,即可求得的值;(2)结合(1)中的值得出函数的解析式,即可利用导数求得函数的单调区间和极小值.【详解】(1)由题意,函数,则,由当时,有极大值,则,解得.(2)由(1)可得函数的解析式为,则,令,即,解得,令,即,解得或,所以函数的单调减区间为,递增区间为,当时,函数取得极小值,极小值为.当时,有极大值3.【点睛】本题主要考查了函数的极值的概念,以及利用导数求解函数的单调区间和极值,其中解答中熟记函数的极值的概念,以及函数的导数与原函数的关系,准确运算是解答的关键,着重考查了推理与运算能力,属于基础题.21.已知点,若点满足.(Ⅰ)求点的轨迹方程;(Ⅱ)过点的直线与(Ⅰ)中曲线相交于两点,为坐标原点,求△面积的最大值及此时直线的方程.【答案】(Ⅰ);(Ⅱ)面积的最大值为,此时直线的方程为.【解析】【分析】(1)根据椭圆的定义求解轨迹方程;(2)设出直线方程后,采用(表示原点到直线的距离)表示面积,最后利用基本不等式求解最值.【详解】解:(Ⅰ)由定义法可得,点的轨迹为椭圆且,.因此椭圆的方程为.(Ⅱ)设直线的方程为与椭圆交于点,,联立直线与椭圆的方程消去可得,即,.面积可表示为令,则,上式可化为,当且仅当,即时等号成立,因此面积的最大值为,此时直线的方程为.【点睛】常见的利用定义法求解曲线的轨迹方程问题:(1)已知点,若点满足且,则的轨迹是椭圆;(2)已知点,若点满足且,则的轨迹是双曲线.(二)选考题:共10分,请考生在22题、23题中任选一题作答.如果多做,则按所做的第一题计分.选修4-4:[坐标系与参数方程]22.已知直线的参数方程为为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求直线的普通方程和曲线的直角坐标方程;(2)设点,直线与曲线交于两点,求值.【答案】(1)直线普通方程:,曲线直角坐标方程:;(2).【解析】【分析】(1)消去直线参数方程中的参数即可得到其普通方程;将曲线极坐标方程化为,根据极坐标和直角坐标互化原则可得其直角坐标方程;(2)将直线参数方程代入曲线的直角坐标方程,根据参数的几何意义可知,利用韦达定理求得结果.【详解】(1)由直线参数方程消去可得普通方程为:曲线极坐标方程可化为:则曲线的直角坐标方程为:,即(2)将直线参数方程代入曲线的直角坐标方程,整理可得:设两点对应的参数分别为:,则,【点睛】本题考查极坐标与直角坐标互化、参数方程与普通方程的互化、直线参数方程中参数的几何意义的应用;求解距离之和的关键是能够明确直线参数方程中参数的几何意义,利用韦达定理来进行求解.[选修4-5:不等式选讲]23.已知.(1)已知关于的不等式有实数解,求的取值范围;(2)求不等式的解集.【答案】(1);(2).【解析】【分析】(1)依据能成立问题知,,然后利用绝对值三角不等式求出的最小值,即求得的取值范围;(2)按照零点分段法解含有两个绝对值的不等式即可.【详解】因为不等式有实数解,所以因为,所以故.①当时,,所以,故②当时,,所以,故③当时,,所以,故综上,原不等式的解集为.【点睛】本题主要考查不等式有解问题的解法以及含有两个绝对值的不等式问题的解法,意在考查零点分段法、绝对值三角不等式和转化思想、分类讨论思想的应用.2020届高三数学第一次模拟考试试题理(含解析)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回笭非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,监考人员将答题卡收回.第Ⅰ卷选择题一、单选题(本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合A={x|–1<x<2},B={x|x>1},则A∪B=A. (–1,1)B. (1,2)C. (–1,+∞)D. (1,+∞)【答案】C【解析】【分析】根据并集的求法直接求出结果.【详解】∵,∴,故选C.【点睛】考查并集的求法,属于基础题.2.复数 (i为虚数单位)的共轭复数是A. 1+iB. 1−iC. −1+iD. −1−i【答案】B【解析】分析:化简已知复数z,由共轭复数的定义可得.详解:化简可得z=∴z的共轭复数为1﹣i.故选B.点睛:本题考查复数的代数形式的运算,涉及共轭复数,属基础题.3.若函数的定义域为M={x|-2≤x≤2},值域为N={y|0≤y≤2},则函数的图像可能是()A. B. C.D.【答案】B【解析】因为对A不符合定义域当中的每一个元素都有象,即可排除;对B满足函数定义,故符合;对C出现了定义域当中的一个元素对应值域当中的两个元素的情况,不符合函数的定义,从而可以否定;对D因为值域当中有的元素没有原象,故可否定.故选B.4.已知等差数列中,,则()A. 10B. 16C. 20D. 2【答案】C【解析】【分析】由可得出,然后利用算出答案即可【详解】因为数列是等差数列所以,所以所以故选:C【点睛】本题考查的是等差数列的性质,较简单.5.为了得到函数的图象,只需把函数的图象上所有的点()A. 向左平移个单位长度B. 向右平移个单位长度C. 向左平移个单位长度D. 向右平移个单位长度【答案】D【解析】【分析】通过变形,通过“左加右减”即可得到答案.【详解】根据题意,故只需把函数的图象上所有的点向右平移个单位长度可得到函数的图象,故答案为D.【点睛】本题主要考查三角函数的平移变换,难度不大.6.已知函数是偶函数,当时,函数单调递减,设,,,则的大小关系为()A. B. C. D.【答案】A【解析】【分析】根据图象关于轴对称可知关于对称,从而得到在上单调递增且;再根据自变量的大小关系得到函数值的大小关系.【详解】为偶函数图象关于轴对称图象关于对称时,单调递减时,单调递增又且,即本题正确选项:【点睛】本题考查利用函数奇偶性、对称性和单调性比较函数值的大小关系问题,关键是能够通过奇偶性和对称性得到函数的单调性,通过自变量的大小关系求得结果.7.若实数x,y满足条件,目标函数,则z 的最大值为( )A. B. 1 C. 2 D. 0【答案】C【解析】【分析】画出可行域和目标函数,根据平移得到最大值.【详解】若实数x,y满足条件,目标函数如图:当时函数取最大值为故答案选C【点睛】求线性目标函数的最值:当时,直线过可行域且在轴上截距最大时,值最大,在轴截距最小时,z值最小;当时,直线过可行域且在轴上截距最大时,值最小,在轴上截距最小时,值最大.8.我国古代数学巨著《九章算术》中,有如下问题:“今有女子善织,日自倍,五日织五尺,问日织几何?”这个问题用今天的白话叙述为:有一位善于织布的女子,每天织的布都是前一天的2倍,已知她5天共织布5尺,问这位女子每天分别织布多少?根据上述问题的已知条件,若该女子共织布尺,则这位女子织布的天数是()A. 2B. 3C. 4D. 1【答案】B【解析】【分析】将问题转化为等比数列问题,最终变为求解等比数列基本量的问题.【详解】根据实际问题可以转化为等比数列问题,在等比数列中,公比,前项和为,,,求的值.因为,解得,,解得.故选B.【点睛】本题考查等比数列的实际应用,难度较易.熟悉等比数列中基本量的计算,对于解决实际问题很有帮助.9.某个命题与自然数有关,且已证得“假设时该命题成立,则时该命题也成立”.现已知当时,该命题不成立,那么()A. 当时,该命题不成立B. 当时,该命题成立C. 当时,该命题不成立D. 当时,该命题成立【答案】C【解析】【分析】写出命题“假设时该命题成立,则时该命题也成立”的逆否命题,结合原命题与逆否命题的真假性一致进行判断.【详解】由逆否命题可知,命题“假设时该命题成立,则时该命题也成立”的逆否命题为“假设当时该命题不成立,则当时该命题也不成立”,由于当时,该命题不成立,则当时,该命题也不成立,故选C.【点睛】本题考查逆否命题与原命题等价性的应用,解题时要写出原命题的逆否命题,结合逆否命题的等价性进行判断,考查逻辑推理能力,属于中等题.10.根据如图所示的程序框图,当输入的值为3时,输出的值等于()A. 1B.C.D.【答案】C【解析】【分析】根据程序图,当x<0时结束对x的计算,可得y值.【详解】由题x=3,x=x-2=3-1,此时x>0继续运行,x=1-2=-1<0,程序运行结束,得,故选C.【点睛】本题考查程序框图,是基础题.11.已知点在双曲线上,则该双曲线的离心率为()A. B. C. D.【答案】C【解析】分析】将点A坐标代入双曲线方程即可求出双曲线的实轴长和虚轴长,进而求得离心率.【详解】将,代入方程得,而双曲线的半实轴,所以,得离心率,故选C.【点睛】此题考查双曲线的标准方程和离心率的概念,属于基础题.12.若不等式对于一切恒成立,则的最小值是()A. 0B.C.D.【答案】C【解析】【详解】试题分析:将参数a与变量x分离,将不等式恒成立问题转化为求函数最值问题,即可得到结论.解:不等式x2+ax+1≥0对一切x∈(0,]成立,等价于a≥-x-对于一切成立,∵y=-x-在区间上是增函数∴∴a≥-∴a的最小值为-故答案为C.考点:不等式应用点评:本题综合考查了不等式的应用、不等式的解法等基础知识,考查运算求解能力,考查化归与转化思想,属于中档题第Ⅱ卷非选择题二、填空题(本题共4小题,每小题5分,共20分.)13.若,且,则的最小值是______.【答案】8【解析】【分析】利用的代换,将写成,然后根据基本不等式求解最小值.【详解】因为(即取等号),所以最小值为.【点睛】已知,求解()最小值的处理方法:利用,得到,展开后利用基本不等式求解,注意取等号的条件.14.已知向量,,若,则实数______.【答案】-2【解析】【分析】根据向量坐标运算可求得,根据平行关系可构造方程求得结果.【详解】由题意得:,解得:本题正确结果:【点睛】本题考查向量的坐标运算,关键是能够利用平行关系构造出方程.15.某中学高一年级有学生1200人,高二年级有学生900人,高三年级有学生1500人,现按年级用分层抽样的方法从这三个年级的学生中抽取一个容量为720的样本进行某项研究,则应从高三年级学生中抽取_____人.【答案】300.【解析】【分析】先求得高三学生占的比例,再利用分层抽样的定义和方法,即可求解.【详解】由题意,高三学生占的比例为,所以应从高三年级学生中抽取的人数为.【点睛】本题主要考查了分层抽样的定义和方法,其中解答中熟记分层抽样的定义和抽取的方法是解答的关键,着重考查了运算与求解能力,属于基础题.16.已知函数,则过原点且与曲线相切的直线方程为____________.【答案】【解析】【分析】设切点坐标为,利用导数求出曲线在切点的切线方程,将原点代入切线方程,求出的值,于此可得出所求的切线方程.【详解】设切点坐标为,,,,则曲线在点处的切线方程为,由于该直线过原点,则,得,因此,则过原点且与曲线相切的直线方程为,故答案为.【点睛】本题考查导数的几何意义,考查过点作函数图象的切线方程,求解思路是:(1)先设切点坐标,并利用导数求出切线方程;(2)将所过点的坐标代入切线方程,求出参数的值,可得出切点的坐标;(3)将参数的值代入切线方程,可得出切线的方程.三、解答题(共70分,解答应写出相应的文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生必须作答.第22、23题为选考题,考生根据要求作答.)(一)必考题:共60分17.的内角的对边分别为,已知.(1)求的大小;(2)若,求面积的最大值.【答案】(1);(2).【解析】【分析】(1)利用正弦定理将边化角,结合诱导公式可化简边角关系式,求得,根据可求得结果;(2)利用余弦定理可得,利用基本不等式可求得,代入三角形面积公式可求得结果.【详解】(1)由正弦定理得:,又,即由得:(2)由余弦定理得:又(当且仅当时取等号)即三角形面积的最大值为:【点睛】本题考查解三角形的相关知识,涉及到正弦定理化简边角关系式、余弦定理解三角形、三角形面积公式应用、基本不等式求积的最大值、诱导公式的应用等知识,属于常考题型.18.如图所示,在四棱锥中,底面是棱长为2的正方形,侧面为正三角形,且面面,分别为棱的中点.。

湖北名师联盟2020届高三上学期第一次模拟考试数学(理)试题(含解析版答案)

湖北名师联盟2020届高三上学期第一次模拟考试数学(理)试题(含解析版答案)

湖北名师联盟2020届高三第一次模拟考试卷理 科 数 学注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请将本试题卷和答题卡一并上交。

一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}2|650A x x x =-+≤,{}|3B x y x ==-,A B =I ( ) A .[)1,+∞ B .[]1,3C .(]3,5D .[]3,52.34i 34i12i 12i+--=-+( ) A .4- B .4 C .4i - D .4i3.如图1为某省2019年14~月快递业务量统计图,图2是该省2019年14~月快递业务收入统计图,下列对统计图理解错误的是( )A .2019年14~月的业务量,3月最高,2月最低,差值接近2000万件B .2019年14~月的业务量同比增长率超过50%,在3月最高C .从两图来看2019年14~月中的同一个月快递业务量与收入的同比增长率并不完全一致D .从14~月来看,该省在2019年快递业务收入同比增长率逐月增长 4.已知两个单位向量12,e e ,满足12|2|3e e -=,则12,e e 的夹角为( ) A .2π3B .3π4 C .π3D .π4班级 姓名 准考证号 考场号 座位号5.函数1()cos 1x x e f x x e +=⋅-的部分图象大致为( )A .B .C .D .6.已知斐波那契数列的前七项为1、1、2、3、5、8、13.大多数植物的花,其花瓣数按层从内往外都恰是斐波那契数,现有层次相同的“雅苏娜”玫瑰花3朵,花瓣总数为99,假设这种“雅苏娜”玫瑰花每层花瓣数由内向外构成斐波那契数列,则一朵该种玫瑰花最可能有( )层. A .5B .6C .7D .87.如图,正方体1111ABCD A B C D -中,点E ,F 分别是AB ,11A D 的中点,O 为正方形1111A B C D 的中心,则( )A .直线EF ,AO 是异面直线B .直线EF ,1BB 是相交直线C .直线EF 与1BC 所成的角为30︒D .直线EF ,1BB 所成角的余弦值为338.执行如图所示的程序框图,输出的S 的值为( )A .0B .2C .4D .2-9.已知定义在R 上的奇函数()f x 满足(2)()f x f x +=-,且在区间[1,2]上是减函数,令ln 2a =,121()4b -=,12log 2c =,则()f a ,()f b ,()f c 的大小关系为( )A .()()()f b f c f a <<B .()()()f a f c f b <<C .()()()f c f b f a <<D .()()()f c f a f b <<10.已知点2F 是双曲线22:193x yC -=的右焦点,动点A 在双曲线左支上,点B 为 圆22:(2)1E x y ++=上一点,则2||||AB AF +的最小值为( ) A .9B .8C .53D .6311.如图,已知P ,Q 是函数()sin()f x A x ωϕ=+π(0,0,||)2A ωϕ>><的图象与x 轴的两个相邻交点,R 是函数()f x 的图象的最高点,且3RP RQ ⋅=uu r uu u r,若函数()g x 的图象与()f x 的图象关于直线1x =对称,则函数()g x 的解析式是( )A .ππ()3sin()24g x x =+B .ππ()3sin()24g x x =-C .ππ()2sin()24g x x =+D .ππ()2sin()24g x x =-12.已知三棱锥P ABC -满足PA ⊥底面ABC ,在ABC △中,6AB =,8AC =,AB AC ⊥,D 是线段AC 上一点,且3AD DC =.球O 为三棱锥P ABC -的外接球,过点D 作球O 的截面,若所得截面圆的面积的最小值与最大值之和为40π,则球O 的表面积为( ) A .72πB .86πC .112πD .128π二、填空题:本大题共4小题,每小题5分.13.已知曲线()(1)ln f x ax x =-在点(1,0)处的切线方程为1y x =-,则实数a 的值为 .14.已知等差数列{}n a 的前n 项和为n S ,满足711S S =,且10a >,则n S 最大时n 的值是 .15.《易经》是中国传统文化中的精髓,如图是易经八卦(含乾、坤、異、震、坎、离、良、兑八卦),每一卦由三根线组成(表示一根阳线,“”表示一根阴线),从八卦中任取两卦,这两卦的六根线中恰有两根阳线,四根阴线的概率为 .16.点A ,B 是抛物线2:2(0)C y px p =>上的两点,F 是拋物线C 的焦点,若120AFB ∠=︒,AB 中点D 到抛物线C 的准线的距离为d ,则||dAB 的最大值为 .三、解答题:本大题共6大题,共70分,解答应写出文字说明、证明过程或演算步骤. 17.(12分)ABC △的内角,,A B C 所对的边分别为,,a b c ,已知22()3sin a c b ab C +=+. (1)求B 的大小;(2)若8b =,a c >,且ABC △的面积为33a .18.(12分)如图所示的多面体ABCDEF 中,四边形ABCD 是边长为2的正方形,ED FB ∥,12DE BF =,AB FB =,FB ⊥平面ABCD . (1)设BD 与AC 的交点为O ,求证:OE ⊥平面ACF ; (2)求二面角E AF C --的正弦值.19.(12分)设椭圆2222:1(0)x y C a b a b+=>>的左焦点为1F ,右焦点为2F ,上顶点为B ,离心率为3O 是坐标原点,且1||||6OB F B ⋅= (1)求椭圆C 的方程;(2)已知过点1F 的直线l 与椭圆C 的两交点为M ,N ,若22MF NF ⊥,求直线l 的方程.20.(12分)已知函数1π()4cos()23xf x x e =--,()f x '为()f x 的导数,证明:(1)()f x '在区间[π,0]-上存在唯一极大值点; (2)()f x 在区间[π,0]-上有且仅有一个零点.21.(12分)11月,2019全国美丽乡村篮球大赛在中国农村改革的发源地—安徽凤阳举办,其间甲、乙两人轮流进行篮球定点投篮比赛(每人各投一次为一轮).在相同的条件下,每轮甲乙两人站在同一位置,甲先投,每人投一次球,两人有1人命中,命中者得1分,未命中者得1-分;两人都命中或都未命中,两人均得0分.设甲每次投球命中的概率为12,乙每次投球命中的概率为23,且各次投球互不影响. (1)经过1轮投球,记甲的得分为X ,求X 的分布列;(2)若经过n 轮投球,用i p 表示经过第i 轮投球,累计得分,甲的得分高于乙的得分的概率. ①求1p ,2p ,3p ;②规定00p =,经过计算机计算可估计得11(1)i i i i p ap bp cp b +-=++≠,请根据①中1p ,2p ,3p 的值分别写出a ,c 关于b 的表达式,并由此求出数列{}n p 的通项公式.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.(10分)【选修4-4:坐标系与参数方程】已知平面直角坐标系xOy 中,以O 为极点,x 轴的正半轴为极轴,建立极坐标系,曲线1C 方程为2sin ρθ=,2C的参数方程为112x t y ⎧=-+⎪⎪⎨⎪=⎪⎩(t 为参数).(1)写出曲线1C 的直角坐标方程和2C 的普通方程;(2)设点P 为曲线1C 上的任意一点,求点P 到曲线2C 距离的取值范围.23.(10分)【选修4-5:不等式选讲】 已知0a >,0b >,23a b +=.证明:(1)2295a b +≥; (2)3381416a b ab +≤.湖北名师联盟2020届高三第一次模拟考试卷理科数学答案一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.【答案】D【解析】由已知可得[]1,5A =,[)3,B =+∞,则[3,5]A B =I . 2.【答案】D【解析】由复数的运算法则可得:()()()()()()()()34i 12i 34i 12i 510i 510i 34i 34i 4i 12i 12i 12i 12i 5++----+---+--===-++-. 3.【答案】D【解析】对于选项A :2019年14~月的业务量,3月最高,2月最低,差值为439724111986-=,接近2000万件,所以A 是正确的;对于选项B :2019年14~月的业务量同比增长率分别为55%,53%,62%,58%, 均超过50%,在3月最高,所以B 是正确的;对于选项C :2019年2、3、4月快递业务量与收入的同比增长率不一致, 所以C 是正确的. 4.【答案】C【解析】∵12|2|e e -=121443e e +-⋅=,∴1212e e ⋅=, ∴121cos ,2e e <>=,∴12π,3e e <>=.5.【答案】B【解析】1()cos 1x x e f x x e +=⋅-的定义域为(,0)(0,)-∞+∞U ,∵11()cos()cos ()11x x xx e e f x x x f x e e --++-=-⋅=-⋅=---, ∴函数1()cos 1x x e f x x e +=⋅-奇函数,排除A 、D ,又因为当0x +→时,cos 0x >且101x xe e +>-,所以1()cos 01x x ef x x e +=⋅>-,故选B . 6.【答案】C【解析】由题设知,斐波那契数列的前6项之和为20,前7项之和为33, 由此可推测该种玫瑰花最可能有7层. 7.【答案】C【解析】易知四边形AEOF 为平行四边形,所以直线EF ,AO 相交; 直线EF ,1BB 是异面直线;直线EF ,1BB 所成角的余弦值为3C 正确. 8.【答案】B【解析】第一次循环,4S =,1i =; 第二次循环,2S =,2i =; 第三次循环,4S =,1i =; 第四次循环,2S =,2i =.可知S 随i 变化的周期为2,当2019i =时,输出的2S =. 9.【答案】C【解析】∵()f x 是R 上的奇函数,且满足(2)()f x f x +=-, ∴(2)()f x f x +=-,∴函数()f x 的图象关于1x =对称,∵函数()f x 在区间[1,2]是减函数,∴函数()f x 在[1,1]-上为增函数,且(2)(0)0f f ==, 由题知1c =-,2b =,01a <<,∴()()()f c f b f a <<. 10.【答案】A【解析】设双曲线C 的左焦点为1F ,21126AF AF a AF =+=+,∴216AB AF AB AF +=++=115559AB AF BE F E +++≥+==. 11.【答案】C【解析】由已知,得3(,)2R A ,则(1,)RP A =--u u r ,(1,)RQ A =-u u u r ,于是213RP RQ A ⋅=-=u u r u u u r,得2A =, 又51222T =-,∴4T =,2ππ2T ω==,由π12π22k ϕ⋅+=,k ∈Z 及π||2ϕ<,得π4ϕ=-,故ππ()2sin()24f x x =-, 因为()g x 与()f x 的图象关于1x =对称,则ππππππ()(2)2sin[(2)]2sin[π()]2sin()242424g x f x x x x =-=--=-+=+. 12.【答案】C【解析】将三棱锥P ABC -补成直三棱柱,且三棱锥和该直三棱柱的外接球都是球O ,记三角形ABC 的中心为1O ,设球的半径为R ,2PA x =,则球心O 到平面ABC 的距离为x ,即1OO x =, 连接1O A ,则15O A =,∴2225R x =+,在ABC △中,取AC 的中点为E ,连接1O D ,1O E , 则1132O E AB ==,124DE AC ==,∴113O D =. 在1OO D Rt △中,213OD x =+,由题意得到当截面与直线OD 垂直时,截面面积最小,设此时截面圆的半径为r ,则2222225(13)12r R OD x x =-=+-+=, 所以最小截面圆的面积为12π,当截面过球心时,截面面积最大为2πR ,∴212ππ40πR +=,228R =,球的表面积为24π112πR =.(或将三棱锥补成长方体求解).二、填空题:本大题共4小题,每小题5分. 13.【答案】2 【解析】1()ln ax f x a x x-'=+,(1)11f a '=-=,∴2a =. 14.【答案】9【解析】设等差数列{}n a 的公差为d ,由711S S =,可得1176111071122a d a d ⨯⨯+=+, 即12170a d +=,得到1217d a =-, 所以211111(1)(1)281()(9)22171717n a n n n n S na d na a n a --=+=+⨯-=--+, 由10a >可知1017a -<,故当9n =时,n S 最大. 15.【答案】314【解析】观察八卦图可知,含3根阴线的共有1卦,含有3根阳线的共有1卦,含有2根阴线1根阳线的共有3卦,含有1根阴线2根阳线的共有3卦,故从八卦中任取两卦,这两卦的六根线恰有两根阳线,四根阴线的概率为123328C C 3C 14+=. 16.【答案】【解析】设AF a =,BF b =, 则2a bd +=,222222cos AB a b ab AFB a b ab =+-∠=++,∴d AB ===, 当且仅当a b =时取等号.三、解答题:本大题共6大题,共70分,解答应写出文字说明、证明过程或演算步骤. 17.【答案】(1)π3;(2)5 【解析】(1)由()22sin a c b C +=+,得2222sin a c ac b C ++=+,所以2222sin a c b ac C +-+=,即()2cos 1sin ac B C +=, 所以有()sin cos 1sin C B B C +=,因为(0,π)C ∈,所以sin 0C >,所以cos 1B B +=,即cos 2sin 16πB B B ⎛⎫-=-= ⎪⎝⎭,所以1sin 2π6B ⎛⎫-= ⎪⎝⎭,又0πB <<,所以ππ5π666B -<-<,所以6ππ6B -=,即π3B =. (2)因为113sin 3322ac B ac =⋅=,所以12ac =,又22222cos ()3b a c ac B a c ac =+-=+-=2()3664a c +-=,所以10a c +=,把10c a =-代入到12()ac a c =>中,得513a =+. 18.【答案】(1)证明见解析;(2)6. 【解析】(1)证明:由题意可知:ED ⊥平面ABCD ,从而EDA EDC ≅Rt Rt △△, ∴EA EC =,又O 为AC 中点,∴DE AC ⊥,在EOF △中,3,6,3OE OF EF ===,∴222OE OF EF +=,∴OE OF ⊥, 又AC OF O =I ,∴OE ⊥平面ACF . (2)ED ⊥面ABCD ,且DA DC ⊥,如图以D 为原点,DA ,DC ,DE 方向建立空间直角坐标系,从而(0,0,1)E ,(2,0,0)A ,(0,2,0)C ,(2,2,2)F ,(1,1,0)O ,由(1)可知(1,1,1)EO =-uu u r是面AFC 的一个法向量, 设(,,)x y z =n 为面AEF 的一个法向量,由22020AF y z AE x z ⎧⋅=+=⎪⎨⋅=-+=⎪⎩n n uu u r uu u r ,令1x =,得(1,2,2)=-n , 设θ为二面角E AF C --的平面角,则||3|cos ||cos ,|3||||EO EO EO θ⋅=<>==⋅n n n uu u ruu u r uu u r ,6sin 3θ∴=,∴二面角E AF C --619.【答案】(1)22132x y +=;(2)10x +=. 【解析】(1)设椭圆C 的焦距为2c,则c a =,∴a =, ∵222a b c =+,∴b =,又1OB F B ⋅=OB b =,1F B a =,∴ab =2=1c =,∴a =b =22132x y +=.(2)由(1)知1(1,0)F -,2(1,0)F ,设直线l 方程为1x ty =-,由221132x ty x y =-⎧⎪⎨+=⎪⎩,得22(23)440t y ty +--=,设11(,)M x y ,22(,)N x y ,则122423t y y t +=+,122423y y t -=+, ∵22MF NF ⊥,∴220F M F N ⋅=uuuu r uuu r ,∴1212(1)(1)0x x y y --+=, ∴1212(11)(11)0ty ty y y ----+=,∴21212(1)2()40t y y t y y +-++=,∴22224(1)8402323t t t t -+-+=++,∴22t =,∴t =. ∴l的方程为10x ±+=.20.【答案】(1)证明见解析;(2)证明见解析.【解析】(1)由题意知:()f x 定义域为(,)-∞+∞,且1π()2sin()23x f x x e '=---. 令1π()2sin()23x g x x e =---,[π,0]x ∈-,1π()cos()23xg x x e '=---,[π,0]x ∈-.∵x y e =-在[π,0]-上单调递减,1πcos()23y x =--在[π,0]-上单调递减,()g x '在[π,0]-上单调递减.又π(0)cos()103g '=---<,ππππ1(π)cos()0232g e e-'-=----=->,∴0(π,0)x ∃∈-,使得0()0g x '=,∴当0[π,)x x ∈-时,()0g x '>;当0(,0]x x ∈时,()0g x '<,即()g x 在区间0[π,)x -上单调递增;在0(,0]x 上单调递减,则0x x =为()g x 唯一的极大值点,即()f x '在区间[π,0]-上存在唯一的极大值点0x .(2)由(1)知1π()2sin()23x f x x e '=---,且()f x '在区间[π,0]-存在唯一极大值点, ()f x '在0[π,)x -上单调递增,在0(,0]x 上单调递减,而ππππ1(π)2sin()1023f e e -'-=----=->,π(0)2sin()1103f '=---=>,故()f x '在[π,0]-上恒有()0f x '>,∴()f x 在[π,0]-上单调递增,又ππππ1(π)4cos()023f e e --=---=-<,π(0)4cos()1103f =--=>,因此,()f x 在[π,0]-上有且仅有一个零点. 21.【答案】(1)见解析;(2)①116P =,2736P =,343216P =;②6(1)7a b =-,1(1)7c b =-,11(1)56n n P =-.【解析】(1)X 的可能取值为1-,0,1.121(1)(1)233P x =-=-⨯=,12121(0)(1)(1)23232P x ==⨯+-⨯-=,121(1)(1)236P x ==⨯-=.∴X 的分布列为(2)①由(1)知,116P =, 经过两轮投球甲的累计得分高有两种情况:一是两轮甲各得1分; 二是两轮有一轮甲得0分,有一轮甲得1分,∴12211117C ()()662636P =⨯+=,经过三轮投球,甲的累计得分高有四种情况:一是三轮甲各得1分;二是三轮有两轮各得1分,一轮得0分;三是1轮得1分,两轮各得0分;四是两轮各得1分,1轮得1-分,∴322122233331111111()C ()()C ()()C ()()6626263P =+++.②由11i i i i P aP bP cP +-=++,知1111i i i a c P P P b b+-=+--, 将00P =,116P =,2736P =,343216P =代人,求得617a b =-,117c b =-,∴6(1)7a b =-,1(1)7c b =-,∴116177i i i P P P +-=+,∴117166i i i P P P +-=-.∴111()6i i i i P P P P +--=-,∵1016P P -=,∴1{}n n P P --是等比数列,首项和公比都是16. 116n n n P P --=,∴01021111(1)1166()()()(1)15616n n n n nP P P P P P P P --=+-+-++-==--L . 22.【答案】(1)()2121:1x y C +-=,20C y -=;(2)[10,]2. 【解析】(1)1C 的直角坐标方程()2211x y +-=,2C0y -+=. (2)由(1)知,1C 为以(0,1)为圆心,1r =为半径的圆,1C 的圆心(0,1)到2C的距离为1d ==<,则1C 与2C 相交,P 到曲线2C 距离最小值为0,最大值为d r +=, 则点P 到曲线2C距离的取值范围为[. 23.【答案】(1)证明见解析;(2)证明见解析.【解析】证明:(1)∵0a >,0b >,23a b +=,∴320a b =->,302b <<, ∴222222699(32)51295()555a b b b b b b +=-+=-+=-+≥,∴当65b =,3325a b =-=时,22a b +的最小值为95,∴2295a b +≥.(2)∵0a >,0b >,23a b +=,∴3≥908ab <≤,当且仅当322a b ==时,取等号,∴334a b ab +22(4)ab a b =+2[(2)4]ab a b ab =+-22819(94)94()4()168ab ab ab ab ab =-=-=--, ∴98ab =时,334a b ab +的最大值为8116,∴3381416a b ab +≤.。

湖北名师联盟2020届高三上学期第一次模拟考试数字(理)试题

湖北名师联盟2020届高三上学期第一次模拟考试数字(理)试题

湖北名师联盟2020届高三上学期第一次模拟考试数字(理)试题一、选择题 本大题共12道小题。

1.已知点F 2是双曲线22:193x y C -=的右焦点,动点A 在双曲线左支上,点B 为圆22:(2)1E x y ++=上一点,则2||||AB AF +的最小值为( )A .9B .8C .D .2.已知集合{}2|650A x x x =-+≤,{|B x y ==,A ∩B =( )A . [1,+∞)B .[1,3]C .(3,5]D .[3,5]3.如图,已知P ,Q 是函数()sin()f x A x ωϕ=+π(0,0,||)2A ωϕ>><的图象与x 轴的两个相邻交点,R 是函数()f x 的图象的最高点,且RP RQ ⋅u u u r u u u r=3,若函数()g x 的图象与()f x 的图象关于直线1x =对称,则函数()g x 的解析式是( ) A .ππ()sin()24g x x =+ B .ππ()sin()24g x x =- C .ππ()2sin()24g x x =+ D .ππ()2sin()24g x x =-答案第2页,总14页…○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…○…………内…………○…………装…………○…………订…………○…………线…………○…………4.如图1为某省2019年1~4月快递业务量统计图,图2是该省2019年1~4月快递业务收入统计图,下列对统计图理解错误的是( )A .2019年1~4月的业务量,3月最高,2月最低,差值接近2000万件B .2019年1~4月的业务量同比增长率超过50%,在3月最高C .从两图来看2019年1~4月中的同一个月快递业务量与收入的同比增长率并不完全一致D .从1~4月来看,该省在2019年快递业务收入同比增长率逐月增长 5.函数1()cos 1x x e f x x e +=⋅-的部分图象大致为( )A .B .C .D .6.执行如图所示的程序框图,输出的S 的值为( )…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________…………内…………○…………装…………○…………订…………○…………线…………○…………A .0B .2C .4D .-27.已知两个单位向量12,e e ,满足12|2|3e e -=,则12,e e 的夹角为( ) A .2π3B .3π4C .π3D .π48.如图,正方体ABCD -A 1B 1C 1D 1中,点E ,F 分别是AB ,A 1D 1的中点,O 为正方形A 1B 1C 1D 1的中心,则( )A .直线EF ,AO 是异面直线B .直线EF ,BB 1是相交直线C .直线EF 与BC 1所成的角为30°D .直线EF ,BB 1所成角的余弦值为339.已知定义在R 上的奇函数()f x 满足(2)()f x f x +=-,且在区间[1,2]上是减函数,令ln 2a =,121()4b -=,12log 2c =,则()f a ,()f b ,()f c 的大小关系为( )A .()()()f b f c f a <<B .()()()f a f c f b <<C .()()()f c f b f a <<D .()()()f c f a f b <<10.答案第4页,总14页…○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…○…………内…………○…………装…………○…………订…………○…………线…………○…………已知斐波那契数列的前七项为1、1、2、3、5、8、13.大多数植物的花,其花瓣数按层从内往外都恰是斐波那契数,现有层次相同的“雅苏娜”玫瑰花3朵,花瓣总数为99,假设这种“雅苏娜”玫瑰花每层花瓣数由内向外构成斐波那契数列,则一朵该种玫瑰花最可能有( )层. A .5 B .6C .7D .811.已知三棱锥P -ABC 满足P A ⊥底面ABC ,在△ABC 中,6AB =,8AC =,AB AC ⊥,D 是线段AC 上一点,且3AD DC =.球O 为三棱锥P -ABC 的外接球,过点D 作球O 的截面,若所得截面圆的面积的最小值与最大值之和为40π,则球O 的表面积为( ) A .72π B .86πC .112πD .128π12.34i 34i12i 12i+--=-+( ) A .-4 B .4C .-4iD .4i评卷人 得分一、填空题 本大题共4道小题。

2020届全国名师联盟高三上学期入学测试考试卷(一)数学理科试题答案

2020届全国名师联盟高三上学期入学测试考试卷(一)数学理科试题答案

2020届高三入学调研考试卷理 科 数 学(一)答 案一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.【答案】C2.【答案】D3.【答案】B4.【答案】A5.【答案】D6.【答案】D7.【答案】C8.【答案】B9.【答案】A10.【答案】C11.【答案】C12.【答案】A二、填空题:本大题共4小题,每小题5分.13.【答案】120︒或23π 14.【答案】48-15.【答案】22(4)(4)5-+-=x y16.【答案】514三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.17.【答案】(1)45A =︒;(2)125. 【解析】∵1tan tan()B C A =-, ∴sin cos()cos()cos sin()sin cos sin()B C A C A B C A B B C A -=⇒-=-- cos()0C A B ⇒-+=,即cos(1802)0A ︒-=.∴cos20A =,0180A ︒<<︒,290A =︒,则45A =︒.(2)∵1tan 2=B,∴sin B = ∵tan )1tan(4521tan C C C --︒==+,∴tan 3sin C C =-⇒=,由正弦定理4sin ==a A,可得=b=c所以1112csin 2252===S b A . 18.【答案】(1)证明见解析;(2)14.【解析】(1)∵AB BC CA ==,D 是AC 的中点,∴BD AC ⊥,∵1AA ⊥平面ABC ,∴平面11AAC C ⊥平面ABC ,∴BD ⊥平面11AAC C ,∴BD AE ⊥.又∵在正方形11AAC C 中,D ,E 分别是AC ,1CC 的中点,易证得:1A AD ACE ≅△△,∴1A DA AEC ∠=∠,∵90AEC CAE ∠+∠=︒,∴190A DA CAE ∠+∠=︒,即1A D AE ⊥.又1A D BD D =,∴AE ⊥平面1A BD ,AE ⊂平面AEB ,所以平面AEB ⊥平面1A BD .(2)取11AC 中点F ,以DF ,DA ,DB 为x ,y ,z 轴建立空间直角坐标系,(0,0,0)D ,(1,1,0)E -,B ,1(2,1,0)A ,DB =,(1,1,0)DE =-,1(2,1,BA =,1(1,2,0)EA =,设平面DBE 的一个法向量为(,,)x y z m,则0000DB x y DE ⎧⋅==⎪⇒⎨-=⎪⋅=⎪⎩⎩m m ,令1x =,则(1,1,0)=m ,设平面1BA E 的一个法向量为(,,)a b c =n ,则11020200BA a b a b EA ⎧⎧⋅=+=⎪⎪⇒⎨⎨+=⋅=⎪⎪⎩⎩n n ,令1b =,则(2,1,=-n ,设二面角1D BE A --的平面角为θ,观察可知θ为锐角,,1cos ,||||4<>==m n m n m n , 故二面角1D BE A --的余弦值为14. 19.【答案】(1)2212x y +=;(2)22y x =±+ 【解析】(1)依题意,得c b =,所以a =,所以椭圆C 为222212x y b b +=,将点代入,解得1b =,则a = 所以椭圆的标准方程为2212x y +=.(2)由题意知直线l 的斜率存在,设l 斜率为k ,(0,)P m (1m >),则直线l 方程为y kx m =+,设11(,)A x y ,22(,)B x y ,直线l 与圆O1=,即221m k =+, 联立直线与椭圆方程,消元得222(12)4220k x kmx m +++-=,00Δk >⇒≠,122412km x x k +=-+,2212222221212m k x x k k -==++, 因为PA AB =,所以212x x =,即1243(12)km x k =-+,221212k x k =+, 所以221619(12)m k =+,解得272k =,即22k m =±=,所求直线方程为y x =+ 20.【答案】(1)220;(2)见解析.【解析】(1)按调整前起征点应缴纳个税为:15003%250010%295⨯+⨯=元, 调整后应纳税:25003%75⨯=元,比较两纳税情况,可知调整后少交个税220元,即个人的实际收入增加了220元.(2)由题意,知[3000,5000)组抽取3人,[5000,7000)组抽取4人,当2x y ==时,0X =,当1,3x y ==或3,1x y ==时,2X =,当0,4x y ==时,4X =,所以X 的所有取值为:0,2,4,22344718(0)35C C P X C ===,133134344716(2)35C C C C P X C +===, 0434471(4)35C C P X C ===, 所求分布列为1816136()024********E X =⨯+⨯+⨯=. 21.【答案】(1)(,0]{2}-∞;(2)[0,)+∞.【解析】(1)2()ln 1f x x a x =--,22()2a x a f x x x x -'=-=. ①当0a ≤时,()0f x '>恒成立,所以()f x 单调递增,因为(1)0f =,所以()f x 有唯一零点,即0a ≤符合题意;②当0a >时,令()0f x '=,解得x =由表可知,min ()f x f =,函数()f x 在上递减,在)+∞上递增.(i 1=,即2a =时,min ()(1)0f x f ==,所以2a =符合题意;(ii 1<,即02a <<时,(1)0f f <=, 因为122()110a a a f ee e ---=+-=>,11a e -<,故存在11(a x e -∈,使得1()(1)0f x f ==,所以02a <<不符题意;(iii 1>,即2a >时,(1)0f f <=, 因为2(1)(1)ln(1)1(2ln(1))f a a a a a a a -=----=---,设11a t -=>,2ln(1)1ln ()a a t t h t ---=--=,则1()10h t t '=->,所以()h t 单调递增,即()(1)0h t h >=,所以(1)0f a ->,所以1a ->故存在21)x a ∈-,使得2()(1)0f x f ==,所以2a >不符题意;综上,a 的取值范围为(,0]{2}-∞.(2)()ln x g x a x e ex =+-,则()x a g x e e x '=+-,2()x a g x e x''=-,[1,)x ∈+∞. ①当0a ≥时,()0g x '≥恒成立,所以()g x 单调递增,所以()(1)0g x g ≥=, 即0a ≥符合题意;②当0a <时,()0g x ''>恒成立,所以()g x '单调递增,又因为(1)0g a '=<,(1ln())(ln())0ln()ln()a a e a g e a a e a e a --'-=-=>--, 所以存在0(1,ln())x e a ∈-,使得0()0g x '=,且当0(1,)x x ∈时,()0g x '<, 即()g x 在0(1,)x 上单调递减,所以0()(1)0g x g <=,即0a <不符题意. 综上,a 的取值范围为[0,)+∞.22.【答案】(1)221(3)169x y y +=≠-,:6l x y -=;(2)22d ≤≤. 【解析】(1)222241:131x k k C y kk ⎧=⎪⎪+⎨-⎪=⎪+⎩,平方后得221169x y +=, 又263(3,3]1y k =-+∈-+,C 的普通方程为221(3)169x y y +=≠-.cos()4πρθ+=,即cos sin 6ρθρθ-=, 将cos ,sin x y ρθρθ==代入即可得到:6l x y -=.(2)将曲线C 化成参数方程形式为4cos 3sin x y αα=⎧⎨=⎩(α为参数),则d ==3tan 4ϕ=,所以22d ≤≤. 23.【答案】(1)712x x x ⎧⎫<->⎨⎬⎩⎭或;(2)[3,)+∞.【答案】(1)当4a =时,145,21()3,2245,2x x f x x x x ⎧-+≤⎪⎪⎪=<<⎨⎪-≥⎪⎪⎩, 所以()9f x >的解集为712x x x ⎧⎫<->⎨⎬⎩⎭或. (2)()21221(2)1f x x x a x x a a =-+-≥---=-,由()5f x a ≥-恒成立, 有15a a -≥-,当5a ≥时不等式恒成立,当5a <时,由221(5)a a -≥-得35a ≤<,综上,a 的取值范围是[3,)+∞.。

2020届全国名师联盟高三上学期入学测试考试卷(一)数学理科试题_1

2020届全国名师联盟高三上学期入学测试考试卷(一)数学理科试题_1

2020届全国名师联盟高三上学期入学测试考试卷(一)理科数学(一)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请将本试题卷和答题卡一并上交。

一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合2{|20}M x x x =+-≤,{1,0,1,2}N =-,则M N 的子集个数为()A .2B .4C .8D .162.已知复数2z i =+,则1zi+在复平面上对应的点所在象限是()A .第一象限B .第二象限C .第三象限D .第四象限3.在等差数列{}n a 中,若35a =,424S =,则9a =()A .5-B .7-C .9-D .11-4.下列函数中,既是奇函数又在定义域内递增的是()A .3()f x x x =+B .()31xf x =-C .1()f x x=-D .3()log f x x=5.中国古代“五行”学说认为:物质分“金、木、水、火、土”五种属性,并认为:“金生水、水生木、木生火、火生土、土生金”.从五种不同属性的物质中随机抽取2种,则抽到的两种物质不相生的概率为()A .15B .14C .13D .126.设,αβ是两平面,,a b 是两直线.下列说法正确的是()①若//,//a b a c ,则b c ∥②若,a b αα⊥⊥,则a b ∥③若,a a αβ⊥⊥,则αβ∥④若αβ⊥,b αβ= ,a α⊂,a b ⊥,则a β⊥A .①③B .②③④C .①②④D .①②③④7.下图是一程序框图,若输入的12A =,则输出的值为()A .25B .512C .1229D .29608.函数()sin()f x A x ωϕ=+(其中0,0ω>>A ,||2πϕ<)的图象如图所示,为了得到()y f x =的图象,只需把1()sin cos 22ωω=-g x x x 的图象上所有点()A .向左平移6π个单位长度B .向左平移3π个单位长度C .向右平移6π个单位长度D .向右平移3π个单位长度9.8(12)2y x +-的展开式中22x y 项的系数是()A .420B .420-C .1680D .1680-10.太极图被称为“中华第一图”.从孔庙大成殿粱柱,到楼观台、三茅宫标记物;从道袍、卦摊、中医、气功、武术到南韩国旗……,太极图无不跃居其上.这种广为人知的太极图,其形状如阴阳两鱼互抱在一起,因而被称为“阴阳鱼太极图”.在如图所示的阴阳鱼图案中,阴影部分可表示为2222224(,)|(1)1(1)10x y A x y x y x y x ⎧⎫⎧+≤⎪⎪⎪=++≥+-≤⎨⎨⎬⎪⎪⎪≤⎩⎩⎭或,设点(,)x y A ∈,则2z x y =+的取值范围是()A.[2-B.[-C.[2-+D.[4,2-+11.已知双曲线2222:1(0,0)x y C a b a b-=>>的右焦点为F ,,A B 是双曲线的一条渐近线上关于原点对称的两点,0AF BF ⋅=uuu r uu u r且线段AF 的中点M 落在另一条渐近线上,则双曲线C 的离心率为()ABC .2D12.已知函数()()=--+xf x e a e ma x ,(,m a 为实数),若存在实数a ,使得()0≤f x 对任意x R ∈恒成立,则实数m 的取值范围是()A .[)1,e-+∞B .[,)-+∞e C .[1,]e eD .[1,]--e e二、填空题:本大题共4小题,每小题5分.13.平面内不共线的三点O ,A ,B ,满足||1OA = ,||2OB = ,点C 为线段AB 的中点,若3||2OC = ,则∠=AOB .14.已知数列{}n a 中,11a =,且1230n n a a +++=,n ∈*N ,数列{}n a 的前n 项和为n S ,则6S =.15.已知直线l 经过抛物线2:4=x C y 的焦点F ,与抛物线交于,A B ,且8+=A B x x ,点D 是弧AOB (O为原点)上一动点,以D 为圆心的圆与直线l 相切,当圆D 的面积最大时,圆D 的标准方程为.16.已知正三棱柱111-ABC A B C 的侧面积为12,当其外接球的表面积取最小值时,异面直线1AC 与1B C 所成角的余弦值等于.三、解答题:本大题共6大题,共70分,解答应写出文字说明,证明过程或演算步骤.17.(12分)在ABC △中,角A ,B ,C 所对的边分别为a ,b ,c ,若1tan 2=B ,tan()2-=C A .(1)求A ;(2)当=a ABC △的面积.18.(12分)如图,正三棱柱111ABC A B C -的所有棱长都是2,,D E 分别是1,AC CC 的中点.(1)求证:平面AEB ⊥平面1A BD ;(2)求二面角1D BE A --的余弦值.19.(12分)已知12,F F 是椭圆2222:1(0)x y C a b a b+=>>的左、右焦点,圆222:O x y c +=(122F F c =)与椭圆有且仅有两个交点,点(,33在椭圆上.(1)求椭圆的标准方程;(2)过y 正半轴上一点P 的直线l 与圆O 相切,与椭圆C 交于点A ,B ,若PA AB =,求直线l 的方程.20.(12分)随着经济的发展,个人收入的提高,自2019年1月1日起,个人所得税起征点和税率的调整,调整如下:纳税人的工资、薪金所得,以每月全部收入额减除5000元后的余额为应纳税所得额,依照个人所得税税率表,调整前后的计算方法如下表:某税务部门在某公司利用分层抽样方法抽取某月100个不同层次员工的税前收入,并制成下面的频数分布表:(1)若某员工2月的工资、薪金等税前收入为7500元时,请计算一下调整后该员工的实际收入比调整前增加了多少?(2)现从收入在[3000,5000)及[5000,7000)的人群中按分层抽样抽取7人,再从中选4人作为新纳税法知识宣讲员,用x 表示抽到作为宣讲员的收入在[3000,5000)元的人数,y 表示抽到作为宣讲员的收入在[5000,7000)元的人数,设随机变量Xx y =-,求X 的分布列与数学期望.21.(12分)已知函数2()ln 1f x x a x =--,()a ∈R .(1)若函数()f x 有且只有一个零点,求实数a 的取值范围;(2)若函数2()()10x g x e x ex f x =+---≥对[1,)x ∈+∞恒成立,求实数a 的取值范围.(e 是自然对数的底数, 2.71828e = )请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.(10分)【选修4-4:坐标系与参数方程】在直角坐标系xOy 中,曲线C 的参数方程是222813(1)1k x k k y k ⎧=⎪⎪+⎨-⎪=⎪+⎩(k 为参数),以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为cos()4πρθ+=(1)曲线C 的普通方程和直线l 的直角坐标方程;(2)求曲线C 上的点到直线l 的距离的取值范围.23.(10分)【选修4-5:不等式选讲】设函数()212f x x x a =-+-,x ∈R .(1)当4a =时,求不等式()9f x >的解集;(2)对任意x ∈R ,恒有()5f x a ≥-,求实数a 的取值范围.。

江西省名师联盟2020届高三数学上学期第一次模拟考试试题理

江西省名师联盟2020届高三数学上学期第一次模拟考试试题理

| PE | | PM | PQB ,所以 | EB | | MQ | .
因为△P△BF
| OF | | EP |
| PM | | OF |
EBO ,所以 | OB | | EB | ,从而有 | MQ | | OB | .
e c | OF | | PM | 1 又因为 M 是线段 PF 的中点,所以 a | OB | | MQ | 3 .
江西省名师联盟 2020 届高三数学上学期第一次模拟考试试题 理
注意事项:
1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码 粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用 2B 铅笔把答题卡上对应题目的答案标号涂黑, 写在试题卷、草稿纸和答题卡上的非答题区域均无效。
y
P E
M
A
FO
Bx
Q
10.【答案】B
【解析】由三视图可知该几何体是如图所示的三棱锥 A BCD , F 为 BD 的中点, 外接球球心 O 在过 CD 的中点 E 且垂直于平面 BCD 的直线 l 上, 又点 O 到 A , B , D 的距离相等,所以 O 又在过左边正方体一对棱的中点 M , N 所在直
x
B.
O
-1 1
x
y
y
O
-1 1
x
O
-1 1
x
C.
D.
2x y 6
6.设
x

y
满足约束条件
x
y
y3 2
,则
z

y x
的最大值是(
A. 1
B. 0
1 C. 2
BD

【数学】江西省名师联盟2020届高三上学期第一次模拟考试试题(理)(解析版)

【数学】江西省名师联盟2020届高三上学期第一次模拟考试试题(理)(解析版)
二、填空题:本大题共4小题,每小题5分.
13.若 为定义在 上的奇函数,当 时, ,则 ________.
【答案】
【解析】∵ ,
所以 .
故答案为: .
14.已知 ,则 __________.
【答案】
【解析】令 可得 ;
令 ,可得 ,
所以 .
故答案为0.
15.已知函数 只有一个零点,则 ___________.
A. B. C. D.
【答案】B
【解析】由三视图可知该几何体是如图所示的三棱锥 ,
为 的中点,
外接球球心 在过 的中点 且垂直于平面 的直线 上,
又点 到 的距离相等,
所以 又在过左边正方体一对棱的中点 所在直线上,
在 中,由 ,即 ,得 ,
所以三棱锥 外接球的球半径 ,
.
11.已知双曲线 (a>0,b>0)的离心率为2,F1,F2分别是双曲线的左、右焦点,点M(-a,0),N(0,b),点P为线段MN上的动点,当 取得最小值和最大值时,△PF1F2的面积分别为S1,S2,则 =( )
,排除选项 ;
,排除选项 ,故选C.
6.设 满足约束条件 ,则 的最大值是()
A. -1B. 0C. D. 2
【答案】D
【解析】由线性约束条件,画出可行域如下图
的几何意义是可行域内的点 与原点 连线的斜率,
由可行域可知,当取点B时,与原点连线斜率最大
B(1,2),所以 的最大值为
所以选D.
7.在 中, , 为 的中点,则 ()
【答案】B
【解析】因为 ,
所以 .
故选:B.
3.设 是等差数列 的前 项和, , ,则公差
A. B. C. 1D. -1

2020届全国名师联盟高三上学期入学测试考试卷(一)数学理科试题答案

2020届全国名师联盟高三上学期入学测试考试卷(一)数学理科试题答案

1. 2. 3. 4. 5. 6. 7. 、选择题:本大题共 2020届高三入学调研考试卷理科数 是符合题目要求的. 【答案】 【答案】 【答案】 【答案】 【答案】 【答案】 【答案】 【答案】 12小题,每小题10.【答案】C 11.【答案】 C 12. 【答案】 A二 _、 填空题 :本大题共4小题, 13. 【答案】 2 120或 314. 【答案】 4815. 【答案】 (x 4)2 (y 4)2 516. 【答案】 5 14三、 解答题 :本大题共 6小题, 17. 【答案】 (1) A 45 ; 12 (2) .【答案】 9. A 5每小题 【解析】T tan B1 tan(C A)' 学(一)答案5分,在每小题给出的四个选项中,只有一项5分.共70分,解答应写出文字说明,证明过程或演算步骤.sin B cosBcos(C sin(C A) A) cos(C A)cos B sin(C A)sin Bcos(C A B) 0,即 cos(180 2A) 0 .••• AA 1 平面 ABC ,•平面 AAC i C 平面 ABC ,• BD 平面 AAC -C ,••• BD AE .又•••在正万形 AAC -C 中,D , E 分别是AC , CC -的中点, 易证得:△ A -AD△ACE ,A - DA AEC ,•/ AEC CAE90 ,• • A -DACAE 90,即 AD AE又 A -D I BD D ,• AE平面A -BD , AE平面 AEB ,所以平面AEB 平面ABD .(2)取 AC -中点 F ,以 DF , DA , DB 为 x ,y , z 轴建立空间直角坐标系,二 cos2A 0, 0 A 180,2A 90 ,则 A 45 •(2)T tanBsin Btan(C 45 )ta^ 2 ,•1 tan CtanC si nC3 J0,由正弦定理—2 2sin A 2T可得12 •.1011 4 所以 S -bcsinA2____ 12_2 五12 518.【答案】(1)证明见解析;(2)【解析】(1)V AB BC CA ,D 是AC 的中点,•••BD AC ,D(0, 0,0),E(1, 1,0),B(0,0,、,3) , A(2,1,0),uuu - uurDB (0,0, .3) , DE (1, 1,0),uur UJITBA (2,1, 、、3) , (1,2,0),uuu _DB m 0 V3z 0 设平面DBE的一个法向量为m(x, y,z),贝y uuurDE m 0 x y 0令x 1,则m (1,1,0),设平面BA i E的一个法向量为n (a,b,c),UULT _ntt BA n 0 2a b ,3c 0则uuir ,EA n 0 a 2b 0令b 1,则n ( 2,1,、、3),鶴1,将点入,解得b 1,则a2,b 3 32所以椭圆的标准方程为—y2 1 .,观察可知为锐角,cos m, nl m, n l 1|m|| n| 4’故二面角D1BE A的余弦值为一•419.【答案】2⑴一 y2 1; (2) y.14 3「2x2 2设二面角D BE A的平面角为2【解析】(1)依题意,得c b,所以a.2b,2(2)由题意知直线I 的斜率存在,设I 斜率为k , P(O,m) ( m 1),则直线I 方程为y kx m ,mn 9设 A(x i , y i ), B(X 2,y 2),直线 I 与圆 O 相切,则1,即 m 21 k 2,Ji k 2联立直线与椭圆方程,消元得(1 2k 2)x 2 4kmx 2m 2 2 0 ,调整后应纳税:2500 3% 75元, 比较两纳税情况,可知调整后少交个税 220元,即个人的实际收入增加了 220元.(2)由题意,知[3000,5000)组抽取3人,[5000,7000)组抽取4人,0,当 x 1,y3 或 x 3, y 1 时,X所求分布列为k 0, x ] x 24 km 21 2k 2X-|X 22m 2 2 1 2 k 22k 2药,uur 因为PA uuuAB , 所以x 22x !,即 x-i4 km 3(1 2k 2) 2 X1k 2 1 2k 2 '所以29(1 2k 2)1, 解得 k 27,即2 14 2,m3 Z2 2 ,所求直线方程为32 220.【答案】(1)220 ; (2 )见解析.【解析】(1)按调整前起征点应缴纳个税为:1500 3% 2500 10% 295元,0,y4时, X 4,所以X 的所有取值为:0,2,4 ,P(X0)18 35P(X 2) C3C : C 3C 4 16C ; 35’P(X4)C30C 4丄35y 2 时,X2E(X) 018 35 空4丄3535 36 35 21.【答案】 (1) ,0]U{2}; (2) [0,). 【解析】(1) f(x) x 2 a l n x a f (x) 2x -x c 2 2x a ①当 a 0 时,f (x) 0恒成立, 所以 f (x)单调递增, 因为 f(1) 0,所以f (x)有唯一零点, 即a 0符合题意; ②当 a 0时,令f (x) 0,解得x0存事g亠:,列表如下: 由表可知, (i )当 (ii )当因为f(e 故存在x 1 (iii )当 因为 f (a )上递增.a2f(x)min f(・,),函数f(x)在(0,、)上递减,在min1 a ) (e 1) 1,即a2 时,f (x)minf (1) 0,所以a 2符合题意;f(1) 0,ae一),使得 f(xjf(1)0,所以0 a 2不符题意;1,即 a 2 时,f (2)f(1) 0, (a 所以h(t)单调递增, 故存在x 2(、:a21) aln(a 1)2 In (a 1) t1 a(a2 ln(a1)),1 In th(t),则 1h(t) 1即 h(t) h(1) 0,所以 f (a 1)0,所以 a 11),使得 f(X 2) f (1)0,所以a 2不符题意;综上,a的取值范围为(,0] U{2}.(2)g(x) a ln x e x ex,贝U g (x) — e x e , g (x) e x x ax [1,).①当a 0 时,g (x) 0恒成立,所以g(x)单调递增,所以g(x)g(i) 0,0符合题意;②当a 0时, g (x) 0恒成立,所以g (x)单调递增,又因为g (1) g (ln(e a))a a a(1 ln(e a)) °ln(e a) ■‘ln(e a)所以存在X。

2020届湖北名师联盟高三上学期第一次模拟考试数学(理)试题(解析版)

2020届湖北名师联盟高三上学期第一次模拟考试数学(理)试题(解析版)

2020届湖北名师联盟高三第一次模拟考试卷理 科 数 学注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请将本试题卷和答题卡一并上交。

一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}2|650A x x x =-+≤,{}|3B x y x ==-,A B =( ) A .[)1,+∞ B .[]1,3C .(]3,5D .[]3,52.34i 34i12i 12i+--=-+( ) A .4- B .4 C .4i - D .4i3.如图1为某省2019年14~月快递业务量统计图,图2是该省2019年14~月快递业务收入统计图,下列对统计图理解错误的是( )A .2019年14~月的业务量,3月最高,2月最低,差值接近2000万件B .2019年14~月的业务量同比增长率超过50%,在3月最高C .从两图来看2019年14~月中的同一个月快递业务量与收入的同比增长率并不完全一致D .从14~月来看,该省在2019年快递业务收入同比增长率逐月增长 4.已知两个单位向量12,e e ,满足12|2|3e e -=,则12,e e 的夹角为( ) A .2π3B .3π4 C .π3D .π4班级 姓名 准考证号 考场号 座位号5.函数1()cos 1x x e f x x e +=⋅-的部分图象大致为( )A .B .C .D .6.已知斐波那契数列的前七项为1、1、2、3、5、8、13.大多数植物的花,其花瓣数按层从内往外都恰是斐波那契数,现有层次相同的“雅苏娜”玫瑰花3朵,花瓣总数为99,假设这种“雅苏娜”玫瑰花每层花瓣数由内向外构成斐波那契数列,则一朵该种玫瑰花最可能有( )层. A .5B .6C .7D .87.如图,正方体1111ABCD A BC D -中,点E ,F 分别是AB ,11A D 的中点,O 为正方形1111A B C D 的中心,则( )A .直线EF ,AO 是异面直线B .直线EF ,1BB 是相交直线C .直线EF 与1BC 所成的角为30︒D .直线EF ,1BB 38.执行如图所示的程序框图,输出的S 的值为( )A .0B .2C .4D .2-9.已知定义在R 上的奇函数()f x 满足(2)()f x f x +=-,且在区间[1,2]上是减函数,令ln 2a =,121()4b -=,12log 2c =,则()f a ,()f b ,()f c 的大小关系为( )A .()()()f b f c f a <<B .()()()f a f c f b <<C .()()()f c f b f a <<D .()()()f c f a f b <<10.已知点2F 是双曲线22:193x y C -=的右焦点,动点A 在双曲线左支上,点B 为圆22:(2)1E x y ++=上一点,则2||||AB AF +的最小值为( ) A .9B .8C .53D .6311.如图,已知P ,Q 是函数()sin()f x A x ωϕ=+π(0,0,||)2A ωϕ>><的图象与x 轴的两个相邻交点,R 是函数()f x 的图象的最高点,且3RP RQ ⋅=,若函数()g x 的图象与()f x 的图象关于直线1x =对称,则函数()g x 的解析式是( )A .ππ()3sin()24g x x =+B .ππ()3sin()24g x x =-C .ππ()2sin()24g x x =+D .ππ()2sin()24g x x =-12.已知三棱锥P ABC -满足PA ⊥底面ABC ,在ABC △中,6AB =,8AC =,AB AC ⊥,D 是线段AC 上一点,且3AD DC =.球O 为三棱锥P ABC -的外接球,过点D 作球O 的截面,若所得截面圆的面积的最小值与最大值之和为40π,则球O 的表面积为( ) A .72πB .86πC .112πD .128π二、填空题:本大题共4小题,每小题5分.13.已知曲线()(1)ln f x ax x =-在点(1,0)处的切线方程为1y x =-,则实数a 的值为 .14.已知等差数列{}n a 的前n 项和为n S ,满足711S S =,且10a >,则n S 最大时n 的值是 .15.《易经》是中国传统文化中的精髓,如图是易经八卦(含乾、坤、異、震、坎、离、良、兑八卦),每一卦由三根线组成(“”表示一根阳线,“”表示一根阴线),从八卦中任取两卦,这两卦的六根线中恰有两根阳线,四根阴线的概率为 .16.点A ,B 是抛物线2:2(0)C y px p =>上的两点,F 是拋物线C 的焦点,若120AFB ∠=︒,AB 中点D 到抛物线C 的准线的距离为d ,则||dAB 的最大值为 .三、解答题:本大题共6大题,共70分,解答应写出文字说明、证明过程或演算步骤. 17.(12分)ABC △的内角,,A B C 所对的边分别为,,a b c ,已知22()23sin a c b ab C +=+. (1)求B 的大小;(2)若8b =,a c >,且ABC △的面积为33a .18.(12分)如图所示的多面体ABCDEF 中,四边形ABCD 是边长为2的正方形,ED FB ∥,12DE BF =,AB FB =,FB ⊥平面ABCD . (1)设BD 与AC 的交点为O ,求证:OE ⊥平面ACF ; (2)求二面角E AF C --的正弦值.19.(12分)设椭圆2222:1(0)x y C a b a b+=>>的左焦点为1F ,右焦点为2F ,上顶点为B ,离心率为3O 是坐标原点,且1||||6OB F B ⋅= (1)求椭圆C 的方程;(2)已知过点1F 的直线l 与椭圆C 的两交点为M ,N ,若22MF NF ⊥,求直线l 的方程.20.(12分)已知函数1π()4cos()23xf x x e =--,()f x '为()f x 的导数,证明:(1)()f x '在区间[π,0]-上存在唯一极大值点;(2)()f x 在区间[π,0]-上有且仅有一个零点.21.(12分)11月,2019全国美丽乡村篮球大赛在中国农村改革的发源地—安徽凤阳举办,其间甲、乙两人轮流进行篮球定点投篮比赛(每人各投一次为一轮).在相同的条件下,每轮甲乙两人站在同一位置,甲先投,每人投一次球,两人有1人命中,命中者得1分,未命中者得1-分;两人都命中或都未命中,两人均得0分.设甲每次投球命中的概率为12,乙每次投球命中的概率为23,且各次投球互不影响. (1)经过1轮投球,记甲的得分为X ,求X 的分布列;(2)若经过n 轮投球,用i p 表示经过第i 轮投球,累计得分,甲的得分高于乙的得分的概率. ①求1p ,2p ,3p ;②规定00p =,经过计算机计算可估计得11(1)i i i i p ap bp cp b +-=++≠,请根据①中1p ,2p ,3p 的值分别写出a ,c 关于b 的表达式,并由此求出数列{}n p 的通项公式.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.(10分)【选修4-4:坐标系与参数方程】已知平面直角坐标系xOy 中,以O 为极点,x 轴的正半轴为极轴,建立极坐标系,曲线1C 方程为2sin ρθ=,2C的参数方程为112x t y ⎧=-+⎪⎪⎨⎪=⎪⎩(t 为参数).(1)写出曲线1C 的直角坐标方程和2C 的普通方程;(2)设点P 为曲线1C 上的任意一点,求点P 到曲线2C 距离的取值范围.23.(10分)【选修4-5:不等式选讲】 已知0a >,0b >,23a b +=.证明:(1)2295a b +≥; (2)3381416a b ab +≤.2020届湖北名师联盟高三第一次模拟考试卷理科数学答 案一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.【答案】D【解析】由已知可得[]1,5A =,[)3,B =+∞,则[3,5]A B =. 2.【答案】D【解析】由复数的运算法则可得:()()()()()()()()34i 12i 34i 12i 510i 510i 34i 34i 4i 12i 12i 12i 12i 5++----+---+--===-++-. 3.【答案】D【解析】对于选项A :2019年14~月的业务量,3月最高,2月最低,差值为439724111986-=,接近2000万件,所以A 是正确的;对于选项B :2019年14~月的业务量同比增长率分别为55%,53%,62%,58%, 均超过50%,在3月最高,所以B 是正确的;对于选项C :2019年2、3、4月快递业务量与收入的同比增长率不一致, 所以C 是正确的. 4.【答案】C【解析】∵12|2|e e -=121443e e +-⋅=,∴1212e e ⋅=, ∴121cos ,2e e <>=,∴12π,3e e <>=. 5.【答案】B【解析】1()cos 1x x e f x x e +=⋅-的定义域为(,0)(0,)-∞+∞,∵11()cos()cos ()11x x x x e e f x x x f x e e --++-=-⋅=-⋅=---,∴函数1()cos 1x x e f x x e +=⋅-奇函数,排除A 、D ,又因为当0x +→时,cos 0x >且101x x e e +>-,所以1()cos 01x xe f x x e +=⋅>-,故选B . 6.【答案】C【解析】由题设知,斐波那契数列的前6项之和为20,前7项之和为33, 由此可推测该种玫瑰花最可能有7层. 7.【答案】C【解析】易知四边形AEOF 为平行四边形,所以直线EF ,AO 相交; 直线EF ,1BB 是异面直线;直线EF ,1BB C 正确. 8.【答案】B【解析】第一次循环,4S =,1i =; 第二次循环,2S =,2i =; 第三次循环,4S =,1i =; 第四次循环,2S =,2i =.可知S 随i 变化的周期为2,当2019i =时,输出的2S =. 9.【答案】C【解析】∵()f x 是R 上的奇函数,且满足(2)()f x f x +=-, ∴(2)()f x f x +=-,∴函数()f x 的图象关于1x =对称,∵函数()f x 在区间[1,2]是减函数,∴函数()f x 在[1,1]-上为增函数,且(2)(0)0f f ==, 由题知1c =-,2b =,01a <<,∴()()()f c f b f a <<. 10.【答案】A【解析】设双曲线C 的左焦点为1F ,21126AF AF a AF =+=+,∴216AB AF AB AF +=++=115559AB AF BE FE +++≥+==. 11.【答案】C【解析】由已知,得3(,)2R A ,则(1,)RP A =--,(1,)RQ A =-,于是213RP RQ A ⋅=-=,得2A =,又51222T =-,∴4T =,2ππ2T ω==, 由π12π22k ϕ⋅+=,k ∈Z 及π||2ϕ<,得π4ϕ=-,故ππ()2sin()24f x x =-,因为()g x 与()f x 的图象关于1x =对称,则ππππππ()(2)2sin[(2)]2sin[π()]2sin()242424g x f x x x x =-=--=-+=+.12.【答案】C【解析】将三棱锥P ABC -补成直三棱柱,且三棱锥和该直三棱柱的外接球都是球O ,记三角形ABC 的中心为1O ,设球的半径为R ,2PA x =,则球心O 到平面ABC 的距离为x ,即1OO x =, 连接1O A ,则15O A =,∴2225R x =+,在ABC △中,取AC 的中点为E ,连接1O D ,1O E , 则1132O E AB ==,124DE AC ==,∴113O D =. 在1OO D Rt △中,213OD x =+,由题意得到当截面与直线OD 垂直时,截面面积最小,设此时截面圆的半径为r ,则2222225(13)12r R OD x x =-=+-+=, 所以最小截面圆的面积为12π,当截面过球心时,截面面积最大为2πR ,∴212ππ40πR +=,228R =,球的表面积为24π112πR =.(或将三棱锥补成长方体求解).二、填空题:本大题共4小题,每小题5分. 13.【答案】2 【解析】1()ln ax f x a x x-'=+,(1)11f a '=-=,∴2a =. 14.【答案】9【解析】设等差数列{}n a 的公差为d ,由711S S =,可得1176111071122a d a d ⨯⨯+=+, 即12170a d +=,得到1217d a =-,所以211111(1)(1)281()(9)22171717n a n n n n S na d na a n a --=+=+⨯-=--+, 由10a >可知1017a -<,故当9n =时,n S 最大. 15.【答案】314【解析】观察八卦图可知,含3根阴线的共有1卦,含有3根阳线的共有1卦,含有2根阴线1根阳线的共有3卦,含有1根阴线2根阳线的共有3卦,故从八卦中任取两卦,这两卦的六根线恰有两根阳线,四根阴线的概率为123328C C 3C 14+=. 16.【答案】3【解析】设AF a =,BF b =, 则2a bd +=,222222cos AB a b ab AFB a b ab =+-∠=++,∴3d AB =≤=, 当且仅当a b =时取等号.三、解答题:本大题共6大题,共70分,解答应写出文字说明、证明过程或演算步骤.17.【答案】(1)π3;(2)5【解析】(1)由()22sin a c b C +=+,得2222sin a c ac b C ++=+,所以2222sin a c b ac C +-+=,即()2cos 1sin ac B C +=, 所以有()sin cos 1sin C B B C +=,因为(0,π)C ∈,所以sin 0C >,所以cos 1B B +,即cos 2sin 16πB B B ⎛⎫-=-= ⎪⎝⎭,所以1sin 2π6B ⎛⎫-= ⎪⎝⎭,又0πB <<,所以ππ5π666B -<-<,所以6ππ6B -=,即π3B =. (2)因为11sin 22ac B ac ==12ac =,又22222cos ()3b a c ac B a c ac =+-=+-=2()3664a c +-=,所以10a c +=,把10c a =-代入到12()ac a c =>中,得513a =+. 18.【答案】(1)证明见解析;(2)6. 【解析】(1)证明:由题意可知:ED ⊥平面ABCD ,从而EDA EDC ≅Rt Rt △△, ∴EA EC =,又O 为AC 中点,∴DE AC ⊥,在EOF △中,3,6,3OE OF EF ===,∴222OE OF EF +=,∴OE OF ⊥, 又ACOF O =,∴OE ⊥平面ACF .(2)ED ⊥面ABCD ,且DA DC ⊥,如图以D 为原点,DA ,DC ,DE 方向建立空间直角坐标系,从而(0,0,1)E ,(2,0,0)A ,(0,2,0)C ,(2,2,2)F ,(1,1,0)O , 由(1)可知(1,1,1)EO =-是面AFC 的一个法向量, 设(,,)x y z =n 为面AEF 的一个法向量,由22020AF y z AE x z ⎧⋅=+=⎪⎨⋅=-+=⎪⎩n n ,令1x =,得(1,2,2)=-n , 设θ为二面角E AF C --的平面角,则||3|cos ||cos ,|||||EO EO EO θ⋅=<>==⋅n n n 6sin θ∴=,∴二面角E AF C --619.【答案】(1)22132x y +=;(2)210x +=. 【解析】(1)设椭圆C 的焦距为2c ,则33c a =,∴3a c , ∵222a b c =+,∴2b c =,又1OB F B ⋅=OB b =,1F B a =,∴ab =2=1c =,∴a =b =22132x y +=.(2)由(1)知1(1,0)F -,2(1,0)F ,设直线l 方程为1x ty =-,由221132x ty x y =-⎧⎪⎨+=⎪⎩,得22(23)440t y ty +--=,设11(,)M x y ,22(,)N x y ,则122423t y y t +=+,122423y y t -=+, ∵22MF NF ⊥,∴220F M F N ⋅=,∴1212(1)(1)0x x y y --+=,∴1212(11)(11)0ty ty y y ----+=,∴21212(1)2()40t y y t y y +-++=,∴22224(1)8402323t t t t -+-+=++,∴22t =,∴t = ∴l的方程为10x +=.20.【答案】(1)证明见解析;(2)证明见解析.【解析】(1)由题意知:()f x 定义域为(,)-∞+∞,且1π()2sin()23xf x x e '=---.令1π()2sin()23x g x x e =---,[π,0]x ∈-,1π()cos()23xg x x e '=---,[π,0]x ∈-.∵x y e =-在[π,0]-上单调递减,1πcos()23y x =--在[π,0]-上单调递减,()g x '在[π,0]-上单调递减.又π(0)cos()103g '=---<,ππππ1(π)cos()023g e e-'-=----=->, ∴0(π,0)x ∃∈-,使得0()0g x '=,∴当0[π,)x x ∈-时,()0g x '>;当0(,0]x x ∈时,()0g x '<, 即()g x 在区间0[π,)x -上单调递增;在0(,0]x 上单调递减,则0x x =为()g x 唯一的极大值点,即()f x '在区间[π,0]-上存在唯一的极大值点0x .(2)由(1)知1π()2sin()23xf x x e '=---,且()f x '在区间[π,0]-存在唯一极大值点,()f x '在0[π,)x -上单调递增,在0(,0]x 上单调递减,而ππππ1(π)2sin()1023f e e -'-=----=->,π(0)2sin()1103f '=---=>,故()f x '在[π,0]-上恒有()0f x '>,∴()f x 在[π,0]-上单调递增,又ππππ1(π)4cos()023f e e --=---=-<,π(0)4cos()1103f =--=>,因此,()f x 在[π,0]-上有且仅有一个零点.21.【答案】(1)见解析;(2)①116P =,2736P =,343216P =;②6(1)7a b =-,1(1)7c b =-,11(1)56n n P =-.【解析】(1)X 的可能取值为1-,0,1.121(1)(1)233P x =-=-⨯=,12121(0)(1)(1)23232P x ==⨯+-⨯-=,121(1)(1)236P x ==⨯-=.∴X 的分布列为(2)①由(1)知,116P =, 经过两轮投球甲的累计得分高有两种情况:一是两轮甲各得1分; 二是两轮有一轮甲得0分,有一轮甲得1分,∴12211117C ()()662636P =⨯+=,经过三轮投球,甲的累计得分高有四种情况:一是三轮甲各得1分;二是三轮有两轮各得1分,一轮得0分;三是1轮得1分,两轮各得0分;四是两轮各得1分,1轮得1-分,∴322122233331111111()C ()()C ()()C ()()6626263P =+++.②由11i i i i P aP bP cP +-=++,知1111i i i a cP P P b b+-=+--, 将00P =,116P =,2736P =,343216P =代人,求得617a b =-,117c b =-, ∴6(1)7a b =-,1(1)7c b =-, ∴116177i i i P P P +-=+,∴117166i i i P P P +-=-.∴111()6i i i i P P P P +--=-,∵1016P P -=,∴1{}n n P P --是等比数列,首项和公比都是16. 116n n n P P --=,∴01021111(1)1166()()()(1)15616n n n n nP P P P P P P P --=+-+-++-==--. 22.【答案】(1)()2121:1x y C +-=,20C y -=;(2)[. 【解析】(1)1C 的直角坐标方程()2211x y +-=,2C0y -=. (2)由(1)知,1C 为以(0,1)为圆心,1r =为半径的圆,1C 的圆心(0,1)到2C的距离为1d ==<,则1C 与2C 相交,P 到曲线2C 距离最小值为0,最大值为d r +=, 则点P 到曲线2C距离的取值范围为[. 23.【答案】(1)证明见解析;(2)证明见解析.【解析】证明:(1)∵0a >,0b >,23a b +=,∴320a b =->,302b <<, ∴222222699(32)51295()555a b b b b b b +=-+=-+=-+≥,∴当65b =,3325a b =-=时,22a b +的最小值为95,∴2295a b +≥.(2)∵0a >,0b >,23a b +=,∴3≥908ab <≤,当且仅当322a b ==时,取等号,∴334a b ab +22(4)ab a b =+2[(2)4]ab a b ab =+-22819(94)94()4()168ab ab ab ab ab =-=-=--, ∴98ab =时,334a b ab +的最大值为8116,∴3381416a b ab +≤.小课堂:如何培养自主学习能力?自主学习是与传统的接受学习相对应的一种现代化学习方式。

湖北名师联盟2020届高三上学期第一次模拟考试数学(理)试题及答案

湖北名师联盟2020届高三上学期第一次模拟考试数学(理)试题及答案

2020届湖北名师联盟高三第一次模拟考试卷理 科 数 学注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请将本试题卷和答题卡一并上交。

一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}2|650A x x x =-+≤,{}|3B x y x ==-,A B =I ( )A .[)1,+∞B .[]1,3C .(]3,5 D .[]3,52.34i 34i12i 12i+--=-+( ) A .4-B .4C .4i -D .4i3.如图1为某省2019年14~月快递业务量统计图,图2是该省2019年14~月快递业务收入统计图,下列对统计图理解错误的是( )A .2019年14~月的业务量,3月最高,2月最低,差值接近2000万件B .2019年14~月的业务量同比增长率超过50%,在3月最高C .从两图来看2019年14~月中的同一个月快递业务量与收入的同比增长率并不完全一致D .从14~月来看,该省在2019年快递业务收入同比增长率逐月增长 4.已知两个单位向量12,e e ,满足12|2|3e e -=,则12,e e 的夹角为( )A .2π3B .3π4C .π3D .π45.函数1()cos 1x x e f x x e +=⋅-的部分图象大致为( )A .B .C .D .6.已知斐波那契数列的前七项为1、1、2、3、5、8、13.大多数植物的花,其花瓣数按层从内往外都恰是斐波那契数,现有层次相同的“雅苏娜”玫瑰花3朵,花瓣总数为99,假设这种“雅苏娜”玫瑰花每层花瓣数由内向外构成斐波那契数列,则一朵该种玫瑰花最可能有( )层.A .5B .6C .7D .87.如图,正方体1111ABCD A B C D -中,点E ,F 分别是AB ,11A D 的中点,O 为正方形1111A B C D 的中心,则( )A .直线EF ,AO 是异面直线B .直线EF ,1BB 是相交直线C .直线EF 与1BC 所成的角为30︒D .直线EF ,1BB 所成角的余弦值为338.执行如图所示的程序框图,输出的S 的值为( )A .0B .2C .4D .2-此卷只装订不密封班级 姓名 准考证号 考场号 座位号9.已知定义在R 上的奇函数()f x 满足(2)()f x f x +=-,且在区间[1,2]上是减函数, 令ln 2a =,121()4b -=,12log 2c =,则()f a ,()f b ,()f c 的大小关系为( )A .()()()f b f c f a <<B .()()()f a f c f b <<C .()()()f c f b f a <<D .()()()f c f a f b <<10.已知点2F 是双曲线22:193x yC -=的右焦点,动点A 在双曲线左支上,点B 为圆22:(2)1E x y ++=上一点,则2||||AB AF +的最小值为( )A .9B .8C .53D .6311.如图,已知P ,Q 是函数()sin()f x A x ωϕ=+π(0,0,||)2A ωϕ>><的图象与x 轴的两个相邻交点,R 是函数()f x 的图象的最高点,且3RP RQ ⋅=uu r uu u r,若函数()g x 的图象与()f x 的图象关于直线1x =对称,则函数()g x 的解析式是( ) A .ππ()3sin()24g x x =+ B .ππ()3sin()24g x x =- C .ππ()2sin()24g x x =+ D .ππ()2sin()24g x x =- 12.已知三棱锥P ABC -满足PA ⊥底面ABC ,在ABC △中,6AB =,8AC =,AB AC ⊥,D 是线段AC 上一点,且3AD DC =.球O 为三棱锥P ABC -的外接球,过点D 作球O 的截面,若所得截面圆的面积的最小值与最大值之和为40π,则球O 的表面积为( ) A .72π B .86πC .112πD .128π二、填空题:本大题共4小题,每小题5分.13.已知曲线()(1)ln f x ax x =-在点(1,0)处的切线方程为1y x =-,则实数a 的值为 . 14.已知等差数列{}n a 的前n 项和为n S ,满足711S S =,且10a >,则n S 最大时n 的值是 . 15.《易经》是中国传统文化中的精髓,如图是易经八卦(含乾、坤、異、震、坎、离、良、兑八卦),每一卦由三根线组成(“”表示一根阳线,“”表示一根阴线),从八卦中任取两卦,这两卦的六根线中恰有两根阳线,四根阴线的概率为 .16.点A ,B 是抛物线2:2(0)C y px p =>上的两点,F 是拋物线C 的焦点,若120AFB ∠=︒,AB 中点D 到抛物线C 的准线的距离为d ,则||dAB 的最大值为 .三、解答题:本大题共6大题,共70分,解答应写出文字说明、证明过程或演算步骤. 17.(12分)ABC △的内角,,A B C 所对的边分别为,,a b c ,已知22()23sin a c b ab C +=+.(1)求B 的大小;(2)若8b =,a c >,且ABC △的面积为33,求a .18.(12分)如图所示的多面体ABCDEF 中,四边形ABCD 是边长为2的正方形,ED FB ∥,12DE BF =,AB FB =,FB ⊥平面ABCD . (1)设BD 与AC 的交点为O ,求证:OE ⊥平面ACF ; (2)求二面角E AF C --的正弦值.19.(12分)设椭圆2222:1(0)x y C a b a b+=>>的左焦点为1F ,右焦点为2F ,上顶点为B ,离心率为33,O 是坐标原点,且1||||6OB F B ⋅=(1)求椭圆C 的方程;(2)已知过点1F 的直线l 与椭圆C 的两交点为M ,N ,若22MF NF ⊥,求直线l 的方程.20.(12分)已知函数1π()4cos()23xf x x e =--,()f x '为()f x 的导数,证明:(1)()f x '在区间[π,0]-上存在唯一极大值点; (2)()f x 在区间[π,0]-上有且仅有一个零点.21.(12分)11月,2019全国美丽乡村篮球大赛在中国农村改革的发源地—安徽凤阳举办,其间甲、乙两人轮流进行篮球定点投篮比赛(每人各投一次为一轮).在相同的条件下,每轮甲乙两人站在同一位置,甲先投,每人投一次球,两人有1人命中,命中者得1分,未命中者得1-分;两人都命中或都未命中,两人均得0分.设甲每次投球命中的概率为12,乙每次投球命中的概率为23,且各次投球互不影响.(1)经过1轮投球,记甲的得分为X ,求X 的分布列;(2)若经过n 轮投球,用i p 表示经过第i 轮投球,累计得分,甲的得分高于乙的得分的概率. ①求1p ,2p ,3p ;②规定00p =,经过计算机计算可估计得11(1)i i i i p ap bp cp b +-=++≠,请根据①中1p ,2p ,3p 的值分别写出a ,c 关于b 的表达式,并由此求出数列{}n p 的通项公式.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.(10分)【选修4-4:坐标系与参数方程】已知平面直角坐标系xOy 中,以O 为极点,x 轴的正半轴为极轴,建立极坐标系,曲线1C 方程为2sin ρθ=,2C的参数方程为112x t y ⎧=-+⎪⎪⎨⎪=⎪⎩(t 为参数).(1)写出曲线1C 的直角坐标方程和2C 的普通方程;(2)设点P 为曲线1C 上的任意一点,求点P 到曲线2C 距离的取值范围.23.(10分)【选修4-5:不等式选讲】 已知0a >,0b >,23a b +=.证明:(1)2295a b +≥; (2)3381416a b ab +≤.2020届湖北名师联盟高三第一次模拟考试卷理科数学答 案一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.【答案】D【解析】由已知可得[]1,5A =,[)3,B =+∞,则[3,5]A B =I . 2.【答案】D【解析】由复数的运算法则可得:()()()()()()()()34i 12i 34i 12i 510i 510i 34i 34i 4i 12i 12i 12i 12i 5++----+---+--===-++-. 3.【答案】D【解析】对于选项A :2019年14~月的业务量,3月最高,2月最低,差值为439724111986-=,接近2000万件,所以A 是正确的;对于选项B :2019年14~月的业务量同比增长率分别为55%,53%,62%,58%, 均超过50%,在3月最高,所以B 是正确的;对于选项C :2019年2、3、4月快递业务量与收入的同比增长率不一致, 所以C 是正确的. 4.【答案】C【解析】∵12|2|e e -=121443e e +-⋅=,∴1212e e ⋅=, ∴121cos ,2e e <>=,∴12π,3e e <>=.5.【答案】B【解析】1()cos 1x x e f x x e +=⋅-的定义域为(,0)(0,)-∞+∞U ,∵11()cos()cos ()11x x x x e e f x x x f x e e --++-=-⋅=-⋅=---,∴函数1()cos 1x x e f x x e +=⋅-奇函数,排除A 、D ,又因为当0x +→时,cos 0x >且101x x e e +>-,所以1()cos 01x x e f x x e +=⋅>-,故选B . 6.【答案】C【解析】由题设知,斐波那契数列的前6项之和为20,前7项之和为33, 由此可推测该种玫瑰花最可能有7层. 7.【答案】C【解析】易知四边形AEOF 为平行四边形,所以直线EF ,AO 相交; 直线EF ,1BB 是异面直线;直线EF ,1BB 所成角的余弦值为3,故选项C 正确. 8.【答案】B【解析】第一次循环,4S =,1i =; 第二次循环,2S =,2i =; 第三次循环,4S =,1i =; 第四次循环,2S =,2i =.可知S 随i 变化的周期为2,当2019i =时,输出的2S =. 9.【答案】C【解析】∵()f x 是R 上的奇函数,且满足(2)()f x f x +=-, ∴(2)()f x f x +=-,∴函数()f x 的图象关于1x =对称,∵函数()f x 在区间[1,2]是减函数,∴函数()f x 在[1,1]-上为增函数,且(2)(0)0f f ==, 由题知1c =-,2b =,01a <<,∴()()()f c f b f a <<. 10.【答案】A【解析】设双曲线C 的左焦点为1F ,21126AF AF a AF =+=+,∴216AB AF AB AF +=++=115559AB AF BE F E +++≥+==. 11.【答案】C【解析】由已知,得3(,)2R A ,则(1,)RP A =--u u r ,(1,)RQ A =-u u u r , 于是213RP RQ A ⋅=-=u u r u u u r,得2A =,又51222T =-,∴4T =,2ππ2T ω==, 由π12π22k ϕ⋅+=,k ∈Z 及π||2ϕ<,得π4ϕ=-,故ππ()2sin()24f x x =-, 因为()g x 与()f x 的图象关于1x =对称,则ππππππ()(2)2sin[(2)]2sin[π()]2sin()242424g x f x x x x =-=--=-+=+. 12.【答案】C【解析】将三棱锥P ABC -补成直三棱柱,且三棱锥和该直三棱柱的外接球都是球O ,记三角形ABC 的中心为1O ,设球的半径为R ,2PA x =,则球心O 到平面ABC 的距离为x ,即1OO x =, 连接1O A ,则15O A =,∴2225R x =+,在ABC △中,取AC 的中点为E ,连接1O D ,1O E , 则1132O E AB ==,124DE AC ==,∴113O D =. 在1OO D Rt △中,213OD x =+,由题意得到当截面与直线OD 垂直时,截面面积最小,设此时截面圆的半径为r ,则2222225(13)12r R OD x x =-=+-+=,所以最小截面圆的面积为12π,当截面过球心时,截面面积最大为2πR ,∴212ππ40πR +=,228R =,球的表面积为24π112πR =.(或将三棱锥补成长方体求解).二、填空题:本大题共4小题,每小题5分. 13.【答案】2【解析】1()ln ax f x a x x-'=+,(1)11f a '=-=,∴2a =. 14.【答案】9【解析】设等差数列{}n a 的公差为d ,由711S S =,可得1176111071122a d a d ⨯⨯+=+, 即12170a d +=,得到1217d a =-, 所以211111(1)(1)281()(9)22171717n a n n n n S na d na a n a --=+=+⨯-=--+, 由10a >可知1017a -<,故当9n =时,n S 最大. 15.【答案】314【解析】观察八卦图可知,含3根阴线的共有1卦,含有3根阳线的共有1卦,含有2根阴线1根阳线的共有3卦,含有1根阴线2根阳线的共有3卦,故从八卦中任取两卦,这两卦的六根线恰有两根阳线,四根阴线的概率为123328C C 3C 14+=. 16.【解析】设AF a =,BF b =, 则2a bd +=,222222cos AB a b ab AFB a b ab =+-∠=++,∴3d AB ==≤=, 当且仅当a b =时取等号.三、解答题:本大题共6大题,共70分,解答应写出文字说明、证明过程或演算步骤. 17.【答案】(1)π3;(2)5+ 【解析】(1)由()22sin a c b C +=+,得2222sin a c ac b C ++=+,所以2222sin a c b ac C +-+=,即()2cos 1sin ac B C +=, 所以有()sin cos 1sin C B B C +=,因为(0,π)C ∈,所以sin 0C >,所以cos 1B B +=,即3sin cos 2sin 16πB B B⎛⎫-=-= ⎪⎝⎭,所以1sin 2π6B ⎛⎫-= ⎪⎝⎭, 又0πB <<,所以ππ5π666B -<-<,所以6ππ6B -=,即π3B =. (2)因为113sin 3322ac B ac =⋅=,所以12ac =, 又22222cos ()3b a c ac B a c ac =+-=+-=2()3664a c +-=,所以10a c +=,把10c a =-代入到12()ac a c =>中,得513a =+. 18.【答案】(1)证明见解析;(2)63. 【解析】(1)证明:由题意可知:ED ⊥平面ABCD ,从而EDA EDC ≅Rt Rt △△, ∴EA EC =,又O 为AC 中点,∴DE AC ⊥, 在EOF △中,3,6,3OE OF EF ===,∴222OE OF EF +=,∴OE OF ⊥,又AC OF O =I ,∴OE ⊥平面ACF . (2)ED ⊥面ABCD ,且DA DC ⊥,如图以D 为原点,DA ,DC ,DE 方向建立空间直角坐标系,从而(0,0,1)E ,(2,0,0)A ,(0,2,0)C ,(2,2,2)F ,(1,1,0)O ,由(1)可知(1,1,1)EO =-uu u r是面AFC 的一个法向量,设(,,)x y z =n 为面AEF 的一个法向量,由22020AF y z AE x z ⎧⋅=+=⎪⎨⋅=-+=⎪⎩n n uu u r uu u r ,令1x =,得(1,2,2)=-n , 设θ为二面角E AF C --的平面角,则||3|cos ||cos ,|3||||EO EO EO θ⋅=<>==⋅n n n uu u ruu u r uu u r ,sin θ∴=,∴二面角E AF C --19.【答案】(1)22132x y +=;(2)10x ±+=. 【解析】(1)设椭圆C 的焦距为2c,则3c a =,∴a =, ∵222a b c =+,∴b =,又1OB F B ⋅OB b =,1F B a =,∴ab =2=1c =,∴a =b =22132x y +=.(2)由(1)知1(1,0)F -,2(1,0)F ,设直线l 方程为1x ty =-,由221132x ty x y =-⎧⎪⎨+=⎪⎩,得22(23)440t y ty +--=,设11(,)M x y ,22(,)N x y ,则122423t y y t +=+,122423y y t -=+, ∵22MF NF ⊥,∴220F M F N ⋅=uuuu r uuu r,∴1212(1)(1)0x x y y --+=,∴1212(11)(11)0ty ty y y ----+=,∴21212(1)2()40t y y t y y +-++=,∴22224(1)8402323t t t t -+-+=++,∴22t =,∴t =. ∴l的方程为10x ±+=.20.【答案】(1)证明见解析;(2)证明见解析.【解析】(1)由题意知:()f x 定义域为(,)-∞+∞,且1π()2sin()23x f x x e '=---.令1π()2sin()23xg x x e =---,[π,0]x ∈-,1π()cos()23xg x x e '=---,[π,0]x ∈-.∵xy e =-在[π,0]-上单调递减,1πcos()23y x =--在[π,0]-上单调递减,()g x '在[π,0]-上单调递减.又π(0)cos()103g '=---<,ππππ1(π)cos()023g e e-'-=----=->, ∴0(π,0)x ∃∈-,使得0()0g x '=,∴当0[π,)x x ∈-时,()0g x '>;当0(,0]x x ∈时,()0g x '<, 即()g x 在区间0[π,)x -上单调递增;在0(,0]x 上单调递减,则0x x =为()g x 唯一的极大值点,即()f x '在区间[π,0]-上存在唯一的极大值点0x .(2)由(1)知1π()2sin()23xf x x e '=---,且()f x '在区间[π,0]-存在唯一极大值点,()f x '在0[π,)x -上单调递增,在0(,0]x 上单调递减,而ππππ1(π)2sin()1023f e e-'-=----=->, π(0)2sin()1103f '=---=>,故()f x '在[π,0]-上恒有()0f x '>,∴()f x 在[π,0]-上单调递增,又ππππ1(π)4cos()023f e e --=---=-<,π(0)4cos()1103f =--=>, 因此,()f x 在[π,0]-上有且仅有一个零点.21.【答案】(1)见解析;(2)①116P =,2736P =,343216P =;②6(1)7a b =-,1(1)7c b =-,11(1)56n n P =-.【解析】(1)X 的可能取值为1-,0,1.121(1)(1)233P x =-=-⨯=,12121(0)(1)(1)23232P x ==⨯+-⨯-=,121(1)(1)236P x ==⨯-=.∴X 的分布列为(2)①由(1)知,16P =,经过两轮投球甲的累计得分高有两种情况:一是两轮甲各得1分;二是两轮有一轮甲得0分,有一轮甲得1分, ∴12211117C ()()662636P =⨯+=, 经过三轮投球,甲的累计得分高有四种情况:一是三轮甲各得1分;二是三轮有两轮各得1分,一轮得0分;三是1轮得1分,两轮各得0分;四是两轮各得1分,1轮得1-分, ∴322122233331111111()C ()()C ()()C ()()6626263P =+++. ②由11i i i i P aP bP cP +-=++,知1111i i i a c P P P b b+-=+--, 将00P =,116P =,2736P =,343216P =代人,求得617a b =-,117c b =-, ∴6(1)7a b =-,1(1)7c b =-, ∴116177i i i P P P +-=+,∴117166i i i P P P +-=-.∴111()6i i i i P P P P +--=-, ∵1016P P -=,∴1{}n n P P --是等比数列,首项和公比都是16. 116n n n P P --=, ∴01021111(1)1166()()()(1)15616n n n n n P P P P P P P P --=+-+-++-==--L . 22.【答案】(1)()2121:1x y C +-=,20C y -=;(2)[10,]2. 【解析】(1)1C 的直角坐标方程()2211x y +-=,2C0y -=.(2)由(1)知,1C 为以(0,1)为圆心,1r =为半径的圆,1C 的圆心(0,1)到2C的距离为112d ==<, 则1C 与2C 相交,P 到曲线2C 距离最小值为0,最大值为12d r +=, 则点P 到曲线2C距离的取值范围为[. 23.【答案】(1)证明见解析;(2)证明见解析.【解析】证明:(1)∵0a >,0b >,23a b +=,∴320a b =->,302b <<, ∴222222699(32)51295()555a b b b b b b +=-+=-+=-+≥, ∴当65b =,3325a b =-=时,22a b +的最小值为95, ∴2295a b +≥. (2)∵0a >,0b >,23a b +=,∴3≥908ab <≤,当且仅当322a b ==时,取等号, ∴334a b ab +22(4)ab a b =+2[(2)4]ab a b ab =+-22819(94)94()4()168ab ab ab ab ab =-=-=--, ∴98ab =时,334a b ab +的最大值为8116, ∴3381416a b ab +≤.。

2020届江西名师联盟高三上学期第一次模拟考试数学(理)试题

2020届江西名师联盟高三上学期第一次模拟考试数学(理)试题

2020届江西名师联盟高三上学期第一次模拟考试数学(理)试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知集合{|25}A x x =-<<,{1,3,6}=B ,{6}M =,则M =( ) A .A B B .A B C .()R A B ⋂ D .()R A B 2.若复数z 满足(1)(1)z i i --=,则2z =( )A .432i +-B .432i -C .342i +-D .342i - 3.设n S 是等差数列{}n a 的前n 项和,33a =,714S =,则公差d =A .12B .12-C .1D .-1 4.已知1265552562,,a b c ===,则( )A .a b c <<B .b a c <<C .c b a <<D .a c b <<5.函数22log (1)()x f x x-=的图象大致是( ) A . B .C .D .6.设,x y 满足约束条件2632x y x y y -≤⎧⎪+≥⎨⎪≤⎩,则y z x =的最大值是( ) A .-1 B .0 C .12 D .27.在ABC ∆中,23BD BC =,E 为AD 的中点,则CE =( ) A .1263AB AC - B .2136AB AC - C .1536AB AC - D .5163AB AC -8.若存在0,2x π⎡⎤∈⎢⎥⎣⎦,使2sin 203x x m π⎛⎫+-+< ⎪⎝⎭成立,则m 的取值范围为( ) A.⎛⎫+∞ ⎪⎝⎭ B.(,1-∞-- C.,⎛-∞ ⎝⎭ D.(1)--+∞9.在直角坐标系xOy 中,F 是椭圆C :22221(0)x y a b a b+=>>的左焦点,,A B 分别为左、右顶点,过点F 作x 轴的垂线交椭圆C 于P ,Q 两点,连接PB 交y 轴于点E ,连接AE 交PQ 于点M ,若M 是线段PF 的中点,则椭圆C 的离心率为( )A.2 B .12 C .13 D .1410.如图,网格纸上小正方形的边长为1,粗线画出的是某三棱锥的三视图,则该三棱锥的外接球的体积为( )A.3 B.3 C. D.11.已知双曲线22221(0,0)x y a b a b-=>>的离心率为2,1F ,2F 分别是双曲线的左、右焦点,点(,0)M a -,(0,)N b ,点P 为线段MN 上的动点,当12PF PF ⋅取得最小值和最大值时,12PF F △的面积分别为1S ,2S ,则21S S =( ) A .4 B .8 C.D.12.设函数()f x 在定义域()0,∞+上是单调函数,且()()0,,x x f f x e x e ⎡⎤∀∈+∞-+=⎣⎦,若不等式()()'f x f x ax +≥对(0,)x ∈+∞恒成立,则a 的取值范围是( )A .(],2e -∞-B .(],1e -∞-C .(],23e -∞-D .(],21e -∞-二、填空题13.若()f x 为定义在R 上的奇函数,当0x <时,()cos x f x x π=+,则43f π⎛⎫= ⎪⎝⎭________.14.已知()()()()()2962100201210011111x x a a x a x a x -+=+++++⋯++,则210012100222a a a ++⋯+=__________.15.已知函数()ln(||1)cos 2f x x a x =+++只有一个零点,则a =___________. 16.在四棱锥P ABCD -中,底面ABCD 为正方形,平面PAD ⊥平面ABCD ,且PAD ∆为等边三角形,若四棱锥P ABCD -的体积与四棱锥P ABCD -外接球的表面P ABCD -的表面积为___________.三、解答题17.ABC ∆的内角,,A B C 的对边分别为,,a b c ,已知26sin cossin 2A a B b A =. (1)求cos A ;(2)若5a b c =+=,求ABC ∆的面积.18.某厂销售部以箱为单位销售某种零件,每箱的定价为200元,低于100箱按原价销售,不低于100箱则有以下两种优惠方案:①以100箱为基准,每多50箱送5箱;②通过双方议价,买方能以优惠8%成交的概率为0.6,以优惠6%成交的概率为0.4. ()1甲、乙两单位都要在该厂购买150箱这种零件,两单位都选择方案②,且各自达成的成交价格相互独立,求甲单位优惠比例不低于乙单位优惠比例的概率;()2某单位需要这种零件650箱,以购买总价的数学期望为决策依据,试问该单位选择哪种优惠方案更划算?19.如图所示,在四面体ABCD 中,AD AB ⊥,平面ABD ⊥平面ABC ,2AB BC AC ==,且4AD BC +=.(1)证明:BC ⊥平面ABD ;(2)设E 为棱AC 的中点,当四面体ABCD 的体积取得最大值时,求二面角C BDE --的余弦值.20.已知椭圆C :22221(0)x y a b a b+=>>过点1)2-,. (1)求椭圆C 的方程.(2)若A ,B 是椭圆C 上的两个动点(A ,B 两点不关于x 轴对称),O 为坐标原点,OA ,OB 的斜率分别为1k ,2k ,问是否存在非零常数λ,使当12k k λ=时,AOB ∆的面积S 为定值?若存在,求λ的值;若不存在,请说明理由.21.已知函数ln ()x x a f x e+=. (1)当1a =时,求()f x 的极值;(2)设()x g x xe a -=-,对任意12,(0,)x x ∈+∞都有()()11112xx e f x ax g x ->成立,求实数a 的取值范围.22.在直角坐标系xOy 中,直线l 的参数方程为2431x t a y t ⎧=+⎨=-⎩(t 为参数),圆C 的参数方程为21cos 2sin x a y a θθ⎧=+⎨=-+⎩(θ为参数). (1)求l 和C 的普通方程;(2)将l 向左平移(0)m m >后,得到直线l ',若圆C 上只有一个点到l '的距离为1,求m .23.设函数()()40f x x a x a =-+-≠.(1)当1a =时,求不等式()f x x <的解集;(2)若()41f x a≥-恒成立,求a 的取值范围.参考答案1.C【解析】【分析】由集合的交集、补集运算即可.【详解】∵{|25}R A x x x =≤-≥或, ∴(){6}R A B ⋂=.故选:C【点睛】本题主要考查了集合的补集,交集运算,属于容易题.2.B【分析】由复数的除法运算及乘方运算求解.【详解】 因为21111i i z i i -=+=--, 所以2344322i i z i ---==-. 故选:B【点睛】本题主要考查了复数的除法及乘方运算,属于容易题.3.D【解析】【分析】由题得到1,a d 的方程组,解方程组即得d 的值.【详解】 由题得1123,1,767142a d d a d +=⎧⎪∴=-⎨⨯+=⎪⎩故答案为:D 【点睛】本题主要考查等差数列的通项和前n 项和,意在考查学生对这些知识的掌握水平和分析推理能力.4.A【分析】根据幂函数的单调性比较大小.【详解】 1255255=a =,256b =,62552=8c =, a b c ∴<<.故选:A5.C【分析】利用排除法,由()30f >排除选项,A B ;由()30f -<排除选项D ,从而可得结果.【详解】()()22log 1x f xx -=,()2log 83103f ∴==>,排除选项,A B ; ()2log 83103f -=-=-<,排除选项D ,故选C. 【点睛】函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势;(3)从函数的奇偶性,判断图象的对称性;(4)从函数的特征点,排除不合要求的图象.6.D【分析】根据线性约束条件,得可行域;由z 的几何意义可求得其最大值.【详解】由线性约束条件,画出可行域如下图y z x=的几何意义是可行域内的点(),x y 与原点()0,0连线的斜率, 由可行域可知,当取点B 时,与原点连线斜率最大B (1,2),所以z 的最大值为20210k -==- 所以选D【点睛】本题考查了分式型非线性目标函数最值的求法,注意其几何意义的理解和应用,属于基础题. 7.A【分析】由向量的线性运算即可求解.【详解】如图:1122CE CA CD =+ 1126CA CB =+ 11()26CA AB AC =+- 1263AB AC =-, 故选:A【点睛】本题主要考查了向量的线性运算,属于容易题.8.C【分析】由题意,求函数2()sin 23f x x x m π⎛⎫=+-+ ⎪⎝⎭的最小值即可,化简三角恒等式求最小值即可.【详解】记2()sin 23f x x x m π⎛⎫=+-+ ⎪⎝⎭,则1()cos 2)sin 222f x x x x m =++-+1sin 222x x m =+cos 26x m π⎛⎫=-+ ⎪⎝⎭因为存在0,2x π⎡⎤∈⎢⎥⎣⎦,使2sin 203x x m π⎛⎫+-+< ⎪⎝⎭成立,由52666x πππ-<-<,知cos 2126x π⎛⎫-≤-≤ ⎪⎝⎭,所以只需当0,2x π⎡⎤∈⎢⎥⎣⎦时,min ()02f x f m π⎛⎫==+< ⎪⎝⎭,即m <. 故选:C【点睛】本题主要考查了存在性问题,三角函数化简求最值,属于中档题.9.C【分析】由题意结合几何性质找到a ,c 的关系即可确定椭圆的离心率.【详解】如图,连接BQ ,则由椭圆的对称性易得∠PBF =∠QBF ,∠EAB =∠EBA ,所以∠EAB =∠QBF ,所以ME //BQ .因为△PME∽△PQB,所以PE PM EB MQ=,因为△PBF∽△EBO,所以OF EPOB EB=,从而有PM OFMQ OB=,又因为M是线段PF的中点,所以13OF PMcea OB MQ====.本题选择C选项.【点睛】椭圆的离心率是椭圆最重要的几何性质,求椭圆的离心率(或离心率的取值范围),常见有两种方法:①求出a,c,代入公式cea =;②只需要根据一个条件得到关于a,b,c的齐次式,结合b2=a2-c2转化为a,c的齐次式,然后等式(不等式)两边分别除以a或a2转化为关于e的方程(不等式),解方程(不等式)即可得e(e的取值范围).10.B【分析】借助长方体作出棱锥,利用球心到顶点的距离相等确定O的位置,利用球的性质求出半径,即可计算.【详解】由三视图可知该几何体是如图所示的三棱锥A BCD-,F 为BD 的中点,外接球球心O 在过CD 的中点E 且垂直于平面BCD 的直线l 上, 又点O 到,,A B D 的距离相等,所以O 又在过左边正方体一对棱的中点,M N 所在直线上, 在OEN ∆中,由NF MF NE OE =,即223OE=,得3OE =,所以三棱锥A BCD -外接球的球半径R ===3V =.【点睛】本题主要考查了三视图,棱锥的外接球,球的体积,属于中档题. 11.A 【分析】根据双曲线的离心率求出a ,b ,c 的关系,结合向量数量积的公式、一元二次函数的性质求出函数的最值,即可得答案. 【详解】由2ce a==,得2,c a b ==,故线段MN 所在直线的方程为)y x a =+,又点P 在线段MN 上,可设()P m +,其中[m a ∈-,0], 由于1(,0)F c -,2(,0)F c ,即1(2,0)F a -,2(2,0)F a ,得12(2,33),(2,)PF a m m a PF a m =----=-, 所以222212313464()44PF PF m ma a m a a ⋅=+-=+-.由于[m a ∈-,0], 可知当34m a =-时,12PF PF ⋅取得最小值,此时4P y a =, 当0m =时,12PF PF⋅取得最大值, 此时P y =,则214S S ==, 故选:A . 【点睛】本题主要考查直线和双曲线的位置关系 的应用,根据向量数量积转化为一元二次函数是解决本题的关键. 12.D 【分析】首先确定函数的解析式,然后确定实数a 的取值范围即可. 【详解】由题意易知()xf x e x -+为定值,不妨设()x f x e x t -+=,则()xf x e x t =-+,又()f t e =,故t e t t e -+=,解得:1t =,即函数的解析式为()1xf x e x =-+,()'1xf x e =-,由题意可知:()()11xxe x e ax -++-≥对()0,x ∈+∞恒成立,即21xe a x ≤-对()0,x ∈+∞恒成立,令()21xe g x x =-,则()()221'x e x g x x-=, 据此可知函数()g x 在区间()0,1上单调递减,在区间()1,+∞上单调递增, 函数()g x 的最小值为()121g e =-,结合恒成立的结论可知:a 的取值范围是(],21e -∞-.本题选择D 选项. 【点睛】本题主要考查函数的单调性,导函数研究函数的性质,恒成立问题的处理方法等知识,意在考查学生的转化能力和计算求解能力. 13.116【分析】根据奇函数的性质()()f x f x -=-即可求值. 【详解】∵4444111cos 333326f ππ⎛⎫-=-+=--=- ⎪⎝⎭, 所以41136f π⎛⎫=⎪⎝⎭. 故答案为:116【点睛】本题主要考查了函数奇偶性的应用,属于中档题. 14.0 【分析】利用赋值法,分别令11x x =-=,即可得到结果. 【详解】令1x =-可得00a =;令1x =,可得()()2962100201210022211110a a a a +++⋯+=-+=,所以2100121002220a a a ++⋯+=.故答案为0 【点睛】本题考查二项式定理的应用,考查运算求解能力. 15.2-【分析】判断函数为偶函数,根据偶函数的对称性即可求解. 【详解】因为()ln(||1)cos()2()f x x a x f x -=-++-+=, 所以函数()f x 为偶函数, 又函数()f x 只有一个零点, 故(0)0f =, 所以2a =-. 故答案为:2- 【点睛】本题主要考查了函数的奇偶性,函数的零点,属于容易题.16.8++ 【分析】设四棱锥P ABCD -外接球的球心为O ,等边三角形PAD 外接圆的圆心为2O ,则2O 为PAD ∆ 的重心,可证四边形12OO NO 为矩形,所以21OO NO =.设正方形ABCD 的边长为2x ,则||PN =,所以2||3PO =,2||OO x =,得到四棱锥P ABCD - 外接球的表面积和体积为,结合题目条件解得1x =,求出四棱锥P ABCD - 的各个面的面积,从而求出四棱锥P ABCD - 的表面积. 【详解】 如图,连接AC ,BD 交于点1O ,取AD 的中点为N ,连接PN .设四棱锥P ABCD -外接球的球心为O ,等边三角形PAD 外接圆的圆心为2O ,则2O 为PAD ∆的重心,则22||3PO PN =,正方形ABCD 外接圆的圆心为1O . 因为PN AD ,平面PAD ⊥平面ABCD ,所以PN平面ABCD ,所以1//OO PN ,所以四边形12OO NO 为矩形, 所以21OO NO =.设正方形ABCD 的边长为2x ,则||PN =,所以2PO =,2OO x =, 所以四棱锥P ABCD -外接球的半径为2222227||3PO PO OO x =+=, 所以四棱锥P ABCD -外接球的表面积为2283S x π=球,四棱锥P ABCD -的体积为23143P ABCD V x x -=⨯=,所以7P ABCD V S π-=球=,解得1x =, 所以正方形ABCD 的边长为2,所以2,2,4PAD PAB PDC PCB ABCD S S S S S ∆∆∆∆=====正方形,所以四棱锥P ABCD -的表面积为8+.故答案为:8+【点睛】本题主要考查了几何体的外接球的表面积和体积,是中档题.17.(1)23-;(2【分析】(1)由正弦定理化简已知等式可得21cos26A =,利用二倍角的余弦函数公式即可得解. (2)由已知利用余弦定理可求6bc =,利用同角三角函数基本关系式可求sin A 的值,根据三角形的面积公式即可计算得解. 【详解】(1)∵26sin cos sin 2Aa Bb A =, ∴26cos2Aab ba =, ∴21cos26A =, 故22cos 2cos123A A =-=-. (2)∵2222cos a b c bc A =+-,又5a b c =+=,∴24221()22533b c bc bc bc =+-+=-, ∴6bc =.由(1)可知sin A =,从而ABC ∆的面积1sin 2S bc A ==【点睛】本题主要考查了正弦定理,二倍角的余弦函数公式,余弦定理,同角三角函数基本关系式,三角形的面积公式在解三角形中的应用,考查了计算能力和转化思想,属于基础题. 18.(1)0.76;(2)选择方案①更划算. 【分析】(1)利用对立事件概率公式即可得到结果;(2)设在折扣优惠中每箱零件的价格为X 元,则X =184或188.得到相应的分布列及期望值,计算两种方案购买总价的数学期望从而作出判断. 【详解】(1)因为甲单位优惠比例低于乙单位优惠比例的概率为0.4×0.6=0.24, 所以甲单位优惠比例不低于乙单位优惠比例的概率1-0.24=0.76. (2)设在折扣优惠中每箱零件的价格为X 元,则X =184或188. X 的分布列为则EX =184×0.6+188×0.4=185.6.若选择方案②,则购买总价的数学期望为185.6×650=120640元.若选择方案①,由于购买600箱能获赠50箱,所以该单位只需要购买600箱, 从而购买总价为200×600=120000元. 因为120640>120000,所以选择方案①更划算. 评分细则:第(1)问中,分三种情况求概率,即所求概率为0.6×0.4+0.42+0.62=0.76同样得分; 第(2)问中,在方案②直接计算购买总价的数学期望也是可以的,解析过程作如下相应的调整:设在折扣优惠中购买总价为X 元,则X =184×650或188×650. X 的分布列为则EX =184×650×0.6+188×650×0.4=120640. 【点睛】本题考查了离散型随机变量的期望,概率的计算,考查推理能力与计算能力,属于中档题.19.(1)见证明;(2 【分析】(1)根据面面垂直的性质得到AD ⊥平面ABC ,从而得到AD BC ⊥,利用勾股定理得到AB BC ⊥,利用线面垂直的判定定理证得BC ⊥平面ABD ;(2)设(04)AD x x =<<,利用椎体的体积公式求得()1132V f x x ==⨯ ()()232148166x x x x -=-+ (04)x <<,利用导数研究函数的单调性,从而求得43AD x ==时,四面体ABCD 的体积取得最大值,之后利用空间向量求得二面角的余弦值.【详解】(1)证明:因为AD AB ⊥,平面ABD ⊥平面ABC , 平面ABD ⋂平面ABC AB =,AD ⊂平面ABD , 所以AD ⊥平面ABC ,因为BC ⊂平面ABC ,所以AD BC ⊥.因为2AB BC AC ==,所以222AB BC AC +=, 所以AB BC ⊥,因为AD AB A ⋂=,所以BC ⊥平面ABD .(2)解:设(04)AD x x =<<,则4AB BC x ==-, 四面体ABCD 的体积()1132V f x x ==⨯ ()()232148166x x x x -=-+ (04)x <<. ()()21316166f x x x =-+'= ()()14346x x --, 当403x <<时,()0f x '>,()V f x =单调递增;当443x <<时,()0f x '<,()V f x =单调递减. 故当43AD x ==时,四面体ABCD 的体积取得最大值.以B 为坐标原点,建立空间直角坐标系B xyz -,则()0,0,0B ,80,,03A ⎛⎫ ⎪⎝⎭,8,0,03C ⎛⎫ ⎪⎝⎭,840,,33D ⎛⎫⎪⎝⎭,44,,033E ⎛⎫ ⎪⎝⎭.设平面BCD 的法向量为(,,)n x y z =,则00n BC n BD ⎧⋅=⎨⋅=⎩,即80384033x y z ⎧=⎪⎪⎨⎪+=⎪⎩,令2z =-,得(0,1,2)n =-,同理可得平面BDE 的一个法向量为(1,1,2)m =-,则6==-.由图可知,二面角C BD E --为锐角,故二面角C BD E --.【点睛】该题考查的是有关立体几何的问题,涉及到的知识点有面面垂直的性质,线面垂直的判定,椎体的体积,二面角的求法,在解题的过程中,注意巧用导数求解体积的最大值.20.(1)2214x y +=;(2)存在这样的常数14λ=-,此时1AOB S ∆=. 【分析】(1)将点12⎫-⎪⎭的坐标代入椭圆方程,结合=c 和222a b c =+列方程组,解方程组求得椭圆的标准方程.(2)设直线AB 的方程为y kx m =+和,A B 两点的坐标,将,A B 两点两点坐标代入12k k λ=,化简得到()()2212120k x x km x x m λ-+++=①.联立直线AB的方程和椭圆方程,写出韦达定理,利用点到直线距离公式和弦长公式求得三角形AOB 的面积的表达式,结合①解得λ和S 的值. 【详解】解:(1)因为椭圆C :22221(0)x y a b a b+=>>过点12⎫-⎪⎭,所以223114a b +=,c =,从而22224a b c b =+=.联立方程组222231144a b a b ⎧+=⎪⎨⎪=⎩,解得2241a b ⎧=⎨=⎩,所以2214x y +=. (2)设存在这样的常数λ,使12k k λ=,AOB ∆的面积S 为定值.设直线AB 的方程为y kx m =+,点()11,A x y ,点()22,B x y ,则由12k k λ=知12120y y x x λ-=,()()12120kx m kx m x x λ++-=,所以()()2212120k x x km x x m λ-+++=.① 联立方程组2214x y y kx m ⎧+=⎪⎨⎪=+⎩,消去y 得()222148440k x kmx m +++-=. 所以12221228,1444.14km x x k m x x k -⎧+=⎪⎪+⎨-⎪=⎪+⎩②③, 点O 到直线AB的距离d =AOB ∆的面积12122m S AB d x x =⋅=⋅-=.④ 将②③代入①得()()()222222448140k m k m m k λ---++=, 化简得()22414k m λλ-=-,⑤ 将⑤代入④得()()()()()()22222222414141621441k k k S kλλλλ+⋅----⎛⎫= ⎪⎝⎭-+ ()()4222426464441168114k k k k λλλλ-++-=⋅++-, 要使上式为定值,只需26464441681λλλ-+-==, 即需()2410λ+=,从而14λ=-,此时2124S ⎛⎫= ⎪⎝⎭,1S =,所以存在这样的常数14λ=-,此时1AOB S ∆=. 【点睛】 本小题主要考查椭圆标准方程的求解,考查直线和椭圆的位置关系,考查直线和椭圆相交所得弦的弦长的求法,考查与椭圆有关的三角形面积的求解,考查方程的思想,综合性较强,属于难题.21.(1)()f x 的极大值为1e ,无极小值;(2)2,e ⎛⎫+∞ ⎪⎝⎭. 【分析】(1)把1a =代入()f x ,然后求出函数的定义域,对函数求导,结合导数与单调性的关系可求函数的极值,(2)令()()x m x xe f x ax =-,根据已知可转化为12()()min max m x g x >,结合导数进行求解. 【详解】(1)当1a =时,ln 1()x x f x e+=,所以函数()f x 的定义域为(0,)+∞, 所以1ln ()x x x x f x xe --'=,且0x xe >, 令()1ln h x x x x =--,所以当01x <<时,10,ln 0x x x -><,所以()1ln 0h x x x x =-->.又()2ln h x x '=--,所以当1x >时,()2ln 0h x x '=--<,所以()h x 在(1,)+∞上单调递减,故()(1)0h x h <=.同理当01x <<时,()0f x '>;当1x >时,()0f x '<,所以()f x 在(0,1)是单调递增,在(1,)+∞单调递减,所以当1x =时,()f x 的极大值为1(1)f e=,无极小值. (2)令()()x m x xe f x ax =-,因为对任意12,(0,)x x ∈+∞都有()()11112xx e f x ax g x ->成立, 所以()()12min max m x g x >.因为()()ln x m x xe f x ax x x =-=,所以()1ln m x x '=+.令()0m x '>,即1ln 0x +>,解得1x e>; 令()0m x '<,即1ln 0x +<,解得10x e<<. 所以()m x 在10,e ⎛⎫ ⎪⎝⎭上单调递减,在1,e ⎛⎫+∞ ⎪⎝⎭上单调递增, 所以min 11()m x m e e ⎛⎫==-⎪⎝⎭. 因为()x g x xe a -=-,所以()(1)x g x x e -'=-,当0x >时0x e ->,令()0g x '>,即10x ->,解得01x <<;令()0g x '<,即10x -<,解得1x >. 所以()g x 在(0,1)上单调递增,在(1,)+∞上单调递减, 所以max 1()(1)g x g a e ==-, 所以11a e e->-, 所以2a e >,即实数a 的取值范围为2,e ⎛⎫+∞ ⎪⎝⎭. 【点睛】本题主要考查了利用导数研究函数的单调性,极值及恒成立问题与最值求解的相互转化.22.(1)3470x y --=,22(1)(2)1x y -++=;(2)2m =.【分析】(1)直接利用转换关系,把参数方程极坐标方程和直角坐标方程之间进行转换. (2)利用点到直线的距离公式的应用和关系式的平移变换的性质的应用求出结果.【详解】(1)由题意可得||1a =,故l 的参数方程为4131x t y t =+⎧⎨=-⎩(t 为参数), 圆C 的参数方程为1cos 2sin x y θθ=+⎧⎨=-+⎩(θ为参数), 消去参数t ,得l 的普通方程为3470x y --=,消去参数θ,得C 的普通方程为22(1)(2)1x y -++=.(2)l '的方程为37()44y x m =+-,即34370x y m -+-=, 因为圆C 上只有一个点到l '的距离为1,圆C 的半径为1,所以(1,2)C -到l '的距离为2, 即|3837|25m ++-=,解得2m =(1403m =-<舍去). 【点睛】本题主要考查了参数方程极坐标方程和直角坐标方程之间的转换,点到直线的距离公式的应用,函数的关系式的平移变换,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.23.(1)()3,5;(2)()[),01,-∞+∞.【分析】(1)把1a =代入,利用零点分段讨论法去掉绝对值可求;(2)利用绝对值的三角不等式求出()f x 的最小值,然后求解关于a 的不等式即可.【详解】 (1)当1a =时,()52,1143,1425,4x x f x x x x x x -≤⎧⎪=-+-=<<⎨⎪-≥⎩,当1x ≤时,()f x x <,无解;当14x <<时,()f x x <可得34x <<;当4x ≥时,()f x x <可得45x ≤<;故不等式()f x x <的解集为()3,5.(2)()()()444f x x a x x a x a =-+-≥---=-,4441a a a a-∴-≥-=. 当0a <或4a ≥时,不等式显然成立; 当04a <<时,11a ≤,则14a ≤<. 故a 的取值范围为()[),01,-∞+∞.【点睛】 本题主要考查含有绝对值不等式的解法及恒成立问题,零点分段讨论法是常用解此类不等式的方法.。

2020届湖北名师联盟高三上学期第一次模拟考试数学(理)试题(解析版)

2020届湖北名师联盟高三上学期第一次模拟考试数学(理)试题(解析版)

2020届湖北名师联盟高三第一次模拟考试卷理 科 数 学注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请将本试题卷和答题卡一并上交。

一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}2|650A x x x =-+≤,{}|3B x y x ==-,A B =I ( ) A .[)1,+∞ B .[]1,3C .(]3,5D .[]3,52.34i 34i12i 12i+--=-+( ) A .4- B .4 C .4i - D .4i3.如图1为某省2019年14~月快递业务量统计图,图2是该省2019年14~月快递业务收入统计图,下列对统计图理解错误的是( )A .2019年14~月的业务量,3月最高,2月最低,差值接近2000万件B .2019年14~月的业务量同比增长率超过50%,在3月最高C .从两图来看2019年14~月中的同一个月快递业务量与收入的同比增长率并不完全一致D .从14~月来看,该省在2019年快递业务收入同比增长率逐月增长 4.已知两个单位向量12,e e ,满足12|2|3e e -=,则12,e e 的夹角为( ) A .2π3B .3π4 C .π3D .π4班级 姓名 准考证号 考场号 座位号5.函数1()cos 1x x e f x x e +=⋅-的部分图象大致为( )A .B .C .D .6.已知斐波那契数列的前七项为1、1、2、3、5、8、13.大多数植物的花,其花瓣数按层从内往外都恰是斐波那契数,现有层次相同的“雅苏娜”玫瑰花3朵,花瓣总数为99,假设这种“雅苏娜”玫瑰花每层花瓣数由内向外构成斐波那契数列,则一朵该种玫瑰花最可能有( )层. A .5B .6C .7D .87.如图,正方体1111ABCD A B C D -中,点E ,F 分别是AB ,11A D 的中点,O 为正方形1111A B C D 的中心,则( )A .直线EF ,AO 是异面直线B .直线EF ,1BB 是相交直线C .直线EF 与1BC 所成的角为30︒D .直线EF ,1BB 所成角的余弦值为338.执行如图所示的程序框图,输出的S 的值为( )A .0B .2C .4D .2-9.已知定义在R 上的奇函数()f x 满足(2)()f x f x +=-,且在区间[1,2]上是减函数,令ln 2a =,121()4b -=,12log 2c =,则()f a ,()f b ,()f c 的大小关系为( )A .()()()f b f c f a <<B .()()()f a f c f b <<C .()()()f c f b f a <<D .()()()f c f a f b <<10.已知点2F 是双曲线22:193x yC -=的右焦点,动点A 在双曲线左支上,点B 为圆22:(2)1E x y ++=上一点,则2||||AB AF +的最小值为( ) A .9B .8C .53D .6311.如图,已知P ,Q 是函数()sin()f x A x ωϕ=+π(0,0,||)2A ωϕ>><的图象与x 轴的两个相邻交点,R 是函数()f x 的图象的最高点,且3RP RQ ⋅=uu r uu u r,若函数()g x 的图象与()f x 的图象关于直线1x =对称,则函数()g x 的解析式是( )A .ππ()3sin()24g x x =+B .ππ()3sin()24g x x =-C .ππ()2sin()24g x x =+D .ππ()2sin()24g x x =-12.已知三棱锥P ABC -满足PA ⊥底面ABC ,在ABC △中,6AB =,8AC =,AB AC ⊥,D 是线段AC 上一点,且3AD DC =.球O 为三棱锥P ABC -的外接球,过点D 作球O 的截面,若所得截面圆的面积的最小值与最大值之和为40π,则球O 的表面积为( ) A .72πB .86πC .112πD .128π二、填空题:本大题共4小题,每小题5分.13.已知曲线()(1)ln f x ax x =-在点(1,0)处的切线方程为1y x =-,则实数a 的值为 .14.已知等差数列{}n a 的前n 项和为n S ,满足711S S =,且10a >,则n S 最大时n 的值是 .15.《易经》是中国传统文化中的精髓,如图是易经八卦(含乾、坤、異、震、坎、离、良、兑八卦),每一卦由三根线组成(“”表示一根阳线,“”表示一根阴线),从八卦中任取两卦,这两卦的六根线中恰有两根阳线,四根阴线的概率为 .16.点A ,B 是抛物线2:2(0)C y px p =>上的两点,F 是拋物线C 的焦点,若120AFB ∠=︒,AB 中点D 到抛物线C 的准线的距离为d ,则||dAB 的最大值为 .三、解答题:本大题共6大题,共70分,解答应写出文字说明、证明过程或演算步骤. 17.(12分)ABC △的内角,,A B C 所对的边分别为,,a b c ,已知22()3sin a c b ab C +=+. (1)求B 的大小;(2)若8b =,a c >,且ABC △的面积为33a .18.(12分)如图所示的多面体ABCDEF 中,四边形ABCD 是边长为2的正方形,ED FB ∥,12DE BF =,AB FB =,FB ⊥平面ABCD . (1)设BD 与AC 的交点为O ,求证:OE ⊥平面ACF ; (2)求二面角E AF C --的正弦值.19.(12分)设椭圆2222:1(0)x y C a b a b+=>>的左焦点为1F ,右焦点为2F ,上顶点为B ,离心率为33,O 是坐标原点,且1||||6OB F B ⋅= (1)求椭圆C 的方程;(2)已知过点1F 的直线l 与椭圆C 的两交点为M ,N ,若22MF NF ⊥,求直线l 的方程.20.(12分)已知函数1π()4cos()23x f x x e =--,()f x '为()f x 的导数,证明: (1)()f x '在区间[π,0]-上存在唯一极大值点; (2)()f x 在区间[π,0]-上有且仅有一个零点.21.(12分)11月,2019全国美丽乡村篮球大赛在中国农村改革的发源地—安徽凤阳举办,其间甲、乙两人轮流进行篮球定点投篮比赛(每人各投一次为一轮).在相同的条件下,每轮甲乙两人站在同一位置,甲先投,每人投一次球,两人有1人命中,命中者得1分,未命中者得1-分;两人都命中或都未命中,两人均得0分.设甲每次投球命中的概率为12,乙每次投球命中的概率为23,且各次投球互不影响.(1)经过1轮投球,记甲的得分为X ,求X 的分布列;(2)若经过n 轮投球,用i p 表示经过第i 轮投球,累计得分,甲的得分高于乙的得分的概率. ①求1p ,2p ,3p ;②规定00p =,经过计算机计算可估计得11(1)i i i i p ap bp cp b +-=++≠,请根据①中1p ,2p ,3p 的值分别写出a ,c 关于b 的表达式,并由此求出数列{}n p 的通项公式.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.(10分)【选修4-4:坐标系与参数方程】已知平面直角坐标系xOy 中,以O 为极点,x 轴的正半轴为极轴,建立极坐标系,曲线1C 方程为2sin ρθ=,2C的参数方程为1122x t y ⎧=-+⎪⎪⎨⎪=⎪⎩(t 为参数).(1)写出曲线1C 的直角坐标方程和2C 的普通方程;(2)设点P 为曲线1C 上的任意一点,求点P 到曲线2C 距离的取值范围.23.(10分)【选修4-5:不等式选讲】 已知0a >,0b >,23a b +=.证明:(1)2295a b +≥; (2)3381416a b ab +≤.2020届湖北名师联盟高三第一次模拟考试卷理科数学答 案一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.【答案】D【解析】由已知可得[]1,5A =,[)3,B =+∞,则[3,5]A B =I . 2.【答案】D【解析】由复数的运算法则可得:()()()()()()()()34i 12i 34i 12i 510i 510i 34i 34i 4i 12i 12i 12i 12i 5++----+---+--===-++-. 3.【答案】D【解析】对于选项A :2019年14~月的业务量,3月最高,2月最低,差值为439724111986-=,接近2000万件,所以A 是正确的;对于选项B :2019年14~月的业务量同比增长率分别为55%,53%,62%,58%, 均超过50%,在3月最高,所以B 是正确的;对于选项C :2019年2、3、4月快递业务量与收入的同比增长率不一致, 所以C 是正确的. 4.【答案】C【解析】∵12|2|e e -=121443e e +-⋅=,∴1212e e ⋅=, ∴121cos ,2e e <>=,∴12π,3e e <>=.5.【答案】B【解析】1()cos 1x x e f x x e +=⋅-的定义域为(,0)(0,)-∞+∞U ,∵11()cos()cos ()11x x xx e e f x x x f x e e --++-=-⋅=-⋅=---, ∴函数1()cos 1x x e f x x e +=⋅-奇函数,排除A 、D ,又因为当0x +→时,cos 0x >且101x xe e +>-,所以1()cos 01x x ef x x e +=⋅>-,故选B . 6.【答案】C【解析】由题设知,斐波那契数列的前6项之和为20,前7项之和为33, 由此可推测该种玫瑰花最可能有7层. 7.【答案】C【解析】易知四边形AEOF 为平行四边形,所以直线EF ,AO 相交; 直线EF ,1BB 是异面直线;直线EF ,1BB 所成角的余弦值为3C 正确. 8.【答案】B【解析】第一次循环,4S =,1i =; 第二次循环,2S =,2i =; 第三次循环,4S =,1i =; 第四次循环,2S =,2i =.可知S 随i 变化的周期为2,当2019i =时,输出的2S =. 9.【答案】C【解析】∵()f x 是R 上的奇函数,且满足(2)()f x f x +=-, ∴(2)()f x f x +=-,∴函数()f x 的图象关于1x =对称,∵函数()f x 在区间[1,2]是减函数,∴函数()f x 在[1,1]-上为增函数,且(2)(0)0f f ==, 由题知1c =-,2b =,01a <<,∴()()()f c f b f a <<. 10.【答案】A【解析】设双曲线C 的左焦点为1F ,21126AF AF a AF =+=+,∴216AB AF AB AF +=++=115559AB AF BE F E +++≥+==. 11.【答案】C【解析】由已知,得3(,)2R A ,则(1,)RP A =--u u r ,(1,)RQ A =-u u u r ,于是213RP RQ A ⋅=-=u u r u u u r,得2A =, 又51222T =-,∴4T =,2ππ2T ω==,由π12π22k ϕ⋅+=,k ∈Z 及π||2ϕ<,得π4ϕ=-,故ππ()2sin()24f x x =-, 因为()g x 与()f x 的图象关于1x =对称,则ππππππ()(2)2sin[(2)]2sin[π()]2sin()242424g x f x x x x =-=--=-+=+. 12.【答案】C【解析】将三棱锥P ABC -补成直三棱柱,且三棱锥和该直三棱柱的外接球都是球O ,记三角形ABC 的中心为1O ,设球的半径为R ,2PA x =,则球心O 到平面ABC 的距离为x ,即1OO x =, 连接1O A ,则15O A =,∴2225R x =+,在ABC △中,取AC 的中点为E ,连接1O D ,1O E , 则1132O E AB ==,124DE AC ==,∴113O D =. 在1OO D Rt △中,213OD x =+,由题意得到当截面与直线OD 垂直时,截面面积最小,设此时截面圆的半径为r ,则2222225(13)12r R OD x x =-=+-+=, 所以最小截面圆的面积为12π,当截面过球心时,截面面积最大为2πR ,∴212ππ40πR +=,228R =,球的表面积为24π112πR =.(或将三棱锥补成长方体求解).二、填空题:本大题共4小题,每小题5分. 13.【答案】2 【解析】1()ln ax f x a x x-'=+,(1)11f a '=-=,∴2a =. 14.【答案】9【解析】设等差数列{}n a 的公差为d ,由711S S =,可得1176111071122a d a d ⨯⨯+=+, 即12170a d +=,得到1217d a =-, 所以211111(1)(1)281()(9)22171717n a n n n n S na d na a n a --=+=+⨯-=--+, 由10a >可知1017a -<,故当9n =时,n S 最大. 15.【答案】314【解析】观察八卦图可知,含3根阴线的共有1卦,含有3根阳线的共有1卦,含有2根阴线1根阳线的共有3卦,含有1根阴线2根阳线的共有3卦,故从八卦中任取两卦,这两卦的六根线恰有两根阳线,四根阴线的概率为123328C C 3C 14+=. 16.【解析】设AF a =,BF b =, 则2a bd +=,222222cos AB a b ab AFB a b ab =+-∠=++,∴d AB ===, 当且仅当a b =时取等号.三、解答题:本大题共6大题,共70分,解答应写出文字说明、证明过程或演算步骤. 17.【答案】(1)π3;(2)5+ 【解析】(1)由()22sin a c b C +=+,得2222sin a c ac b C ++=+,所以2222sin a c b ac C +-+=,即()2cos 1sin ac B C +=, 所以有()sin cos 1sin C B B C +=,因为(0,π)C ∈,所以sin 0C >,所以cos 1B B +=,即cos 2sin 16πB B B ⎛⎫-=-= ⎪⎝⎭,所以1sin 2π6B ⎛⎫-= ⎪⎝⎭,又0πB <<,所以ππ5π666B -<-<,所以6ππ6B -=,即π3B =.(2)因为113sin 3322ac B ac =⋅=,所以12ac =,又22222cos ()3b a c ac B a c ac =+-=+-=2()3664a c +-=,所以10a c +=,把10c a =-代入到12()ac a c =>中,得513a =+. 18.【答案】(1)证明见解析;(2)63. 【解析】(1)证明:由题意可知:ED ⊥平面ABCD ,从而EDA EDC ≅Rt Rt △△, ∴EA EC =,又O 为AC 中点,∴DE AC ⊥,在EOF △中,3,6,3OE OF EF ===,∴222OE OF EF +=,∴OE OF ⊥, 又AC OF O =I ,∴OE ⊥平面ACF . (2)ED ⊥面ABCD ,且DA DC ⊥,如图以D 为原点,DA ,DC ,DE 方向建立空间直角坐标系,从而(0,0,1)E ,(2,0,0)A ,(0,2,0)C ,(2,2,2)F ,(1,1,0)O ,由(1)可知(1,1,1)EO =-uu u r是面AFC 的一个法向量, 设(,,)x y z =n 为面AEF 的一个法向量,由22020AF y z AE x z ⎧⋅=+=⎪⎨⋅=-+=⎪⎩n n uu u r uu u r ,令1x =,得(1,2,2)=-n , 设θ为二面角E AF C --的平面角,则||3|cos ||cos ,|||||EO EO EO θ⋅=<>==⋅n n n uu u ruu u r uu u r 6sin θ∴=,∴二面角E AF C --619.【答案】(1)22132x y +=;(2)210x ±+=.【解析】(1)设椭圆C 的焦距为2c,则c a =,∴a =, ∵222a b c =+,∴b =,又1OB F B ⋅=OB b =,1F B a =,∴ab =2=1c =,∴a =b =22132x y +=.(2)由(1)知1(1,0)F -,2(1,0)F ,设直线l 方程为1x ty =-,由221132x ty x y =-⎧⎪⎨+=⎪⎩,得22(23)440t y ty +--=,设11(,)M x y ,22(,)N x y ,则122423t y y t +=+,122423y y t -=+, ∵22MF NF ⊥,∴220F M F N ⋅=uuuu r uuu r,∴1212(1)(1)0x x y y --+=,∴1212(11)(11)0ty ty y y ----+=,∴21212(1)2()40t y y t y y +-++=,∴22224(1)8402323t t t t -+-+=++,∴22t =,∴t =. ∴l的方程为10x ±+=.20.【答案】(1)证明见解析;(2)证明见解析.【解析】(1)由题意知:()f x 定义域为(,)-∞+∞,且1π()2sin()23xf x x e '=---.令1π()2sin()23x g x x e =---,[π,0]x ∈-,1π()cos()23xg x x e '=---,[π,0]x ∈-.∵x y e =-在[π,0]-上单调递减,1πcos()23y x =--在[π,0]-上单调递减,()g x '在[π,0]-上单调递减.又π(0)cos()103g '=---<,ππππ1(π)cos()023g e e -'-=----=>,∴0(π,0)x ∃∈-,使得0()0g x '=,∴当0[π,)x x ∈-时,()0g x '>;当0(,0]x x ∈时,()0g x '<, 即()g x 在区间0[π,)x -上单调递增;在0(,0]x 上单调递减,则0x x =为()g x 唯一的极大值点,即()f x '在区间[π,0]-上存在唯一的极大值点0x .(2)由(1)知1π()2sin()23xf x x e '=---,且()f x '在区间[π,0]-存在唯一极大值点,()f x '在0[π,)x -上单调递增,在0(,0]x 上单调递减,而ππππ1(π)2sin()1023f e e -'-=----=->,π(0)2sin()1103f '=---=>,故()f x '在[π,0]-上恒有()0f x '>,∴()f x 在[π,0]-上单调递增,又ππππ1(π)4cos()023f e e --=---=-<,π(0)4cos()1103f =--=>,因此,()f x 在[π,0]-上有且仅有一个零点. 21.【答案】(1)见解析;(2)①116P =,2736P =,343216P =;②6(1)7a b =-,1(1)7c b =-,11(1)56n n P =-.【解析】(1)X 的可能取值为1-,0,1.121(1)(1)233P x =-=-⨯=,12121(0)(1)(1)23232P x ==⨯+-⨯-=,121(1)(1)236P x ==⨯-=.∴X 的分布列为(2)①由(1)知,116P =, 经过两轮投球甲的累计得分高有两种情况:一是两轮甲各得1分; 二是两轮有一轮甲得0分,有一轮甲得1分,∴12211117C ()()662636P =⨯+=,经过三轮投球,甲的累计得分高有四种情况:一是三轮甲各得1分;二是三轮有两轮各得1分,一轮得0分;三是1轮得1分,两轮各得0分;四是两轮各得1分,1轮得1-分,∴322122233331111111()C ()()C ()()C ()()6626263P =+++.②由11i i i i P aP bP cP +-=++,知1111i i i a c P P P b b+-=+--, 将00P =,116P =,2736P =,343216P =代人,求得617a b =-,117c b =-, ∴6(1)7a b =-,1(1)7c b =-, ∴116177i i i P P P +-=+,∴117166i i i P P P +-=-.∴111()6i i i i P P P P +--=-,∵1016P P -=,∴1{}n n P P --是等比数列,首项和公比都是16. 116n n n P P --=,∴01021111(1)1166()()()(1)15616n n n n nP P P P P P P P --=+-+-++-==--L . 22.【答案】(1)()2121:1x y C +-=,20C y -=;(2)[10,]2. 【解析】(1)1C 的直角坐标方程()2211x y +-=,2C0y -+=. (2)由(1)知,1C 为以(0,1)为圆心,1r =为半径的圆,1C 的圆心(0,1)到2C的距离为1d ==<,则1C 与2C 相交,P 到曲线2C 距离最小值为0,最大值为d r +=, 则点P 到曲线2C距离的取值范围为[10,]2. 23.【答案】(1)证明见解析;(2)证明见解析.【解析】证明:(1)∵0a >,0b >,23a b +=,∴320a b =->,302b <<, ∴222222699(32)51295()555a b b b b b b +=-+=-+=-+≥,∴当65b =,3325a b =-=时,22a b +的最小值为95,∴2295a b +≥.(2)∵0a >,0b >,23a b +=,∴3≥908ab <≤,当且仅当322a b ==时,取等号,∴334a b ab +22(4)ab a b =+2[(2)4]ab a b ab =+-22819(94)94()4()168ab ab ab ab ab =-=-=--, ∴98ab =时,334a b ab +的最大值为8116,∴3381416a b ab +≤.。

2020届高三上第一次模考理科数学试卷及答案解析

2020届高三上第一次模考理科数学试卷及答案解析

2020届高三第一次统一测试理科数学试题本试卷满分为150分,考试时间为120分钟。

第Ⅰ卷(选择题共60分)一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合{}2|230A x x x =--≥,{}22|≤≤-=x x B ,则A B =( )A .[]2,1--B .[)1,2-C .[]1,1-D .[)1,2 2. 若复数z 满足(1)42z i i -=+,则z =( )A .25BC .5D .17 3. 设S n 是等差数列{n a }的前n 项和,12a =-8,S 9=-9,则S 16= ( )A .-72B .72 C.36 D.-364.设向量→a ,→b ,满足2||2||==→→b a 且1|32|=+→→b a ,则向量→a 在向量→b 方向的投影为( )A. -2B. -1C. 1D. 25()cos 2παπα⎛⎫+=- ⎪⎝⎭,则tan 2α=( ) A .773 B .37 C .77 D 6.设0.1log 0.2a =, 1.1log 0.2b =,0.21.2c =,0.21.1d =则( )A .a b d c >>>B .c a d b >>>C .d c a b >>>D .c d a b >>>7.若βα,是两个不同的平面,m 为平面α内的一条直线,则“βα⊥”是“β⊥m ”的( )条件A.充分不必要B. 必要不充分C. 充要D. 既不充分也不必要8.四棱锥P -ABCD 的所有侧棱长都为5,底面ABCD 是边长为2的正方形,则CD 与PA 所成角的余弦值为( ) A.255 B.35 C.45 D.559.已知)(x f 是定义在R 上的偶函数,且)3()5(-=+x f x f ,如果当[)4,0∈x 时,)2(log )(2+=x x f ,则)766(f =( )A .2-B .3C .3-D .210.将函数sin ()y x x x =+∈R 的图象向左平移(0)m m >个单位长度后,所得到的图象关于y 轴对称,则m 的最小值是( ) A.π12 B.π6 C.π3 D.5π611.已知)(x f 是定义在R 上的奇函数,当0≥x 时,x x x f 2)(2+=,若)()2(2a f a f >-,则实数a 的取值范围是( )A.),2()1,(+∞--∞B. )2,1(-C.)1,2(-D.),1()2,(+∞--∞12.已知函数()e sin x f x x =,其中x ∈R ,e 2.71828=为自然对数的底数.当[0,]2x π∈时,函数()y f x =的图象不在直线y kx =的下方,则实数k 的取值范围是( )A .(,1)-∞B .(,1]-∞C .2(,e )π-∞D .2(,e ]π-∞(Ⅱ卷 非选择题 满分90分)二、填空题(本题共有4小题,每小题5分,共20分)13.已知变量x ,y 满足约束条件20,2,0,x y y x y +-≥⎧⎪≤⎨⎪-≤⎩则2z x y =+的最大值为14.设n S 为等比数列{}n a 的前n 项和,2580a a +=,则52S S = 15.在ABC ∆中,角C B A ,,的对边分别c b a ,,,若ABC ∆的面积为)(21222b a c -- 则内角C 的余弦值=16.在三棱锥A BCD -中,底面为Rt △,且BC CD ⊥,斜边BD 上的高为1,三棱锥A BCD -的外接球的直径是AB ,若该外接球的表面积为16π,则三棱锥A BCD -的体积的最大值为__________.。

精品解析:2020届湖北名师联盟高三上学期第一次模拟考试数学(理)试题(解析版)

精品解析:2020届湖北名师联盟高三上学期第一次模拟考试数学(理)试题(解析版)

2020届湖北名师联盟高三第一次模拟考试卷理科数学一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}{2|5,|A y y x B x y ==-+==,则A B ⋂=( ) A. [)1,+∞B. []1,3C. []3,5D. (]3,5 【答案】C【解析】试题分析:{}{}{}[]2|5|5,|33,5A y y x y y B x x A B ==-+=≤=≥∴⋂=Q ,选C 考点:集合的运算 2.34i 34i 12i 12i+--=-+( ) A. 4-B. 4C. 4i -D. 4i 【答案】D【解析】【分析】由题意结合复数的运算法则整理计算即可求得最终结果.【详解】由复数的运算法则可得:34i 34i 12i 12i +--=-+()()()()()()()()34123412510510412125i i i i i i i i i ++----+---==+-. 本题选择D 选项.【点睛】复数的代数形式的运算主要有加、减、乘、除及求低次方根.除法实际上是分母实数化的过程.3.如图1为某省2019年1~4月快递义务量统计图,图2是该省2019年1~4月快递业务收入统计图,下列对统计图理解错误的是( )A. 2019年1~4月的业务量,3月最高,2月最低,差值接近2000万件B. 2019年1~4月的业务量同比增长率超过50%,在3月最高C. 从两图来看2019年1~4月中的同一个月快递业务量与收入的同比增长率并不完全一致D. 从1~4月来看,该省在2019年快递业务收入同比增长率逐月增长【答案】D【解析】【分析】由题意结合所给的统计图确定选项中的说法是否正确即可.【详解】对于选项A : 2018年1~4月的业务量,3月最高,2月最低,差值为439724111986-=,接近2000万件,所以A 是正确的;对于选项B : 2018年1~4月的业务量同比增长率分别为55%,53%,62%,58%,均超过50%,在3月最高,所以B 是正确的;对于选项C :2月份业务量同比增长率为53%,而收入的同比增长率为30%,所以C 是正确的;对于选项D ,1,2,3,4月收入的同比增长率分别为55%,30%,60%,42%,并不是逐月增长,D 错误. 本题选择D 选项.【点睛】本题主要考查统计图及其应用,新知识的应用等知识,意在考查学生的转化能力和计算求解能力.4.已知两个单位向量1e u r ,2e u u r ,满足1223e e -=u r u u r 1e u r ,2e u u r 的夹角为( ) A. 23π B. 34π C. 3π D. 4π 【答案】C【解析】【分析】首先根据122(2)3e e -=u r u u r 得到1212e e =u r u u r g ,再代入夹角公式计算即可。

2020届江西名师联盟高三上学期第一次模拟考试数学(理)试题

2020届江西名师联盟高三上学期第一次模拟考试数学(理)试题

2020届江西名师联盟高三第一次模拟考试卷理 科 数 学注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请将本试题卷和答题卡一并上交。

一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{|25}A x x =-<<,{1,3,6}B =,{6}M =,则M =( ) A .A BB .A BC .()A B R D .()A B R2.若复数z 满足(1)(i 1)i z --=,则2z =( ) A .43i2+-B .43i2- C .34i2+-D .34i2- 3.设n S 是等差数列{}n a 的前n 项和,33a =,714S =,则公差d =( )A .12B .12-C .1D .1-4.已知1525a =,256b =,652c =,则( ) A .a b c <<B .b a c <<C .c b a <<D .a c b <<5.函数22log (1)()x f x x-=的图象大致是( )A .yx1O-1B .yx1O-1班级 姓名 准考证号 考场号 座位号C .D .6.设x ,y 满足约束条件2632x y x y y -≤⎧⎪+≥⎨⎪≤⎩,则y z x =的最大值是( )A .1-B .0C .12D .27.在ABC △中,23BD BC =,E 为AD 的中点,则CE =( ) A .1263AB AC -B .2136AB AC - C .1536AB AC -D .5163AB AC -8.若存在π[0,]2x ∈,使2πsin(2)03x x m +-+<成立,则m 的取值范围为( ) A.()+∞ B .(,1-∞-- C.(,-∞ D .(1)--+∞9.在直角坐标系xOy 中,F 是椭圆2222:1(0)x y C a b a b+=>>的左焦点,A ,B 分别为左、右顶点,过点F 作x 轴的垂线交椭圆C 于P ,Q 两点,连接PB 交y 轴于点E ,连接AE 交PQ 于点M ,若M 是线段PF的中点,则椭圆C 的离心率为( ) A .2B .12C .13D .1410.如图,网格纸上小正方形的边长为1,粗线画出的是某三棱锥的三视图,则该三棱锥的外接球的体积为( )ABC. D .11.已知双曲线22221(0,0)x y a b a b-=>>的离心率为2,1F ,2F 分别是双曲线的左、右焦点,点(,0)M a -,(0,)N b ,点P 为线段MN 上的动点,当12PF PF ⋅取得最小值和最大值时,12PF F △的面积分别为1S ,2S ,则21S S =( ) A .4B .8C.D.12.设函数()f x 在定义域(0,)+∞上是单调函数,且(0,)x ∀∈+∞,(())x f f x e x e -+=. 若不等式()()f x f x ax '+≥对(0,)x ∈+∞恒成立,则a 的取值范围是( ) A .(,2]e -∞-B .(,1]e -∞-C .(,23]e -∞-D .(,21]e -∞-二、填空题:本大题共4小题,每小题5分. 13.若()f x 为定义在R 上的奇函数,当0x <时,()cos πx f x x =+,则4π()3f = . 14.已知22962100012100(1)(1)(1)(1)(1)x x a a x a x a x -+=+++++++,则210012100222a a a +++= .15.已知函数()ln(||1)cos 2f x x a x =+++只有一个零点,则a = .16.在四棱锥P ABCD -中,底面ABCD 为正方形,平面PAD ⊥平面ABCD ,且PAD △为等边三角形,若四棱锥P ABCD -的体积与四棱锥P ABCD -,则四棱锥P ABCD -的表面积为 .三、解答题:本大题共6大题,共70分,解答应写出文字说明、证明过程或演算步骤.17.(12分)ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,已知26sin cossin 2Aa Bb A =. (1)求cos A ;(2)若a =5b c +=,求ABC △的面积.18.(12分)某厂销售部以箱为单位销售某种零件,每箱的定价为200元,低于100箱按原价销售,不低于100箱则有以下两种优惠方案:①以100箱为基准,每多50箱送5箱;②通过双方议价,买方能以优惠8%成交的概率为0.6,以优惠6%成交的概率为0.4.(1)甲、乙两单位都要在该厂购买150箱这种零件,两单位都选择方案②,且各自达成的成交价格相互独立,求甲单位优惠比例不低于乙单位优惠比例的概率;(2)某单位需要这种零件650箱,以购买总价的数学期望为决策依据,试问该单位选择哪种优惠方案更划算?19.(12分)如图,在四面体ABCD 中,AD AB ⊥,平面ABD ⊥平面ABC,2AB BC AC ==,且4AD BC +=.(1)证明:BC ⊥平面ABD ;(2)设E 为棱AC 的中点,当四面体ABCD 的体积取得最大值时,求二面角C BD E --的余弦值.EBACD20.(12分)已知椭圆2222:1(0)x y C a b a b+=>>过点1)2-倍.(1)求椭圆C 的方程;(2)若A ,B 是椭圆C 上的两个动点(A ,B 两点不关于x 轴对称),O 为坐标原点,OA ,OB 的斜率分别为1k ,2k ,问是否存在非零常数λ,使12k k λ⋅=时,AOB △的面积S 为定值?若存在,求λ的值;若不存在,请说明理由.21.(12分)已知函数ln ()xx af x e+=. (1)当1a =时,求()f x 的极值;(2)设()x g x xe a -=-,对任意12,(0,)x x ∈+∞都有11112()()xx e f x ax g x ->成立,求实数a 的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.(10分)【选修4-4:坐标系与参数方程】在直角坐标系xOy 中,直线l 的参数方程为2431x t a y t ⎧=+⎨=-⎩(t 为参数),圆C 的参数方程为21||cos 2sin x a y a θθ=+⎧⎨=-+⎩(θ为参数). (1)求l 和C 的普通方程;(2)将l 向左平移(0)m m >后,得到直线l ',若圆C 上只有一个点到l '的距离为1,求m .23.(10分)【选修4-5:不等式选讲】 设函数()|||4|(0)f x x a x a =-+-≠. (1)当1a =时,求不等式()f x x <的解集; (2)若4()1f x a≥-恒成立,求a 的取值范围.2020届江西名师联盟高三第一次模拟考试卷理科数学答 案一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.【答案】C 【解析】∵{|2A x x =≤-R或5}x ≥,∴(){6}A B =R .2.【答案】B 【解析】因为i 2i 11i 1i 1z -=+=--,所以234i 43i 2i 2z ---==-. 3.【答案】D【解析】∵74714S a ==,∴42a =,∴431d a a =-=-. 4.【答案】A【解析】255a =,256b =,258c =,故a b c <<. 5.【答案】C【解析】由函数22log (1)()x f x x -=,得定义域为(,1)(1,)-∞-+∞,且有()()f x f x -=-成立,所以函数22log (1)()x f x x-=的图象关于原点对称,且与x 轴交于(和两点.当x >222log (1)log (21)0x ->-=,所以在内函数图象在x 轴下方,在)+∞内函数图象在x 轴上方,再用对称性得到完整的函数图象. 6.【答案】D 【解析】yz x=的几何意义是可行域内的点(,)x y 与原点(0,0)连线的斜率, 画出可行域(图略),得z 的最大值为2. 7.【答案】A【解析】11111112()22262663CE CA CD CA CB CA AB AC AB AC =+=+=+-=-.8.【答案】C【解析】记2ππ()sin(2)cos(2)36f x x x m x m =+-+=-+,因为存在π[0,]2x ∈,使2πsin(2)03x x m +-+<成立,所以只需当π[0,]2x ∈时,min π()()02f x f m ==+<,即2m <-. 9.【答案】C【解析】如图,连接BQ ,则由椭圆的对称性易得PBF QBF ∠=∠,EAB EBA ∠=∠, 所以EAB QBF ∠=∠,所以ME BQ ∥. 因为PME PQB ~△△,所以||||||||PE PM EB MQ =. 因为PBF EBO ~△△,所以||||||||OF EP OB EB =,从而有||||||||PM OF MQ OB =. 又因为M 是线段PF 的中点,所以||||1||||3c OF PM e a OB MQ ====.10.【答案】B【解析】由三视图可知该几何体是如图所示的三棱锥A BCD -,F 为BD 的中点, 外接球球心O 在过CD 的中点E 且垂直于平面BCD 的直线l 上,又点O 到A ,B ,D 的距离相等,所以O 又在过左边正方体一对棱的中点M ,N 所在直线上, 在OEN △中,由NF MF NE OE =,即223OE=,得3OE =, 所以三棱锥A BCD -=V =11.【答案】A【解析】由2ce a==,得2c a =,b =,故线段MN 所在直线的方程为)y x a =+,又点P 在线段MN 上,可设()P m +,其中[,0]m a ∈-, 由1(,0)F c -,2(,0)F c ,即1(2,0)F a -,2(2,0)F a ,得1(2,)PF a m =--,2(2,)PF a m =-,所以222212313464()44PF PF m ma a m a a ⋅=+-=+-.由于[,0]m a ∈-,可知当34m a =-时,12PF PF ⋅取得最小值,此时21134)24S a a a =⨯-+=,当0m =,12PF PF ⋅取得最大值,此时22142S a =⨯=,所以214S S =.12.【答案】D【解析】由于()f x 是单调函数,则()x f x e x -+为定值, 不妨设()x f x e x t -+=,则()x f x e x t =-+.又()t f t e t t e =-+=,解得1t =,则()1x f x e x =-+,()1x f x e '=-,所以2xe x ax -≥,即21xe a x≤-. 设2()1x e g x x =-,则22(1)()x e x g x x-'=, 易知()g x 在(0,1)上单调递减,在(1,)+∞上单调递增, 则min ()(1)21g x g e ==-,所以21a e ≤-.二、填空题:本大题共4小题,每小题5分. 13.【答案】116【解析】∵4π4π4111()cos 333326f 4-=-+=--=-,所以4π11()36f =. 14.【答案】0【解析】令1x =-,可得00a =;令1x =,可得2100296012100222(11)(11)0a a a a ++++=-+=, 所以2100121002220a a a +++=.15.【答案】2-【解析】因为函数()f x 为偶函数,且函数()f x 只有一个零点,故(0)0f =,所以2a =-.16.【答案】8+【解析】如图,连接AC ,BD 交于点1O ,取AD 的中点为N ,连接PN .设四棱锥P ABCD -外接球的球心为O ,等边三角形PAD 外接圆的圆心为2O ,则2O 为PAD △的重心,则22||||3PO PN =,正方形ABCD 外接圆的圆心为1O . 因为PN AD ⊥,平面PAD ⊥平面ABCD ,所以PN ⊥平面ABCD ,所以1OO PN ∥, 所以四边形12OO NO 为矩形,所以21OO NO =.设正方形ABCD 的边长为2x ,则||PN =,所以2||PO =,2||OO x =, 所以四棱锥P ABCD -外接球的半径为2222227||||||3PO PO OO x =+=, 所以四棱锥P ABCD -外接球的表面积为228π3S x =球,四棱锥P ABCD -的体积为23143P ABCD V x x -=⨯=,所以P ABCD V S -=球,即7π7π=,解得1x =,所以正方形ABCD 的边长为2,所以PAD S =△,2PAB S =△,2PDC S =△,PCB S =△,4ABCD S =正方形,所以四棱锥P ABCD -的表面积为8OO 1DC B A N O 2P三、解答题:本大题共6大题,共70分,解答应写出文字说明、证明过程或演算步骤.17.【答案】(1)23-;(2【解析】(1)∵26sin cossin 2A a B b A =,∴26cos 2A ab ba =,∴21cos 26A =, 故22cos 2cos 123A A =-=-. (2)∵2222cos a b c bc A =+-,又a =,5b c +=,∴24221()22533b c bc bc bc =+-+=-,∴6bc =. 由(1)可知sin 3A =,从而ABC △的面积1sin 2S bc A == 18.【答案】(1)0.76;(2)选择方案①更划算.【解析】(1)因为甲单位的优惠比例低于乙单位的优惠比例的概率为0.40.60.24⨯=, 所以甲单位的优惠比例不低于乙单位的优惠比例的概率为10.240.76-=.(2)设在折扣优惠中每籍零件的价格为X 元,则184X =或188.X 的分布列为则1840.61880.4185.6EX =⨯+⨯=.若选择方案②,则购买总价的数字期望为185.6650120640⨯=元.若选择方案①,由于购买600箱能获赠50箱,所以该单位只需要购买600箱,从而购买总价为200600120000⨯=元.因为120640120000>,所以选择方案①更划算.19.【答案】(1)证明见解析;(2. 【解析】(1)因为AD AB ⊥,平面ABD ⊥平面ABC ,平面ABD 平面ABC AB =,AD ⊂平面ABD ,所以AD ⊥平面ABC .因为BC ⊂平面ABC ,所以AD BC ⊥.因为2AB BC AC ==,所以222AB BC AC +=,所以AB BC ⊥. 因为AD AB A =,所以BC ⊥平面ABD .(2)设(04)AD x x =<<,则4AB BC x ==-,四面体ABCD 的体积232111()(4)(816)(04)326V f x x x x x x x ==⨯-=-+<<. 211()(31616)(4)(34)66f x x x x x '=-+=--, 当403x <<时,()0f x '>,()V f x =单调递增; 当443x <<时, ()0f x '<,()V f x =单调递减, 故当43AD x ==时,四面体ABCD 的体积取得最大值. 以B 为坐标原点,建立空间直角坐标系B xyz -,则(0,0,0)B ,8(0,,0)3A ,8(,0,0)3C ,84(0,,)33D ,44(,,0)33E . 设平面BCD 的法向量为(,,)x y z =n ,则00BC BD ⎧⋅=⎪⎨⋅=⎪⎩n n ,即80384033x y z ⎧=⎪⎪⎨⎪+=⎪⎩,令2z =-,得(0,1,2)=-n . 同理可得平面BDE 的一个法向量为(1,1,2)=-m ,则cos ,6==m n . 由图可知,二面角C BD E --为锐角,故二面角C BD E --.20.【答案】(1)2214x y +=;(2)存在,14λ=-,1AOB S =△. 【解析】(1)因为椭圆2222:1(0)x y C a b a b+=>>过点1)2-,所以223114a b +=,c =,从而22224a b c b =+=. 联立方程组222231144a b a b⎧+=⎪⎨⎪=⎩,解得2241a b ⎧=⎨=⎩, 所以椭圆C 的方程为2214x y +=. (2)设存在这样的常数λ,使12k k λ⋅=,AOB △的面积S 为定值.设直线AB 的方程为y kx m =+,点11(,)A x y ,点22(,)B x y ,则由12k k λ⋅=知12120y y x x λ-=,1212()()0kx m kx m x x λ++-=,所以221212()()0k x x km x x m λ-+++=①. 联立方程组2214x y y kx m ⎧+=⎪⎨⎪=+⎩,消去y 得222(14)8440k x kmx m +++-=. 所以122814km x x k -+=+②,21224414m x x k-⋅=+③, 又点O 到直线AB的距离d =则AOB △的面积121||||||22m S AB d x x =⋅=⋅-= 将②③代入①得222222()(44)8(14)0k m k m m k λ---++=,化简得224()14k m λλ-=-⑤, 将⑤代入④得22224222222422(41)4()(14)16()64(644)41()2(14)(41)1681(14)S k k k k k k k k λλλλλλλλ+⋅-----++-==⋅-+++-, 要使上式为定值,只需26464441681λλλ-+-==,即需2(41)0λ+=,从而14λ=-,此时21()24S =,1S =, 所以存在这样的常数14λ=-,此时1AOB S =△. 21.【答案】(1)()f x 的极大值为1(1)f e =,无极小值;(2)2(,)e+∞. 【解析】(1)当1a =时,ln 1()xx f x e +=,所以函数()f x 的定义域为(0,)+∞, 所以1ln ()x x x x f x xe--'=,且0x xe >, 令()1ln h x x x x =--,所以当01x <<时,10x ->,ln 0x x <,所以()1ln 0h x x x x =-->.又()2ln h x x '=--,所以当1x >时,()2ln 0h x x '=--<,所以()h x 在(1,)+∞上单调递减,故()(1)0h x h <=.同理当01x <<时,()0f x '>;当1x >时,()0f x '<,所以()f x 在(0,1)是单调递增,在(1,)+∞单调递减,所以当1x =时,()f x 的极大值为1(1)f e=,无极小值. (2)令()()x m x xe f x ax =-,因为对任意12,(0,)x x ∈+∞都有11112()()xx e f x ax g x ->成立,所以1min 2max ()()m x g x >.因为()()ln x m x xe f x ax x x =-=,所以()1ln m x x '=+. 令()0m x '>,即1ln 0x +>,解得1x e >;令()0m x '<,即1ln 0x +<,解得10x e<<. 所以()m x 在1(0,)e 上单调递减,在1(,)e +∞上单调递增,所以min 11()()m x m e e==-. 因为()x g x xe a -=-,所以()(1)x g x x e -'=-,当0x >时0x e ->,令()0g x '>,即10x ->,解得01x <<;令()0g x '<,即10x -<,解得1x >.所以()g x 在(0,1)上单调递增,在(1,)+∞上单调递减,所以max 1()(1)g x g a e==-, 所以11a e e ->-,所以2a e >,即实数a 的取值范围为2(,)e+∞. 22.【答案】(1)3470x y --=,22(1)(2)1x y -++=;(2)2m =.【解析】(1)由题意可得||1a =,故l 的参数方程为4131x t y t =+⎧⎨=-⎩(t 为参数),圆C 的参数方程为1cos 2sin x y θθ=+⎧⎨=-+⎩(θ为参数), 消去参数t ,得l 的普通方程为3470x y --=,消去参数θ,得C 的普通方程为22(1)(2)1x y -++=.(2)l '的方程为37()44y x m =+-,即34370x y m -+-=, 因为圆C 上只有一个点到l '的距离为1,圆C 的半径为1,所以(1,2)C -到l '的距离为2, 即|3837|25m ++-=,解得2m =(1403m =-<舍去). 23.【答案】(1)(3,5);(2)(,0)[1,)-∞+∞.【解析】(1)当1a =时,52,1()3,1425,4x x f x x x x -≤⎧⎪=<<⎨⎪-≥⎩,故不等式()f x x <的解集为(3,5).(2)∵()|||4||()(4)||4|f x x a x x a x a =-+-≥---=-, ∴44|4|1a a a a--≥-=, 当0a <或4a ≥时,不等式显然成立;当04a <<时,11a≤,则14a ≤<. 故a 的取值范围为(,0)[1,)-∞+∞.。

2020届湖南名师联盟高三上学期第一次模拟考试数学(理)试题(解析版)

2020届湖南名师联盟高三上学期第一次模拟考试数学(理)试题(解析版)

2020届湖南名师联盟高三第一次模拟考试卷理 科 数 学注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请将本试题卷和答题卡一并上交。

一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{|2,}x A y y x ==∈R ,{|lg(2)}B x y x ==-,则A B =I ( ) A .(0,2)B .(,2]-∞C .(,2)-∞D .(0,2]2.若复数z 满足(i 1)2i z -=(i 为虚数单位),则z 为( ) A .1i +B .1i -C .1i -+D .1i --3.AQI 即空气质量指数,AQI 越小,表明空气质量越好,当AQI 不大于100时称空气质量为“优良”,如图是某市3月1日到12日AQI 的统计数据,则下列叙述正确的是( )A .这12天的AQI 的中位数是90B .12天中超过7天空气质量为“优良”C .从3月4日到9日,空气质量越来越好D .这12天的AQI 的平均值为1004.已知平面向量(2,3)=a ,(,4)x =b ,若()⊥-a a b ,则x =( )班级 姓名 准考证号 考场号 座位号A .1B .12C .2D .35.某围棋俱乐部有队员5人,其中女队员2人,现随机选派2人参加围棋比赛,则选出的2人中有女队员的概率为( ) A .103 B .35C .45D .7106.已知m ,n 表示两条不同的直线,α表示平面,下列说法正确的是( ) A .若m α∥,n α∥,则m n ∥ B .若m α⊥,n α⊥,则m n ∥ C .若m α⊥,m n ⊥,则n α∥D .若m α∥,m n ⊥,则n α⊥7.函数π()3sin(2)(||)2f x x ϕϕ=+<的图象向左平移π6个单位长度后,所得到的图象关于原点对称,则ϕ等于( ) A .π6 B .π6-C .π3 D .π3-8.下图是某实心机械零件的三视图,则该机械零件的表面积为( )A .662π+B .664π+C .662π-D .664π-9.函数2()ln(1)f x x x =+-的图象大致是( )A .B .C .D .10.正三角形ABC 的边长为2,将它沿高AD 折叠,使点B 与点C 间的距离为3, 则四面体ABCD 外接球的表面积为( ) A .6πB .7πC .8πD .9π11.有如下命题:①函数sin y x =与y x =的图象恰有三个交点;②函数sin y x =与y x =的图象恰有一个交点;③函数sin y x =与2y x =的图象恰有两个交点;④函数sin y x =与3y x =的图象恰有三个交点,其中真命题的个数为( ) A .1B .2C .3D .412.若函数2(1)()f x x x ax b =-++()的图象关于点(2,0)-对称,1x ,2x 分别是()f x 的 极大值点与极小值点,则21x x -=( ) A .3-B .23C .23-D .3二、填空题:本大题共4小题,每小题5分.13.在ABC △中,若13AB =,3BC =,120C ∠=︒,则AC =_____.14.如图,圆C (圆心为C )的一条弦AB 的长为2,则AB AC ⋅=u u u r u u u r_____.15.在4(1)x x ++的展开式中,2x 项的系数为________(结果用数值表示).16.定义在正实数上的函数(){{}}f x x x =⋅,其中{}x 表示不小于x 的最小整数,如{0.2}1=,{1.6}2=,当(0,]x n ∈,n ∈*N 时,函数()f x 的值域为n A ,记集合n A 中元素的个数为n a ,则n a =________.三、解答题:本大题共6大题,共70分,解答应写出文字说明、证明过程或演算步骤. 17.(12分)如图,在平面四边形ABCD 中,23AB =,2AC =,90ADC CAB ∠=∠=︒,设DAC θ∠=.(1)若60θ=︒,求BD 的长度; (2)若30ADB ∠=︒,求tan θ.18.(12分)为了解全市统考情况,从所有参加考试的考生中抽取4000名考生的成绩,频率分布直方图如下图所示.(1)求这4000名考生的平均成绩x (同一组中数据用该组区间中点值作代表);(2)由直方图可认为考生考试成绩z 服从正态分布2(,)N μσ,其中μ,2σ分别取考生的平均成绩x 和考生成绩的方差2s ,那么抽取的4000名考生成绩超过84.81分(含84.81分)的人数估计有多少人?(3)如果用抽取的考生成绩的情况来估计全市考生的成绩情况,现从全市考生中随机抽取4名考生,记成绩不超过84.81分的考生人数为ξ,求(3)P ξ≤.(精确到0.001) 附:①2204.75s =,204.7514.31≈;②2~(,)z N μσ,则()0.6826P z μσμσ-<<+=,(22)0.9544P z μσμσ-<<+=; ③40.84130.501≈.19.(12分)如图,三棱柱111ABC A B C -中,111160B A A C A A ∠=∠=︒,14AA AC ==,2AB =,P ,Q 分别为棱1AA ,AC 的中点.(1)在BC 上确定点M ,使AM ∥平面1PQB ,并说明理由;(2)若侧面11ACC A ⊥侧面11ABB A ,求直线11C A 与平面1PQB 所成角的正弦值.20.(12分)已知两直线方程1:2l y x =与2:2l y x =-,点A 在1l 上运动,点B 在2l 上运动,且线段AB 的长为定值(1)求线段AB 的中点C 的轨迹方程;(2)设直线:l y kx m =+与点C 的轨迹相交于M ,N 两点,O 为坐标原点, 若54OM ON k k ⋅=,求原点O 到直线l 的距离的取值范围.21.(12分)已知函数2(1)211()()22x f x e x e f x -'=-+⋅.(1)求()f x 的单调区间;(2)若存在1x ,212()x x x <,使得12()()1f x f x +=,求证:122x x +<.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.(10分)【选修4-4:坐标系与参数方程】在平面直角坐标系xOy 中,曲线1C 的参数方程为2cos 22sin x y αα⎧=⎪⎨=+⎪⎩(α为参数),直线2C 的方程为y x =,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系. (1)求曲线1C 的极坐标方程;(2)若直线2C 与曲线1C 交于P ,Q 两点,求||||OP OQ ⋅的值.23.(10分)【选修4-5:不等式选讲】 已知函数()|||22|(0)f x x m x m m =--+>. (1)当1m =时,求不等式()1f x ≥的解集;(2)若x ∀∈R ,t ∃∈R ,使得()|1||1|f x t t +-<+,求实数m 的取值范围.2020届湖南名师联盟高三第一次模拟考试卷理科数学答 案一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.【答案】A【解析】∵{|2,}{|0}x A y y x y y ==∈=>R ,{|lg(2)}{|20}{|2}(,2)B x y x x x x x ==-=->=<=-∞,∴{|02}(0,2)A B x x =<<=I . 2.【答案】A【解析】(i 1)2i z -=(i 为虚数单位),∴(1i)(1i)2(1i)z i --+=+, ∴22(i 1)z -=-,解得1i z =-,则1i z =+. 3.【答案】C【解析】这12天的AQI 指数值的中位数是9510499.52+=,故A 不正确; 这12天中,空气质量为“优良”的有95,85,77,67,72,92共6天,故B 不正确; 从4日到9日,空气质量越来越好,故C 正确; 这12天的AQI 指数值的平均值约为110,故D 不正确. 4.【答案】B【解析】(2,1)x -=--a b ,∵()⊥-a a b ,∴()2(2)30x ⋅-=--=a a b ,解得12x =. 5.【答案】D【解析】由题意结合排列组合公式可得随机选派2人参加围棋比赛的方法有25C 种, 而选出的2人中没有女队员的方法有23C 种,结合古典概型计算公式可得:选出的2人中有女队员的概率为225325C 103C C 71010P --===. 6.【答案】B【解析】A .若m α∥,n α∥,则m ,n 相交或平行或异面,故A 错; B .若m α⊥,n α⊥,由线面垂直的性质定理可知m n ∥,故B 正确;C .若m α⊥,m n ⊥,则n α∥或n a ⊂,故C 错;D .若m α∥,m n ⊥,则n α∥或n α⊂或n α⊥,故D 错. 7.【答案】D【解析】函数π())(||)2f x x ϕϕ=+<的图象向左平移π6个单位后,得到ππ())(||)32g x x ϕϕ=++<的图象,由于平移后的图象关于原点对称,故π(0)sin()03g ϕ=+=,∴ππ()3k k ϕ+=∈Z ,由π||2ϕ<,得π3ϕ=-. 8.【答案】B【解析】由三视图可知该机械零件是一个长方体中间穿一个圆柱,其中长方体的长宽高分别为3,3, 4,圆柱的底面半径为1r =,圆柱的高为5, 据此可得,组合体的表面积2(333434)2π12664πS =⨯⨯+⨯+⨯+⨯⨯=+. 9.【答案】B【解析】代0x =,知函数过原点,故排除D , 代入1x =,得0y <,排除C ,代入0.0000000001x =-,0y <,排除A . 10.【答案】B【解析】根据题意可知四面体ABCD 的三条侧棱BD AD ⊥、DC DA ⊥, 底面是等腰BDC △,它的外接球就是它扩展为三棱柱的外接球,求出三棱柱的上下底面三角形的中心连线的中点到顶点D 的距离,就是球的半径,三棱柱中,底面BDC △,1BD CD ==,BC =,∴120BDC ∠=︒,∴BDC △的外接圆的半径为112sin120⨯=︒,由题意可得:球心到底面的距离为2,∴球的半径为37142r =+=,外接球的表面积为24π7πr =. 11.【答案】C【解析】①设()sin f x x x =-,则()cos 10f x x '=-≤,即函数()f x 为减函数, ∵(0)0f =,函数()f x 是奇函数,∴函数()f x 只有一个零点,即函数sin y x =与y x =的图象恰有一个交点,故①错误, ②由①知当0x >时,sin x x <;当01x <≤时,sin x x x >>; 当1x >时,sin x x >;当0x =时,sin x x =,故函数sin y x =与y x =的图象恰有一个交点,故②正确,③作出函数sin y x =与2y x =的图象,由图象知两个函数有2个交点,即函数sin y x =与2y x =的图象恰有两个交点,故③正确,④作出函数sin y x =与3y x =的图象,由图象知两个函数有3个交点,即函数sin y x =与3y x =的图象恰有三个交点,故④正确.12.【答案】C【解析】由题意可得(2)3(42)0f a b -=-+=,函数图象关于点(2,0)-对称,且()10f =,故(5)0f -=, 即(5)6(255)0f a b -=-+=,据此可得2405250b a b a -+=⎧⎨-+=⎩,解得107b a =⎧⎨=⎩,故函数的解析式为232()(1)(710)6310f x x x x x x x =-++=---+,22'()3123()341f x x x x x =---=-++,结合题意可知:1x ,2x 是方程0142=++x x 的两个实数根,且12x x >, 故2221212121||()444123x x x x x x x x -=--=-+-=--⨯=-.二、填空题:本大题共4小题,每小题5分. 13.【答案】1【解析】由余弦定理得21393AC AC =++,解得1AC =或4AC =-(舍去). 14.【答案】2【解析】过点C 作CD AB ⊥于D ,则D 为AB 的中点,∴21()||22AB AC AB AD DC AB AD AB ⋅=⋅+=⋅==u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r .15.【答案】19【解析】由于220()x x x =⨯,22()x x x =⨯,204)x x x =⨯,据此结合排列组合的性质可得2x 项的系数为2021210442243144C C C C C C C C 612119++=++=.16.【答案】(1)2n n + 【解析】易知:当1n =时,因为(0,1]x ∈,所以{1}x =, 所以}}1{{x x ⋅=,所以1{1}A =,11a =.当2n =时,当(1,2]x ∈,则{2}x =,所以{{}}(2,4]x x ⋅∈, 所以2{1,3,4}A =,23a =.当3n =时,当(2,3]x ∈,则{3}x =,所以3{{}}{}(6,9]x x x ⋅=∈,3{1,3,4,7,8,9}A =,36a =;当4n =时,当(3,4]x ∈,则{4}x =,所以{{}}{4}(12,16]x x x ⋅=∈, 所以4{1,3,4,7,8,9,13,14,15,16}A =,410a =;当5n =时,当(4,5]x ∈,则{5}x =,所以{{}}{5}(20,25]x x x ⋅=∈, 所以5{1,3,4,7,8,9,13,14,15,16,21,22,23,24,25}A =,515a =. 由此类推:1n n a a n -=+.故121321(1)()()()1232n n n n n a a a a a a a a n -+=+-+-++-=++++=L L .三、解答题:本大题共6大题,共70分,解答应写出文字说明、证明过程或演算步骤. 17.【答案】(1)19;(2)233. 【解析】(1)由题意可知,1AD =,在ABD △中,150DAB ∠=︒,23AB =,1AD =, 由余弦定理可知,2223(23)12231()192BD =+-⨯⨯⨯-=,19BD =. (2)由题意可知,2cos AD θ=,60ABD θ∠=︒-, 在ABD △中,由正弦定理可知,sin sin AD ABABD ADB=∠∠,∴02cos 43sin(60)θθ=-,∴2tan 33θ=. 18.【答案】(1)70.5x =分;(2)约635人;(3)0.499. 【解析】(1)由题意知:∴450.1550.15650.2750.3850.15950.170.5x =⨯+⨯+⨯+⨯+⨯+⨯=, ∴4000名考生的竞赛平均成绩x 为70.5分.(2)依题意z 服从正态分布2(,)N μσ,其中70.5x μ==,2204.75D σξ==,14.31σ≈,∴z 服从正态分布22(,)(70.5,14.31)N N μσ=,而()(56.1984.81)0.6826P z P z μσμσ-<<+=<<=, ∴10.6826(84.81)0.15872P z -≥==. ∴竞赛成绩超过84.81分(含84.81分)的人数估计为0.158********.8⨯=人635≈人. (3)全市竞赛考生成绩不超过84.81分的概率10.15870.8413-=.而(4,0.8413)B ξ~,∴444(3)1(4)1C 0.841310.5010.499P P ξξ≤=-==-⋅≈-=.19.【答案】(1)详见解析;(2)13. 【解析】(1)取1BB 中点E ,连结AE ,BQ ,在1BB Q △中,取H 为BQ 中点,连接,EH AH ,则1EH B Q ∥, 延长AH 与BC 交于点M ,则M 即为所求点,11ABB A 为平行四边形,点E ,P 为中点,则1AE PB ∥, 由线面平行的判定定理可得AE ∥平面1PQB , 同理可得,EH ∥平面1PQB , 又AE EH E =I ,111B P B Q B =I ,据此可得平面AME ∥平面1PQB ,故AM ∥平面1PQB . (2)作QO ⊥平面11ABB A ,与1A A 延长线交于O ,则1AO =,QO =,1OB ==1QB =∵12B P =,PQ =1cos 4QPB ∠==,∴1sin 4QPB ∠=,∴1122PQB S ==⨯△.作11PN C A ∥,则直线11AC 与平面1PQB 所成角即直线PN 与平面1PQB 所成角,∵143232PQNS=⨯⨯=△,∴1123323B PQNV-=⨯⨯=.设N到平面1PQB的距离为h,则139232h⨯=,∴439h=,∴直线11A C与平面1PQB所成角的正弦值为39413h=.20.【答案】(1)2214xy+=;(2)214.【解析】(1)∵点A在12:l y x=上运动,点B在22:2l y x=-上运动,∴设112(,)2A x x,222(,)2B x x-,线段AB的中点(,)C x y,则有122x xx+=,1222222x xy-=,∴122x x x+=,1222x x y-=,∵线段AB的长为定值2222121222()()8x x x x-++=,即22(22)2)8x+=,化简得2214xy+=,∴线段AB的中点C的轨迹方程为2214xy+=.(2)设33(,)M x y,44(,)N x y,联立2214xyy kx m⎧+=⎪⎨⎪=+⎩,得222(41)8440k x kmx m+++-=,222(8)4(41)(44)0Δkm k m=-+->,化简得2241m k <+①,则342841kmx x k +=-+,23424441m x x k -=+, 2234343434()()()y y kx m kx m k x x km x x m =++=+++,若54OM ON k k ⋅=,则343454y y x x =,即343445y y x x =,所以2234343444()45k x x km x x m x x +++=,即22222448(45)4()404141m km k km m k k --+-+=++,化简得2254m k +=②, 由①②得2605m ≤<,215204k <≤, 因为O 到直线l的距离d =,所以2222225941114(1)km d k k k -===-++++, 又因为215204k <≤,所以2807d ≤<, 所以O 到直线l的距离的取值范围是[0,)7. 21.【答案】(1)函数()f x 在R 上单调递增;(2)证明见解析.【解析】(1)2(1)1()2()2x f x e x e f -''=-+⋅,令12x =,则111()1()22f e f e ''=-+⋅,解得11()2f e'=,∴2(1)()21x f x e x -'=-+,令2(1)()21x h x e x -=-+,2(1)11()222(1)(1)x x x h x e e e ---'=-=+-, ∴1x =时,函数()f x '取得极小值即最小值,∴()(1)0f x f ''≥=, ∴函数()f x 在R 上单调递增.(2)由(1)可得:函数2(1)21()2x f x e x x -=-+在R 上单调递增.要证明:12121222()(2)x x x x f x f x +<⇔<-⇔<-,又12()()1f x f x +=,因此1222()(2)1()(2)f x f x f x f x <-⇔-<-,即22()(2)10f x f x +-->,11(1)1122f =-+=,则121x x <<, 令2(1)22(1)211()(2)()1(2)2122x x g x f x f x e x x e x x --=-+-=--+-+-+-2(1)2(1)21124322x x e e x x --=+-+-, 1x >,(1)0g =,2(1)2(1)()44x x g x e e x --'=-+-+,令2(1)2(1)()44x x x e e x ϕ--'=-+-+,2(1)2(1)()2240x x x e e ϕ--'=+-≥, ∴()g x '在(1,)+∞上单调递增.∴()(1)0g x g ''>=,∴函数()g x 在(1,)+∞上单调递增. ∴()(1)0g x g >=,因此结论122x x +<成立.22.【答案】(1)2cos 4sin 30ρθρθ--+=;(2)3. 【解析】(1)曲线1C的普通方程为22((2)4x y +-=, 则1C的极坐标方程为2cos 4sin 30ρθρθ--+=. (2)设1(,)P ρθ,2(,)Q ρθ, 将π6θ=代入2cos 4sin 30ρθρθ--+=,得2530ρρ-+=, 所以123ρρ=,所以||||3OP OQ ⋅=.23.【答案】(1)2[2,]3--;(2)01m <<.【解析】(1)当1m =时,1|1||22|131x x x x ≤-⎧--+≥⇔⎨+≥⎩或11311x x -<<⎧⎨--≥⎩或131x x ≥⎧⎨--≥⎩,解得223x -≤≤-,所以原不等式的解集为2[2,]3--.(2)()|1||1|()|1||1|f x t t f x t t +-<+⇔<+--对任意x ∈R 恒成立,对实数t 有解.∵3,()3,3,x m x m f x x m m x m x m x m +≤-⎧⎪=---<<⎨⎪--≥⎩,根据分段函数的单调性可知:x m =-时,()f x 取得最大值()2f m m -=, ∵||1||1|||(1)(1)|2t t t t +--≤+--=,∴2|1||1|2t t -≤+--≤,即|1||1|t t +--的最大值为2, 所以问题转化为22m <,解得01m <<.。

2020届湖北名师联盟高三上学期第一次模拟考试数学(理)试题(含答案)

2020届湖北名师联盟高三上学期第一次模拟考试数学(理)试题(含答案)

2020届湖北名师联盟高三第一次模拟考试卷理 科 数 学注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请将本试题卷和答题卡一并上交。

一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}2|650A x x x =-+≤,{}|3B x y x ==-,A B =I ( ) A .[)1,+∞ B .[]1,3C .(]3,5D .[]3,52.34i 34i12i 12i+--=-+( ) A .4- B .4 C .4i - D .4i3.如图1为某省2019年14~月快递业务量统计图,图2是该省2019年14~月快递业务收入统计图,下列对统计图理解错误的是( )A .2019年14~月的业务量,3月最高,2月最低,差值接近2000万件B .2019年14~月的业务量同比增长率超过50%,在3月最高C .从两图来看2019年14~月中的同一个月快递业务量与收入的同比增长率并不完全一致D .从14~月来看,该省在2019年快递业务收入同比增长率逐月增长 4.已知两个单位向量12,e e ,满足12|2|3e e -=12,e e 的夹角为( ) A .2π3B .3π4 C .π3D .π45.函数1()cos 1x x e f x x e +=⋅-的部分图象大致为( )A .B .C .D .6.已知斐波那契数列的前七项为1、1、2、3、5、8、13.大多数植物的花,其花瓣数按层从内往外都恰是斐波那契数,现有层次相同的“雅苏娜”玫瑰花3朵,花瓣总数为99,假设这种“雅苏娜”玫瑰花每层花瓣数由内向外构成斐波那契数列,则一朵该种玫瑰花最可能有( )层. A .5B .6C .7D .87.如图,正方体1111ABCD A B C D -中,点E ,F 分别是AB ,11A D 的中点,O 为正方形1111A B C D 的中心,则( )A .直线EF ,AO 是异面直线B .直线EF ,1BB 是相交直线C .直线EF 与1BC 所成的角为30︒D .直线EF ,1BB 所成角的余弦值为338.执行如图所示的程序框图,输出的S 的值为( )A .0B .2C .4D .2-9.已知定义在R 上的奇函数()f x 满足(2)()f x f x +=-,且在区间[1,2]上是减函数,令ln 2a =,121()4b -=,12log 2c =,则()f a ,()f b ,()f c 的大小关系为( )A .()()()f b f c f a <<B .()()()f a f c f b <<C .()()()f c f b f a <<D .()()()f c f a f b <<10.已知点2F 是双曲线22:193x yC -=的右焦点,动点A 在双曲线左支上,点B 为 圆22:(2)1E x y ++=上一点,则2||||AB AF +的最小值为( ) A .9B .8C .53D .6311.如图,已知P ,Q 是函数()sin()f x A x ωϕ=+π(0,0,||)2A ωϕ>><的图象与x 轴的两个相邻交点,R 是函数()f x 的图象的最高点,且3RP RQ ⋅=uu r uu u r,若函数()g x 的图象与()f x 的图象关于直线1x =对称,则函数()g x 的解析式是( )A .ππ()3sin()24g x x =+B .ππ()3sin()24g x x =-C .ππ()2sin()24g x x =+D .ππ()2sin()24g x x =-12.已知三棱锥P ABC -满足PA ⊥底面ABC ,在ABC △中,6AB =,8AC =,AB AC ⊥,D 是线段AC 上一点,且3AD DC =.球O 为三棱锥P ABC -的外接球,过点D 作球O 的截面,若所得截面圆的面积的最小值与最大值之和为40π,则球O 的表面积为( ) A .72πB .86πC .112πD .128π二、填空题:本大题共4小题,每小题5分.13.已知曲线()(1)ln f x ax x =-在点(1,0)处的切线方程为1y x =-,则实数a 的值为 .14.已知等差数列{}n a 的前n 项和为n S ,满足711S S =,且10a >,则n S 最大时n 的值是 .15.《易经》是中国传统文化中的精髓,如图是易经八卦(含乾、坤、異、震、坎、离、良、兑八卦),每一卦由三根线组成(表示一根阳线,“”表示一根阴线),从八卦中任取两卦,这两卦的六根线中恰有两根阳线,四根阴线的概率为 .16.点A ,B 是抛物线2:2(0)C y px p =>上的两点,F 是拋物线C 的焦点,若120AFB ∠=︒,AB 中点D 到抛物线C 的准线的距离为d ,则||dAB 的最大值为 .三、解答题:本大题共6大题,共70分,解答应写出文字说明、证明过程或演算步骤. 17.(12分)ABC △的内角,,A B C 所对的边分别为,,a b c ,已知22()3sin a c b ab C +=+. (1)求B 的大小;(2)若8b =,a c >,且ABC △的面积为33a .18.(12分)如图所示的多面体ABCDEF 中,四边形ABCD 是边长为2的正方形,ED FB ∥,12DE BF =,AB FB =,FB ⊥平面ABCD . (1)设BD 与AC 的交点为O ,求证:OE ⊥平面ACF ; (2)求二面角E AF C --的正弦值.19.(12分)设椭圆2222:1(0)x y C a b a b+=>>的左焦点为1F ,右焦点为2F ,上顶点为B ,离心率为3O 是坐标原点,且1||||6OB F B ⋅= (1)求椭圆C 的方程;(2)已知过点1F 的直线l 与椭圆C 的两交点为M ,N ,若22MF NF ⊥,求直线l 的方程.20.(12分)已知函数1π()4cos()23xf x x e =--,()f x '为()f x 的导数,证明:(1)()f x '在区间[π,0]-上存在唯一极大值点; (2)()f x 在区间[π,0]-上有且仅有一个零点.21.(12分)11月,2019全国美丽乡村篮球大赛在中国农村改革的发源地—安徽凤阳举办,其间甲、乙两人轮流进行篮球定点投篮比赛(每人各投一次为一轮).在相同的条件下,每轮甲乙两人站在同一位置,甲先投,每人投一次球,两人有1人命中,命中者得1分,未命中者得1-分;两人都命中或都未命中,两人均得0分.设甲每次投球命中的概率为12,乙每次投球命中的概率为23,且各次投球互不影响. (1)经过1轮投球,记甲的得分为X ,求X 的分布列;(2)若经过n 轮投球,用i p 表示经过第i 轮投球,累计得分,甲的得分高于乙的得分的概率. ①求1p ,2p ,3p ;②规定00p =,经过计算机计算可估计得11(1)i i i i p ap bp cp b +-=++≠,请根据①中1p ,2p ,3p 的值分别写出a ,c 关于b 的表达式,并由此求出数列{}n p 的通项公式.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.(10分)【选修4-4:坐标系与参数方程】已知平面直角坐标系xOy 中,以O 为极点,x 轴的正半轴为极轴,建立极坐标系,曲线1C 方程为2sin ρθ=,2C的参数方程为1122x t y ⎧=-+⎪⎪⎨⎪=⎪⎩(t 为参数).(1)写出曲线1C 的直角坐标方程和2C 的普通方程;(2)设点P 为曲线1C 上的任意一点,求点P 到曲线2C 距离的取值范围.23.(10分)【选修4-5:不等式选讲】 已知0a >,0b >,23a b +=.证明:(1)2295a b +≥; (2)3381416a b ab +≤.2020届湖北名师联盟高三第一次模拟考试卷理科数学答 案一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.【答案】D 2.【答案】D 3.【答案】D 4.【答案】C 5.【答案】B 6.【答案】C 7.【答案】C 8.【答案】B 9.【答案】C 10.【答案】A 11.【答案】C 12.【答案】C二、填空题:本大题共4小题,每小题5分. 13.【答案】2 14.【答案】9 15.【答案】31416.【答案】三、解答题:本大题共6大题,共70分,解答应写出文字说明、证明过程或演算步骤.17.【答案】(1)π3;(2)5【解析】(1)由()22sin a c b C +=+,得2222sin a c ac b C ++=+,所以2222sin a c b ac C +-+=,即()2cos 1sin ac B C +=,所以有()sin cos 1sin C B B C +=,因为(0,π)C ∈,所以sin 0C >,所以cos13sin B B +=,即3sin cos 2sin 16πB B B ⎛⎫-=-= ⎪⎝⎭,所以1sin 2π6B ⎛⎫-= ⎪⎝⎭, 又0πB <<,所以ππ5π666B -<-<,所以6ππ6B -=,即π3B =. (2)因为113sin 3322ac B ac =⋅=,所以12ac =,又22222cos ()3b a c ac B a c ac =+-=+-=2()3664a c +-=,所以10a c +=,把10c a =-代入到12()ac a c =>中,得513a =+. 18.【答案】(1)证明见解析;(2)63. 【解析】(1)证明:由题意可知:ED ⊥平面ABCD ,从而EDA EDC ≅Rt Rt △△, ∴EA EC =,又O 为AC 中点,∴DE AC ⊥,在EOF △中,3,6,3OE OF EF ===,∴222OE OF EF +=,∴OE OF ⊥, 又AC OF O =I ,∴OE ⊥平面ACF . (2)ED ⊥面ABCD ,且DA DC ⊥,如图以D 为原点,DA ,DC ,DE 方向建立空间直角坐标系,从而(0,0,1)E ,(2,0,0)A ,(0,2,0)C ,(2,2,2)F ,(1,1,0)O ,由(1)可知(1,1,1)EO =-uu u r是面AFC 的一个法向量, 设(,,)x y z =n 为面AEF 的一个法向量,由22020AF y z AE x z ⎧⋅=+=⎪⎨⋅=-+=⎪⎩n n uu u r uu u r ,令1x =,得(1,2,2)=-n , 设θ为二面角E AF C --的平面角,则||3|cos ||cos ,|EO EO θ⋅=<>==n n uu u ruu u r uu u r 6sin θ∴=,∴二面角E AF C --19.【答案】(1)22132x y +=;(2)10x +=. 【解析】(1)设椭圆C 的焦距为2c,则3c a =,∴a =, ∵222a b c =+,∴b =,又1OB F B ⋅=OB b =,1F B a =,∴ab =2=1c =,∴a =b =22132x y +=. (2)由(1)知1(1,0)F -,2(1,0)F ,设直线l 方程为1x ty =-,由221132x ty x y =-⎧⎪⎨+=⎪⎩,得22(23)440t y ty +--=,设11(,)M x y ,22(,)N x y ,则122423t y y t +=+,122423y y t -=+, ∵22MF NF ⊥,∴220F M F N ⋅=uuuu r uuu r ,∴1212(1)(1)0x x y y --+=, ∴1212(11)(11)0ty ty y y ----+=,∴21212(1)2()40t y y t y y +-++=,∴22224(1)8402323t t t t -+-+=++,∴22t =,∴t =. ∴l的方程为10x ±+=.20.【答案】(1)证明见解析;(2)证明见解析.【解析】(1)由题意知:()f x 定义域为(,)-∞+∞,且1π()2sin()23xf x x e '=---.令1π()2sin()23x g x x e =---,[π,0]x ∈-,1π()cos()23xg x x e '=---,[π,0]x ∈-.∵x y e =-在[π,0]-上单调递减,1πcos()23y x =--在[π,0]-上单调递减,()g x '在[π,0]-上单调递减.又π(0)cos()103g '=---<,ππππ1(π)cos()0232g e e -'-=----=->,∴0(π,0)x ∃∈-,使得0()0g x '=,∴当0[π,)x x ∈-时,()0g x '>;当0(,0]x x ∈时,()0g x '<, 即()g x 在区间0[π,)x -上单调递增;在0(,0]x 上单调递减,则0x x =为()g x 唯一的极大值点,即()f x '在区间[π,0]-上存在唯一的极大值点0x .(2)由(1)知1π()2sin()23xf x x e '=---,且()f x '在区间[π,0]-存在唯一极大值点,()f x '在0[π,)x -上单调递增,在0(,0]x 上单调递减,而ππππ1(π)2sin()1023f e e -'-=----=->,π(0)2sin()1103f '=---=>,故()f x '在[π,0]-上恒有()0f x '>,∴()f x 在[π,0]-上单调递增,又ππππ1(π)4cos()023f e e --=---=-<,π(0)4cos()1103f =--=>, 因此,()f x 在[π,0]-上有且仅有一个零点. 21.【答案】(1)见解析;(2)①116P =,2736P =,343216P =;②6(1)7a b =-,1(1)7c b =-,11(1)56n n P =-.【解析】(1)X 的可能取值为1-,0,1.121(1)(1)233P x =-=-⨯=,12121(0)(1)(1)23232P x ==⨯+-⨯-=,121(1)(1)236P x ==⨯-=.∴X 的分布列为(2)①由(1)知,116P =, 经过两轮投球甲的累计得分高有两种情况:一是两轮甲各得1分; 二是两轮有一轮甲得0分,有一轮甲得1分,∴12211117C ()()662636P =⨯+=,经过三轮投球,甲的累计得分高有四种情况:一是三轮甲各得1分;二是三轮有两轮各得1分,一轮得0分;三是1轮得1分,两轮各得0分;四是两轮各得1分,1轮得1-分,∴322122233331111111()C ()()C ()()C ()()6626263P =+++.②由11i i i i P aP bP cP +-=++,知1111i i i a c P P P b b+-=+--, 将00P =,116P =,2736P =,343216P =代人,求得617a b =-,117c b =-, ∴6(1)7a b =-,1(1)7c b =-,∴116177i i i P P P +-=+,∴117166i i i P P P +-=-.∴111()6i ii i P P P P +--=-, ∵1016P P -=,∴1{}n n P P --是等比数列,首项和公比都是16. 116n n n P P --=,∴01021111(1)1166()()()(1)15616n n n n n P P P P P P P P --=+-+-++-==--L . 22.【答案】(1)()2121:1x y C +-=,20C y -=;(2)[10,]2. 【解析】(1)1C 的直角坐标方程()2211x y +-=,2C0y -+=. (2)由(1)知,1C 为以(0,1)为圆心,1r =为半径的圆,1C 的圆心(0,1)到2C的距离为1d ==<,则1C 与2C 相交,P 到曲线2C 距离最小值为0,最大值为d r +=, 则点P 到曲线2C距离的取值范围为[10,]2. 23.【答案】(1)证明见解析;(2)证明见解析.【解析】证明:(1)∵0a >,0b >,23a b +=,∴320a b =->,302b <<, ∴222222699(32)51295()555a b b b b b b +=-+=-+=-+≥, ∴当65b =,3325a b =-=时,22a b +的最小值为95,∴2295a b +≥.(2)∵0a >,0b >,23a b +=,∴3≥908ab <≤,当且仅当322a b ==时,取等号,∴334a b ab +22(4)ab a b =+2[(2)4]ab a b ab =+-22819(94)94()4()168ab ab ab ab ab =-=-=--, ∴98ab =时,334a b ab +的最大值为8116,∴3381416a b ab +≤.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《高三上学期第一次月考 2020届省名师联盟高三上学期第一次模拟考试数学(理)试题—附答案》
摘要:姓名准考证号考场号座位号 2020届名师联盟高三第一次模拟考试卷理科数学注意事项: 1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答
题卡上的指定位置,∴,又为中点,∴,在中,,∴,∴,又,∴平面.(2)面,且,如图以为原点,,,方向建立空间
直角坐标系,从而,,,,,由(1)可知是面的一个法向量,设为面的一个法向量,由,令,得,设为二面角的平面角,则,,∴二面角角的正弦值为. 19.【答案,又,,,∴,∴,∴,∴,,∴.(2)由(1)知,,设直线方程为,由,得,设,,则,,∵,∴,∴,∴,∴,∴,∴,∴.∴的方程为. 20.【答案
此卷只装订不密封班级姓名准考证号考场号座位号 2020届名师联盟高三第一次模拟考试卷理科数学注意事项: 1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,写
在试题卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和
答题卡上的非答题区域均无效。

4.考试结束后,请将本试题卷和答题卡一并上交。

一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合,,() A. B. C. D. 2.() A. B. C. D. 3.如图为某省年月快递业务量统计图,图是该省年月快递业务收入统计图,下列对统计图理解错误的是() A.年月的业务量,月最高,月最低,差值接近万件 B.年月的业务量同比增长
率超过,在月最高 C.从两图来看年月中的同一个月快递业务量与收入的同比增长率并不完全一致 D.从月来看,该省在年快递业务收入同比增长率逐月增长 4.已知两个单位向量,满足,则的夹角为() A. B. C. D. 5.函数的部分图象大致为()
A. B. C. D. 6.已知斐波那契数列的前七项为、、、、、、.大多数植物的花,其花瓣
数按层从内往外都恰是斐波那契数,现有层次相同的“雅苏娜”玫瑰花朵,花瓣总数为,假设这种“雅苏娜”玫瑰花每层花瓣数由内向外构成斐波那契数列,则一朵该种玫瑰花最可能有()层. A. B. C. D. 7.如图,正方体中,点,分别是,的中点,为正方形的中心,
则() A.直线,是异面直线 B.直线,是相交直线 C.直线与所成的角为 D.直线,所
成角的余弦值为 8.执行如图所示的程序框图,输出的的值为()
A. B. C. D. 9.已知定义在上的奇函数满足,且在区间上是减函数,令,,,则,,的大小关系为() A. B. C. D. 10.已知点是双曲线的右焦点,动点在双曲线左支上,
点为圆上一点,则的最小值为() A. B. C. D. 11.如图,已知,是函数的图象与轴的两个相邻交点,是函数的图象的最高点,且,若函数的图象与的图象关于直线对称,则函数的解析式是() A. B. C. D. 12.已知三棱锥满足底面,在中,,,,是线段上一点,且.球为三棱锥的外接球,过点作球的截面,若所得截面圆的面积的最小值与最大值之和为,则球的表面积为() A. B. C. D.二、填空题:本大题共4小题,每小题5
分. 13.已知曲线在点处的切线方程为,则实数的值为. 14.已知等差数列的前项和为,满足,且,则最大时的值是. 15.《易经》是中国传统文化中的精髓,如图是易经八卦(含乾、坤、異、震、坎、离、良、兑八卦),每一卦由三根线组成(“”表示一根阳线,“”表示一根阴线),从八卦中任取两卦,这两卦的六根线中恰有两根阳线,四根阴线的概率为. 16.点,是抛物线上的两点,是拋物线的焦点,若,中点到抛物线的准线的距离为,则的最大值为.三、解答题:本大题共6大题,共70分,解答应写出文字说明、证明过程或演算步骤. 17.(12分)的内角所对的边分别为,已知.(1)求的大小;(2)若,,且的面积为,求. 18.(12分)如图所示的多面体中,四边形是边长为的正方形,,,,平面.(1)设与的交点为,求证:平面;(2)求二面角的正弦
值. 19.(12分)设椭圆的左焦点为,右焦点为,上顶点为,离心率为,是坐标原点,且.(1)求椭圆的方程;(2)已知过点的直线与椭圆的两交点为,,若,求直线的方程. 20.(12分)已知函数,为的导数,证明:(1)在区间上存在唯一极大值点;(2)在区间上有且仅有一个零点. 21.(12分)月,全国美丽乡村篮球大赛在中国农村改革的发源地—安徽凤阳举办,其间甲、乙两人轮流进行篮球定点投篮比赛(每
人各投一次为一轮).在相同的条件下,每轮甲乙两人站在同一位置,甲先投,每人投一次球,两人有人命中,命中者得分,未命中者得分;两人都命中或都未命中,两人均得分.设甲每次投球命中的概率为,乙每次投球命中的概率为,且各次投球互不影响.(1)经过轮投球,记甲的得分为,求的分布列;(2)若经过轮投球,用表示经过第轮投球,累计得分,甲的得分高于乙的得分的概率.①求,,;②规定,经过计算机计算可估计得,请根据①中,,的值
分别写出,关于的表达式,并由此求出数列的通项公式.请考生在22、23两题中任选
一题作答,如果多做,则按所做的第一题记分. 22.(10分)【选修4-4:坐标系与参数方程】已知平面直角坐标系中,以为极点,轴的正半轴为极轴,建立极坐标系,曲线方程为,
的参数方程为(为参数).(1)写出曲线的直角坐标方程和的普通方程;(2)设点为曲线上的任意一点,求点到曲线距离的取值范围. 23.(10分)【选修4-5:不等式选讲】
已知,,.证明:(1);(2). 2020届名师联盟高三第一次模拟考试卷理科数学
答案一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项
是符合题目要求的.1.【答案】D 2.【答案】D 3.【答案】D 4.【答案】C 5.【答案】B 6.【答案】C 7.【答案】C 8.【答案】B 9.【答案】C 10.【答案】A 11.【答案】C 12.【答案】C 二、填空题:本大题共4小题,每小题5分. 13.【答案】 14.【答案】9 15.【答案】16.【答案】三、解答题:本大题共6大题,共70分,解答应写出文字说明、证明过程或演算步骤. 17.【答案】(1);(2).【解析】(1)由,得,所以,即,所以有,因为,所以,所以,即,所以,又,所以,所以,即.(2)因为,所以,又,所以,把代入到中,得. 18.【答案】(1)证明见解析;(2).【解析】(1)证明:由题
意可知:平面,从而,∴,又为中点,∴,在中,,∴,∴,又,∴平面.(2)面,且,如图以为原点,,,方向建立空间直角坐标系,从而,,,,,由(1)可知是面的一个法向量,设为面的一个法向量,由,令,得,设为二面角的平面角,则,,∴二面角角的正弦值为. 19.【答案】(1);(2).【解析】(1)设椭圆的焦距为,则,∴,∵,∴,又,,,∴,∴,∴,∴,,∴.(2)由(1)知,,设直线方程为,由,得,设,,则,,∵,∴,∴,∴,∴,∴,∴,∴.∴的方程为. 20.【答案】(1)证明见解析;(2)证明见解析.【解析】(1)由题意知:定义域为,且.令,,,.∵在上单调递减,在上单调递减,在上单调递减.又,,∴,使得,∴当时,;当时,,即在区间上单调递增;在上单调递减,则为唯一的极大值点,即在区间上存在唯一的极大值点.(2)由(1)知,且在区间存在唯一极大值点,在上单调递增,在上单调递减,而,,故在上恒有,∴在上单调递增,又,,因此,在上有且仅有一个零点. 21.【答案】(1)见解析;(2)①,,;②,,.【解析】(1)的可能取值为,,.,,.∴的分布列为(2)①由(1)知,,经过两轮投球甲的累计得分高有两种情况:一是两轮甲各得分;二是两轮有一轮甲得分,有一轮甲得分,∴,经过三轮投球,甲的累计得分高有四种情况:一是三轮甲各得分;
二是三轮有两轮各得分,一轮得分;三是轮得分,两轮各得分;四是两轮各得分,轮得分,∴.②由,知,将,,,代人,求得,,∴,,∴,∴.∴,∵,∴是等比数列,首项和公比
都是.,∴. 22.【答案】(1),;(2).【解析】(1)的直角坐标方程,的普通方程.(2)由(1)知,为以为圆心,为半径的圆,的圆心到的距离为,则与相交,到曲线距离最小值为,最大值为,则点到曲线距离的取值范围为. 23.【答案】(1)证明见解析;
(2)证明见解析.【解析】证明:(1)∵,,,∴,,∴,∴当,时,的最小值为,∴.(2)∵,,,∴,,当且仅当时,取等号,∴ ,∴时,的最大值为,∴.。

相关文档
最新文档