判定正定二次型的三种方法

合集下载

5.4_正定二次型

5.4_正定二次型

d f 正定的充要条件为: i 0, i 1,2,, n
(3) 非退化线性替换不改变二次型的正定性.
AX 证明:设正定二次型 f ( x1, x2 ,, xn ) X
经过非退化线性替换X=CY化成:
f ( x1, x2 ,, xn ) Y (CAC )Y g ( y1, y2 ,, yn )
§5.4 正定二次型
一 、正定二次型
1、定义:实二次型 f ( x1, x2 ,, xn )若对任意一组不全为零 的实数c1,c2,…cn,都有:
f (c1, c2 ,, cn ) 0
则称f 为正定二次型。
2 如,二次型 f ( x1 , x2 ,, xn ) xi 是正定的; i 1 n
又由于C可逆, 0 0 ,所以 X 0 0, Y 即 c1 , c2 ,, cn不全为0。
g (k1, k2 ,, kn ) f (c1, c2 ,, cn ) 0
g ( y1, y2 ,, yn )正定.
反之,实二次型 g ( y1, y2 ,, yn ) 可经过非退化线性替换
k k
x1 x ( x1 , x2 ,, xk ) A(1,2,, k ) 2 x k
i 1 j 1
对任意一不全为零的数 c1 , c2 ,, ck , 有:
f k (c1, c2 ,, ck ) f (c1, c2 ,, ck ,0,,0) 0
Y C -1 X
变到实二次型:f ( x1, x2 ,, xn ),
同理,若g正定,则f正定。 所以,非退化线性替换不改变二次型的正定性。
r (4) n元实二次型 f ( x1, x2 ,, xn ) 正定的充要条件为: ( f ) p n

正定二次型的判别方法

正定二次型的判别方法

正定二次型的判别方法正定二次型是指一个实数域上的二次齐次多项式,并且其对任意非零向量都有正的二次型值。

判断一个二次型是否为正定二次型,可以使用以下方法。

二次型可以表示为矩阵形式,即二次型矩阵。

设二次型为\[ q(x) = x^T A x \]x为n维列向量,A为对称矩阵。

A称为二次型矩阵。

判断一个二次型是否为正定,可以使用以下方法:1. 判断A的特征值是否全为正数。

A的特征值全为正数时,二次型为正定二次型。

证明:设A的特征值分别为λ1, λ2, ..., λn,对应的特征向量为v1, v2, ..., vn。

则对于任意非零向量x,有\[ x^T A x = x^T Q \Lambda Q^T x = (Q^T x)^T \Lambda (Q^T x) \]Q为特征向量构成的正交矩阵,Λ为对角矩阵,对角元素为特征值λ1, λ2, ..., λn。

令y=Q^T x,则有\[ x^T A x = y^T \Lambda y = \sum_{i=1}^{n} \lambda_i y_i^2 \]由于A的特征值全为正数,因此对于任意非零向量y,都有\[ \sum_{i=1}^{n} \lambda_i y_i^2 > 0 \]所以x^T A x > 0,即二次型为正定二次型。

定义:A的顺序主子式是指A的各个阶数(1到n)的主子式。

证明:设A的顺序主子式分别为detA1, detA2, ..., detAn,其中1<=i<=n。

若A的顺序主子式全为正数,则A为正定矩阵。

由于A为对称矩阵,所以A的特征值全为实数,且A可以分解为正交矩阵和对角矩阵的乘积,即\[ A = Q \Lambda Q^T \]Q为正交矩阵,Λ为对角矩阵,对角元素为A的特征值。

以上就是判断正定二次型的方法,通常直接使用特征值或顺序主子式来判断即可。

需要注意的是,当A为实对称矩阵时,其特征值都是实数,所以可以直接判断特征值是否为正数来判断正定性。

6.2 正定二次型

6.2 正定二次型

bk b1ak 1 bk b2 ak 2
正定矩阵A的k 阶顺序主子式 Ak > 0 , (k = 1, …, n). 所以, Bk > 0 , (k = 1, …, n). B 为正定矩阵.

判别二次型
的正定性.

二次型的矩阵为
二次型正定

定理 (1) A为正定矩阵;

对于实对称矩阵 A,下列命题等价:
例 设实对称矩阵A = (aij)nn 是正定矩阵. b1, b2, …, bn是 任意n个非零实数,证明: B = (aii bibj)nn为正定矩阵. 证
b12 a11 b2b1a21 Bk
b1b2 a12 b22 a22
b1bk a1k b2bk a2 k 2 2 2 b1 b2 bk | Ak | bk2 akk
t 为何值时,f 为正定二次型?

2 P | A | 4 2 t 0, 3
1 t 1 A t 4 0 1 0 2 P1 1 0, 1 t P2 4 t 2 0, t 4
2t 2
所以,当 2 t 2 时 f 为正定二次型
定义
对于 n 阶矩阵 A = (aij), 子行列式
a11 a1k Pk ak 1 akk
称为 A 的 k 阶 顺序主子式.
定理 f (X) = X TAX 是正定二次型 A 的各阶顺序主子式全大于零.

讨论下面二次型的正定性: f3 (x1, x2 , x3) = x12 + 2x22 + 3x32 + 2 x1x2 + 2x2 x3
解 作业:习题6.2 1, 3, 4, 5, 6, 7, 9, 10, 11

正定二次型和正定矩阵的概念判别二型或矩阵正定的方法

正定二次型和正定矩阵的概念判别二型或矩阵正定的方法
正定二次型和正定矩阵的概念判别二次型或矩阵正定的方法7正定二次型下页关闭正定二次型是二次型中讨论最多的类型本节结合二次型的标准型中系数给出正定二次型的概念并给出了判定二次型正定及实对称矩阵的几种方法
§7
正定二次型
★正定二次型和正定矩阵的概念 ★判别二次型或矩阵正定的方法
正定二次型是二次型中讨论最多的类型,本节 结合二次型的标准型中系数给出正定二次型的概念, 并给出了判定二次型正定及实对称矩阵的几种方法。
由实二次型的矩阵表示及对称矩阵的正定性判 别法知,判断二次型的正定性也有两种方法。 一是利用对称矩阵A 的正定性。若二次型 f 的 对称矩阵A 是正定的,则f 是正定二次型;若A 是 负定的,则 f 也是负定二次型。 二是将 f 化为标准形。若其标准形的 n 个系数 全为正,则 f 是正定的;若 f 的标准形的 n 个系数 全为负,则 f 是负定的。 由于将 f 化为标准形非常复杂,因此第二种方 法一般不用。
上页 下页 返回
三) 化二次型为标准型的方法
(1).正交变换法 1 .写出二次型对应的矩阵A . 2 .将A化为对角阵,求出正交阵P . 3 .写出标准型,且正交变换为X=PY .
(2).配方法 1.含有平方项,直接配方; 2.不含有平方项,化成含有平方项,再配方;
上页 下页 返回
四 判定矩阵与二次型为正定的方法
1.定义法: 2. 用霍尔维兹定理: A 的各阶主子式都为正, 则A 是正定的; 3. 用A的特征值: A 的特征值全为正,则A 是正定的; 4. 化A所对应的二次型为标准形,根据标准形 中的正平方项个数判断;
上页 返回
上页 下页
返回
3 1 0 例16 判定对称矩阵 A 1 3 0 正定性。 0 0 3 解 方法一 因为a11 3 0,

二次型正负定的判别方法

二次型正负定的判别方法

二次型正负定的判别方法
嘿,朋友们!今天咱来聊聊二次型正负定的判别方法,这可有意思啦!
你看啊,二次型就像是一个神秘的盒子,我们得想办法知道它里面到底是正数多还是负数多。

这就好比你去买水果,得判断这堆水果是甜的多还是酸的多呀!
那怎么判别呢?首先呢,我们可以看看它的主子式。

这就像是一个水果堆里的核心部分,如果这些核心部分都是正数,那这二次型大概率就是正定的啦,就像那堆水果大多是甜的一样。

要是主子式一会儿正一会儿负,那可就麻烦啦,就像水果有甜有酸,让人捉摸不透。

再说说正定的情况呀,那简直就是阳光明媚啊!一切都那么清晰明确,让人心里踏实。

就好像你走在一条笔直的大道上,知道自己该往哪儿走,不用担心迷路。

要是负定呢,那就像是走进了一片迷雾森林,感觉处处都不太对劲。

但咱也别怕呀,只要掌握了方法,还是能找到出路的。

还有啊,我们可以通过特征值来判别。

特征值就像是二次型的性格特点,正数特征值多,那就是正定,负数特征值多,自然就是负定咯。

这多形象呀!
你想想看,如果一个二次型的特征值都很大很正,那不就说明它充满了正能量嘛!反之,如果都是负的,那可就充满了负能量啦。

判别二次型正负定真的很重要哦,它在好多地方都有用呢!比如在数学研究中,就像一把钥匙,能打开很多知识的大门。

在实际应用中,也能帮我们解决很多问题,难道不是吗?
所以呀,大家可得好好掌握这个判别方法,就像掌握一门绝世武功一样。

当你能熟练地判别二次型的正负定,你就会觉得自己超级厉害,仿佛拥有了全世界!别小看它哦,它能给你带来很多惊喜和收获呢!这就是二次型正负定的判别方法,有趣又实用,大家可别错过呀!。

浅谈正定二次型的判定方法

浅谈正定二次型的判定方法

浅谈正定二次型的判定方法
正定二次型是最常见的凸二次规划。

由于其凸性,正定二次型可以使用有限步数且算
法复杂度较低、单调性强等优势,常用于金融、经济、控制、管理科学和工程技术等领域
的优化计算。

针对正定二次型,学术界提出了多种判定方法。

其中,Kuhn-Tucker 条件是早期提出的一种判定方法。

该方法通过引入拉格朗日函数,结合梯度、Hessian矩阵等分析查找,得出非空解的判定条件,可以有效的判定正定二次
型的有界性。

此外,亦可采用项变换方法。

该方法采用数学变换,重新表达约束式,进而利用拉伸Hessian矩阵得出判定条件,进而判定正定二次型有界性是否成立。

研究显示,利用该方
法明显可以缩短优化计算所需要的时间与计算复杂度。

再者,如果约束条件中不带有不等式,则可以采用图论判定方法,该方法可以巧妙的
将正定二次型有界性的判定转化为图论最优路径问题,从而可以综合利用BFS/DFS等搜索
法得出结论,又不用考虑不等式条件的问题。

最后,学术界最近提出了几类新的判定方法,如s-lemma、解空间判定等,它们以不
同的数学思想对正定二次型有界性建模,具有较高的计算效率和判定结果准确性。

相比现
有的判定方法,这些新的方法可以有效的降低复杂度,在一定程度上提高判定的准确性。

综上所述,为了确定正定二次型是否有界,已有多项判定方法可供选择。

诸如Kuhn-Tucker 条件、项变换方法、图论判定以及s-lemma、解空间判定等,都可以在不同领域结合实际应用进行深入研究,以精确判定正定二次型的有界性。

二次型正定的充分必要条件与证明

二次型正定的充分必要条件与证明

二次型正定的充分必要条件与证明引言二次型是数学中的重要概念,它在很多领域都有广泛的应用。

而我们常常关心的是二次型的正定性,也就是它的取值范围是否始终大于零。

本文将探讨二次型正定的充分必要条件,并给出相应的证明。

二次型的定义首先,我们需要明确二次型的定义。

给定一个n维向量x,我们定义二次型为:[Q(x) = x^TAx]其中A是一个n×n的实对称矩阵。

二次型正定的定义接下来,我们来定义二次型正定的概念。

对于任意非零向量x,如果二次型[Q(x)]始终大于零,那么我们称该二次型为正定的。

即:[Q(x) > 0, x ]二次型正定的充分必要条件现在我们来探讨二次型正定的充分必要条件。

通过研究,我们可以得出以下结论:充分条件如果矩阵A是一个正定矩阵,那么对应的二次型[Q(x) = x^TAx]是正定的。

证明:我们需要证明对于任意非零向量x,[Q(x) > 0]。

首先,由于A是一个正定矩阵,所以存在一个正交矩阵P,使得[A = P^TDP],其中D是一个对角矩阵,对角线上的元素都大于零。

将[x = Py]代入[Q(x) = x^TAx]中,得到[Q(x) = (Py)^TA(Py) = y T(P TAP)y =y^T(Dy)]。

由于D是一个对角矩阵,对角线上的元素都大于零,所以[y^T(Dy) > 0]。

因此,我们证明了对于任意非零向量x,[Q(x) > 0],也就证明了二次型[Q(x)]是正定的。

必要条件如果二次型[Q(x)]是正定的,那么矩阵A是一个正定矩阵。

证明:我们需要证明如果对于任意非零向量x,[Q(x) > 0],那么矩阵A是一个正定矩阵。

假设存在一个非零向量y,使得[y^TAy ]。

我们可以构造一个非零向量x,使得[Q(x) = x^TAx = y^TAy ],这与[Q(x)]是正定的相矛盾。

因此,我们证明了如果二次型[Q(x)]是正定的,那么矩阵A是一个正定矩阵。

数学学年论文毕业论文正定二次型的判断及应用

数学学年论文毕业论文正定二次型的判断及应用

数学学年论文毕业论文正定二次型的判断及应用正定二次型的判断及应用摘要:在二次型中,正定二次型占有特殊的地位,本文总结了正定二次型的一些判断方法及其在证明不等式与极值问题中的应用。

关键词:正定二次型正定阵顺序主子式一、正定二次型的判断: 定理1、实二次型)(),,,(21A A AX X x x x f n =''= 是正定二次型的充要条件是它的正惯性指数等于n证明:设实二次型AXX x x x f n '=),,,(21 经线形替换X=PY 化为标准形222211nn y d y d y d f +++=)1(其中.,,2,1,n i R d i=∈由于p为可逆矩阵,所以n x x x ,,,21 不全为零时ny y y ,,,21 也不全为零,反之亦然.)(?如果f是正定二次型,那么当n x x x ,,,21 不全为零,即n y y y ,,,21 不全为零时,有2222211>+++=n n y d y d y d f)2(若有某个),1(n i d i ≤≤比方说.0≤n d 则对1,0121=====-n n y y y y 这组不全为零的数,代入)1(式后得.0≤=n d f 这与f是正定二次型矛盾.因此,必有),,2,1.(0n i d i =>即f的正惯性指数等于n )(?如果f的正惯性指数等于,n 则),,2,1(,0n i d i=>于是当n x x x ,,,21 不全为零,即当n y y y ,,,21 不全为零时)2(式成立,从而f是正定型定理2、实二次型)(),,,(21A A AX X x x x f n =''= 是正定二次型的充要条件是对任何n 维实的非零列向量X 必有0>'A X X证明:)(?由假设f是正定二次型,故存在实的非退化的线形替换,QY X=使22221ny y y AX X +++=')1(对,0≠X因Q 非奇异,故,0≠Y 于是由)1(可知0>'A X X)(?设AX X '的秩与正惯性指数分别为r 与,p 先证,p r =如,r p <则由惯性定理,存在非退化的线形替换,QY X=使得221221'rp p y y y y AX X ---++=+)2(由假设,对任何,0,0>'≠AX X X 但对列向量)0,,0,1,0,,0(≠'= Q X(因Q 是非奇异阵,1是X 的第1+p 个分量)却有1<-='A X X 这与假设矛盾.故pr =.再证nr=.如果,n r<则)2(式应化为nr y y y AX X r <+++=,22221')3(于是取 0)1,0,,0(≠'= Q X由)3(即得,0='A X X又与假设矛盾,故,p n r ==即f是正定二次型定理3、实二次型)(),,,(21A A AX X x x x f n =''= 是正定二次型的充要条件是f的规范形为2222121),,,(nn y y y x x x f +++=证明:)(?实二次型)(),,,(21A A AX X x x x f n =''= 是正定二次型,则由定理1可知f 的正惯性指数为n ,则二次型AXX x x x f n '=),,,(21 可经过非退化实线形替换成2222121),,,(nn y y y x x x f +++=)(?f的规范形为2222121),,,(n n y y y x x x f +++= ,则f的正惯性指数为,n 由定理1可知f为正定二次型定理4、实二次型)(),,,(21A A AX X x x x f n =''= 是正定二次型的充要条件是矩阵A 与单位矩阵合同证明:)(?实二次型)(),,,(21A A AX X x x x f n =''= 是正定二次型,则由定理3,可知f的规范形为2222121),,,(nn y y y x x x f +++=此即存在非退化线形替换(CY X=其中C 可逆),使得2222121)()(),,,(nn y y y ACYC Y CY A CY AXX x x x f +++=''='='=所以,E ACC ='因此矩阵A 单位矩阵合同)(?矩阵A 单位矩阵合同,则存在可逆矩阵,C 使得EACC =',令CYX=则2222121)()(),,,(nn y y y ACYC Y CY A CY AX X x x x f +++=''='='=因此,由证明4,可知f是正定二次型定理5、实二次型)(),,,(21A A AX X x x x f n =''= 是正定二次型的充要条件是矩阵A 的主子式全大于零证明:)(?实二次型)(),,,(21A A AX X x x x f n =''= 是正定二次型,以kA 表示A的左上角k 阶矩阵,下证),,,2,1(,0n k A k =>考虑以k A 为矩阵的二次型jki kj i ij k xx a x x x g ∑∑===1121),,,(由于)0,,0,,,,(),,,(2121 k k x x x f x x x g =所以当k x x x ,,,21 不全为零时,由f 正定二次型可知,0>g从而g 为正定二次型,固.0>k A)(?对二次型的元数n 作数学归纳法当1=n时,,)(21111x a x f =因为,011>a 所以f 正定,假设,1>n 且对1-n 元实二次型结论成立由于,01111>=a a 用111a a i -乘A 的第1列到第i 列,再用111a a i -乘第A 的第1行到第i 行),,,3,2(n i=经此合同变换后A ,可变为以下的一个矩阵000111A aB =因为矩阵A 与B 合同,所以B 是一个n 阶对称矩阵.从而1A也是对称矩阵.上述的变换不改变A 的主子式的值,因此B ,的主子式也全大于零,而B 的)2(n k k ≤≤阶主子式等于1A 的1-k 阶主子式乘以,11a 并且011>a 于是1A 的主子式全大于零,由归纳假设,1A 与1-n I 合同,所以A 与单位矩阵合同,此即f 是正定二次型定理6、实二次型)(),,,(21A A AX X x x x f n =''= 是正定二次型的充要条件是矩阵A 的顺序主子式全都大于零证明:)(?实二次型)(),,,(21A A AX X x x x f n =''= 是正定二次型,则由定理5可知A 的主子式全大于零,所以A 的顺序主子式也全大于零.)(?对二次型的元数n作数学归纳法当1=n时,,)(21111x a x f =由条件知,011>a 所以)(1x f 是正定的.假设充分性的判断对于1-n 元的二次型已经成立,现在来证n 元的情形.令1A =?----1,11,11,111n n n n a a a a=-nn n a a ,11α于是矩阵A 可以分块写成:A ='nna A αα1则1A 的顺序主子式也全大于零,由归纳法假定,1A 是正定矩阵则存在可逆的1-n 阶矩阵,G 使得1-='n E AG G令1C =100G于是''=???? ?????? ??'???? ??'='-nn n nn a G G E Ga A G ACC αααα111110010再令2C =--10'1a G E n则有?''-=''-ααG G a E C AC C C nn n 012112 令21C C C =dG G a nn =''-αα就有='d AC C11两边取行列式,dA C=2,则由条件,0>A 因此0>d.=??????? ?d d d 111111111所以矩阵A 与单位矩阵合同,因此A 是正定矩阵即f是正定二次型定理7、实二次型)(),,,(21A A AX X x x x f n =''= 是正定二次型的充要条件是矩阵TT T A('=是实可逆矩阵)证明:)(?实二次型)(),,,(21A A AX X x x x f n =''= 是正定二次型,则由定理4可知存在可逆矩阵,C 使得EAC C ='则 1111)()(----'='=CCCC A令1-=CT,则T T A '=)(?若,T T A '=则 )()(),,,(21TX TX TX T X AX X AX X x x x f n '=''='='=令TXY=则 2222121),,,(nn y y y Y Y x x x f +++='=所以f 为正定二次型.定理8、实二次型)(),,,(21A A AX X x x x f n =''= 是正定二次型的充要条件是ATT '正定矩阵(其中T 是实可逆矩阵) 证明:)(?实二次型)(),,,(21A A AX X x x x f n =''= 是正定二次型,则A是正定阵, 令(1Y X T=-其中T 可逆)则 A T Y T Y TY A TY x x x f n ''='=)()(),,,(21又因非退化线性替换不改变正定性,则ATYT Y x x x f n ''=),,,(21是正定二次型,所以AT T '是正定阵)(?ATT '是正定阵,令ATYT Y y y y g n ''=),,,(21 ,则),,,(21n y y y g 是正定二次型令TYX=则),,,(21n y y y g AXX x x x f n '==),,,(21 是正定二次型定理9、实二次型)(),,,(21A A AX X x x x f n =''= 是正定二次型的充要条件是矩阵A 的全部特征值都是正的证明:)(?实二次型)(),,,(21A A AX X x x x f n =''= 是正定二次型,则A是正定阵,又对于任意一个n 阶实对称矩阵,A 都存在一个n 阶正交矩阵,T 使得ATTAT T 1'-=成为对角形令AT T AT T 1'-==n λλ1则),,2,1(,0n i i =>λ否则与f为正定二次型相矛盾,则ATT1-特征值为n λλλ,,,21 均大于零,即为正的.又相似矩阵有相同特征值,则A 的特征值也均为正)(? A的全部特征值均为正的,则存在一个n 阶正交矩阵,T 使得AT T AT T 1'-==n λλ1其中),,2,1(n i i =λ为A 的特征值,此由相似矩阵有相同的特征值得到. 令,TY X=则222221121),,,(nn n y y y A T Y T Y AXX x x x f λλλ+++=''='=所以f为正定二次型定理10、实二次型)(),,,(21A A AX X x x x f n =''= 是正定二次型的充要条件是矩阵A 是正定阵证明:)(?实二次型)(),,,(21A A AX X x x x f n =''= 是正定二次型,则由正定阵的定义可知A 是正定阵.)(? A 是正定阵,则A 的顺序主子式全都大于零.由定理6可知f是正定二次型.二、实二次型的正定性证明不等式例1 设)(ij t T=是一个n 阶实非退化矩阵,求证:≤2T)(222121ni i ni i t t t +++∏=证明:若A 是正定矩阵,必有nna a a A 2211≤, 其中nn a a a ,,,2211 是A 的主对角线上的元素因为T 是实非退化矩阵,所以=nn n n n n nnnnn n t t t t t t t t t t t t t t t t t t T T 212222111211212221212111'=∑∑∑===nk knnk k nk k t t t 12122121是正定矩阵,由上述定理得)(112'∏∑==≤ni nk ki t T T =)(222121ni i ni i t t t +++∏=此即,≤2T)(222121ni i ni i t t t +++∏=三、实二次型的正定性在极值问题中的应用例1、求三元函数y y x zyxz y x f u642),,(222-++++==的极值解:先求三个一阶偏导数,令它们为0,解方程组得驻点,再求二阶偏导数得二次型的相应矩阵,A 由A 的正定性确定极值=-==+=??=+=??062042022z zU y y U x x U=-=-=321z y x得驻点)3,2,1(0--p222=??xU2=yx U2=zx U2=xy U222=??y U2=zy U2=xz U2=yz U222=??zU所以A =200020002 因为A 为正定阵,所以得极小值143*6)2(*4)1(*23)2()1()3,2,1(2220-=--+-++-+-=--=f p U参考文献:[1] 王向东《高等代数常用方法》科学出版社[2] 霍元极《高等代数》北京师范大学出版社 [3] 屠伯埙《高等代数》上海科技出版社 [4] 张盛祝《高等代数典型方法》信阳师范学院数学系Is deciding two times of judgments and the applicationAbstract: In two center, was deciding two time holds the special status, this article summarizes has been deciding in two times of so judgments methods and its in the proof inequality and the minimum problem application.Key words: Is deciding two time Is deciding The smooth principal minor。

线性代数 正定二次型

线性代数 正定二次型

(2) 若A可逆,则A的的特征值均非零。
且若λ0 是A的特征值,则
1 λ0
为A-1 的特征值。
P205 ex3 设A、B为正定矩阵,证明B A也是正定矩阵。 证明:因为A、B为正定矩阵,由定义它们都为对称矩阵, 对任意向量X 0,X T AX 0, X T BX 0,则 由定义B A也是正定矩阵。
f 则称 为负定二次型,并称对称矩阵A是负定矩阵;
例如
f x 2 4 y 2 16z 2 为正定二次型
f x12 3 x22
为负定二次型
二、正(负)定二次型的判别
定理2 实二次型f xT Ax为正定的充分必要条 件是 : 它的标准形的n个系数全为正.
推论1 二次型正定的充要条件是它的标准型为
3. 根据正定二次型的判别方法,可以得到 负定二次型(负定矩阵)相应的判别方法,请大 家自己推导.
定理2之证明 充分性
设可逆变换x Cy使 n
f x f Cy ki yi2.
i 1
设 k i 0 i 1, ,n. 任给 x 0,
则 y C -1 x 0, 故
f
x
n
ki
yi2
0.
必要性
P 205 ex4 设A为正定矩阵,证明A1与An也是正定矩阵。 证明 : 因为A是正定矩阵,则A是对称矩阵, 且A的特征值 都是正数.则A1与An也是对称矩阵, 且它们的特征值都 是正数.由定理它们为正定矩阵。
P205 ex2设A为对称矩阵,证明当t充分大时, tI A是正定矩阵。
证明:因为A为对称矩阵,A可对角化,存在可逆
a11 5 0,
a11 a12 5
2 26 0,
a21 a22 2 6
A 80 0, 根据定理3知f为负定.

第七节:二次型的正定性

第七节:二次型的正定性

总之,二次型经可逆线性变换后 正定性是不变的。又因标准形的 正定性一目了然,故可利用标准 形的正定性来判断原二次型的正 定性。显然,对于标准形
f k y k y k y
2 1 1 2 2 2 2 n n
正定
k 0 ( i 1 , 2 , ,) n i
。由此得:
定理5.10 n个变量的实二次型
称A的k阶顺序主子式。
定理5.11n阶实对称矩阵A正定

A的各级顺序主子式全大于0。即
A , A 1 a 1 1 0 2 , A n A 0

a a 1 1 1 2 a 2 1 a 2 2
0 ,
该定理称霍尔威茨定理。证略。
与此对应有:定理5.12 n阶实对称矩阵A负定 奇数阶顺序主子式小于0。 偶数阶顺序主子式大于0。
X f XA
正定
f 的正惯性指数为n
(即正项的个数)。又因为实对称矩阵A 存在正交矩阵P,使得:
其中
1 1 ' P A PPA P
i
n
为A的特征值。故有
推论1 A正定
A的特征值全正。又因为
A 0
1 2 n A
,故又得推论2 A正定

推论3 A正定
存在可逆矩阵p
' PAP I
,使
2 2 fx (, x ) 3 x 2 x x 3 x 例5.7.1 判断二次型 1 2 1 1 2 2
的正定性。 解方法一: 利用定理5.10的推论1, 求 A的特征值。
3 A 1 1 3
的特征值为
, 1 2 2 4
均为正,故A正定,即
解方法二:用配方法化二次型为标准形

浅谈正定二次型判定方法

浅谈正定二次型判定方法

浅谈正定二次型的判定方法摘 要 二次型与其矩阵具有一一对应关系,可以通过研究矩阵的正定性来研究二次型的正定性及其应用.本文主要通过正定二次型的定义,实矩阵的正定性的定义,特征值法,矩阵合同以及相应的推导性质来判定二次型的正定性。

关键词 二次型 矩阵 正定性 应用1 引 言在数学中,二次型的理论起源于解析几何中化二次曲线和二次曲面方程为标准形的问题.现在二次型常常出现在许多实际应用和理论研究中,有很大的实际使用价值。

它不仅在数学的许多分支中用到,而且在物理学中也会经常用到,其中实二次型中的正定二次型占用特殊的位置. 二次型的有定性与其矩阵的有定性之间具有一一对应关系.因此,二次型的正定性判别可转化为对称矩阵的正定性判别,下面将用二次型的性质来求函数的最值和证明不等式因此,对正定矩阵的讨论有重要的意义.2 二次型的相关概念 2.1 二次型的定义设p 是一个数域,ij a ∈p ,n 个文字1x ,2x ,…,n x 的二次齐次多项式22121111212131311(,,,)22nnn nn nij i j i j f x x x a x a x x a x x a x a x x ===++++=∑∑),...,2,1,,(n j i a a ji ij ==称为数域上p 的一个n 元二次型,简称二次型.当ij a 为实数时,f 称为实二次型.当ij a 为复数时,称 f 为复二次型.如果二次型中只含有文字的平方项,即12(,,...,)n f x x x =2221112...n n d x d x d x +++称f 为标准型.定义1 在实数域上,任意一个二次型经过适当的非退化线性替换可以变成规范性22222121z z z z z p p r ++++---…………,其中正平方项的个数p 称为f 的正惯性指数,负平方项的个数称为的f 负惯性指数.2.2 二次型的矩阵形式二次型12(,,...,)n f x x x 可唯一表示成12(,,...,)n f x x x =T x Ax ,其中12(,,...,)T n x x x x =,()ij n n A a ⨯=为对称矩阵,称上式为二次型的矩阵形式,称A 为二次型的矩阵(必是对称矩阵),称A 的秩为二次型f 的秩.2.3 正定二次型与正定矩阵的概念定义2.3.1 设12(,,...,)n f x x x =T x Ax 是n 元实二次型(A 为实对称矩阵),如果对任意不全为零的实数12,,...,n c c c 都有12(,,...)0n f c c c >,则称f 为正定二次型,称A 为正定矩阵;如果12(,,...)0n f c c c ≥,则称f 为半正定二次型,称A 为半正定矩阵;如果12(,,...)0n f c c c <,则称f 为负定二次型,称A 为负定矩阵;如果12(,,...)0n f c c c ≤,称f 为半负定二次型,称A 为半负定矩阵;既不是正定又不是负定的实二次型称为不定的二次型,称A 为不定矩阵.定义2 另一种定义 具有对称矩阵A 的二次型,AX X f T =(1) 如果对任何非零向量X , 都有0>AX X T (或0<AX X T )成立,则称AX X f T =为正定(负定)二次型,矩阵A 称为正定矩阵(负定矩阵). (2) 如果对任何非零向量X , 都有0≥AX X T (或0≤AX X T )成立,且有非零向量0X ,使000=AX X T ,则称AX X f T =为半正定(半负定)二次型,矩阵A 称为半正定矩阵(半负定矩阵).注:二次型的正定(负定)、半正定(半负定)统称为二次型及其矩阵的有定性.不具备有定性的二次型及其矩阵称为不定的.二次型的有定性与其矩阵的有定性之间具有一一对应关系.因此,二次型的正定性判别可转化为对称矩阵的正定性判别.定义3 n 阶矩阵)(ij a A =的k 个行标和列标相同的子式 称为A 的一个k 阶主子式.而子式 称为A 的k 阶顺序主子式.3 实二次型正定的判别方法及其性质定理1 实二次型)(),,,(21A A AX X x x x f n =''= 是正定二次型的充要条件是它的正惯性指数等于n证明 设实二次型AX X x x x f n '=),,,(21 经线形替换PY X =化为标准形其中.,,2,1,n i R d i =∈由于p 为可逆矩阵,所以n x x x ,,,21 不全为零时ny y y ,,,21也不全为零,反之亦然.)(⇒如果f 是正定二次型,那么当n x x x ,,,21 不全为零,即n y y y ,,,21 不全为零时,有若有某个),1(n i d i ≤≤比方说.0≤n d 则对1,0121=====-n n y y y y 这组不全为零的数,代入)1(式后得.0≤=n d f 这与f 是正定二次型矛盾.因此,必有),,2,1.(0n i d i =>即f 的正惯性指数等于n)(⇐如果f 的正惯性指数等于,n 则),,2,1(,0n i d i =>于是当n x x x ,,,21 不全为零,即当n y y y ,,,21 不全为零时)2(式成立,从而f 是正定型定理2 实二次型)(),,,(21A A AX X x x x f n =''= 是正定二次型的充要条件是对任何n 维实的非零列向量X 必有0>'A X X证明 )(⇒由假设f 是正定二次型,故存在实的非退化的线形替换,QY X =使对,0≠X 因Q 非奇异,故,0≠Y 于是由)1(可知0>'A X X)(⇐设AX X '的秩与正惯性指数分别为r 与,p 先证,p r =如,r p <则由惯性定理,存在非退化的线形替换,QY X =使得由假设,对任何,0,0>'≠AX X X 但对列向量 (因Q 是非奇异阵,1是X 的第1+p 个分量)却有这与假设矛盾.故p r =.再证n r =.如果,n r <则)2(式应化为 于是取由)3(即得,0='A X X 又与假设矛盾,故,p n r ==即f 是正定二次型 定理3 实二次型)(),,,(21A A AX X x x x f n =''= 是正定二次型的充要条件是f 的规范形为2222121),,,(n n y y y x x x f +++=证明 )(⇒实二次型)(),,,(21A A AX X x x x f n =''= 是正定二次型,则由定理1可知f 的正惯性指数为n ,则二次型AX X x x x f n '=),,,(21 可经过非退化实线形替换成)(⇐f 的规范形为2222121),,,(n n y y y x x x f +++= ,则f 的正惯性指数为,n 由定理1可知f 为正定二次型定理4 实二次型)(),,,(21A A AX X x x x f n =''= 是正定二次型的充要条件是矩阵A 与单位矩阵合同证明 )(⇒实二次型)(),,,(21A A AX X x x x f n =''= 是正定二次型,则由定理3,可知f 的规范形为2222121),,,(n n y y y x x x f +++=此即存在非退化线形替换(CY X =其中C 可逆),使得 所以,E AC C ='因此矩阵A 单位矩阵合同)(⇐矩阵A 单位矩阵合同,则存在可逆矩阵,C 使得E AC C =',令CY X =则因此,由证明4,可知f 是正定二次型定理5 实二次型)(),,,(21A A AX X x x x f n =''= 是正定二次型的充要条件是矩阵A 的主子式全大于零证明 )(⇒实二次型)(),,,(21A A AX X x x x f n =''= 是正定二次型,以k A 表示A 的左上角k 阶矩阵,下证),,,2,1(,0n k A k =>考虑以k A 为矩阵的二次型由于)0,,0,,,,(),,,(2121 k k x x x f x x x g =所以当k x x x ,,,21 不全为零时,由f 正定二次型可知,0>g 从而g 为正定二次型,故.0>k A)(⇐对二次型的元数n 作数学归纳法当1=n 时,,)(21111x a x f =因为,011>a 所以f 正定,假设,1>n 且对1-n 元实二次型结论成立由于,01111>=a a 用111a a i -乘A 的第1列到第i 列,再用111a ai -乘第A 的第1行到第i 行),,,3,2(n i =经此合同变换后A ,可变为以下的一个矩阵因为矩阵A 与B 合同,所以B 是一个n 阶对称矩阵.从而1A也是对称矩阵.上述的变换不改变A 的主子式的值,因此B ,的主子式也全大于零,而B 的)2(n k k ≤≤阶主子式等于1A 的1-k 阶主子式乘以,11a 并且011>a 于是1A 的主子式全大于零,由归纳假设,1A 与1-n I 合同,所以A 与单位矩阵合同,此即f 是正定二次型定理6 实二次型)(),,,(21A A AX X x x x f n =''= 是正定二次型的充要条件是矩阵A 的顺序主子式全都大于零证明 )(⇒实二次型)(),,,(21A A AX X x x x f n =''= 是正定二次型,则由定理5可知A 的主子式全大于零,所以A 的顺序主子式也全大于零.)(⇐对二次型的元数n 作数学归纳法当1=n 时,,)(21111x a x f =由条件知,011>a 所以)(1x f 是正定的.假设充分性的判断对于1-n 元的二次型已经成立,现在来证n 元的情形.令1A =⎪⎪⎪⎭⎫⎝⎛----1,11,11,111n n n n a a a a⎪⎪⎪⎭⎫ ⎝⎛=-n n n a a ,11 α于是矩阵A 可以分块写成:A =⎪⎪⎭⎫⎝⎛'nn a A αα1 则1A 的顺序主子式也全大于零,由归纳法假定,1A 是正定矩阵 则存在可逆的1-n 阶矩阵,G 使得1-='n E AG G 令1C =⎪⎪⎭⎫⎝⎛100G于是⎪⎪⎭⎫⎝⎛''=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛'⎪⎪⎭⎫ ⎝⎛'='-nn n nn a G G E Ga A G AC C αααα1111100100 再令2C =⎪⎪⎭⎫⎝⎛--10'1a G E n 则有⎪⎪⎭⎫⎝⎛''-=''-ααG G a E C AC C C nn n 0012112令 21C C C = d G G a nn =''-αα就有⎪⎪⎪⎪⎪⎭⎫⎝⎛='d AC C11 两边取行列式,d A C=2,则由条件,0>A 因此0>d .所以矩阵A 与单位矩阵合同,因此A 是正定矩阵即f 是正定二次型定理7 实二次型)(),,,(21A A AX X x x x f n =''= 是正定二次型的充要条件是矩阵T T T A ('=是实可逆矩阵)证明 )(⇒实二次型)(),,,(21A A AX X x x x f n =''= 是正定二次型,则由定理4可知存在可逆矩阵,C 使得E AC C =' 则 1111)()(----'='=C C C C A令1-=CT ,则T T A '=)(⇐若,T T A '=则 )()(),,,(21TX TX TX T X AX X AX X x x x f n '=''='='= 令TX Y =则 2222121),,,(n n y y y Y Y x x x f +++='=所以f 为正定二次型.定理8 实二次型)(),,,(21A A AX X x x x f n =''= 是正定二次型的充要条件是ATT '正定矩阵(其中T 是实可逆矩阵)证明 )(⇒实二次型)(),,,(21A A AX X x x x f n =''= 是正定二次型,则A 是正定阵,令(1Y X T=-其中T 可逆)则 ATY T Y TY A TY x x x f n ''='=)()(),,,(21 又因非退化线性替换不改变正定性,则 是正定二次型,所以AT T '是正定阵)(⇐AT T '是正定阵,令ATY T Y y y y g n ''=),,,(21 ,则),,,(21n y y y g 是正定二次型令TY X =则),,,(21n y y y g AX X x x x f n '==),,,(21 是正定二次型 定理9 实二次型)(),,,(21A A AX X x x x f n =''= 是正定二次型的充要条件是矩阵A 的全部特征值都是正的证明 )(⇒实二次型)(),,,(21A A AX X x x x f n =''= 是正定二次型,则A 是正定阵,又对于任意一个n 阶实对称矩阵,A 都存在一个n 阶正交矩阵,T 使得AT T AT T 1'-=成为对角形令AT T AT T 1'-==⎪⎪⎪⎭⎫⎝⎛n λλ1则),,2,1(,0n i i =>λ否则与f 为正定二次型相矛盾, 则AT T1-特征值为n λλλ,,,21 均大于零,即为正的.又相似矩阵有相同特征值,则A 的特征值也均为正)(⇐ A 的全部特征值均为正的,则存在一个n 阶正交矩阵,T 使得AT T AT T 1'-==⎪⎪⎪⎭⎫⎝⎛n λλ1其中),,2,1(n i i =λ为A 的特征值,此由相似矩阵有相同的特征值得到. 令,TY X =则 222221121),,,(n n n y y y ATY T Y AX X x x x f λλλ+++=''='=所以f 为正定二次型定理10 实二次型)(),,,(21A A AX X x x x f n =''= 是正定二次型的充要条件是矩阵A 是正定阵证明 )(⇒实二次型)(),,,(21A A AX X x x x f n =''= 是正定二次型, 则由正定阵的定义可知A 是正定阵.)(⇐ A 是正定阵,则A 的顺序主子式全都大于零.由定理6可知f 是正定二次型.性质:若A 为n 阶实正定阵,显然TA ,1A -也是正定阵注 (1) 若A 是负定矩阵,则A -为正定矩阵.(2) A 是负定矩阵的充要条件是:).,,2,1(,0||)1(n k A k k =>-其中k A 是A 的k 阶顺序主子式.(3) 对半正定(半负定)矩阵可证明以下三个结论等价:a.对称矩阵A 是半正定(半负定)的;b.A 的所有主子式大于(小于)或等于零;c.A 的全部特征值大于(小于)或等于零.例 1 考虑二次型22212312132344224f x x x x x x x x x λ=+++-+,问λ为何值时,f为正定二次型.解 利用顺序主子式来判别,二次型f 的矩阵为1142124A λλ-⎛⎫⎪= ⎪ ⎪-⎝⎭,A 的顺序主子式为 110∆=>;22144λλλ∆==-;23114214484(1)(2)124λλλλλλ-∆=-=--+=--+-.于是,二次型f 正定的充要条件是:230,0∆>∆>,有2240λ∆=->,可知,22λ-<<;由34(1)(2)0λλ∆=--+>, 可得12<<-λ,所以,当12<<-λ时, f 正定.例 2 已知A E -是n 阶正定矩阵,证明1E A --为正定矩阵.分析:只要证明1E A --的特征值全大于零即可 证明 由A E -正定知A 是实对称矩阵,从而即1E A --也是实对称矩阵.设A 的特征值为k λ(1,2,)k n =,则A E -的特征值为1k λ-(1,2,)k n =,而1E A --的特征值为11kλ-(1,2,)k n =,因为A E -是正定矩阵,所以,10k λ->(,从而11kλ<,故,110kλ->(1,2,)k n =即,1E A --的特征值全大于零,故,1E A --为正定矩阵.例 3 设有n 元二次型222121122231(,,)()()()n n n f x x x x a x x a x x a x =++++++其中(1,2,,)i a i n =为实数,试问:当12,,,n a a a 满足何种条件时,二次型1(,,)n f x x 为正定二次型.解 令当121100001000010000001001n na a a a-=1121(1)0n n a a a ++-≠,即当12(1)n n a a a ≠-时,原二次型为正定二次型.例 4 设A ,B 分别是,m n 阶正定阵,试判定分块矩阵00A C B ⎛⎫= ⎪⎝⎭是否为正定矩阵解 因为,A B 都是实对称阵,从而C 也是实对称阵.且,0,m nX R X +∀∈≠令则12,m n X R X R ∈∈,且至少一个不为零向量.于是 故C 为正定阵.例 5 若A 是n 阶实对称阵,证明:A 半正定的充要条件是对任何μ>0,B E A μ=+正定.证 A 是实对称阵,从而存在正交阵T ,使1'n A T T λλ⎛⎫⎪=⎪ ⎪⎝⎭,其中1,,n λλ为A 的全部实特征值.先证必要性 若A 半正定,则0,(1,2,,).i i n λ≥=又因为所以B 的全部特征值为0(1,2,,)i i n μλ+>=又'm nB B R+=∈,∴B 为正定阵.再证充分性 若A 不是正定阵,则存在0k λ<,此时可令2kλμ=-,则0μ>,但即B 中有一个特征值为02kλ<,这与B 为正定阵的假设矛盾,从而得证A 是半正定的.例 6 设()ij A a =是阶正定阵,证明:(1)对任意i j ≠,都有(2)A 的绝对值最大元素必在主对角线上. 证 (1)A 正定,从而A 的一切2阶主子式均大于0,当i j ≠时移项后,开方即证12()(,,1,2,,)ij ii jj a a a i j i j n <≠=.(2)设的主对角线上最大元素为kk a (由于A 正定,0kk a >).再由第一问结论可知 由此即证即A 中绝对值最大元素必在主对角线上.结束语二次型的研究起源于解析几何中二次曲线和二次曲面的理论,二次型的理论在数学和物理的许多分支都有着广泛的应用.用二次型来解决初等数学、微积分中的一些问题,有时会起到意想不到的效果.本文通过研究二次型的性质,借助例子说明二次型在求多元函数的的极值、最值、证明不等式、及判断二次曲线的形状等方面的应用.将多元元函数求极值问题化为一个二次型问题.在三元及三元以上多元函数求极值时,这个方法比一般工科高等数学教材中介绍的求极值方法好用,而且能够确定是极大值还是极小值.参考文献[1] 王萼方,石生明 高等代数(第三版)[M].北京:高等教育出版社,2008. [2] 白蒙蒙,朱小琨 实矩阵正定性的简单判别方法[M] 高等函授学报[3] Liu Maosheng The Extension of positive matrix,Journal of ChongQING vocational&technical institute [4]. He ChunLing The Discussion in positive Definite Property of Product Matrix,HeiBei Like JiaoXue YanJiu [5] Zhan ShiLin Zhan XuZhou,some criterions on real positive definite matrix,Journal ofAnHui University文档从网络中收集,已重新整理排版.word版本可编辑.欢迎下载支持.[6] 张淑娜,郭艳君正定二次型的几个等价条件以及正定阵的若干性质[M].2005.[7] 陈大新矩阵理论[M]. 上海交通大学出版社 2003.[8] 郭忠矩阵正定性的判定[J]. 科学通报 2007.[9] 钱志祥,林文生.浅谈正定二次型的实际应用[J].科学创新导报,2009.11格式已调整,word版本可编辑.。

二次型判定定理

二次型判定定理

二次型判定定理
二次型判定定理是矩阵理论中的一个重要定理,用于判断对称矩阵是否为正定、负定或者不定。

设有对称矩阵A,对任意非零向量x,有
1. 若x^TAx > 0,则A为正定矩阵;
2. 若x^TAx < 0,则A为负定矩阵;
3. 若存在某个非零向量x,使得x^TAx = 0,而对于对称矩阵A的任意非零向量y,有y^TAy >= 0,则A为半正定矩阵;
4. 若存在某个非零向量x,使得x^TAx = 0,而对于对称矩阵A的任意非零向量y,有y^TAy <= 0,则A为半负定矩阵;
5. 若存在非零向量x和y,使得x^TBy > 0,同时y^TAy > 0,则A和B都不是正定矩阵。

通过二次型判定定理,我们可以根据二次型的矩阵形式来判断其性质,进而对于优化问题等有重要的应用。

第4节正定二次型

第4节正定二次型

例 2 判别下列二次形的正定性 1) f ( x1 , x 2 , x3 ) = 5 x1 + x 2 + 5 x3 + 4 x1 x 2 − 8 x1 x3 − 4 x 2 x3
2 2 2
2) f ( x1 , x 2 , x3 ) = 10 x1 − 2 x 2 + 3 x3 + 4 x1 x 2 + 4 x1 x3
解:作非退化线性变换
y1 = −2 x1 + x 2 + x3 y 2 = x1 − 2 x 2 + x3 y = x3 3
得 f ( x1 , x 2 , x3 ) = y1 + y 2 + (− y1 − y 2 ) 2 = 2( y1 +
2 2
1 3 2 y2 ) 2 + y2 2 2
§5.4正定二次型 正定二次型
一、正定二次型
定义 4 设 f ( x1 , x 2 ,L, x n ) 是实二次型,若对于任意的一组不全为零的 实数 c1 , c 2 ,L , c n 都有 (1) f (c1 , c 2 ,L , c n ) > 0 ,则称 f ( x1 , x 2 ,L, x n ) 是正定二次型; 正定二次型; 正定二次型 (2) f (c1 , c 2 ,L , c n ) < 0 ,则称 f ( x1 , x 2 ,L, x n ) 是负定二次型; 负定二次型; (3) f (c1 , c 2 ,L , c n ) ≥ 0 ,则称 f ( x1 , x 2 ,L, x n ) 是半正定二次型; 正定二次型; 正定二次型 半负定二次型 (4) f (c1 , c 2 ,L , c n ) ≤ 0 ,则称 f ( x1 , x 2 ,L, x n ) 是半负定二次型; 半负定二次型; 如果 f ( x1 , x 2 ,L, x n ) 既不是半正定的, 也不是半负定的, 则称它是不定的。 不定的。 不定的

正定二次型判断方法

正定二次型判断方法

正定二次型判断方法正定二次型是线性代数中的一个重要概念,在实际应用中具有广泛的应用。

判断一个二次型是否正定的方法是线性代数中最基本的问题之一,也是非常重要的。

本文将介绍正定二次型的概念、性质和判定方法。

一、正定二次型的概念和性质1.1 正定二次型的定义设f(x1,x2,...,xn)是一个n元二次齐次函数,则称f(x1,x2,...,xn)是正定二次型,如果对于任意的非零向量x=(x1,x2,...,xn),都有f(x)>0。

(1)正定二次型的值域是正实数。

(3)正定二次型的解析式一定是一个关于字母的二次有理函数。

(4)正定二次型的非零二次型矩阵一定是可逆矩阵。

对于二元二次型f(x1,x2)=2x1^2+2x2^2-x1x2,我们可以验证该二次型是否正定。

根据定义,我们需要对于任意的非零向量(x1,x2),都有f(x)>0。

即需要满足如下条件:2x1^2+2x2^2-x1x2>0化简得:由于x1^2和x2^2始终是非负数,并且当x1=x2=0时,x1^2+x2^2+\frac{1}{2}x1x2=0,因此只要证明\frac{1}{2}x1x2的系数大于等于0,就能证明f(x)是正定的。

根据矩阵乘法的定义可得到f(x)=x^T\begin{bmatrix}2 & -\frac{1}{2} \\-\frac{1}{2} & 2\end{bmatrix} x由于该矩阵是正定矩阵(两个特征值均为正数),因此该二次型是正定的。

2.1 特征值法设二次型为f(x)=x^TAx,其中A为二次型的系数矩阵,λ1,λ2,...,λn为矩阵A的n 个特征值,则有如下结论:当A是正定矩阵时,有λ1>0,λ2>0,...,λn>0。

2.2 主元法当二次型f(x)对应的矩阵A是可逆矩阵时,有如下结论:当二次型的系数矩阵A的顺序主子式(行列式)都大于0时,二次型成为正定的。

高等数学 5-6正定二次型

高等数学 5-6正定二次型
如果对于任意n维列向量X 0,都有f X T AX 0,则 称f X T AX为半正定二次型,实对称矩阵A为半正定 矩阵。
例如: f x12 x22 xn2是正定二次型。
f x12 x22 xr 2 (r n)是半正定二次型。
2.正定二次型的性质: (1)实二次型f 1x12 2x22 n xn2是正定二次 型的充要条件是其系数i 0(i 1n).
2 0 4
5 P1 5 0, P2 2
2 6
=26

0,
P3
|
A
|
80

0
由定理5.6.2知,f不是正定的.
三、负定二次型的概念
定义 设f X AX为实二次型 ,如果对任意n维非 零列向量X 0,都有f X AX 0,则称f X AX为 负定二次型, 并称实对称矩阵A是负定矩阵; 如果对任意非零n维列向量X 0,都有f X AX 0,则称 f X AX为半负定二次型,并称实对称矩阵 A是半负定矩阵.
1.正定二次型的概念 2.正定二次型的判定 3.负定二次型的概念
X CY 化为标准形 f 1 y12 2 y22 n yn2
充分性 :
若i 0(i 1, 2, , n),对于任意的X 0,则有
Y C 1 X 0
故 f ( X ) f (CY ) 1 y12 2 y22 n yn2 0
解:(1)二次型的矩阵为
3 2 0 A 2 4 2
0 2 5
以Pk记它的顺序主子式,则
3 P1 3 0, P2 2
2 4
=8

0,
P3
|
A |

二次型判定方法及应用

二次型判定方法及应用

二次型判定方法及应用二次型是高等数学中的重要概念,广泛应用于线性代数、微积分、物理学、经济学等领域。

二次型的判定方法主要有正定、负定、半正定和半负定四种类型,这些判定方法在实际问题中具有重要的应用价值。

首先,我们来回顾二次型的定义。

对于n元变量x1,x2,...,xn和常数a11,a12,...,ann,二次型可以表示为:Q(x) = a11x1^2 + a22x2^2 + ... + annxn^2 + 2a12x1x2 + 2a13x1x3 + ... + 2an-1nxn-1xn其中,a11,a22,...,ann为二次型的系数,x1,x2,...,xn为变量,Q(x)表示该二次型。

接下来,我们将讨论四个二次型判定方法的定义、性质和应用。

1. 正定:若对于任意非零的n元列向量x=(x1,x2,...,xn)T,都有Q(x)>0,称二次型Q(x)为正定二次型。

正定二次型的系数满足以下性质:- 系数矩阵A=(aij)为实对称正定矩阵;- 系数aii>0,1≤i≤n;- 正定二次型的极值点为唯一的极小值点,且该极小值点为原点。

正定二次型在优化问题中经常出现,例如,最优化问题的约束条件若是等式形式,将其通过拉格朗日乘数法转化为等价的含有二次项的目标函数,然后利用正定二次型的特性来求解最优解。

2. 负定:若对于任意非零的n元列向量x=(x1,x2,...,xn)T,都有Q(x)<0,称二次型Q(x)为负定二次型。

负定二次型的系数满足以下性质:- 系数矩阵A=(aij)为实对称负定矩阵;- 系数aii<0,1≤i≤n;- 负定二次型的极值点为唯一的极大值点,且该极大值点为原点。

负定二次型在最优化问题中也有应用,例如,在极大极小值问题中,如果一个目标函数的Hessian矩阵是负定的,那么该函数在极小值点处取得极小值。

3. 半正定:若对于任意的n元列向量x=(x1,x2,...,xn)T,都有Q(x)≥0,称二次型Q(x)为半正定二次型。

第七节 正定二次型

第七节 正定二次型


ki 0i 1,, n.
推论 对称矩阵 A 为正定的充分必要条件是:A 的特征值全为正.
正定矩阵具有以下一些简单性质
1. 设A为正定实对称阵 则A T , A 1 , A均为正 , 定矩阵;
2. 若A, B均为n阶正定矩阵, 则A B也是正定 矩阵.
正定矩阵具有以下一些简单性质
例2
2 二次型的矩阵为 A 0 2 令 E A 0 1 1, 2
0 2 4 0 , 0 5 4, 3 6.
即知 A是正定矩阵,故此二次型为正定二次型.
例3
判别二次型 2 f 5 x 2 6 y 4 z 2 4 xy 4 xz 的正定性.
2 5 2 解 f的矩阵为 A 2 6 0 , 2 0 4 a11 a12 5 2 26 0, a11 5 0, 2 6 a 21 a 22
A 80 0, 根据定理3知f为负定.
三、小结
1. 正定二次型的概念,正定二次型与正定 矩阵的区别与联系.
2. 正定二次型(正定矩阵)的判别方法: (1)定义法; (2)顺次主子式判别法; (3)特征值判别法. 3. 根据正定二次型的判别方法,可以得到 负定二次型(负定矩阵)相应的判别方法,请大 家自己推导.
惯性指数都有如果对任何是正定的并称对称矩阵显然都有如果对任何设有实二次型定义例如证明设可逆变换cy个系数全为正它的标准形的为正定的充分必要条实二次型定理ce显然为正定相矛盾这与推论对称矩阵为正定的充分必要条件是
一、惯性定理
二、正定二次型的概念及判定
三、小结
一、惯性定理
二次型的标准形是不唯一的,但标准形 中所含有的项数是确定的,项数等于二次型的秩. 而且在限定变换为实变换时,标准形中正系数项的个数 不变的(从而负系数项也不变) 下面我们限定所用的变换为实变换,来研究 二次型的标准形所具有的性质.

[全]线性代数之正定二次型和正定矩阵的判定方法总结[下载全]

[全]线性代数之正定二次型和正定矩阵的判定方法总结[下载全]

线性代数之正定二次型和正定矩阵的判定方法总结
正定二次型和正定矩阵的知识点:
正定二次型的定义:
正定二次型的定义
正定二次型的判定方法:
正定二次型的判定方法
题型一:正定型的判别
例1:
解法一:写出二次型对应矩阵A,并用A的全部顺序主子式大于0判别。

利用顺序主子式大于0进行判别
解法二:二次型为正定二次型当且仅当A的全部特征值大于零。

利用矩阵的特征值大于零进行判别
题型二:已知二次型为正定二次型,求参数的取值范围。

解题思路:二次型为正定二次型当且仅当矩阵A对应的顺序主子式全大于零。

解:
题型三:正定二次型的证明
例3:已知n阶矩阵A是正定矩阵,证明A的伴随矩阵也是正定矩阵。

总结:n阶矩阵A正定时,与A有关的如下矩阵也是正定矩阵:。

第5.4节 正定二次型

第5.4节 正定二次型
11 t , 6
A 2(11 6t 2 ) 0
2 2 t 0 解 得 2 11 6t 0
即当 t
11 时, f 是正定的. 6
负定、半正定、半负定二次型判定定理 定理4 (1) n元二次型f (x1,x2,…,xn) =xTAx负定的充分必要条件是 标准形中n个系数均为负数. (2) n元二次型f =xTAx负定的充分必要条件是负惯性指数等于n. (3) n元二次型f =xTAx负定的充分必要条件是A的特征值都小于零.
a21 ai 1
例6 讨论二次型f 的正定性,其中
2 2 2 f ( x1 , x2 , x3 ) 5 x1 6 x2 4 x3 4 x1 x2 4 x1 x3
2 5 2 解 二次型f 的矩阵 A 2 6 0 2 0 4
A的各阶顺序主子式
负定二次型 半负定二次型
二、正定二次型(正定矩阵)的判别法
定理1 n元二次型f (x1, x2 ,· · · ,xn) =xTAx正定(或A>0)的 充分必要条件是标准形中n个系数均为正数. 证 若存在可逆线性变换x=Cy使
2 2 f x Ax yT (C T AC ) y yT y 1 y1 2 y2 T x Cy 2 n yn
思考练习
1.判定二次型 f 2 x1 x2 2 x1 x3 2 x1 x4 2 x2 x3 2 x2 x4 2 x3 x4
2 2 2 2 的正定性.已知其标准形为 f 3 y1 y2 y3 y4 .
2.判定下列二次型的正定性
2 2 2 f ( x1 , x2 , x3 ) 3 x1 x2 4 x3
2 5 2 解 二次型f 的矩阵 A 2 6 0 2 0 4
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

判定正定二次型的三种方法
1.行列式法
对于给定的二次型f(x1,x2,...,xn)=xtax,写出它的矩阵,根据对称矩阵的所有顺序主子式是否全大于零来判定二次型 (或对称矩阵)的正定性。

2.正惯性指数法
对于给定的二次型,先将化为标准形,然后根据标准形中平方项系数为正的个数是否等于
通过正交变换,将二次型化成标准形后,标准形为平方项的系数就是二次型矩阵的特征值。

因此,可以先求二次型矩阵的特征值,然后根据大于零的特征值个数与否等同于
定义:设有实二次型,如果对于任意一组不全为零的实数,都有f(x)>0,则称此二次型为正定二次型,并把其对称矩阵a称为正定矩阵.
方法一:利用二次型的等距矩阵的特征值去推论.
先写出二次型的矩阵:
由于:
可得其全部特征值:>0,>0,>0
故此二次型为正定二次型.
方法二:利用二次矩阵的各阶顺序主子式来判定.
由于此二次型的矩阵为:
因为它的个阶顺序主子式:>0,>0,>0
故此二次型为正定二次型.
除了正定二次型外,还有其他类型的二次型.
定义:建有实二次型,如果对于任一一组不全为零的实数,都存有f(x)<0,则表示此二次型为奇函数二次型,等距矩阵a称作奇函数矩阵;如果都存有f(x)≥0,则表示此二次型为半正定二次型,并说其矩阵为半正定矩阵;如果都存有f(x)≤0,则表示此二次型为半奇函数二次型,并说其矩阵为半奇函数矩阵。

相关文档
最新文档