传热综合实验报告示例

合集下载

传热强化综合实验报告

传热强化综合实验报告

传热强化综合实验报告实验目的:本次实验旨在通过传热强化实验,探究不同条件下的传热性能,并比较不同强化措施对传热增强的效果。

实验原理:传热强化是通过改变传热体的流动状态、增加表面粗糙度或改变传热介质等手段,从而提高传热效果的一种方法。

而传热方式中的对流传热是我们关注的重点。

对流传热强化可通过增加传热流体的流速、使用导热油等传热介质、在传热表面加上某些结构等方式实现。

在本实验中,我们将通过改变流速和加入强化结构的实验装置,探究传热强化的效果。

实验步骤:1. 准备实验装置,包括传热体、传热介质供给装置、流量控制装置等。

2. 将传热体放入实验装置,并连接传热介质供给装置和流量控制装置。

3. 设置实验参数,如不同流速、不同强化结构等。

4. 打开传热介质供给装置和流量控制装置,使传热介质通过传热体,并保持一定的流速。

5. 在实验过程中记录传热介质的进出口温度差值、传热体表面温度等数据,并定期记录时间和实验参数。

6. 完成一组实验后,停止实验装置的运行,并将实验数据进行整理和记录。

实验结果:根据实验数据整理,我们得到了如下结果:(具体数据和结果展示要根据实际实验情况进行描述)1. 由实验数据观察,当流速增大时,传热效果会相应增强。

进出口温度差值和传热体表面温度差值随着流速的增加呈现正相关关系。

2. 同时,通过加入强化结构也能明显提高传热效果。

在加入强化结构后,进出口温度差值和传热体表面温度差值均较未加入强化结构时有所增加。

3. 不同的强化结构对传热性能的影响也有所差异。

我们对比了几种不同结构的传热体进行了实验,发现某种特定的结构能够在相同流速下实现更好的传热效果。

讨论与分析:通过本次实验,我们得出了流速和加入强化结构对传热性能的影响。

高流速和合适的强化结构都能提高传热效果,但不同的强化结构可能有不同的效果,因此在实际应用中需要根据具体条件选择适合的强化结构。

结论:通过传热强化综合实验,我们验证了流速和加入强化结构对传热性能的影响。

传热实训报告范本

传热实训报告范本

一、摘要本次传热实训通过实际操作和理论学习的结合,使我深入了解了传热的基本原理和应用。

在实训过程中,我掌握了传热的基本方法,学会了如何分析传热过程中的影响因素,并提高了实验操作技能。

通过本次实训,我对化工传热有了更深刻的认识,为今后的学习和工作打下了坚实的基础。

二、实训目的1. 理解传热的基本原理和规律。

2. 掌握传热实验的基本方法和步骤。

3. 培养实验操作技能,提高动手能力。

4. 分析传热过程中的影响因素,提高解决实际问题的能力。

三、实训内容1. 传热基本理论2. 传热实验设备与仪器3. 传热实验操作4. 传热实验数据分析四、实训过程1. 传热基本理论学习在实训开始前,我认真学习了传热的基本理论,包括导热、对流和辐射三种传热方式。

通过学习,我对传热的基本原理有了初步的认识。

2. 传热实验设备与仪器认识实训过程中,我详细了解了传热实验所需的设备与仪器,如电热炉、温度计、流量计、压力计等。

这些设备在传热实验中起着至关重要的作用。

3. 传热实验操作在实验老师的指导下,我按照实验步骤进行了传热实验。

具体操作如下:(1)准备实验材料:电热炉、温度计、流量计、压力计、实验样品等。

(2)安装实验设备:将电热炉、温度计、流量计、压力计等设备按照实验要求进行安装。

(3)实验过程:开启电热炉,观察实验样品的传热情况,记录温度、流量、压力等数据。

(4)实验结束:关闭电热炉,整理实验设备。

4. 传热实验数据分析在实验结束后,我根据实验数据,运用传热理论进行分析。

通过分析,我了解了实验样品在不同条件下的传热性能,并总结了实验过程中的影响因素。

五、实训收获1. 理论与实践相结合,提高了我的传热理论知识水平。

2. 学会了传热实验的基本方法和步骤,提高了实验操作技能。

3. 通过实验数据分析,提高了我的问题解决能力。

4. 对化工传热有了更深刻的认识,为今后的学习和工作打下了坚实的基础。

六、实训体会1. 重视理论知识学习,为实验操作提供理论支持。

传热比赛实验报告(共7篇)

传热比赛实验报告(共7篇)

传热比赛实验报告(共7篇)传热比赛探究性实验的案例设计传热比赛探究性实验的案例设计【教学设计理念】1、科学来源于生活,应用于生活。

新课程标准体现的教育理念之一也指出课程要回归生活。

本课的教学设计就是以学生生活为基础,以学科知识为支撑的,通过我们身边的问题,激发学生的好奇心和求知欲望,在解决生活问题的过程中获得科学知识,明白科学道理,从中体验科学探究的乐趣,意识到生活中随时随处有科学。

2、规范细节,养成良好的科学素养。

小学科学课程是以培养科学素养为宗旨的科学启蒙课程。

科学素养的形成应以学生的试验设计、认真观察、科学记录、条理表达、乐于合作、善于倾听、客观评价等能力的训练作为切入点,在每一个细节之中,逐步规范学生的学习习惯和探究习惯,以达到受用终生的目的。

【探究性活动设计】探究活动一:热是怎样在物体中传递的。

1、指明探究方向:师:有了疑问,就得有研究方法,如果老师提供给你们材料,你们能不能根据自己生活经验,设计一个实验方案?(能)如果大部分同学已经做好,我就拍手提示你好吗?下面听清要求:打开盒子,看看里面的材料,然后设计出你们的实验方案。

2、学生设计实验方案。

3、汇报实验方法:教师根据学生的汇报作补充提示。

4、学生实验探究。

师:结合刚才我们的讨论,先完善好你们的实验方案,再进行实验,并及时记录实验现象,完成实验报告单。

5、研究汇报:汇报要求:要想取得发言权,必须先对前面小组的汇报进行评价,然后才能发言,相同的内容不要重复,否则取消发言权。

6、教师小结:通过用不同的材料来进行实验,同学们发现了同一个现象:,热都是从温度高的地方传递向温度低的地方,像这样在固体中传递热的方式科学上称为传导。

(板书:传导)。

7、解释生活现象:现在,谁能解释杯子是怎样变热的?师谈话:其实,像这种传递热的现象在生活中还有很多,你能再举几个例子吗?探究活动二:物体传递热的能力相同吗?1、引出探究话题:师:刚才同学们提到了勺子,生活中的汤勺一般都是用什么材料制作的?你知道是为什么吗?2、学生解释。

传热实验报告实验现象

传热实验报告实验现象

实验时间:2021年X月X日实验地点:实验室一、实验目的1. 熟悉传热的基本原理和实验方法。

2. 了解传热过程中的实验现象,如温度变化、流量变化等。

3. 通过实验验证传热学的基本定律,如牛顿冷却定律、热传导定律等。

二、实验原理传热是指热量从高温物体传递到低温物体的过程。

传热方式主要有三种:传导、对流和辐射。

本实验主要研究传导和对流两种传热方式。

1. 传导传热:热量通过物体内部从高温部分传递到低温部分的过程。

本实验中,采用导热系数较高的金属棒进行实验。

2. 对流传热:热量通过流体(如空气、水等)的流动传递的过程。

本实验中,采用空气作为传热介质。

三、实验现象1. 传导传热现象(1)实验现象:将一端加热的金属棒置于室温环境中,观察到金属棒另一端温度逐渐升高。

(2)分析:这是由于金属棒内部热量通过传导方式传递,导致另一端温度升高。

(3)实验数据:金属棒长度L=100mm,导热系数k=45W/(m·K),加热时间t=30s,另一端温度升高ΔT=20℃。

2. 对流传热现象(1)实验现象:将加热后的金属棒放入装有空气的密闭容器中,观察到金属棒温度逐渐降低。

(2)分析:这是由于金属棒表面空气被加热,密度减小,上升;冷空气下降,形成对流,使热量传递给空气,导致金属棒温度降低。

(3)实验数据:金属棒长度L=100mm,导热系数k=45W/(m·K),加热时间t=30s,另一端温度降低ΔT=10℃。

3. 热交换器传热现象(1)实验现象:将加热后的金属棒放入热交换器中,观察到金属棒温度逐渐降低,同时热交换器中的冷却水温度逐渐升高。

(2)分析:这是由于金属棒与冷却水之间发生热交换,热量从金属棒传递给冷却水,导致金属棒温度降低,冷却水温度升高。

(3)实验数据:金属棒长度L=100mm,导热系数k=45W/(m·K),加热时间t=30s,金属棒温度降低ΔT=15℃,冷却水温度升高ΔT=5℃。

四、实验结论1. 通过实验验证了传导和对流两种传热方式的存在。

综合传热性能实验报告六根铜管

综合传热性能实验报告六根铜管

综合传热性能实验报告六根铜管一、实验目的1、掌握传热系数K的测定方法:2、了解传热系数的影响因素。

二、实验原理综合传热性能试验是将干饱和蒸汽通过一组实验铜管,管子在空气中散热而使蒸汽冷凝为水,由于铜管的外表状态及空气流动情况的不同,管子的凝水量办不同,通过单位时间凝水量的多少,可以观察和分析影响传热的诸多因素,并且可以计算出每根管子的总传热系数K值。

三、实验装置1、镰铬管2、涂黑管3、铜光管4、翅片管5、锯末保温管6、玻璃丝保温管7-12、冷凝水排放阀13、风机14、蒸汽发生器15、电源开关16、触摸屏17、蒸汽压力表18、排气阀19-24、蒸汽进入阀。

四、实验步臻1、开启电源开关,打开电热蒸汽发生器上的供汽阀(上部),然后从发生器底部的给水阀门(兼排污),往蒸汽发生器的锅炉加水,当水面达到水位计的三分之二高处时,关闭给水阀门。

2、点击触摸屏“开始加热”下方的“启动”进行加热。

综合传热实验装置打开3、打开配气管上所有阀门(或按实验需要打开其中几个阀门)和玻璃蓄水器下面的放水阀。

然后,打开供汽阀缓慢向测试管内送汽,(送汽压力略高于实验压力),预热整个实验系统,并将系统内的空气排净。

4、待蓄水器下部放水阀向外排出蒸汽一段时间后关闭全部放水阀门及排气阀预热完毕。

此时,要调节配气管底部放水阀门使其微微冒汽,以排除在胶管内和配气管中的凝水。

调节送汽压力,即可开始实验。

为防止玻璃蓄水器破坏,建议实验压力为0.02Mpa,最大不超过0.05Mpa,如果压力过大可以开启阀门18调节。

5、做自然对流实验时,将蓄水器下部的全部水阀关闭,开启实验管的蒸汽进入阀,注视蓄水器内的水位变化,待水位上升至“0”刻度水位时开始计时(如实验多根管子,只要在开始计时,记下每根蓄水器水位读数即可),实验正式开始。

凝结水水位达到一定高度时,记下供汽时间、管道温度和凝结水量。

6、如要进行强迫对流实验,放掉积存在蓄水器及管路中的水,开动风机对被试管进行强迫通风(风机可移动)。

传热实验报告范文

传热实验报告范文

一、实验目的1. 了解传热的基本原理和传热过程。

2. 熟悉传热实验装置的结构和操作方法。

3. 通过实验,测定传热系数,分析影响传热效果的因素。

4. 培养实验操作技能和数据分析能力。

二、实验原理传热是指热量从高温物体传递到低温物体的过程。

传热方式主要有三种:导热、对流和辐射。

本实验主要研究导热和对流传热。

1. 导热:热量通过固体物质从高温部分传递到低温部分的过程。

其基本原理为热传导定律,即热量在单位时间内通过单位面积,沿着温度梯度方向传递的速率与温度梯度的乘积成正比。

2. 对流:热量通过流体(气体或液体)的流动而传递的过程。

其基本原理为牛顿冷却定律,即流体与固体表面之间的热交换速率与流体与固体表面的温度差成正比。

三、实验装置与仪器1. 实验装置:传热实验装置包括加热器、温度计、流量计、实验管等。

2. 实验仪器:温度计、流量计、秒表、游标卡尺、电子天平等。

四、实验步骤1. 准备工作:检查实验装置是否完好,调节加热器功率,预热实验管。

2. 实验数据记录:1. 测量实验管的长度、直径和厚度。

2. 测量实验管两端的温度,计算温度差。

3. 调节流量计,控制流体流量。

4. 记录实验数据,包括时间、温度、流量等。

3. 实验结束:关闭加热器,停止实验。

五、实验结果与分析1. 实验数据:| 时间(min) | 流体温度(℃) | 温度差(℃) | 流量(L/min) || :----------: | :------------: | :----------: | :------------: || 0 | 20.0 | 10.0 | 1.0 || 5 | 30.0 | 20.0 | 1.0 || 10 | 40.0 | 30.0 | 1.0 || 15 | 50.0 | 40.0 | 1.0 |2. 结果分析:根据实验数据,绘制温度-时间曲线。

可以看出,随着时间推移,流体温度逐渐升高,温度差也逐渐增大。

1. 影响传热效果的因素:1. 流体流量:流体流量越大,传热效果越好。

综合传热实验报告

综合传热实验报告

综合传热实验报告传热学实验报告一、实验目的1、通过实验熟悉热传导实验;2、实验运用载入形式的均匀热流,考察传热过程中的热传导系数的数值;3、掌握恒定温度差的传热过程,并分析热传导系数的影响。

二、实验原理当一块物体介质之间存在温度差的时候,它们之间会发生热传递,应用热传形式的方式研究它们之间的热传导系数。

热传导的形式有很多种,但是本实验中采用的是载入形式的均匀热流。

在此形式的热传方式中,介质之间的温度差也是恒定的,传热过程中的物体质量和热容量也被忽略,只考虑物体介质之间的热流,这样就可以简化传热过程的模型,从而得出它们之间的热传导系数。

三、实验设备实验中使用的设备主要是:加热片、铜片、温度计、加热源、电阻表等。

四、实验步骤1、将加热片和铜片装入实验装置中,并将它们的温度设置为相同的温度。

2、将加热源的电流调到一个基本值,并从电阻表中测量出来的电阻值。

3、记录下实验装置中两片间的温度差,然后增加加热源的电流,再次记录下实验装置中两片间的温度差,如此循环,直到记录下所有的温度差数据。

4、根据数据计算出两片间的热传导系数,并将计算结果与理论值进行比较,分析出热传导系数的变化过程。

五、实验数据加热电流:0.1A~3A温差(℃):0.15~3.45六、实验结果根据所得的实验数据计算,两片之间的热传导系数为:K=0.064 W/(m·K)七、实验讨论比较理论计算出来的热传导系数(K=0.066 W/(m·K)),可以看到实验得出的热传导系数与理论值有一定的差异,这可能因为实验时的不确定性所致。

八、结论根据本次实验,可以得出两片之间的热传导系数为K=0.064W/(m·K),与理论值有一定的差异,可能是实验不确定性所致,可以通过进一步的实验,对热传导系数进行准确的测定。

综合传热实验报告

综合传热实验报告

综合传热实验报告
综合传热是指在一个系统内,同时存在传导、传热和对流传热的现象。

为了深入了解这一过程,我们进行了综合传热实验。

实验中,我们采用了传热水槽和多个传热器件,如导热棒、散热片等。

首先,我们将传热器件放入传热水槽内,通过调节水温和水流速度来控制传热过程中的对流传热。

同时,我们也使用温度计和红外线测温仪来测量传热器件表面温度,以了解传热过程中的传导和辐射传热。

在实验中,我们观察到不同传热器件的传热效率存在差异。

例如,导热棒的传热效率比散热片高,这是因为导热棒具有更好的导热性能,能够更快地将热量传递到周围环境中。

此外,我们也发现传热效率与水温和水流速度有关,当水温或水流速度增加时,传热效率也会相应提高。

通过本次实验,我们深入了解了综合传热的过程,并了解到了不同传热器件的特点和传热效率的影响因素。

这对于工程应用中的传热设计和优化具有重要意义。

传热综合实验报告示例

传热综合实验报告示例

实验2 传热综合实验一、实验目的⒈ 通过对空气—水蒸气简单套管换热器的实验研究,掌握对流传热系数的测定方法,加深对其概念和影响因素的理解。

并应用线性回归分析方法,确定关联式Nu=ARe m Pr 0.4中常数A 、m 的值。

⒉ 通过对管程内部插有螺旋线圈的空气—水蒸气强化套管换热器的实验研究,测定其准数关联式Nu=BRe m 中常数B 、m 的值和强化比Nu/Nu 0,了解强化传热的基本理论和基本方式。

⒊ 了解套管换热器的管内压降和Nu 之间的关系。

⒋ 通过对几种各具特点、不同形式的热电偶线路的实验研究,掌握热电偶的基本理论以及第三导线、补偿导线的概念,了解热电偶正确的使用方法。

二、 实验内容与要求三、实验原理实验2-1 普通套管换热器传热系数及其准数关联式的测定i αp ∆⒈ 对流传热系数的测定对流传热系数可以根据牛顿冷却定律,用实验来测定。

因为<<,所以传热管内的对流传热系数热冷流体间的总传热系数 (W/m 2·℃)(2-1)式中:—管内流体对流传热系数,W/(m 2·℃);Q i —管内传热速率,W ; S i —管内换热面积,m 2;—对数平均温差,℃。

对数平均温差由下式确定:(2-2)式中:t i1,t i2—冷流体的入口、出口温度,℃;t w —壁面平均温度,℃;因为换热器内管为紫铜管,其导热系数很大,且管壁很薄,故认为内壁温度、外壁温度和壁面平均温度近似相等,用t w 来表示,由于管外使用蒸汽,近似等于热流体的平均温度。

管内换热面积:(2-3)式中:d i —内管管内径,m ;L i —传热管测量段的实际长度,m 。

由热量衡算式:(2-4)其中质量流量由下式求得:(2-5)式中:V i —冷流体在套管内的平均体积流量,m 3 / h ; c pi —冷流体的定压比热,kJ / (kg ·℃); ρi —冷流体的密度,kg /m 3。

i αi αi αo α≈i α()i m i s t Q K ⨯∆=/im ii S t Q ⨯∆≈αi αmit ∆)()(ln )()(2121i w i wi w i w mi t t t t t t t t t -----=∆ii i L d S π=)(12i i pi i i t t c W Q -=3600ii i V W ρ=c pi 和ρi 可根据定性温度t m 查得,为冷流体进出口平均温度。

物体的传热实验报告(3篇)

物体的传热实验报告(3篇)

第1篇一、实验目的1. 理解和掌握热传导、对流和辐射三种传热方式的基本原理。

2. 通过实验验证不同材料、不同条件下物体的传热效率。

3. 分析影响物体传热效率的因素,如材料的热导率、物体的形状、环境温度等。

二、实验原理物体的传热主要有三种方式:热传导、对流和辐射。

1. 热传导:热量通过物体内部的微观粒子(如原子、分子)的振动和碰撞传递。

其传热速率与物体的热导率、温度梯度、物体的截面积和传热距离有关。

2. 对流:热量通过流体(如液体、气体)的流动传递。

其传热速率与流体的流速、温度差、流体的热导率、物体的形状和截面积有关。

3. 辐射:热量通过电磁波的形式传递。

其传热速率与物体的温度、表面积、辐射系数、物体表面的发射率、周围环境的辐射强度和距离的平方有关。

三、实验材料与仪器1. 实验材料:金属棒、铜棒、铝棒、塑料棒、水、酒精、盐、温度计、计时器、支架、加热器等。

2. 实验仪器:电热板、热电偶、数字温度计、数据采集器、计算机等。

四、实验步骤1. 热传导实验:- 将金属棒、铜棒、铝棒和塑料棒分别置于支架上。

- 在一端加热金属棒,另一端用温度计测量温度。

- 记录不同材料的温度变化,计算热传导速率。

2. 对流实验:- 将水加热至一定温度,倒入烧杯中。

- 在水中放入金属棒,用温度计测量棒上不同位置的温度。

- 记录温度变化,计算对流速率。

3. 辐射实验:- 将电热板置于支架上,调整温度。

- 在一定距离处放置温度计,测量温度。

- 记录不同温度下的温度变化,计算辐射速率。

五、实验结果与分析1. 热传导实验:- 金属棒的热传导速率高于塑料棒,说明金属的热导率较高。

- 铜棒的热传导速率高于铝棒,说明铜的热导率较高。

2. 对流实验:- 水的对流速率较快,说明水的流动性较好。

- 金属棒在不同位置的温度变化较大,说明对流在金属棒上起主要作用。

3. 辐射实验:- 电热板温度越高,辐射速率越快。

- 辐射速率与距离的平方成反比。

六、实验结论1. 物体的传热方式主要有热传导、对流和辐射三种。

传热实验报告

传热实验报告

传热实验报告
实验目的:
本实验旨在研究和探究传热这一物理现象,在不同条件下测量传热速率,并分析传热的规律。

实验原理:
传热是物体之间或物体内部将热量从高温区域传递到低温区域的过程。

传热可以通过三种不同的方式进行:导热、对流和辐射。

实验材料:
- 保温杯
- 温度计
- 热源(例如加热器)
- 计时器
- 热导率试样(金属、玻璃、塑料等)
实验步骤:
1. 将实验室温度调至恒定温度,以确保实验的可重复性和精确性。

2. 将保温杯的内部涂上保温材料,并将热导率试样放入保温杯中。

3. 将温度计插入试样中,并记录试样的初始温度。

4. 将热源放在保温杯的一侧,并开始计时。

5. 每隔一段时间(例如1分钟),测量并记录试样的温度。

6. 在测量过程中,保持热源保持恒定温度,并确保保温杯周围没有其他热源或冷源的干扰。

7. 当试样温度稳定时,停止计时并记录试样的稳定温度。

8. 计算不同时间点的传热速率,并绘制传热速率随时间变化的曲线。

实验结果:
根据实验数据,可以得出传热速率随时间的变化曲线。

根据实验数据的变化趋势,可以推断出传热的规律,例如传热速率随时间的增加而减小。

实验结论:
通过此实验,我们可以了解到不同材料的传热性能以及传热速率随时间的变化规律。

同时,我们也可以通过此实验来验证和探究传热的基本原理和规律。

此外,能有效利用传热技术解决实际问题,提高能源利用效率。

传热实验实验报告【范本模板】

传热实验实验报告【范本模板】

姓名院 专业 班 年 月 日实验内容 指导教师 一、 实验名称:传热实验二、实验目的:1.熟悉套管换热器的结构;2。

测定出K 、α,整理出e R N -u 的关系式,求出m A 、.三、实验原理:本实验有套管换热器4套,列管式换热器4套,首先介绍套管换热器.套管换热器管间进饱和蒸汽,冷凝放热以加热管内的空气,实验设备如图2-2-5—1(1)所示。

传热方式为:冷凝—传导—对流 1、传热系数可用下式计算: ]/[2m k m W t A q K m⋅∆⋅=(1)图2—2-5—1(1) 套管换热器示意图传热实验姓名院 专业 班 年 月 日实验内容 指导教师式中:q-—传热速率[W] A-—传热面积[m 2] △t m —传热平均温差[K ]○,1传热速率q 用下式计算:])[(12W t t C V q p S -=ρ (2) 式中:3600/h S V V =-—空气流量[m 3/s]V h —-空气流量[m 3/h]ρ——空气密度[kg/m 3],以下式计算:]/)[273(4645.031m kg t R p Pa ++=ρ (3)Pa ——大气压[mmHg]Rp ——空气流量计前表压[mmHg] t 1——空气进换热器前的温度[℃]Cp-—空气比热[K kg J ⋅/],查表或用下式计算:]/[04.01009K kg J t C m p ⋅+= (4) t m =(t 1+t 2)/2—-空气进出换热器温度的平均值(℃) t 2-—空气出口温度[℃]②传热平均面积A m :][2m L d A m m π= (5)式中:d m =传热管平均直径[m ]L —传热管有效长度[m ]③传热平均温度差△t m 用逆流对数平均温差计算:姓名院 专业 班 年 月 日实验内容 指导教师T ←——T t 1——→t 2 )(),(2211t T t t T t -=∆-=∆2121ln t t t t t m ∆∆∆-∆=∆ (6) 式中:T ——蒸汽温度[℃]2、传热膜系数(给热系数)及其关联式空气在圆形直管内作强制湍流时的传热膜系数可用下面准数关联式表示:nr m e P AR Nu = (7)式中:N u ——努塞尔特准数R e -—雷诺准数 P r ——普兰特准数A ——系数,经验值为0。

传热实验实验报告

传热实验实验报告

一、实验目的1. 了解传热的基本原理和传热过程。

2. 掌握传热系数的测定方法。

3. 通过实验验证传热方程,加深对传热学知识的理解。

二、实验原理传热是指热量从高温物体传递到低温物体的过程。

传热方式主要有三种:导热、对流和辐射。

本实验主要研究导热和对流两种传热方式。

导热是指热量在固体内部通过分子、原子的振动和迁移而传递的过程。

本实验采用热电偶法测定导热系数。

对流是指流体内部由于温度不均匀而引起的流体运动,从而使热量传递的过程。

本实验采用实验法测定对流传热系数。

传热方程为:Q = K A Δt,其中Q为传热速率,K为传热系数,A为传热面积,Δt为传热平均温差。

三、实验仪器与材料1. 实验仪器:套管换热器、热电偶、数据采集器、温度计、秒表等。

2. 实验材料:导热油、水等。

四、实验步骤1. 准备实验仪器,检查设备是否完好。

2. 将导热油倒入套管换热器中,用温度计测量进出口温度。

3. 将热电偶分别固定在套管换热器内壁和外壁,测量导热油与套管内壁、外壁的温度。

4. 记录数据,计算导热油与套管内壁、外壁的温差。

5. 根据导热油与套管内壁、外壁的温差,计算导热系数。

6. 改变导热油的流速,重复实验步骤,比较不同流速下的导热系数。

7. 将水倒入套管换热器中,用温度计测量进出口温度。

8. 将热电偶分别固定在套管换热器内壁和外壁,测量水的进出口温度。

9. 记录数据,计算水的对流传热系数。

10. 改变水的流速,重复实验步骤,比较不同流速下的对流传热系数。

五、实验结果与分析1. 导热实验结果:根据实验数据,导热油与套管内壁、外壁的温差为Δt1,导热油与套管外壁的温差为Δt2。

根据传热方程,计算导热系数K1:K1 = Q / (A Δt1)2. 对流实验结果:根据实验数据,水的进出口温度分别为t1、t2。

根据传热方程,计算对流传热系数K2:K2 = Q / (A Δt2)3. 不同流速下的导热系数和对流传热系数:通过改变导热油的流速,可以得到不同流速下的导热系数。

传热实验实验报告

传热实验实验报告

传热实验实验报告实验报告实验名称:传热实验实验目的:通过传热实验,理解热传导、热对流和热辐射的基本原理,掌握热传导情况下热传导方程的实验测量方法,了解对流传热情况下流速对传热速率的影响,掌握使用热像仪测量热辐射传热的方法。

实验器材:热传导实验装置、环境温湿度仪、热像仪、数显万用表等。

实验原理:1. 热传导实验:在传热实验装置上设置两个不同温度的传热环,通过测量传热环两端温度和时间,计算出传热区域的热传导系数。

根据热传导方程:Q = λ * A * △T / L * t其中,Q为传热速率,λ为热传导系数,A为传热区域面积,△T为传热环两端温差,L为传热区域长度,t为传热时间。

2. 热对流实验:通过传热实验装置中的风机改变对流传热情况下的流速,测量传热速率和温度的关系,进而得到对流传热的传热系数。

3. 热辐射实验:使用热像仪测量热辐射物体的辐射能力,从而得到辐射传热的传热系数。

实验步骤:1. 热传导实验:a. 在传热实验装置上设置两个传热环,分别加上不同温度的热源。

b. 开始记录传热区域两端温度和时间。

c. 根据记录的数据,计算传热区域的热传导系数。

2. 热对流实验:a. 在传热实验装置上设置风机,改变风速。

b. 记录传热区域的温度和时间。

c. 根据记录的数据,计算对流传热系数。

3. 热辐射实验:a. 使用热像仪测量热辐射物体的辐射能力。

b. 根据测量结果计算辐射传热系数。

实验结果:1. 热传导实验:根据实验数据和计算公式,计算出传热区域的热传导系数。

2. 热对流实验:根据实验数据和计算公式,得到不同风速下的对流传热系数。

3. 热辐射实验:通过热像仪测量结果,计算出热辐射传热的传热系数。

实验结论:1. 热传导实验中,热传导系数与传热区域的面积成正比,与传热区域的长度成反比,与传热时间和温差成正比。

2. 热对流实验中,对流传热系数与流速成正比。

3. 热辐射实验中,通过热像仪测量热辐射物体的辐射能力,得到热辐射传热的传热系数。

传热实验报告

传热实验报告

传热实验报告传热实验报告引言:传热是热力学的一个重要分支,研究物体内部或不同物体之间热量的传递。

在工程和科学领域中,了解传热规律对于优化设计和能源利用至关重要。

本实验旨在通过实际操作,观察和测量不同材料和条件下的传热现象,并分析实验结果。

实验一:导热实验实验目的:通过测量不同材料的导热性能,了解不同材料的导热特性。

实验步骤:1. 准备实验装置:取两块相同大小的金属板,将它们分别与两个温度计接触,然后用绝缘材料将它们隔离。

2. 将一块金属板加热至较高温度,将另一块金属板保持在常温。

3. 记录下两个温度计的读数,并计算两块金属板之间的温度差。

4. 重复实验,使用不同材料的金属板,比较它们之间的导热性能。

实验结果:通过实验我们发现,不同材料的金属板导热性能存在明显差异。

铜板导热性能最好,其次是铝板,而不锈钢板导热性能最差。

这是因为不同材料的导热系数不同,导热系数越大,材料的导热性能越好。

实验二:对流传热实验实验目的:通过观察液体在不同温度下的对流现象,了解对流传热的特点。

实验步骤:1. 准备实验装置:将一个容器中的水加热至不同温度,然后在水面上放置一块浮在水面上的金属板。

2. 观察金属板在不同温度下的运动情况,记录下金属板的运动速度和方向。

3. 重复实验,使用不同温度的水,比较对流现象的变化。

实验结果:通过实验我们发现,随着水温的升高,金属板的运动速度增加,对流现象更加明显。

这是因为水的密度随温度的升高而降低,导致冷热水之间形成了密度差,从而产生对流。

对流传热是一种高效的传热方式,可以加快热量的传递。

实验三:辐射传热实验实验目的:通过观察不同物体在不同温度下的辐射现象,了解辐射传热的特点。

实验步骤:1. 准备实验装置:将一个辐射源放置在一个封闭的容器中,然后在容器的不同位置放置不同温度的物体。

2. 观察物体表面的辐射现象,记录下不同物体之间的温度差。

3. 重复实验,使用不同温度的物体,比较辐射现象的变化。

与传热有关的实验报告

与传热有关的实验报告

与传热有关的实验报告实验名称:传热实验实验目的:通过实验探究不同材料的传热特性,了解导热系数的概念。

实验器材及材料:1. 两个相同形状的铝制热导杆2. 两个相同形状的铜制热导杆3. 三个相同形状的玻璃热导杆4. 热导计5. 温度计6. 实验台7. 热水实验步骤:1. 将两个相同形状的铝制热导杆固定在实验台上,实验台的两端分别连接热水源和热导计。

2. 将热导计和温度计浸入盛有热水的容器中,待读数稳定后记录热导计的示数和热水的温度。

3. 启动热水源,保持恒定的热水流量和温度,并记录热水的温度和热导计的示数。

4. 观察热导计示数和温度的变化情况,并记录数据。

5. 重复上述步骤1-4,分别对铜制热导杆和玻璃热导杆进行实验。

实验数据记录:实验材料时间 (s) 温度差 (℃) 热导计示数 (mW) 热导系数(k)铝制热导杆 0 20 0 060 15 20 0.33120 10 18 0.3180 5 16 0.27240 0 15 0.25铜制热导杆 0 20 0 060 15 10 0.17120 10 12 0.2180 5 14 0.23240 0 15 0.25玻璃热导杆 0 20 0 060 15 2 0.03120 10 4 0.07180 5 6 0.1240 0 7 0.12实验结果分析:根据实验数据,可以得出以下结论:1. 铝的导热性能较好,热导系数较高,导热速率较快。

2. 铜的导热性能也较好,热导系数略低于铝。

3. 玻璃的导热性能较差,热导系数明显低于铝和铜。

实验结论:不同材料的传热特性不同,导热系数是衡量材料导热性能的重要指标,导热系数越高,材料的导热性能越好,传热速率越快。

在传热过程中,材料的选择对于实际应用具有重要意义。

传热综合实验实验报告

传热综合实验实验报告

传热综合实验一、实验目的:1、 掌握传热系数K 、传热膜系数α1的测定方法,加深对其概念和影响因素的理解;2、 掌握用最小二乘法确定关联式me AR Nu =中常熟A 、指数m 的值;3、 通过对普通套管换热器和强化套管换热器的比较,了解工程上强化传热的措施;4、 掌握孔板流量计的原理;5、 掌握测温热电偶的使用方法。

二、实验原理(一)无量纲准则数对流传热准数关联式是无量纲准则数之间的方程,主要是有关Nu 、Re 、Pr 等数据组的关系。

雷诺准数μρdu =Re努赛尔特准数λαdNu =普兰特准数λμP C =Pr式中:d ——换热器内管内劲,m ;α——空气传热膜系数,W ·m -2·℃; ρ——空气密度,kg ·m -3;λ——空气的传热系数,W ·m -1·℃;p C ——空气定压比热,J ·kg -1·℃;μ——空气的动力粘度,Pa ·S 。

实验中用改变空气的流量来改变准数Re 之值。

根据定性温度计算对应的Pr 准数值。

同时由牛顿冷却定律,求出不同流速下的传热膜系数α值,进而算得Nu 准数值。

(二)对流传热准数关联式对于流体在圆形直管中作强制湍流时的对流传热系数的准数关联式可以表示成:nm C Nu Pr Re =系数C 、指数m 和n 则需由实验加以确定。

通过实验测得不同流速下孔板流量计的压差,空气的进、出口温度和换热器的壁温,根据所测的数据,经过差物性数据和计算,可求出不同流量下的Nu 和Re ,然后用线性回归方法(最小二乘法)确定关联式me AR Nu =中常数A 、m 的值。

(三)线性回归用图解法对多变量方程进行关联时,要对不同变量Re 和vPr 分别回归。

为了便于掌握这类方程的关联方法,可去n=0.4。

这样就简化成单变量方程。

两边取对数,得到直线方程Re lg lg Prlg4.0m C Nu+= 在双对数坐标系中作图,找出直线斜率,即为方程的指数m 。

传热实验实验报告

传热实验实验报告

传热实验实验报告一、实验目的。

本实验旨在通过传热实验,探究不同材料的传热特性,了解传热规律,并通过实验数据的分析,掌握传热实验的基本方法和技巧。

二、实验原理。

传热是物体内部或不同物体之间由于温度差而进行的热量传递过程。

传热方式包括传导、对流和辐射三种方式。

传导是指热量通过物质内部的分子热运动传递,对流是指热量通过流体的流动传递,而辐射是指热量通过电磁波传递。

本实验主要通过传导和对流的方式进行传热实验。

三、实验材料和仪器。

1. 实验材料,铝块、铜块、木块。

2. 实验仪器,温度计、热水槽、计时器。

四、实验步骤。

1. 将铝块、铜块和木块分别置于相同温度的热水中,浸泡一段时间使其温度均匀。

2. 将热水槽中的热水倒掉,用干净的水重新加热至相同温度。

3. 将温度计插入铝块、铜块和木块中,记录下它们的初始温度。

4. 将铝块、铜块和木块分别放入热水中,启动计时器计时。

5. 每隔一段时间记录一次铝块、铜块和木块的温度,并绘制温度-时间曲线。

五、实验数据处理与分析。

根据实验数据绘制出铝块、铜块和木块的温度-时间曲线,通过曲线的斜率和趋势分析不同材料的传热速率和传热规律。

六、实验结果与结论。

通过实验数据处理与分析,得出不同材料的传热速率和传热规律。

根据实验结果得出结论,铜块的传热速率最快,传热规律最符合理论预期;铝块次之;木块传热速率最慢,传热规律不如铜块和铝块明显。

七、实验总结。

通过本次传热实验,我们深入了解了不同材料的传热特性和传热规律,掌握了传热实验的基本方法和技巧。

同时,也加深了对传热原理的理解,为今后的实验和学习打下了坚实的基础。

八、实验感想。

本次实验让我对传热有了更深入的了解,通过实际操作和数据处理,加深了对传热原理和规律的理解。

同时,也意识到实验中的仪器使用和数据处理的重要性,这对我今后的实验操作和科研工作都具有重要的指导意义。

以上就是本次传热实验的实验报告,希望对大家有所帮助。

传热实验实验报告

传热实验实验报告

传热实验实验报告
实验名称:传热实验
实验日期:xxxx年xx月xx日
实验目的:通过传热实验,了解传热现象、传热机制及传热方式。

实验仪器:实验设备(传热实验装置)、温度计、计时器、电池和导线、测量尺、试管夹等。

实验原理:传热是物质内部能量的移动过程,包括传导、传热和对流三种方式。

本实验主要研究传导传热。

实验步骤:
1. 首先,将传热实验装置按照实验要求组装好,确保实验装置密封良好。

2. 将实验设备的传热面涂上一层热传导性能较好的涂料,以减小传热面与环境的热交换。

3. 使用测量尺测量传热面的面积,并记录下来。

4. 将试管夹固定在实验装置的传热面上,以测试不同材料的传热性能。

5. 使用温度计测量实验装置内部的温度,以及外部环境的温度,并记录下来。

6. 打开实验装置的电源,开始传热实验。

7. 通过计时器记录不同时间点传热面的温度,并记录下来。

8. 大约持续10-20分钟后,关闭电源,结束传热实验。

9. 根据实验数据计算出传热速率,并进行数据分析。

实验结果与分析:根据实验数据计算出的传热速率可以得出传热效果等指标。

根据数据分析,可以进一步研究不同材料的传热性能,并得出结论。

实验结论:通过传热实验,我们可以了解传热现象、传热机制及传热方式,并得出不同材料的传热性能以及传热速率等指标。

这些结果对于工程设计、材料选型等方面都有一定的参考价值。

化工原理实验传热实验报告

化工原理实验传热实验报告

化工原理实验传热实验报告实验名称:玻璃加热传热实验实验目的:1.了解传热的基本概念和传热方式。

2.通过实验验证导热性质和传热规律。

3.了解传热实验仪器操作。

实验仪器和材料:1.导热材料:玻璃棒、铝棒、铜棒。

2.温度计。

3.实验容器:玻璃试管。

实验原理:传热是指热量由高温物体自动传递到低温物体的过程。

传热有三种基本方式:传导、对流和辐射。

在本实验中,我们将研究导热的过程。

导热是指在物质内部,热量由高温区域通过分子的碰撞传递到低温区域的过程。

导热性质与物质的热传导系数有关,热传导系数越大,导热性能越好。

实验步骤:1.准备实验仪器和材料。

2.将玻璃棒、铝棒和铜棒分别放入烧杯中加热,使其温度升高。

3.同时用温度计分别测量烧杯中的水温和棒材的温度。

4.记录每分钟棒材温度的变化,并计算热传导速率。

5.测量完毕后,关闭加热装置,等待温度恢复到室温。

6.重复以上步骤,更换不同材料的棒材,并记录实验数据。

实验数据与结果:根据实验测得的数据,可以计算出每种不同材料的导热系数和传热速率。

通过对比不同材料的数据,可以得出导热性能较好的材料。

实验讨论与结论:通过本实验,我们可以了解到不同材料的导热性能是不同的,其中热传导系数较大的材料具有较好的导热性能。

导热系数的大小对于传热的速率有着重要的影响。

在实验过程中还发现,导热材料的初始温度与实验结果也有关系,初始温度越高,热传导速率也越大。

这是因为初始温度高的材料,在接触水温较低的容器时,热量能更快地传递到水中。

综上所述,本实验通过对导热性质的研究,使我们更好地了解了传热的基本概念和传热方式,并验证了导热性质和传热规律。

同时,也提高了我们对于化工原理的理解和实验操作能力。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验2 传热综合实验一、实验目的⒈ 通过对空气—水蒸气简单套管换热器的实验研究,掌握对流传热系数的测定方法,加深对其概念和影响因素的理解。

并应用线性回归分析方法,确定关联式Nu=ARe m Pr 0.4中常数A 、m 的值。

⒉ 通过对管程内部插有螺旋线圈的空气—水蒸气强化套管换热器的实验研究,测定其准数关联式Nu=BRe m 中常数B 、m 的值和强化比Nu/Nu 0,了解强化传热的基本理论和基本方式。

⒊ 了解套管换热器的管内压降和Nu 之间的关系。

⒋ 通过对几种各具特点、不同形式的热电偶线路的实验研究,掌握热电偶的基本理论以及第三导线、补偿导线的概念,了解热电偶正确的使用方法。

二、 实验内容与要求三、实验原理实验2-1 普通套管换热器传热系数及其准数关联式的测定i αp ∆⒈ 对流传热系数的测定对流传热系数可以根据牛顿冷却定律,用实验来测定。

因为<<,所以传热管内的对流传热系数热冷流体间的总传热系数 (W/m 2·℃)(2-1)式中:—管内流体对流传热系数,W/(m 2·℃);Q i —管内传热速率,W ; S i —管内换热面积,m 2;—对数平均温差,℃。

对数平均温差由下式确定:(2-2)式中:t i1,t i2—冷流体的入口、出口温度,℃;t w —壁面平均温度,℃;因为换热器内管为紫铜管,其导热系数很大,且管壁很薄,故认为内壁温度、外壁温度和壁面平均温度近似相等,用t w 来表示,由于管外使用蒸汽,近似等于热流体的平均温度。

管内换热面积:(2-3)式中:d i —内管管内径,m ;L i —传热管测量段的实际长度,m 。

由热量衡算式:(2-4)其中质量流量由下式求得:(2-5)式中:V i —冷流体在套管内的平均体积流量,m 3 / h ; c pi —冷流体的定压比热,kJ / (kg ·℃); ρi —冷流体的密度,kg /m 3。

i αi αi αo α≈i α()i m i s t Q K ⨯∆=/im ii S t Q ⨯∆≈αi αmi t ∆)()(ln )()(2121i w i wi w i w mi t t t t t t t t t -----=∆ii i L d S π=)(12i i pi i i t t c W Q -=3600ii i V W ρ=c pi 和ρi 可根据定性温度t m 查得,为冷流体进出口平均温度。

t i1,t i2, t w ,V i 可采取一定的测量手段得到。

⒉ 对流传热系数准数关联式的实验确定流体在管内作强制湍流,被加热状态,准数关联式的形式为. (2-6)其中:, ,物性数据λi 、c pi 、ρi 、μi 可根据定性温度t m 查得。

经过计算可知,对于管内被加热的空气,普兰特准数Pr i 变化不大,可以认为是常数,则关联式的形式简化为:(2-7)这样通过实验确定不同流量下的Re i 与,然后用线性回归方法确定A 和m 的值。

实验2-2、强化套管换热器传热系数、准数关联式及强化比的测定强化传热又被学术界称为第二代传热技术,它能减小初设计的传热面积,以减小换热器的体积和重量;提高现有换热器的换热能力;使换热器能在较低温差下工作;并且能够减少换热器的阻力以减少换热器的动力消耗,更有效地利用能源和资金。

强化传热的方法有多种,本实验装置是采用在换热器内管插入螺旋线圈的方法来强化传热的。

螺旋线圈的结构图如图2-1所示,螺旋线圈由直径3mm 以下的铜丝和钢丝按一定节距绕成。

将金属螺旋线圈插入并固定在管内,即可构成一种强化传热管。

在近壁区域,流体一面由于螺旋线圈的作用而发生旋转,一面还周期性地受到线圈的螺旋金属丝的扰动,因而可以使传热强化。

由于绕制线圈的金属丝直径很细,流体旋流强度也较弱,所以阻力较小,有利于节省能源。

螺旋线圈是以线圈节距H 与管内径d 的比值以及管壁粗糙度()为主要技术参数,且长径比是影响传热效果和阻力系数的重要因素。

科学家通过实验研究总结了形式为的经验公式,其中B 和m 的值因螺旋丝尺寸不同而不同。

在本实验中,采用实验2-1中的实验方法确定不同流量下的Re i 与,用线性回归方法可确定B 和m 的值。

单纯研究强化手段的强化效果(不考虑阻力的影响),可以用强化比的概念作为评判准则,它的形式是:,其中Nu 是强化管的努塞尔准数,Nu 0是普通管的努塞尔准数,221i i m t t t +=ni mi i A Nu Pr Re =i ii i d Nu λα=i i i i i d u μρ=Re i i pi i c λμ=Pr 4.0Pr Re i mi i A Nu =i Nu h d /2mB Nu Re =i Nu 0Nu Nu 图2-1 螺旋线圈强化管内部结构显然,强化比>1,而且它的值越大,强化效果越好。

需要说明的是,如果评判强化方式的真正效果和经济效益,则必须考虑阻力因素,阻力系数随着换热系数的增加而增加,从而导致换热性能的降低和能耗的增加,只有强化比较高,且阻力系数较小的强化方式,才是最佳的强化方法。

实验2-3、热电偶线路的形式和特点理论上,由A 、B 两种不同金属丝直接接触组成的热电偶的热电势,是两个热电极的材料和冷热两端温度的函数,即:(2-8 )热电偶回路具有特有的基本定律。

根据这些基本定律,在使用中,又有第三导线、补偿导线等特殊用法。

本实验要求从具体的实验结果数据中总结正确的结论,验证其基本规律,并熟悉热电偶线路、第三导线及补偿导线正确的联接方法。

四、实验装置⒈ 实验流程图及基本结构参数:图2-2 空气-水蒸气传热综合实验装置流程图(第1~6套)1—普通套管换热器;2—内插有螺旋线圈的强化套管换热器;3—蒸汽发生器;4—旋涡气泵; 5—旁路调节阀;6—孔板流量计;7、8、9—空气支路控制阀;10、11—蒸汽支路控制阀; 12、13—蒸汽放空口;14—传热系数分布实验套盒(本实验不使用);15—紫铜管;16—加水口;0Nu Nu ()()T t B A f T t E AB ,,,,00=202117—放水口;18—液位计;19—热点偶温度测量实验测试点接口;20—普通管测压口;21—强化管测压口1920图2-3 空气-水蒸气传热综合实验装置流程图(第7、8套)1、普通套管换热器;2、内插有螺旋线圈的强化套管换热器;3、蒸汽发生器;4、旋涡气泵;5、旁路调节阀;6、孔板流量计;8、9空气支路控制阀;10、11、蒸汽支路控制阀;12、13、蒸汽放空口;14、蒸汽上升主管路;15、加水口;16、放水口;17、液位计;18、冷凝液回流口;19—普通管测压口;20—强化管测压口如图2-2及2-3所示,实验装置的主体是两根平行的套管换热器,内管为紫铜材质,外管为不锈钢管,两端用不锈钢法兰固定。

实验的蒸汽发生釜为电加热釜,内有2根2.5kW 螺旋形电加热器,用200伏电压加热(可由固态调压器调节)。

气源选择XGB-2型旋涡气泵,使用旁路调节阀调节流量。

蒸汽空气上升管路,使用三通和球阀分别控制气体进入两个套管换热器。

空气由旋涡气泵吹出,由旁路调节阀调节,经孔板流量计,由支路控制阀选择不同的支路进入换热器。

管程蒸汽由加热釜发生后自然上升,经支路控制阀选择逆流进入换热器壳程,由另一端蒸汽出口自然喷出,达到逆流换热的效果。

空气经支路控制阀7后,进入蒸汽发生器上升主管路上的热电偶和传热系数分布实验管,可完成热电偶原理实验。

装置结构参数表2-1所示。

⒉ 实验的测量手段 ⑴ 空气流量的测量空气主管路由孔板与差压变送器和二次仪表组成空气流量计,孔板流量计为标准设计,其流量计算式为:表2-1 实验装置结构参数第①~④、⑥套实验装置:(2-9)第⑤套实验装置:(2-10)第⑦、⑧套实验装置:(2-11)式中:—孔板流量计两端压差,KPa ;R —孔板流量计两端压差,mH 2O 柱;t 0—流量计处温度(本实验装置为空气入口温度),℃; ρ0—t 0时的空气密度,kg/m 3。

由于被测管段内温度的变化,还需对体积流量进行进一步的校正:(2-12)⑵ 温度的测量实验采用铜-康铜热电偶测温,温度与热电势的关系为:T(℃)=8.5009+21.25678×E(mv) (2-13)064.21tt PV ρ∆⨯=0042.21tt RV ρ⨯=0080.23tt PV ρ∆=P ∆02732730t t V V mt i ++⨯=图2-4 传热实验中冷流体进出口温度及壁温的测量线路图⒊ 热电偶线路温度测量实验面板图观察热电偶线路的联接特点,注意毫伏电压表的铜导线、第三导线和补偿导线的联接位置以及毫伏电压表的安装位置各不相同,且各具特点。

见图2-5。

图2-5热电偶线路基本结构图五、注意事项⒈ 由于采用热电偶测温,所以实验前要检查冰桶中是否有冰水混合物共存。

检查热电偶的冷端,是否全部浸没在冰水混合物中。

⒉ 检查蒸汽加热釜中的水位是否在正常范围内。

特别是每个实验结束后,进行下一实验之前,如果发现水位过低,应及时补给水量。

⒊ 必须保证蒸汽上升管线的畅通。

即在给蒸汽加热釜电压之前,两蒸汽支路控制阀(见图2-2及2-3所示)之一必须全开。

在转换支路时,应先开启需要的支路阀,再关闭另一侧,t=0℃环境t=T 较高环境aabb且开启和关闭控制阀必须缓慢,防止管线截断或蒸汽压力过大突然喷出。

⒋必须保证空气管线的畅通。

即在接通风机电源之前,三个空气支路控制阀之一和旁路调节阀(见图2-2及2-3所示)必须全开。

在转换支路时,应先关闭风机电源,然后开启和关闭控制阀。

⒌调节流量后,应至少稳定5~10分钟后读取实验数据。

⒍实验中保持上升蒸汽量的稳定,不应改变加热电压,且保证蒸汽放空口一直有蒸汽放出。

六、报告内容⒈实验2-1的原始数据表、数据结果表(换热量、传热系数、各准数以及重要的中间计算结果)、准数关联式的回归过程、结果与具体的回归方差分析,并以其中一组数据的计算举例。

⒉实验2-2的原始数据表、数据整理表(换热量、传热系数、各准数、Nu0和强化比,还包括重要的中间计算结果)、准数关联式的回归结果。

⒊在同一双对数坐标系中绘制实验2-1、实验2-2的Nu~Re的关系图。

⒋在同一坐标系中绘制实验2-1、实验2-2的△P~Nu的关系图。

⒌对实验结果进行分析与讨论。

⒍对实验2-3的数据表,进行比较与讨论:⑴1~7号线路的结构特点和实验结果;⑵4、5号线路的结构特点和实验结果;⑶8号线路的结构特点和实验结果。

相关文档
最新文档