实验用单摆测定重力加速度
用单摆测量重力加速度
![用单摆测量重力加速度](https://img.taocdn.com/s3/m/721eb92baef8941ea76e05ef.png)
(6)研究单摆的周期跟摆长的关系.在重力加速度一定时,周期 跟摆长的二次方根成正比.测出不同摆长下,周期跟相应的摆长 的关系,然后以做出L--T图像,利用图像研究比例关系。
秒表的使用和读数: 停表的读数等于内侧分针的读数与外侧秒针的读数之和.
注意:当内侧分针没有超过半格时,外侧秒针读小于
30的数字;
(3)把单摆从平衡位置拉开一个很小的角度(不超过10º),然后 放开小球让它摆动,用停表测量单摆完成30次全振动(或50次) 所用的时间,求出完成一次全振动所需要的时间,这个平均时 间就是单摆的周期.
(4)把测得的周期和摆长的数值代入公式 速度g的值.
,求出重力加
(5)改变摆长,重做几次实验.设计一个表格,把测得的数据和 计算结果填入表格中,计算出每次实验的重力加速度.最后求出 几次实验得到的重力加速度的平均值,即可看作本地区的重力 加速度.
(6)测量单摆的振长时应使摆球处于自然下垂状态,用米尺测量出摆线 的长度,再用游标卡尺测出摆球的直径,然后算出摆长,要准确到毫米 位.
【误差分析】
①本实验系统误差主要来源于单摆模型本身是否符合要求.即:悬点是否固定,是 单摆还是复摆,球、线是否符合要求,振动是圆锥摆还是在同一竖直平面内振动, 以及测量哪段长度作为摆长等等。只要注意了上面这些方面,就可以使系统误差减 小到远小于偶然误差而忽略不计的程度.
【实验器材】
带孔小钢球一个 约1m长的细线一条 铁架台 米尺 停表 游标卡尺.
【实验内容】
1、步骤 (1)取约1m长的细线穿过带孔的小钢球,
并打一个比小孔大一些的结,然后拴在桌边 的支架上,如图所示.
(2)用米尺量出悬线长L′,准确到毫米;用 游标卡尺测摆球直径,算出半径r,也准确 到毫米。则单摆的摆长为L+r.
物理实验之用单摆测定重力加速度
![物理实验之用单摆测定重力加速度](https://img.taocdn.com/s3/m/d21d29329b6648d7c0c74626.png)
用单摆测定重力加速度实验目的用单摆测定当地的重力加速度实验原理当单摆摆角很小(小于50)时,可看作简谐运动,其固有周期为,由公式可得故只要测定摆长l和单摆的周期T,即可算出重力加速度g。
实验器材长约1米的细线、小铁球、铁架台(连铁夹)、米尺、秒表。
实验步骤(1)将细线的一端穿过铁球上的小孔并打结固定好,线的另一端固定在铁架台上,做成一个单摆。
(2)用毫米刻度的米尺测定单摆的摆长l(摆线静挂时从悬挂点到球心的距离)。
(3)让单摆摆动(摆角小于50),测定n(30—50)次全振动的时间t,用公式求出单摆的平均周期T;(4)用公式算出重力加速度g。
实验记录实验结论实验注意1、细线不可伸缩,长度约1m。
小球应选用密度较大的金属球,直径应较小(最好不超过2㎝)。
2、单摆的上端不要卷在夹子上,而要用夹子加紧,以免单摆摆动时摆线滑动或者摆长改变。
3、最大摆角小于5º,可用量角器测量,然后通过振幅来掌握。
4、摆球摆动时要在同一个竖直平面内。
5、计算单摆的振动次数时,应以摆球通过最低点时开始计时,以后摆球从同一方向通过最低点时进行计数,且在数零的同时按下秒表,开始计时计数,并且要测多次全振动的总时间,然后除以振动次数,如此反复三次,求得周期的平均值作为单摆的周期。
实验练习(1)在用单摆测重力加速度的实验中,摆线应选用:A.80厘米长的橡皮筋. B.1米左右的细线.C.1米左右的粗绳.D.25厘米左右的细绳.(2)在用单摆测重力加速度的实验中,摆球应选用:A.半径约1厘米的木球. B.半径约1厘米的铝球.C.半径约1厘米的空心钢球. D.半径约1厘米的空心钢球.(3)在“用单摆测重力加速度”的实验中,单摆得摆角必须小于50,其原因是因为:A.单摆的周期与振幅有关,摆角超过50,测出周期大;B.摆角越大,空气阻力越大,影响实验结果;C.因为简谐振动的周期与振幅无关,摆角小些给实验带来很大方便;D.摆角超过50,单摆的振动不在是简谐振动,周期公式失效.(4)利用单摆测重力加速度的实验中,若测得g 只偏小,可能是由于:A.计算摆长时,只考虑悬线长,而未加小球半径;B.测量周期时,将n 次全振动,误记成n+1次全振动;C.计算摆长时,用悬线长加小球直径;D.单摆振动时,振幅较小.(5)为了提高周期的测量精度,下列那种说法是可取的?A.在最大位移处启动秒表和结束记时;B.用秒表测30至50次全振动的时间,计算出平均值;C..用秒表测100次全振动的时间,计算出平均周期;D.在平衡位置启动秒表,并开始记数,当摆球第30次经过平衡位置时制动秒表,若读数为t ,7、 在用单摆测重力加速度的实验中,某同学利用两个单摆测得其周期分别为T 1、T 2,已知两个单摆的摆长之和为L ,则测得当地重力加速的表达式为____________。
用单摆测定重力加速度
![用单摆测定重力加速度](https://img.taocdn.com/s3/m/1dc9a3707fd5360cba1adb6c.png)
用单摆测定重力加速度实验目的学习用单摆测定重力加速度的方法,测出当地的重力加速度。
实验仪器摆球,秒表,铁架台,铁夹,米尺或钢卷尺,游标卡尺,细线等。
实验原理单摆在摆角很小的情况下,可以看作简谐振动,其固有周期公式为由此得:。
据此,通过实验方法测出摆长l和周期T,即可计算出当地的重力加速度。
实验步骤1、将细线穿过金属小球上的小孔,在细线的一端打一个稍大一点的结,制成一个单摆。
2、将铁架固定在铁架台上端,铁架台放在桌边,使铁架伸出桌面,然后把单摆固定在铁夹上,使摆球自由下垂。
3、用刻度尺量出摆长(摆求静止时悬点到摆球球心的距离)。
4、把摆球从平衡位置拉开一个角度,然后无初速释放小球。
当摆球摆动稳定以后经过最低点时用秒表开始计时,测出单摆30~50次全振动的时间,求出一次振动时间及单摆的周期。
5、反复测量三次,计算出周期的平均值,然后利用公式计算出重力加速度。
注意事项1、摆线要用细而不易伸长的线,悬点要固定不变,不能把摆线随意缠绕在铁夹上,以免悬点松动,引起摆长变化.悬挂单摆时可用铁夹把细线上端夹紧,也可用烧瓶夹夹紧两块小木板,以此夹紧摆线。
2、摆长以1m左右为宜,摆长是指从悬点到球心的距离,测摆长应在单摆竖直悬挂的状态下进行。
如果只用一把米尺测量摆长,可以让米尺与悬线平行,尺上端的零刻度线与过悬点的水平线重合,尺下端与小球相切,切点处的读数就是摆长。
或者用米尺测出摆线的长度、用游标卡尺或两把三角尺测出小球直径,则摆线长加小球半径就是摆长。
3、注意摆动时摆角不能过大。
4、要让单摆在竖直平面内摆动,不要形成锥摆,测定单摆振动周期时,可事前在平衡位置正下方放一支铅笔或一块橡皮作为记号,在摆球经过平衡位置时开始默数,默数全振动次数要与振动周期同步,注意摆球每经过平衡位置两次才完成一次全振动。
开头用倒数的方法、后来才顺数:即默数“5,4,3,2,1,0,1,2,…30”,数到“0”时启动秒表,数至30”时关闭秒表。
实验13探究单摆的运动用单摆测定重力加速度
![实验13探究单摆的运动用单摆测定重力加速度](https://img.taocdn.com/s3/m/1d19dcf6915f804d2a16c1bf.png)
【解析】 (1)本次实验中的摆长 l=L+r=(101.00+1.00)cm= 1.0200 m,周期 T=Nt =10510.5 s=2.03 s, 由公式 g=4πT22l可以解得 g=9.76 m/s2; (2)根据公式 g=4πT22l知 g 偏小的原因可能是 l 的测量值偏小或 T 的测量值偏大.A 中 l 的测量值偏大,B 中则是振动摆长大于测 量值,所以测量值偏小,而 C、D 中均是测得的周期偏小,所以 C、D 均会使 g 值偏大.故只有 B 正确.
小于10°
5.(2013·安徽理综,21 Ⅰ)Ⅰ.根据单摆周期公式
T=,2π可以gl通过实验测量
当地的重力加速度.如图1所示,将细线的上端固定在铁架台上,下端系一小钢球,就做
成了单摆.
(1)用游标卡尺测量小钢球直径,示数如图2所示,读数为_____mm.
18.6
abe
(2)以下是实验过程中的一些做法,其中正确的有________. a.摆线要选择细些的、伸缩性小些的,并且尽可能长一些 b.摆球尽量选择质量大些、体积小些的 c.为了使摆的周期大一些,以方便测量,开始时拉开摆球,使摆线相距平衡位置有较 大的角度 d.拉开摆球,使摆线偏离平衡位置不大于5 °,在释放摆球的同时开始计时,当摆球 回到开始位置时停止计时,此时间间隔Δt即为单摆周期T e.拉开摆球,使摆线偏离平衡位置不大于5 °,释放摆球,当摆球振动稳定后,从平 衡位置开始计时,记下摆球做50次全振动所用的时间Δt,则单摆周期T= Δ t/50
(1)用游标为10分度(测量值可准确到0.1 mm)的卡尺测量小球的直径.某次测量的示数
如图所示,读出小球直径d的值为______cm.
1.52
(2)该同学根据实验数据,利用计算机作出t2-l图线如图所示.根据图线拟合得到方程 t2=404.0l+3.5.由此可以得出当地的重力加速度g=________m/s2.(取π2=9.86,结 果保留3位9有.7效6 数字)
用单摆测量重力加速度
![用单摆测量重力加速度](https://img.taocdn.com/s3/m/563e4ee2c9d376eeaeaad1f34693daef5ef7137b.png)
2.5 实验:用单摆测量重力加速度问题引入:理论上,与重力加速有关的物理现象都可以用来测量重力加速度g ,例如:利用自由落体运动就可以测量g ,也可以研究平抛运动测量g ,上一节课中我们又学习了单摆的周期公式T =2πlg,我们是否能从该公式出发设计一个实验用来单摆测量重力加速度g 呢?解析:能,由公式T =2πlg可知,只需要设计一个单摆,测出单摆的长度l ,周期T ,然后代入公式即可测出重力加速度g. 一、实验原理:单摆在摆角很小时,由单摆周期公式T =2πl g ,得g =4π2lT2,测得单摆的摆长l 和振动周期T ,就可以测出当地的重力加速度g . 二、实验器材:铁架台及铁夹、金属小球(最好上面有一个通过球心的小孔)、秒表、细线(1 m 左右)、刻度尺(最小刻度为mm)、游标卡尺. 三、实验步骤: 1.做单摆:让线的一端穿过小球的小孔,然后打一个比小孔大一些的结,把线的上端用铁夹固定在铁架台上并把铁架台放在实验桌边,使铁夹伸到桌面以外,让摆球自由下垂,在单摆平衡位置处作上标记. 2.测摆长:l = l ′+ d2①.用毫米刻度尺量出悬线长l ′,如图甲所示. ②.用游标卡尺测出摆球的直径d ,如图乙所示. ③.摆线悬点固定方法:用“夹”不用“绕”3.测周期:将单摆从平衡位置拉开一个角度,且满足偏角小于5°,然后释放摆球,当单摆摆动稳定后,用秒表测量单摆完成30次(或50次)全振动的时间t ,计算出平均摆动一次的时间T =tn,即为单摆的振动周期.(注意:应以摆球经平衡位置时开始或停止计时.) 4.求重力加速度:把测得的周期和摆长的数值代入公式,求出重力加速度g 的值.5.多次改变摆长,重测周期,并记录数据.四、数据处理:方案一:平均值法改变摆长,重做几次实验.计算出每次实验的重力加速度.最后求出几次实验得到的重力加速度的平均值,即可作为本地区的重力加速度.分别以l和T 2为纵坐标和横坐标,作出l =g4π2T 2的图象,它应该是过原点的一条直线,根据这条直线可以求出斜率k,则重力加速度值g =4π2k.由于l-T的图象不是直线,不便于进行数据处理,所以采用l-T 2的图象,目的是将曲线转换为直线,便于利用直线的斜率计算重力加速度.五、误差分析:1.系统误差:主要来自于单摆模型本身是否符合要求,即悬点是否固定,摆球和摆长是否符合要求,最大摆角是否不超过5°,是否在同一竖直平面内摆动等。
实验报告:利用单摆测当地的重力加速度
![实验报告:利用单摆测当地的重力加速度](https://img.taocdn.com/s3/m/2177a51fc850ad02df80412e.png)
实验:利用单摆测当地的重力加速度 ⒈实验目的:利用单摆测当地的重力加速度⒉实验原理:当单摆摆角很小(小于50)时,可看作简谐运动,其周期仅决定于摆长和当地的重力加速度,即g l T π2=,由公式可得224T l g π=,故只要测定摆长l 和单摆的周期T ,即可算出当地的重力加速度g 。
⒊实验器材:摆球2个(铁质和铜质并穿有中心孔)、秒表、物理支架、米尺或钢卷尺、游标卡尺、细线等。
⒋实验步骤:⑴做单摆:如图所示,把摆球用细线悬挂在物理支架上,摆长最好能有1m 左右,这样可以使测量结果准确些。
⑵测摆长:用毫米刻度尺量出悬线长l '精确到毫米;用游标卡尺测量出摆球的直径d ,精确到毫米;则2d l l +'=,即为单摆的摆长。
⑶测周期:将单摆从平衡位置拉开一个角度,且满足摆角小于10°,然后释放摆球,过平衡位置时用秒表开始计时,测量30~50次全振动的时间。
计算出平均摆动一次的时间,即为单摆的振动周期T 。
⑷变摆长:将单摆的摆长变短(或变长),重复实验三次,测出相应的摆长l 和周期T 。
⒌操作注意事项:⑴细线不可伸缩,长度约1m 。
小球应选用密度较大的金属球,直径应较小(最好不超过2㎝)。
⑵单摆的上端不要卷在夹子上,而要用夹子加紧,以免单摆摆动时摆线滑动或者摆长改变。
⑶最大摆角小于10º,可用量角器测量,然后通过振幅来掌握。
⑷摆球摆动时要在同一个竖直平面内。
⑸测量就从球通过平衡位置时开始计时,因为在此位置摆球速度最大,易于分辨小球过此位置的时刻。
⒍收集数据:实验次数摆长 l(m) 周期 T(s) 加速度 g(m /s ²) g 的平均值(m /s ²) g=(g ₁﹢g ₂﹢g ₃)/3 =12⒎数据处理:平均值法:每改变一次摆长,将相应的l 和T 代入公式224T l g π=中求出g 值,最后求出g的平均值。
224Tl g π== ⒏误差来源:⑴本实验的系统误差主要来源于单摆模型本身是否符合要求,即:悬点是否固定,球、线是否符合要求。
实验08:用单摆测定重力加速度
![实验08:用单摆测定重力加速度](https://img.taocdn.com/s3/m/f1720eb0cd22bcd126fff705cc17552707225e86.png)
实验08:用单摆测定重力加速度一.实验目的:(1)会用单摆测定当地的重力加速度g;(2)会正确使用秒表。
二.实验原理:在偏角很小时,单摆的运动可看作是简谐运动,其固有周期为T=2π√L/g它与偏角的大小及摆球的质量无关,将公式变形后可得g=4π^2 L/T^2,故只要测定摆长和周期,就可以求出当地的重力加速度g.三.实验器材:不易伸长的细线(约1m),带孔的小钢球和小木球,铁架台,米尺,游标卡尺,秒表.四.实验步骤:(1)取长约1m的细丝线穿过带孔的小钢球,打一个比孔略大一些的结,做成单摆;(2)把线的上端用铁夹固定在铁架台的支架上,把铁架台放在实验桌边,使铁夹伸到桌面以外,让摆球自然下垂,在单摆平衡位置处做上标记.2.测摆长:用毫米刻度尺量出悬线长l′,准确到毫米,测三次,取平均值;用游标卡尺测出摆球的直径d,在不同位置测三次,取平均值,则摆长l=l′+d/2.将测量结果填入表格中.3.测周期:把单摆从平衡位置拉开一个角度(小于5°)释放,让小球摆动,待摆动平稳后用秒表测出单摆完成30~50次全振动所用时间t,求出小球完成一次全振动所用的时间t,这个时间就是单摆的周期,即T=t/N(N为全振动的次数).重复本步骤3次,再计算周期的平均值T=(T1+T2+T3)/3,将结果填入表格。
4.改变摆长,重复上述步骤并做好记录,实验完毕,整理好器材。
5.计算重力加速度:(1)公式法:测出30次或50次全振动的时间t,利用T=t/N,求出周期;不改变摆长,反复测量三次,算出三次测得的周期的平均值,然后代入公式g=4π^2 L/T^2,求重力加速度,改变摆长后算出每次实验的重力加速度值并取平均,即可看作本地的重力加速度.2)图像法:由单摆周期公式可得:L=g/4π^2·T^2,因此,分别测出一系列摆长L对应的周期T,作L-T2的图象,图象应是一条通过原点的直线,求出图线的斜率k=g/4π^2,即可利用g=4π2k求得重力加速度值。
高二物理【实验:用单摆测量重力加速度】
![高二物理【实验:用单摆测量重力加速度】](https://img.taocdn.com/s3/m/e1247006b9f3f90f76c61bf2.png)
37
3.某同学利用单摆测量重力加速度. (1)(多选)为了使测量误差尽量小,下列说法正确的是( ) A.组装单摆须选用密度和直径都较小的摆球 B.组装单摆须选用轻且不易伸长的细线 C.实验时须使摆球在同一竖直面内摆动 D.摆长一定的情况下,摆的振幅尽量大
6
(4)把此单摆从平衡位置拉开一个角度,并使这个角小于 5°,再 释放小球.当摆球摆动稳定以后,在最低点位置时,用秒表开始计 时,测量单摆全振动 30 次(或 50 次)的时间,然后求出一次全振动的 时间,即单摆的振动周期.
(5)改变摆长,重做几次.
7
(6)根据单摆的周期公式,计算出每次实验的重力加速度;求出 几次实验得到的重力加速度的平均值,即本地区的重力加速度的值.
19
(2)①根据单摆振动的 v-t 图像知,单摆的周期 T=2.0 s. ②根据 T=2π gl 得 T2=4πg2l. 图线的斜率:k=4gπ2=4.04 s2/m, 解得:g≈9.76 m/s2. [答案] (1)①adf ②4πt22n2l (2)①2.0 ②9.76
20
【例 2】 用单摆测定重力加速度的实验装置如图所示.
41
[答案]
(1)BC
4π2ΔL (2)T21-T22
42
4.某同学在一次用单摆测重力加速度的实验中,测量 5 种不同 摆长与单摆的振动周期的对应情况,并将记录的结果描绘在如图所 示的坐标系中.图中各坐标点的标号分别对应实验中 5 种不同摆长 的情况.在处理数据时,该同学实验中的第________数据点应当舍 弃.画出该同学记录的 T2-l 图线.求重力加速度时,他首先求出图 线的斜率 k,则用斜率 k 求重力加速度的表达式为 g=________.
大学物理实验报告范例(单摆法测重力加速度)
![大学物理实验报告范例(单摆法测重力加速度)](https://img.taocdn.com/s3/m/ff6b69c780c758f5f61fb7360b4c2e3f572725ba.png)
大学物理实验报告范例(单摆法测重力加速度)实验题目:单摆法测重力加速度
实验目的:通过单摆实验,测量出大地表面重力加速度g的值。
实验原理:在斯托克斯定律,即由牛顿第二定律得出:重力加速度g等于单摆振子的运动延迟T的平方,除以4π的平方。
实验装置:
铁柱:直径20mm,高度1000mm,用于支撑摆线的支架;
单摆:摆线长度为2m,重量为50g;
游标卡尺:最大刻度为180mm,加入195mm延伸线;
磁开关:可以检测摆线的振动,定位电流信号可以被电子计时器接收并将数据存入计算机;
电子计时器:能够接收磁开关信号,并记录单摆振动前后的时间变化;
实验步骤:
1、使用铁柱支撑单摆,确定单摆横截面中心点的位置。
2、确定单摆的出发点,即T0的位置,并用游标卡尺测量摆线的位移。
3、安装磁开关并设置电子计时器。
4、使用手柄将单摆从临界点(T0处)拉出,以极小的角度出发,使磁开关接收到信号。
5、将单摆振动至最大振动幅度处,磁开关再次发出电流信号,电子计时器记录信号发出前后的时间变化,取得T2。
6、依次测量五组振动,并记录延迟时间T,作图求出算数平均值T2。
7、求出实验所得的大地表面重力加速度g的值,并与理论值进行比较。
实验结论:
使用单摆法测得的大地表面重力加速度g值与理论值相差不大,验证了斯托克斯定律的正确性,表明实验具有较高的精度和准确性。
实验13 用单摆测量重力加速度的大小
![实验13 用单摆测量重力加速度的大小](https://img.taocdn.com/s3/m/38127122e97101f69e3143323968011ca300f72c.png)
实验用单摆测量重力加速度的大小用单摆测量重力加速度的大小。
由单摆的周期公式T=2π lg ,可得出g=4π2T2l,测出单摆的摆长l和振动周期T,就可求出当地的重力加速度g。
带中心孔的小钢球、约1 m长的细线、带有铁夹的铁架台、游标卡尺、毫米刻度尺、停表。
1.测摆长用毫米刻度尺量出摆线长L(精确到毫米),用游标卡尺测出小球直径D,则单摆的摆长l=L+D2。
2.测周期将单摆从平衡位置拉开一个角度(不超过5°),然后释放小球,记下单摆摆动30次或50次全振动的总时间,算出平均每摆动一次全振动的时间,即为单摆的振动周期T。
数据处理的两种方法:方法一:公式法。
根据公式T=2πlg ,g=4π2lT2。
将测得的几组周期T和摆长l分别代入公式g=4π2l T 2中算出多组重力加速度g 的值,再求出g 的平均值,即为当地重力加速度的值。
方法二:图像法。
由单摆的周期公式T =2π l g 可得l =g 4π2T 2,因此以摆长l 为纵轴,以T 2为横轴描点作图,作出的l -T 2图像理论上是一条过原点的直线,如图所示,求出图像的斜率k ,即可求出g 值。
g =4π2k ,k =l T 2=Δl ΔT 2。
1.本实验的系统误差主要来源于单摆模型本身是否符合要求,即:悬点固定,小球质量大、体积小,细线轻质非弹性,振动是在同一竖直平面内的振动,这些要求是否符合。
2.本实验的偶然误差主要来自时间的测量和摆线长度的测量,因此,要从摆球通过平衡位置时开始计时,不能多计或漏计摆球全振动次数。
使用刻度尺测量摆线长度时,要多次测量取平均值以减小误差。
3.利用图像法处理数据具有形象、直观的特点,同时也能减小实验误差。
利用图像法分析处理时要特别注意图像的斜率及截距的物理意义。
1.小球选用密度大的钢球。
2.选用1 m 左右难以伸缩,且尽量轻的细线。
3.悬线顶端不能晃动,需用夹子夹住,保证悬点固定。
4.单摆必须在同一平面内振动,且摆角小于5°。
实验__用单摆测定重力加速度
![实验__用单摆测定重力加速度](https://img.taocdn.com/s3/m/0d06aedf08a1284ac85043ec.png)
随堂训练·能力达标
1
2
3
4
5
6
7
3. 几名学生进行野外考察,登上一山峰后,他们想粗略测 出山顶处的重力加速度.于是他们用细线拴好石块 P 系在树枝上做成一个简易单摆,如图 7 所示.然后用随 身携带的钢卷尺、电子手表进行了测量.同学们首先测 出摆长 L,然后将石块拉开一个小角度,由静止释放, 使石块在竖直平面内摆动,用电子手表测出单摆完成 n 次 全振动所用的时间 t.
1
2
3
4
5
6
7
4. 某同学在正确操作和测量的情况下,测得多组摆长 L 和对应的 周期 T,画出 L-T2 图线,如图 8 所示.出现这一结果最可能的 原因是:摆球重心不在球心处,而是在球心的正 ____ 方 ( 选填 “上”或“下”). 为了使得到的实验结果不受摆球重心位置无法 准确确定的影响,他采用恰当的数据处理方法:在图线上选 图8
3. 实验步骤
(1)让细线的一端穿过金属小球的小孔,然后打一个比小孔大一些的线结,做成单摆. (2)把细线的上端用铁夹固定在铁架台上, 把铁架台放在实验桌边, 使铁夹伸到桌面以外, 让摆球自然下垂,在单摆平衡位置处作上标记,如实验原理图.
(3)用毫米刻度尺量出摆线长度 l′, 用游标卡尺测出摆球的直径, 即得出金属小球半径 r, 计算出摆长 l= l′+ r. (4)把单摆从平衡位置处拉开一个很小的角度 (不超过 5° ),然后放开金属小球,让金属小 球摆动,待摆动平稳后测出单摆完成 30~50 次全振动所用的时间 t,计算出金属小球完 t 成一次全振动所用时间,这个时间就是单摆的振动周期,即 T= (N 为全振动的次数), N 反复测 3 次,再算出周期 T = (5)改变摆长,重做几次实验。 T1+ T2+T3 . 3
第一章 第5节 学生实验:用单摆测定重力加速度
![第一章 第5节 学生实验:用单摆测定重力加速度](https://img.taocdn.com/s3/m/d054fd09b90d6c85ec3ac67b.png)
第5节学生实验:用单摆测定重力加速度对应学生用书P14一、实验目的、原理、器材1.做单摆(1)让线的一端穿过小球的小孔,然后打一个比小孔稍大一些的结,制成一个单摆。
(2)把线的上端用铁夹固定在铁架台上并把铁架台放在实验桌边,使铁夹伸到桌面以外,让摆球自由下垂,在单摆平衡位置处作上标记。
(如图所示)2.测摆长用米尺量出从悬点到小球上端的悬线长l 0,再用游标卡尺测量出摆球的直径d ,则摆长l =l 0+d 2。
3.测周期将单摆从平衡位置拉开一个小角度(摆角小于5°),然后释放摆球让单摆在竖直平面内摆动。
当单摆摆动稳定后,过平衡位置时开始计时,测量30~50次全振动的时间。
计算出完成一次全振动的时间,即为单摆的振动周期T 。
4.改变摆长重测周期将单摆的摆长变短或变长,重复实验三次,测出相应的摆长l 和周期T 。
三、数据处理1.平均值法每改变一次摆长,将相应的l和T代入公式g=4π2lT2中求出g值,最后求出g的平均值。
设计如表所示实验表格2由T=2πlg得T2=4π2g l作出T2-l图像,即以T2为纵轴,以l为横轴。
其斜率k=4π2g,由图像的斜率即可求出重力加速度g。
四、注意事项(1)实验时,摆线长度要远大于摆球直径,且摆线无明显伸缩性,另外摆球要选取密度大且质量分布均匀的钢球。
(2)单摆摆球应在竖直平面内摆动,且摆角应小于5°。
(3)测摆长l时,应为悬点到球重心的距离,球质量分布均匀时等于摆线长加上小球半径。
(4)应从摆球经过平衡位置时开始计时,以摆球从同一方向通过平衡位置时计数。
(5)适当增加全振动的测量次数,以减小测量周期的误差,一般30~50次即可。
五、误差分析(1)测摆长l时只测量出细线长,没有加上小球的半径,使得所测摆长偏小,g的测量值偏小。
(2)测摆动周期时,将N次全振动误记为N+1次全振动,使所测周期偏小,g的测量值偏大。
(3)实验时,摆角较大,使得摆动实际周期与2πlg有偏差。
实验 用单摆测定重力加速度。教案
![实验 用单摆测定重力加速度。教案](https://img.taocdn.com/s3/m/6f43fa264531b90d6c85ec3a87c24028915f85c0.png)
实验用单摆测定重力加速度。
教案实验目的:本实验旨在通过使用单摆测定当地重力加速度,让学生正确熟练使用秒表。
实验器材:实验所需器材包括:球心开有小孔的小金属球、长度大于1米的细尼龙线、铁夹、铁架台、游标卡尺、米尺和秒表。
实验原理:根据单摆周期公式T=2πl/g,可以得到g=4π^2l/T^2.因此,只要测得摆长l和周期T即可算出当地的重力加速度g。
实验步骤:1.用细线拴好小球,悬挂在铁架台上,使摆线自由下垂,如图1.注意:线要细且不易伸长,球要用密度大且直径小的金属球,以减小空气阻力影响。
摆线上端的悬点要固定不变,以防摆长改变。
2.用米尺和游标卡尺测出单摆摆长。
注意:摆长应为悬点到球心的距离,即l=L+D/2;其中L为悬点到球面的摆线长,D为球的直径。
3.用秒表测出摆球摆动30次的时间t,算出周期T。
注意:为减小记时误差,采用倒数计数法,即当摆球经过平衡位置时开始计数,“3,2,1.1,2,3……”数“0”时开始计时,数到“60”停止计时,则摆球全振动30次,T=t/30.计时从平衡位置开始是因为此处摆球的速度最大,人在判定它经过此位置的时刻,产生的计时误差较小。
为减小系统误差,摆角a应不大于10°,这可以用量角器粗测。
4.重复上述步骤,将每次对应的摆长l、周期T填于表中,按公式g=4π^2l/T^2算出每次g,然后求平均值。
实验结论:从表中计算的g值可以看出,与查得的当地标准g值近似相等,其有效数字至少3位。
实验注意事项:1.为减小计算误差,不应先算T的平均值再求g,而应先求出每次的g值再平均。
2.实验过程中易混淆的是:摆通过平衡位置的次数与全振动的次数。
3.实验过程中易错的是:图象法求g值,g≠k而是g=4π^2/k;T=t/n和T=t/(n-1)也经常错用,(前者是摆经平衡位置数“0”开始计时,后者是数“1”开始计时)。
4.实验过程中易忘的是:漏加或多加小球半径,悬点未固定;忘了多测几次,g取平均值。
单摆法测量重力加速度
![单摆法测量重力加速度](https://img.taocdn.com/s3/m/45f01c24dd36a32d73758150.png)
(2-1)
由 f=ma,可知 a=- g x L
式中负号表示 f 与位移 x 方向相反。
单摆在摆角很小时的运动,可近似为简谐振动,比较谐振动公式:a= f =-ω2x m
可得ω= g l
于是得单摆运动周期为:
T=2π/ω=2π L g
(2-2)
T2= 4π 2 L
g
L
或
g=4π2 T 2
(2-3) (2-4)
3.实验中支柱不应晃动,操作中不要碰撞实验装置。
4.小球要自由下落,不应人为的挤压气囊。
[问题讨论]
自由落体法测定重力加速度中,方法 1 与方法2区别在哪里?那一个测量结果误差
更小一些?
2 T
其中:
∂ ln g
=
1
=1
∂l1 L1 − d / 2 L
∂ ln g =
−1 2
=− 1
∂d L1 − d / 2 2L
∂ ln g = − 2 ∂T T
σg = g
σ (
L
)2
+
σ (
d
)2
+
( 2σ T
)2
L
2L
T
[注意事项]
1.摆长的测定中,摆长约为 1 米,钢卷尺与悬线尽量平行,尽量接近,眼睛与摆球 最低点平行,视线与尺垂直,以避免误差。
利用单摆实验测重力加速度时,一般采用某一个固定摆长 L,在多次精密地测量出
单摆的周期 T 后,代入(2-4)式,即可求得当地的重力加速度 g。
由式(2-3)可知,T2 和 L 之间具有线性关系, 4π 2 为其斜率,如对于各种不同的 g
摆长测出各自对应的周期,则可利用 T2—L 图线的斜率求出重力加速度 g。
单摆测重力加速度实验报告
![单摆测重力加速度实验报告](https://img.taocdn.com/s3/m/05e43f035b8102d276a20029bd64783e09127de3.png)
单摆测重力加速度实验报告实验背景:重力是地球和其他星体互相作用的万有引力,是物理学中最基本的力之一。
本实验通过单摆的运动来测量地球表面上的重力加速度。
实验材料:1.单摆(包括球体、棒杆、支架)2.计时器3.直尺4.天平实验原理:单摆是由一个质量为m的球体通过一根质量可忽略不计的细长钢丝与一根不可摆动的垂直杆相连接而成。
当球体被拉离静止位置放开时,它就会在重力的作用下摆动。
球体运动的周期与重力加速度g及摆长L有关系,公式如下所示:T=2π√(L/g)实验步骤:1.使用天平测量球体、棒杆等物体的质量。
2.将单摆固定在支架上,并测量摆的长度L。
3.将球体离开静止位置,利用计时器测量单摆运动的周期T。
4.重复步骤3多次,取平均值。
5.根据公式计算重力加速度g的数值。
实验结果:利用上述公式和实验结果可以计算出重力加速度g的数值。
下列是三个实验结果:实验结果一:摆长L为0.8m,周期T为1.97s,通过计算得到的重力加速度g为9.885m/s²。
实验结果二:摆长L为1m,周期T为2.18s,通过计算得到的重力加速度g 为9.581m/s²。
实验结果三:摆长L为0.6m,周期T为1.69s,通过计算得到的重力加速度g为10.827m/s²。
结论:通过上述实验可以发现,重力加速度在不同的条件下计算出的数值可能会有一定的误差,但是误差范围不会太大。
我们还可以利用单摆测量其他的物理量,比如空气密度、钢丝直径等。
总之,单摆测重力加速度实验是一项非常有价值的实验,可以帮助我们更好地理解万有引力和运动规律。
此外,单摆测重力加速度实验不仅在理论上有很大的意义,在实际应用中也有着广泛的应用。
比如,无人机、火箭等飞行器的设计和控制,加载测试等领域都需要精确测量地球表面上的重力加速度。
需要注意的是,在进行单摆测重力加速度实验时,我们需要注意许多细节。
例如,球体的质量需要精确测量,摆长需要准确测量,让摆的振幅尽量小,以避免摆的受阻力的影响等等。
利用单摆测量重力加速度实验报告
![利用单摆测量重力加速度实验报告](https://img.taocdn.com/s3/m/211b3775842458fb770bf78a6529647d2628345b.png)
利用单摆测量重力加速度实验报告实验目的:利用单摆测量重力加速度。
实验原理:单摆是由一根长线和一质点组成的物理实验装置,质点可以沿线作周期性振动。
单摆周期的频率与重力加速度之间有一定的关系,可以利用单摆的周期来间接测量重力加速度。
实验仪器和材料:1. 单摆装置:一根线,一质点;2. 计时器;3. 直尺;4. 重力加速度测量仪器(如万能计)。
实验步骤:1. 将单摆装置悬挂在一个固定的支撑物上,确保单摆可以以自由振动的方式进行摆动。
2. 使用直尺测量单摆的长度(为便于计算,最好使用整数长度)。
3. 将质点从静止位置拉至较大摆角,然后释放,观察质点的振动情况。
4. 使用计时器测量质点完成一次往返的时间t。
重复多次测量,取平均值作为周期的测量值T。
5. 根据周期T和单摆的长度L,使用以下公式计算重力加速度g:g = 4π²L / T²。
实验数据处理:1. 根据实际测量得到的数据计算得到重力加速度的值。
2. 计算不确定度,包括随机误差和系统误差的考虑。
3. 进一步讨论实验误差的来源和影响。
实验结果分析:1. 将实验得到的重力加速度值与标准值进行比较,评估实验误差的大小。
2. 探讨实验过程中可能存在的误差源,并提出改进方法。
3. 讨论实验结果在不同条件下的变化情况,分析结果的合理性。
实验结论:通过单摆测量重力加速度的实验,我们得到了重力加速度的估计值。
实验结果与标准值相比较,误差较小。
实验过程中存在的误差主要来自于计时器的精度和单摆的摆动受到外界条件的影响。
改进方法可以采用更精准的计时器和减小外界条件对单摆摆动的影响。
利用单摆测量重力加速度实验报告
![利用单摆测量重力加速度实验报告](https://img.taocdn.com/s3/m/432d9447482fb4daa58d4bde.png)
利用单摆测量重力加速度实验报告This manuscript was revised on November 28, 2020一、实验目的利用单摆来测量重力加速度二、实验原理单摆在摆角小于10°时的振动是简谐运动,其固有周期为T=2π ,由此可得g= 。
据此,只要测出摆长l和周期T,即可计算出当地的重力加速度值。
由此通过测量周期T,摆长l求重力加速度三、实验设备及工具铁架台(带铁夹),中心有孔的金属小球,约1m长的细线,米尺,游标卡尺(选用),秒表等。
四、实验内容及原始数据(一)实验内容1.在细线的一端打一个比小球上的孔径稍大些的结,将细线穿过球上的小孔,制成一个单摆。
2.将铁夹固定在铁架台的上端,铁架台放在实验桌边,使铁夹伸到桌面以外,把做好的单摆固定在铁夹上,使摆球自由下垂。
3.测量单摆的摆长l:用游标卡尺测出摆球直径2r,再用米尺测出从悬点至小球上端的悬线长l',则摆长l=l'+r。
4.把单摆从平衡位置拉开一个小角度(不大于10°),使单摆在竖直平面内摆动,用秒表测量单摆完成全振动30至50次所用的时间,求出完成一次全振动所用的平均时间,这就是单摆的周期T。
5.将测出的摆长l和周期T代入公式g= 求出重力加速度g的值。
(二)原始数据1.用游标卡尺测量钢球直径2rn 1 2 3 4 5 6 直径2r(cm) 1.712 1.712 1.692 1.692 1.712 1.7222.用米尺测量悬线长l'n 1 2 3 4 5 6 悬线长l' (cm) 91.90 91.90 91.91 91.90 91.88 91.903.用秒表测量摆动50个周期用时为1’34’’84=94.84’’五、实验数据处理及结果(数据表格、现象等)1.钢球直径平均值2r=(1.712+1.712+1.692+1.692+1.712+1.722)÷6=1.707(cm)2.悬线长平均值l'=(91.90+91.90+91.91+91.90+91.88+91.90)÷6=91.898(cm)3.摆长l=l'+r=91.898+1.707=93.605(cm)4.求出完成一次全振动所用的平均时间,即单摆的周期TT=94.84÷50=1.8968(s)5.计算g将测出的摆长l和周期T代入公式g= =10.27六、实验结果分析(实验现象分析、实验中存在问题的讨论)误差分析:为什么所得g=10.27大于标准值1.振动次数:可能是振动次数的有问题2.摆长测量:可能是摆长测量偏大3.秒表使用:可能是开表晚了。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验八:用单摆测定重力加速度【实验播放】1、实验目的:(1)明确用单摆测定重力加速度的原理与方法;(2)学会用单摆测当地的重力加速度,学会减小实验误差的方法;(3)知道如何选择实验器材,能熟练地使用秒表。
2、实验原理:物理学中的单摆是在一根细线的一端系一小球,另一端固定于悬点,若细线的伸长与质量可忽略,且小球的直径远小于线长,这样的装置称为单摆。
单摆在偏角很小(不超过10°)时,可看成是简谐运动,其固有周期为T =2πg L,由此可得g =2T L 24 ;据此,通过实验方法测得摆长L 与周期T ,即可计算得到当地的重力加速度的值。
由于一般单摆的周期都不是太长,摆长在1m 左右的单摆,其周期大约2s ,依靠人为操作的秒表来测量单摆振动一个周期的时间,其误差必然较大,所以,我们不是测量单摆振动一个周期的时间,而是测量几十个周期的总时间,再来利用平均值确定一个周期的时间,从而减小由于人为操作而产生的误差。
3、实验器材铁架台与铁夹、金属小球(球上有一通过球心的小孔、秒表、细线(长约1m)、刻度尺(最小刻度为mm)。
4、实验步骤(1)让细线穿过球上的小孔,在细线一端打一个稍一些的线结,制成一个单摆。
(2)将小铁夹固定在铁架台的上端,将铁架台放在实验桌边,使铁夹伸出桌面之外,然后将单摆的上端固定在铁架台的上端,使摆球自然下垂,在实验桌边缘正对摆球(或摆线)处做上记号,如图所示,实验时以摆球通过此标志为准。
(3)用刻度尺测量单摆的摆长(摆线静止时从悬点到球心的距离)。
(4)将单摆从平衡位置拉开一小角度,再释放小球,当小球摆动稳定后,过最低位置(即标志处)时,用秒表开始计时,测量单摆全振动30次(或50次)的时间,求出单摆一次全振动的时间,即单摆振动的周期。
(5)改变摆长,反复测量3次,算出周期T及测出的摆长L,将每次实验数据填入实验记录表格中。
5、数据处理(1)实验数据记录(2)方法一(公式法):将实验数据代入公式g=2T L4 ,求出每次重力加速度的值,然后求g的平均值,即为本地的重力加速度。
方法二(图象法):利用实验中的数据进行l—T2图像处理,从单摆的周期公式T=2πgL知道,当重力加速度g一定时,单摆的摆动的周期T2跟摆长l的成正比,将实验的数据作相应的转换,即算出T2,将其数据点描绘到l—T2图像中去,则楞通过图像的斜率求出重力加速度的值。
(3)将测得的重力加速度与当地重力加速度的数值进行比较,分析产生误差的可能原因。
6、注意事项(1)选择材料时应选择细而不易伸长的线,长度一般不应短于1m,小球应选密度较大的金属球,直径应较小,一般不超过2cm。
(2)单摆悬线的上端不可随意卷在铁夹的杆上,应夹紧在铁夹中,以免摆动发生摆线下滑,摆长改变。
(3)注意摆动时控制摆线偏离竖直方向不超过10°。
(4)摆球摆动时,要使之保持在同一竖直面内,不要形成圆锥摆,检查摆是否在同一个平面内应从侧面观察摆的摆动情况。
(5)计算单摆的振动次数时,应以摆球通过最低位置时开始计时,以后摆球应从同一方向通过做有标志的最低点时计数,并且采用倒数到0开始记时计数的方法,即…4、3、2、1、0,在数到“0”时同时按下秒表开始计时计数。
(6)要测出30到50次全振动的时间,取平均值的办法求周期。
7、误差分析(1)本实验系统误差主要来源于单摆模型本身是否符合要求。
即:悬点是否固定,球、线是否符合要求,振动是圆锥摆还是同一竖直平面内的摆动以及测量摆长是否出现失误等等,只要注意到了这些,就可使系统误差减小到远远小于偶然误差的程度。
(2)本实验的偶然误差主要来自于时间(即单摆的周期)的测量上,为了准确,应采取倒计时的方法测量全振动的次数,同时应多次振动次数。
(3)本次实验中进行长度(摆线长、摆球直径)的测量时读数读到毫米位即可,秒表读数读到秒的十分位即可。
【试题解析】例1 在用单摆测定重力加速度实验中:(1)为了比较准确地测量出当地的重力加速度值,应选用下列所给器材中的哪些?将你所选用的器材前的字母填在题后的横线上.A.长lm左右的细绳;B.长30cm左右的细绳;C.直径2cm的铅球;D.直径2cm的铁球;E.秒表;F.时钟;G.分度值是lcm的直尺;H.分度值是lmm的直尺;所选器材是。
(2)实验时对摆线偏离竖直线的要求是;理由是解析(1)所选器材为A、C、E、H.(2)偏角要求小于10°。
根据本实验的原理:振动的单摆,当摆角小于10°时,其振动周期与摆长的平方根成正比,与重力加速度的平方根成反比,而与偏角的大小(振幅)、摆球的质量无关,周期公式为:T=2πgL,经变换得g=2T L24 .因此,在实验中只要测出单摆的摆长L与振动周期T,就可以求出当地的重力加速度g的值,本实验的目的是测出g的值,而不是验证单摆的振动规律.如果在实验中选用较短的摆线,既会增大摆长的测量误差,又不易于保证偏角θ小于10°。
摆线较长,摆角满足小于10°的要求时,单摆的振动缓慢,方便计数与计时.所以应选A。
摆球应尽量选重的,所以选C。
因为单摆振动周期T的测量误差对重力加速度g的影响较大,所以计时工具应选精确度高一些的秒表.摆长的测量误差同样对g 的影响较大,也应选精度较高的最小刻度为毫米的直尺,即选H。
(2)因为当摆球振动时,球所受的回复力F=mg sinθ,只有当θ<10°时,sinθ≈θ,此摆才称为单摆,其振动才是简谐振动,周L的关系式才成立。
期T=2πg例2 在做“用单摆测定重力加速度”的实验时,用摆长L与周期T计算重力加速度的公式是g= 。
如果已知摆球直径为2.00cm,用刻度尺的零刻线对准摆线的悬点,摆线竖直下垂,如图甲所示,那么单摆摆长是。
如果测定了40次全振动的时间如图乙中秒表所示,那么秒表读数是s。
单摆的摆动周期是s.解析这是一道考查考生观察能力与刻度尺及秒表的读数方法的考题.关于秒表的读数问题,高考题中不只一次出现过,但是学生仍不会读,主要原因是不清楚分钟(短针)与秒钟(长针)之间的关系.因此此题仍具有较强的考查功能 本题答案为:g =2T L24π,0.8740m 或87.40cm ,75.2s ,1.88s .单摆的摆长应等于测量值88.40cm 减去摆球的半径lcm ,得到87.40cm 。
例3 某同学在用单摆测定重力加速度的实验中,测量5种不同摆长情况下单摆的振动周期,记录表格如下:以L 为横坐标,T 2为纵坐标,作出T 2—L 图线,并利用此图线求重力加速度.解析 由单摆周期公式T =2πg L可得T 2=L g ⋅24π,所以T 2—L 图线是过坐标原点的一条直线,直线斜率是k =g 24π,因此g =k 24π,作出图象如图所示,求得直线斜率为是k =4.00,即L (m)0.5 0.8 0.9 1.0 1.2 T (s)1.42 1.79 1.902.00 2.20 T 2(s 2) 2.023.203.614.00 4.84g=k 24π=00441432..⨯=9.86(m/s2)。
例4 一位同学用单摆做测量重力加速度的实验,他将摆挂起后,进行了如下步骤:A.测摆长l:用米尺量出摆线的长度。
B.测周期T:将摆球拉起,然后放开,在摆球某次通过最低点时,按下秒表开始计时,同时将此次通过最低点作为第一次,接着一直数到摆球第60次通过最低点时,按秒表停止计时,读出这段时间t,算出单摆周期T=t/60.C.将所测得的l与T代入单摆的周期公式,算出g,并将它作为实验的最后结果写入报告中.指出上面步骤中遗漏或错误的地方,写出该步骤的字母并加以改正.(不要求进行误差计算).解析单摆的摆长应该是悬点到球心的距离,周期应该是完成一次全振动所用的时间,最终结果应该是多次测量的平均值.据此解答如下:A改正为:要用卡尺测摆球直径d.摆长l等于摆线长加d/2.(或:用米尺测量摆长时,摆长的下端从球心算起.) B改正为:当数到摆球第60次通过最低点时,单摆只振动了59个“半周期”;所以T=t/29.5。
C .改正为:g 应测量多次,然后取g 的平均值作为实验最后结果。
(或摆长与周期测量要进行多次,并取它们的平均值为l 与T ,算出g )在分析步骤B 时,有的同学可能认为T =t /59,有的同学可能认为T =t /30,主要原因在于对在时间t 内单摆振动是经过了59个“半周期”没有获得正确的认识。
例5 将一根细线从天花板上吊下来(无法直接测量它的长度),下面悬挂一个形状不规则的物体,构成一个单摆.现在给你一个秒表、直尺,试设计用此单摆测定重力加速度的方法.解析 本实验是分组实验“用单摆测重力加速度”的实验的演变,这种类型的设计实验,在设计实验中占有较大的比重,解决的突破点是看一下原实验的实验方法在解决本实验中有何困难,然后再找出办法来突破这一难点。
用单摆测重力加速度的公式是由T =2πg L,得g =2T L 24 ,其中T 为单摆的振动周期,L 为单摆的摆长,它是指从悬点到摆球重心之间的距离.在本题中有两方面的困难:一是摆线太长,悬点太高,无法直接测量;二是悬挂的重物形状不规则,其重心难以测定,这时就需要采用其他途径.我们可以采用两次悬挂法来解决这个问题.先测出在某一摆长下的单摆的周期T 1,设此时的摆长为L 1,根据单摆的周期公式有T 1=2πg L 1,解得L 1=2214πgT 。
然后,将摆长缩短ΔL ,使摆长变为L 2,测出此时的周期为T 2,根据单摆的周期公式有T 2=2πg L 2,解得L 2=2224πg T 。
因为L 1- L 2=ΔL 。
所以 ΔL =2214π)g T -(T 22 解得 g =222124T -T L∆π所以只要测出ΔL 、T 1与T 2就可以测出当地的重力加速度g 。
【实验拓展】1.用滴水法测重力加速度例6 调节水龙头,让水一滴一滴地滴下,在水龙头的正下方放一个盘子,调整盘子的高度,使一个水滴落到盘子时恰好有另一水滴从水龙头开始下落,而空中还有一个正在下落的水滴.测出水龙头到盘子间距离为h ,再用秒表测时间。
从第一个水滴离开水龙头开始计时,到第N 个水滴落至盘中,共用时间为T ,第一个水滴落到盘子时,第二个水滴离开水龙头的距离是 ,重力加速度g = 。
解析 如图所示,用标号1,2,3分别表示第一、二、三滴水滴,水滴做自由落体运动,设每滴水从水龙头落至盘中经历时间为t 0,则第一滴水落至盘中时有h =21gt 02,此时第二滴水正在空中,它已从水龙头下落历时20t ,设此时它离开水龙头距离为h 1,有h 1=21g (20t )2=4h第一滴水落盘时:t 1= t 0,(从第一个水滴离开水龙头开始计时) 第二滴水落盘时:t 2= t 0+21t 0=212+t 0第三滴水落盘时:t 3=23t 0+21t 0=213+t 0第N 滴水落盘时:t N = 21+N t 0=T 则 t 0=12+N T,代入h =21gt 02得g =•2h (T1N +)2 答案:4h ;•2h (T1N +)2。