高三数学选择填空题训练(1)

合集下载

高三数学填空、选择专项训练(一)

高三数学填空、选择专项训练(一)

高三数学填空、选择专项训练(一)班级_____________姓名________________成绩_____________1、已知集合{}{}Z n n x x B x x x A ∈+==<--=),13(2,012112, 则=B A ___________.2、已知函数]3,1[,42∈-=x ax x y 是单调递增函数,则实数a 的取值 范围是_________________3、已知函数1)(-=x a x f 的反函数的图象经过点(4,2)则)2(1-f的值为__________.4、在复数集上,方程0222=++x x 的根是___________________.5、已知53)4cos(=+x π, 则x 2sin 的值为 。

6、命题“若B A x ∈,则A x ∈或B x ∈”的逆否命题是_______________________________________________________7、在ABC ∆中,已知sinA:sinB:sinC=3:5:7,则ABC ∆中最大角的值是_________8、已知b a bx ax x f +++=3)(2是偶函数,定义域为]2,1[a a -,则b a +=9、方程P 412+n =140P 3n 的解为10、在n b a )(+的二项展开式中,第二项与倒数第二项系数之和为14, 则自然数n= .11、设函数()()()xa x x x f ++=1为奇函数,则实数=a 。

12、已知sin α=,则44sin cos αα-的值为 13、设函数y=f(x)的图象关于直线x=1对称,若当1≤x 时12+=x y ,则当x>1时y=______________14、设P 和Q 是两个集合,定义集合P-Q={}Q x P x x ∉∈且,|,如果P={x|log 2x<1},Q={x||x-2|<1},那么P-Q 等于15、若函数()1222-=--a ax xx f 的定义域为R ,则实数a 的取值范围 .16.设二次函数a x x x f +-=2)(,若f(-m)<0,则f(m+1)的值是-------( )(A)正数 (B)负数 (C)非负数 (D) 与m 有关17、已知0tan cos <θθ,那么角θ是( )A.第一或第二象限角B.第二或第三象限角 C.第三或第四象限角 D.第一或第四象限角 18、函数()⎩⎨⎧>+-≤-=1,341,442x x x x x x f 的图象和函数()x x g 2log =的图象的交点个数是( )A.4 B.3 C.2 D.119、已知集合{1,1}M =-,11{|24,}2x N x x Z +=<<∈则M N = ( ) (A) {1,1}- (B) {1}- (C) {0} (D) {1,0}-20、已知函数()x f 为R 上的减函数,则满足()11f x f <⎪⎪⎭⎫ ⎝⎛的实数x 的取值范围是( )A.()1,1-B.()1,0C.()()1,00,1 -D.()()+∞-∞-,11,。

【高三数学试题】高三数学试题1(理科)及参考答案

【高三数学试题】高三数学试题1(理科)及参考答案

高三数学试题1(理科)一、选择题1、设集合{1,2}A =,则满足{1,2,3}A B ⋃=的集合B 的个数是( )A .1B .3C .4D .82、若集合{|3},{|33}xM y y P x y x ====-,则M P I =( ) A {|1}x x > B {|1}y y ≥ C {|0}y y > D {|0}x x ≥3、已知命题p :若,022=+y x 则x 、y 全为0;命题q :若a b >,则11a b <.给出下列四个命题:①p 且q ,②p 或q ,③p 的逆否命题,④ q ⌝,其中真命题的个数为( )()A 1()B 2 ()C 3 ()D 44.集合{}22M x x =-≤≤,{}02N y y =≤≤,给出下列四个图形,其中能表示以M 为定义域,N 为值域的函数关系的是( ).5、已知集合A ={(x ,y)|32y x --=1,x ,y ∈R},B={(x ,y)|y=ax+2,x ,y ∈R},若A ⋂B =∅,则a 的值为( )A .a =1或a =32B .a=1或a =12 C .a =2或a =3 D .以上都不对 6、若函数)(212)(为常数a k k x f xx⋅+-=在定义域上为奇函数,则的值为k ( )A . 1 B. 1- C. 1± D. 07、若函数()(2)()[1,1]()||,()f x f x f x x f x x y f x +=∈-==满足且时则函数的图象与 函数||log 3x y =的图像的交点个数是( )A .2B .3C .4D .多于4x y 0-2 2x y 0 -2 22 xy 0 -2 22 xy 0 -2 2 2A. B. C . D.8、已知函数2()24(03),f x ax ax a =++<<若1212,1,x x x x a <+=-则( )A .12()()f x f x >B .12()()f x f x <C .12()()f x f x = D .1()f x 与2()f x 的大小不能确定二、填空题9、设,0.(),0.x e x g x lnx x ⎧≤=⎨>⎩则1[()]2g g =__________.10.已知函数22(),1x f x x R x =∈+,则1()()f x f x += ;11、设0)1)((:;1|34:|≤---≤-a x a x q x p ,若p 是q 的充分不必要条件,则实数a 的取值范围是 .12、若某学校要从5名男生和2名女生中选出3人作为上海世博会的志愿者,则选出的志愿者中男女生均不少于1名的概率是 (结果用最简分数表示)。

高三数学:2024届新结构“8+3+3”选填限时训练1_10(解析版)

高三数学:2024届新结构“8+3+3”选填限时训练1_10(解析版)

2024届高三二轮复习“8+3+3”小题强化训练(1)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1对两个具有线性相关关系的变量x 和y 进行统计时,得到一组数据1,0.3 ,2,4.7 ,3,m ,4,8 ,通过这组数据求得回归直线方程为y=2.4x -2,则m 的值为()A.3B.5C.5.2D.6【答案】A【解析】易知x =1+2+3+44=52,y =13+m4,代入y =2.4x -2得13+m 4=2.4×52-2⇒m =3.故选:A2已知m ,n 表示两条不同直线,α表示平面,下列说法正确的是()A.若m ⎳α,n ⎳α,则m ⎳nB.若m ⊥α,n ⊂α,则m ⊥nC.若m ⊥α,m ⊥n ,则n ⎳αD.若m ⎳α,m ⊥n ,则n ⊥α【答案】B【解析】线面垂直,则有该直线和平面内所有的直线都垂直,故B 正确.故选:B3已知向量a ,b 满足a =3,b =23,且a ⊥a +b,则b 在a 方向上的投影向量为()A.3B.-3C.-3aD.-a【答案】D【解析】a ⊥a +b ,则a ⋅a +b =a 2+a ⋅b =9+a ⋅b =0,故a ⋅b=-9,b 在a 方向上的投影向量a ⋅b a 2⋅a =-99⋅a =-a.故选:D .4若n 为一组从小到大排列的数1,2,4,8,9,10的第六十百分位数,则二项式3x +12xn的展开式的常数项是()A.7B.8C.9D.10【答案】A【解析】因为n 为一组从小到大排列的数1,2,4,8,9,10的第六十百分位数,6×60%=3.6,所以n =8,二项式3x +12x8的通项公式为T r +1=C r 8⋅3x 8-r ⋅12x r =C r 8⋅12 r⋅x8-r 3-r,令8-r 3-r =0⇒r =2,所以常数项为C 28×12 2=8×72×14=7,故选:A5折扇是我国古老文化的延续,在我国已有四千年左右的历史,“扇”与“善”谐音,折扇也寓意“善良”“善行”.它常以字画的形式体现我国的传统文化,也是运筹帷幄、决胜千里、大智大勇的象征(如图1).图2是一个圆台的侧面展开图(扇形的一部分),若两个圆弧DE ,AC 所在圆的半径分别是3和6,且∠ABC =120°,则该圆台的体积为()A.5023π B.9π C.7π D.1423π【答案】D【解析】设圆台上下底面的半径分别为r 1,r 2,由题意可知13×2π×3=2πr 1,解得r 1=1,13×2π×6=2πr 2,解得:r 2=2,作出圆台的轴截面,如图所示:图中OD =r 1=1,O A =r 2=2,AD =6-3=3,过点D 向AP 作垂线,垂足为T ,则AT =r 2-r 1=1,所以圆台的高h =AD 2-AT 2=32-1=22,则上底面面积S 1=π×12=π,S 2=π×22=4π,由圆台的体积计算公式可得:V =13×(S 1+S 2+S 1⋅S 2)×h =13×7π×22=142π3,故选:D .6已知函数f x =x 2-bx +c (b >0,c >0)的两个零点分别为x 1,x 2,若x 1,x 2,-1三个数适当调整顺序后可为等差数列,也可为等比数列,则不等式x -bx -c≤0的解集为()A.1,52B.1,52C.-∞,1 ∪52,+∞D.-∞,1 ∪52,+∞ 【答案】A【解析】由函数f x =x 2-bx +c (b >0,c >0)的两个零点分别为x 1,x 2,即x 1,x 2是x 2-bx +c =0的两个实数根据,则x 1+x 2=b ,x 1x 2=c 因为b >0,c >0,可得x 1>0,x 2>0,又因为x 1,x 2,-1适当调整可以是等差数列和等比数列,不妨设x 1<x 2,可得x 1x 2=-1 2=1-1+x 2=2x 1 ,解得x 1=12,x 2=2,所以x 1+x 2=52,x 1x 2=1,所以b =52,c =1,则不等式x -b x -c ≤0,即为x -52x -1≤0,解得1<x ≤52,所以不等式的解集为1,52.故选:A .7已知双曲线C :x 2a 2-y 2b2=1a >0,b >0 的左、右焦点分别为F 1,F 2,M ,N 为双曲线一条渐近线上的两点,A 为双曲线的右顶点,若四边形MF 1NF 2为矩形,且∠MAN =2π3,则双曲线C 的离心率为()A.3B.7C.213D.13【答案】C【解析】如图,因为四边形MF 1NF 2为矩形,所以MN =F 1F 2 =2c (矩形的对角线相等),所以以MN 为直径的圆的方程为x 2+y 2=c 2.直线MN 为双曲线的一条渐近线,不妨设其方程为y =bax ,由y =b a x ,x 2+y 2=c 2,解得x =a y =b ,或x =-a ,y =-b , 所以N a ,b ,M -a ,-b 或N -a ,-b ,M a ,b .不妨设N a ,b ,M -a , -b ,又A a ,0 ,所以AM =a +a 2+b 2=4a 2+b 2,AN =a -a 2+b 2=b .在△AMN 中,∠MAN =2π3,由余弦定理得MN 2=AM 2+AN 2-2AM AN ⋅cos 2π3,即4c 2=4a 2+b 2+b 2+4a 2+b 2×b ,则2b =4a 2+b 2,所以4b 2=4a 2+b 2,则b 2=43a 2,所以e =1+b 2a2=213.故选:C .8已知a =ln 1.2e ,b =e 0.2,c =1.2e 0.2,则有()A.a <b <cB.a <c <bC.c <a <bD.c <b <a【答案】C【解析】令f x =e x -ln x +1 -1,x >0,则f x =e x -1x +1.当x >0时,有e x >1,1x +1<1,所以1x +1<1,所以,f (x )>0在0,+∞ 上恒成立,所以,f (x )在0,+∞ 上单调递增,所以,f (x )>f (0)=1-1=0,所以,f (0.2)>0,即e 0.2-ln1.2-1>0,所以a <b令g x =e x -x +1 ,x >0,则g x =e x -1在x >0时恒大于零,故g x 为增函数,所以x +1ex <1,x >0,而a =ln 1.2e =1+ln1.2>1,所以c <a ,所以c <a <b ,故选:C二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9已知函数f x =sin 2x +3π4 +cos 2x +3π4,则()A.函数f x -π4 为偶函数 B.曲线y =f x 对称轴为x =k π,k ∈ZC.f x 在区间π3,π2单调递增D.f x 的最小值为-2【答案】AC【解析】f x =sin 2x +3π4 +cos 2x +3π4=sin2x cos 3π4+sin 3π4cos2x +cos2x cos 3π4-sin2x sin3π4=-22sin2x +22cos2x -22cos2x -22sin2x =-2sin2x ,即f x =-2sin2x ,对于A ,f x -π4 =-2sin 2x -π2=2cos2x ,易知为偶函数,所以A 正确;对于B ,f x =-2sin2x 对称轴为2x =π2+k π,k ∈Z ⇒x =π4+k π2,k ∈Z ,故B 错误;对于C ,x ∈π3,π2 ,2x ∈2π3,π ,y =sin2x 单调递减,则f x =-2sin2x 单调递增,故C 正确;对于D ,f x =-2sin2x ,则sin2x ∈-1,1 ,所以f x ∈-2,2 ,故D 错误;故选:AC10设z 为复数,则下列命题中正确的是()A.z 2=zz B.若z =(1-2i )2,则复平面内z对应的点位于第二象限C.z 2=z 2D.若z =1,则z +i 的最大值为2【答案】ABD【解析】对于A ,设z =a +bi ,故z =a -bi ,则z 2=a 2+b 2,zz =(a +bi )(a -bi )=a 2+b 2,故z 2=zz成立,故A 正确,对于B ,z =(1-2i )2=-4i -3,z =4i -3,显然复平面内z对应的点位于第二象限,故B 正确,对于C ,易知z 2=a 2+b 2,z 2=a 2+b 2+2abi ,当ab ≠0时,z 2≠z 2,故C 错误,对于D ,若z =1,则a 2+b 2=1,而z +i =a 2+(b +1)2=2b +2,易得当b =1时,z +i 最大,此时z +i =2,故D 正确.故选:ABD11已知菱形ABCD 的边长为2,∠ABC =π3.将△DAC 沿着对角线AC 折起至△D AC ,连结BD .设二面角D -AC -B 的大小为θ,则下列说法正确的是()A.若四面体D ABC 为正四面体,则θ=π3B.四面体D ABC 的体积最大值为1C.四面体D ABC 的表面积最大值为23+2D.当θ=2π3时,四面体D ABC 的外接球的半径为213【答案】BCD【解析】如图,取AC 中点O ,连接OB ,OD ,则OB =OD ,OB ⊥AC ,OD ⊥AC ,∠BOC 为二面角D AC -B 的平面角,即∠BOC =θ.若D ABC 是正四面体,则BD =BC ≠BO ,△OBD 不是正三角形,θ≠π3,A 错;四面体D ABC 的体积最大时,BO ⊥平面ACD ,此时B 到平面ACD 的距离最大为BO =3,而S △ACD=34×22=3,所以V =13×3×3=1,B 正确;S △ABC =S △DAC =3,易得△BAD ≅△BCD ,S △BAD=S △BCD=12×22sin ∠BCD =2sin ∠BCD ,未折叠时BD =BD =23,折叠到B ,D 重合时,BD =0,中间存在一个位置,使得BD =22,则BC 2+D C 2=BD 2,∠BCD =π2,此时S △BAD=S △BCD=2sin ∠BCD 取得最大值2,所以四面体D ABC 的表面积最大值为23+2 ,C 正确;当θ=2π3时,如图,设M ,N 分别是△ACD 和△BAC 的外心,在平面AOD 内作PM ⊥OD ,作PN ⊥OB ,PM ∩PN =P ,则P 是三棱锥外接球的球心,由上面证明过程知平面OBD 与平面ABC 、平面D AC 垂直,即P ,N ,O ,M 四点共面,θ=2π3,则∠PON =π3,ON =13×32×2=33,PN =ON tan π3=33×3=1,PB =PN 2+BN 2=12+233 2=213为球半径,D 正确.故选:BCD .三、填空题:本题共3小题,每小题5分,共15分.12设集合M =x log 2x <1 ,N =x 2x -1<0 ,则M ∩N =.【答案】x 0<x <12【解析】因为log 2x <1=log 22,所以0<x <2,即M =x log 2x <1 =x 0<x <2 ,因为2x -1<0,解得x <12,所以N =x 2x -1<0 =x x <12,所以,M ∩N =x 0<x <12 .故答案为:x 0<x <12 13已知正项等比数列a n 的前n 项和为S n ,且S 8-2S 4=6,则a 9+a 10+a 11+a 12的最小值为.【答案】24【解析】设正项等比数列a n 的公比为q ,则q >0,所以,S 8=a 1+a 2+a 3+a 4+a 5+a 6+a 7+a 8=a 1+a 2+a 3+a 4+q 4a 1+a 2+a 3+a 4 =S 41+q 4 ,则S 8-2S 4=S 4q 4-1 =6,则q 4>1,可得q >1,则S 4=6q 4-1,所以,a 9+a 10+a 11+a 12=q 8a 1+a 2+a 3+a 4 =S 4q 8=6q 8q 4-1=6q 4-1+1 2q 4-1=6q 4-1 2+1+2q 4-1 q 4+1=6q 4-1 +1q 4-1+2 ≥62q 4-1 ⋅1q 4-1+2 =24,当且仅当q 4-1=1q 4-1q >1 时,即当q =42时,等号成立,故a 9+a 10+a 11+a 12的最小值为24.故答案为:2414已知F 为拋物线C :y =14x 2的焦点,过点F 的直线l 与拋物线C 交于不同的两点A ,B ,拋物线在点A ,B 处的切线分别为l 1和l 2,若l 1和l 2交于点P ,则|PF |2+25AB的最小值为.【答案】10【解析】C :x 2=4y 的焦点为0,1 ,设直线AB 方程为y =kx +1,A x 1,y 1 ,B x 2,y 2 .联立直线与抛物线方程有x 2-4kx -4=0,则AB =y 1+y 2+2=k x 1+x 2 +4=4k 2+4.又y =14x 2求导可得y =12x ,故直线AP 方程为y -y 1=12x 1x -x 1 .又y 1=14x 21,故AP :y =12x 1x -14x 21,同理BP :y =12x 2x -14x 22.联立y =12x 1x -14x 21y =12x 2x -14x 22可得12x 1-x 2 x =14x 21-x 22 ,解得x =x 1+x 22,代入可得P x 1+x 22,x 1x 24 ,代入韦达定理可得P 2k ,-1 ,故PF =4k 2+4.故|PF |2+25AB=4k 2+4+254k 2+4≥24k 2+4 ×254k 2+4=10,当且仅当4k 2+4=254k 2+4,即k =±12时取等号.故答案为:102024届高三二轮复习“8+3+3”小题强化训练(2)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1抛物线y =12x 2的焦点坐标为()A.18,0B.12,0 C.0,18D.0,12【答案】D 【解析】由y =12x 2可得抛物线标准方程为:x 2=2y ,∴其焦点坐标为0,12 .故选:D .2二项式3x 2-1x 47的展开式中常数项为()A.-7B.-21C.7D.21【答案】A 【解析】二项式3x 2-1x47的通项公式为Tr +1=C r 7⋅3x 27-r⋅-1x4r=Cr 7⋅-1 r⋅x14-14r 3,令14-14r 3=0⇒r =1,所以常数项为C 17⋅-1 =-7,故选:A3已知集合A =x log 2x ≤1 ,B =y y =2x ,x ≤2 ,则()A.A ∪B =BB.A ∪B =AC.A ∩B =BD.A ∪(C R B )=R【答案】A【解析】由log 2x ≤1,则log 2x ≤log 22,所以0<x ≤2,所以A =x log 2x ≤1 =x 0<x ≤2 ,又B =y y =2x ,x ≤2 =y 0<y ≤4 ,所以A ⊆B ,则A ∪B =B ,A ∩B =A .故选:A .4若古典概型的样本空间Ω=1,2,3,4 ,事件A =1,2 ,甲:事件B =Ω,乙:事件A ,B 相互独立,则甲是乙的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A【解析】若B =Ω,A ∩B =1,2 ,则P A ∩B =24=12,而P A =24=12,P B =1,所以P A P B =P A ∩B ,所以事件A ,B 相互独立,反过来,当B =1,3 ,A ∩B =1 ,此时P A ∩B =14,P A =P B =12,满足P A P B =P A ∩B ,事件A ,B 相互独立,所以不一定B =Ω,所以甲是乙的充分不必要条件.故选:A5若函数f x =ln e x -1 -mx 为偶函数,则实数m =()A.1B.-1C.12D.-12【答案】C【解析】由函数f x =ln e x -1 -mx 为偶函数,可得f -1 =f 1 ,即ln e -1-1 +m =ln e -1 -m ,解之得m =12,则f x =ln e x -1 -12x (x ≠0),f -x =ln e -x -1 +12x =ln e x -1 -x +12x =ln e x -1 -12x =f x故f x =ln e x -1 -12x 为偶函数,符合题意.故选:C6已知函数y =f (x )的图象恰为椭圆C :x 2a 2+y 2b2=1(a >b >0)x 轴上方的部分,若f (s -t ),f (s ),f (s +t )成等比数列,则平面上点(s ,t )的轨迹是()A.线段(不包含端点) B.椭圆一部分C.双曲线一部分D.线段(不包含端点)和双曲线一部分【答案】A【解析】因为函数y =f (x )的图象恰为椭圆C :x 2a 2+y 2b2=1(a >b >0)x 轴上方的部分,所以y =f (x )=b ⋅1-x 2a2(-a <x <a ),因为f (s -t ),f (s ),f (s +t )成等比数列,所以有f 2(s )=f (s -t )⋅f (s +t ),且有-a <s <a ,-a <s -t <a ,-a <s +t <a 成立,即-a <s <a ,-a <t <a 成立,由f 2(s )=f (s -t )⋅f (s +t )⇒b ⋅1-s 2a 22=b ⋅1-(s -t )2a 2⋅b ⋅1-(s +t )2a 2,化简得:t 4=2a 2t 2+2s 2t 2⇒t 2(t 2-2a 2-2s 2)=0⇒t 2=0,或t 2-2a 2-2s 2=0,当t 2=0时,即t =0,因为-a <s <a ,所以平面上点(s ,t )的轨迹是线段(不包含端点);当t 2-2a 2-2s 2=0时,即t 2=2a 2+2s 2,因为-a <t <a ,所以t 2<a 2,而2a 2+2s 2>a 2,所以t 2=2a 2+2s 2不成立,故选:A7若tan α+π4=-2,则sin α1-sin2α cos α-sin α=()A.65B.35C.-35D.-65【答案】C【解析】因为tan α+π4 =tan α+tan π41-tan αtan π4=tan α+11-tan α=-2,解得tan α=3,所以,sin α1-sin2αcos α-sin α=sin αsin 2α+cos 2α-2sin αcos α cos α-sin α=sin αcos α-sin α 2cos α-sin α=sin αcos α-sin 2α=sin αcos α-sin 2αcos 2α+sin 2α=tan α-tan 2α1+tan 2α=3-91+9=-35.故选:C .8函数f x =2ln xx,x >0sin ωx +π6,-π≤x ≤0,若2f 2(x )-3f (x )+1=0恰有6个不同实数解,正实数ω的范围为()A.103,4B.103,4 C.2,103D.2,103【答案】D【解析】由题知,2f 2x -3f x +1=0的实数解可转化为f (x )=12或f (x )=1的实数解,即y =f (x )与y =1或y =12的交点,当x >0时,f x =2ln xx ⇒f (x )=21-ln x x 2所以x ∈0,e 时,f (x )>0,f x 单调递增,x ∈e ,+∞ 时,f (x )<0,f x 单调递减,如图所示:所以x =e 时f x 有最大值:12<f (x )max =2e<1所以x >0时,由图可知y =f (x )与y =1无交点,即方程f (x )=1无解,y =f (x )与y =12有两个不同交点,即方程f (x )=12有2解当x <0时,因为ω>0,-π≤x ≤0,所以-ωπ+π6≤ωx +π6≤π6,令t =ωx +π6,则t ∈-ωπ+π6,π6则有y =sin t 且t ∈-ωπ+π6,π6,如图所示:因为x >0时,已有两个交点,所以只需保证y =sin t 与y =12及与y =1有四个交点即可,所以只需-19π6<-ωπ+π6≤-11π6,解得2≤ω<103.故选:D二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9已知复数z 1,z 2是关于x 的方程x 2+bx +1=0(-2<b <2,b ∈R )的两根,则下列说法中正确的是()A.z 1=z 2B.z 1z 2∈R C.z 1 =z 2 =1D.若b =1,则z 31=z 32=1【答案】ACD【解析】Δ=b 2-4<0,∴x =-b ±4-b 2i 2,不妨设z 1=-b 2+4-b 22i ,z 2=-b2-4-b 22i ,z 1=z 2,A 正确;z 1 =z 2 =-b 22+4-b 222=1,C 正确;z 1z 2=1,∴z 1z 2=z 21z 1z 2=z 21=b 2-22-b 4-b 22i ,b ≠0时,z 1z 2∉R ,B 错;b =1时,z 1=-12+32i ,z 2=-12-32i ,计算得z 21=-12-32i =z 2=z 1 ,z 22=z 1=z 2 ,z 31=z 1z 2=1,同理z 32=1,D 正确.故选:ACD .10四棱锥P -ABCD 的底面为正方形,P A 与底面垂直,P A =2,AB =1,动点M 在线段PC 上,则()A.不存在点M ,使得AC ⊥BMB.MB +MD 的最小值为303C.四棱锥P -ABCD 的外接球表面积为5πD.点M 到直线AB 的距离的最小值为255【答案】BD【解析】对于A :连接BD ,且AC ∩BD =O ,如图所示,当M 在PC 中点时,因为点O 为AC 的中点,所以OM ⎳P A ,因为P A ⊥平面ABCD ,所以OM ⊥平面ABCD ,又因为AC ⊂平面ABCD ,所以OM ⊥AC ,因为ABCD 为正方形,所以AC ⊥BD .又因为BD ∩OM =O ,且BD ,OM ⊂平面BDM ,所以AC ⊥平面BDM ,因为BM ⊂平面BDM ,所以AC ⊥BM ,所以A 错误;对于B :将△PBC 和△PCD 所在的平面沿着PC 展开在一个平面上,如图所示,则MB +MD 的最小值为BD ,直角△PBC 斜边PC 上高为1×56,即306,直角△PCD 斜边PC 上高也为1×56,所以MB +MD 的最小值为303,所以B 正确;对于C :易知四棱锥P -ABCD 的外接球直径为PC ,半径R =12PC =1222+12+12=62,表面积S =4πR 2=6π,所以C 错误;对于D :点M 到直线AB 距离的最小值即为异面直线PC 与AB 的距离,因为AB ⎳CD ,且AB ⊄平面PCD ,CD ⊂平面PCD ,所以AB ⎳平面PCD ,所以直线AB 到平面PCD 的距离等于点A 到平面PCD 的距离,过点A 作AF ⊥PD ,因为P A ⊥平面ABCD ,所以P A ⊥CD ,又AD ⊥CD ,且P A ∩AD =A ,故CD ⊥平面P AD ,AF ⊂平面P AD ,所以AF ⊥CD ,因为PD ∩CD =D ,且PD ,CD ⊂平面PCD ,所以AF ⊥平面PCD ,所以点A 到平面PCD 的距离,即为AF 的长,如图所示,在Rt △P AD 中,P A =2,AD =1,可得PD =5,所以由等面积得AF =255,即直线AB 到平面PCD 的距离等于255,所以D 正确,故选:BCD .11今年是共建“一带一路”倡议提出十周年.某校进行“一带一路”知识了解情况的问卷调查,为调动学生参与的积极性,凡参与者均有机会获得奖品.设置3个不同颜色的抽奖箱,每个箱子中的小球大小相同质地均匀,其中红色箱子中放有红球3个,黄球2个,绿球2个;黄色箱子中放有红球4个,绿球2个;绿色箱子中放有红球3个,黄球2个,要求参与者先从红色箱子中随机抽取一个小球,将其放入与小球颜色相同的箱子中,再从放入小球的箱子中随机抽取一个小球,抽奖结束.若第二次抽取的是红色小球,则获得奖品,否则不能获得奖品,已知甲同学参与了问卷调查,则()A.在甲先抽取的是黄球的条件下,甲获得奖品的概率为47B.在甲先抽取的不是红球的条件下,甲没有获得奖品的概率为1314C.甲获得奖品的概率为2449D.若甲获得奖品,则甲先抽取绿球的机会最小【答案】ACD【解析】设A 红,A 黄,A 绿,分别表示先抽到的小球的颜色分别是红、黄、绿的事件,设B 红表示再抽到的小球的颜色是红的事件,在甲先抽取的是黄球的条件下,甲获得奖品的概率为:P B 红∣A 黄 =P B 红A 黄 P A 黄=27×4727=47,故A 正确;在甲先抽取的不是红球的条件下,甲没有获得奖品的概率为:P B 红 ∣A 红 =P A 红 B 红 P A 红 =P A 黄B 红 +P A 绿B 红 P A 红 =27×37+27×1247=1328,故B 错误;由题意可知,P A 红 =37,P A 黄 =27,P A 绿 =27,P B 红∣A 红 =37,P B 红∣A 黄 =47,P B 红∣A 绿 =12,由全概率公式可知,甲获得奖品的概率为:P =P A 红 P B 红∣A 红 +P A 黄 ⋅P B 红∣A 黄 +P A 绿 ⋅P B 红∣A 绿 =37×37+27×47+27×12=2449,故C 正确;因为甲获奖时红球取自哪个箱子的颜色与先抽取小球的颜色相同,则P A 红∣B 红 =P A 红 ⋅P B 红∣A 红 P B 红=37×37×4924=38,P A 黄∣B 红 =P A 黄 ⋅P B 红∣A 黄P B 红=27×47×4924=13,P A 绿∣B 红 =P A 绿 ⋅P B 红∣A 绿 P B 红 =27×12×4924=724,所以甲获得奖品时,甲先抽取绿球机会最小,故D 正确.故选:ACD .三、填空题:本题共3小题,每小题5分,共15分.12已知△ABC 的边BC 的中点为D ,点E 在△ABC 所在平面内,且CD =3CE -2CA ,若AC =xAB +yBE,则x +y =.【答案】11【解析】因为CD =3CE -2CA ,边BC 的中点为D ,所以12CB=3BE -BC +2AC ,因为12CB =3BE -3BC +2AC ,所以52BC =3BE +2AC ,所以52BC =52AC -AB =3BE +2AC ,所以5AC -5AB =6BE +4AC ,即5AB +6BE =AC ,因为AC =xAB +yBE ,所以x =5,y =6,故x +y =11.故答案为:1113已知圆锥母线长为2,则当圆锥的母线与底面所成的角的余弦值为时,圆锥的体积最大,最大值为.【答案】①.63②.16327π【解析】设圆锥的底面半径为r ,圆锥的母线与底面所成的角为θ,θ∈0,π2 ,易知cos θ=r 2.圆锥的体积为V =13πr 2⋅4-r 2=43πcos 2θ⋅2sin θ=8π3cos 2θ⋅sin θ=8π31-sin 2θ sin θ令x =sin θ,x ∈0,1 ,则y =1-sin 2θ sin θ=-x 3+x ,y =-3x 2+1当y >0时,x ∈0,33,当y<0时,x ∈33,1 ,即函数y =-x 3+x 在0,33 上单调递增,在33,1上单调递减,即V max =8π333-33 3 =163π27,此时cos θ=1-323 =62.故答案为:62;163π2714已知双曲线C :x 2-y 23=1的左、右焦点分别为F 1,F 2,右顶点为E ,过F 2的直线交双曲线C 的右支于A ,B 两点(其中点A 在第一象限内),设M ,N 分别为△AF 1F 2,△BF 1F 2的内心,则当F 1A ⊥AB 时,AF 1=;△ABF 1内切圆的半径为.【答案】①.7+1##1+7②.7-1##-1+7【解析】由双曲线方程知a =1,b =3,c =2,如下图所示:由F 1A ⊥AB ,则AF 1 2+AF 2 2=F 1F 2 2=16,故AF 1 -AF 2 2+2AF 1 AF 2 =16,而AF 1 -AF 2 =2a =2,所以AF 1 AF 2 =6,故AF 2 2+2AF 2 -6=0,解得AF 2 =7-1,所以AF 1 =7+1,若G 为△ABF 1内切圆圆心且F 1A ⊥AB 可知,以直角边切点和G ,A 为顶点的四边形为正方形,结合双曲线定义内切圆半径r =12AF 1 +AB -BF 1 =12AF 1 +AF 2 +BF 2 -BF 1所以r =1227+BF 2 -BF 1 =1227-2 =7-1;故答案为:7+1,7-1;2024届高三二轮复习“8+3+3”小题强化训练(3)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1有一组按从小到大顺序排列数据:3,5,x ,8,9,10,若其极差与平均数相等,则这组数据的中位数为()A.7B.7.5C.8D.6.5【答案】B【解析】依题意可得极差为10-3=7,平均数为163+5+x +8+9+10 =1635+x ,所以1635+x =7,解得x =7,所以中位线为7+82=7.5.故选:B .2已知集合A =x x -1 >2 ,B =x log 4x <1 ,则A ∩B =()A.3,4B.-∞,-1 ∪3,4C.1,4D.-∞,4【答案】A【解析】由x -1 >2,得x <-1或x >3,所以A =x x <-1或x >3 ,由log 4x <1,得0<x <4,所以B =x 0<x <4 ,所以A ∩B =x 3<x <4 .故选:A .3已知向量a =(2,0),b =sin α,32,若向量b 在向量a 上的投影向量c =12,0 ,则|a +b |=()A.3B.7C.3D.7【答案】B【解析】由已知可得,b 在a 上的投影向量为a ⋅b |a |⋅a |a |=2sin α2×2(2,0)=(sin α,0),又b 在a 上的投影向量c =12,0 ,所以sin α=12,所以b =12,32,所以a +b =52,32 ,所以|a +b |=52 2+322=7.故选:B .4如图是两个底面半径都为1的圆锥底面重合在一起构成的几何体,上面圆锥的侧面积是下面圆锥侧面积的2倍,AP ⊥AQ ,则PQ =()A.74B.262C.52D.3【答案】C【解析】设两圆锥的高OP =x ,OQ =y ,则AP =x 2+1,AQ =y 2+1,由AP ⊥AQ ,有AP 2+AQ 2=PQ 2,可得x 2+1+y 2+1=x +y 2,可得xy =1,又由上下圆锥侧面积之比为2:1,即π×1×P A =2×π×1×QA ,可得P A =2QA ,则有x 2+1=2y 2+1,即x 2=4y 2+3,代入y =1x整理为x 4-3x 2-4=0,解得x =2(负值舍),可得y =12,OP =x +y =2+12=52.故选:C .5已知Q 为直线l :x +2y +1=0上的动点,点P 满足QP=1,-3 ,记P 的轨迹为E ,则()A.E 是一个半径为5的圆B.E 是一条与l 相交的直线C.E 上的点到l 的距离均为5D.E 是两条平行直线【答案】C【解析】设P x ,y ,由QP=1,-3 ,则Q x -1,y +3 ,由Q 在直线l :x +2y +1=0上,故x -1+2y +3 +1=0,化简得x +2y +6=0,即P 轨迹为E 为直线且与直线l 平行,E 上的点到l 的距离d =6-112+22=5,故A 、B 、D 错误,C 正确.故选:C .6已知x +1 x -1 5=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4+a 5x 5+a 6x 6,则a 1+a 3的值为()A.-1B.1C.4D.-2【答案】C【解析】在x +1 x -1 5=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4+a 5x 5+a 6x 6中,而x +1 x -1 5=x x -1 5+x -1 5,由二项式定理知x -1 5展开式的通项为T r +1=C r 5x 5-r (-1)r ,令5-r =2,解得r =3,令5-r =3,r =2,故a 3=C 35(-1)3+C 25(-1)2=0,同理令5-r =1,解得r =4,令5-r =0,解得r =5,故a 1=C 45(-1)4+C 55(-1)5=4,故a 1+a 3=4.故选:C7已知P 为抛物线x 2=4y 上一点,过P 作圆x 2+(y -3)2=1的两条切线,切点分别为A ,B ,则cos ∠APB 的最小值为()A.12B.23C.34D.78【答案】C【解析】如图所示:因为∠APB =2∠APC ,sin ∠APC =AC PC=1PC,设P t ,t 24,则PC 2=t 2+t 24-3 2=t 416-t 22+9=116t 2-4 2+8,当t 2=4时,PC 取得最小值22,此时∠APB 最大,cos ∠APB 最小,且cos ∠APB min =1-2sin 2∠APC =1-21222=34,故C 正确.故选:C8已知函数f x ,g x 的定义域为R ,g x 为g x 的导函数且f x +g x =3,f x -g 4-x =3,若g x 为偶函数,则下列结论一定成立的是()A.f -1 =f -3B.f 1 +f 3 =65C.g 2 =3D.f 4 =3【答案】D【解析】对于D ,∵g x 为偶函数,则g x =g -x ,两边求导可得g x =-g -x ,则g x 为奇函数,则g 0 =0,令x =4,则f 4 -g 0 =3,f 4 =3,D 对;对于C ,令x =2,可得f 2 +g 2 =3f 2 -g 2 =3 ,则f 2 =3g 2 =0 ,C 错;对于B ,∵f x +g x =3,可得f 2+x +g 2+x =3,f x -g 4-x =3可得f 2-x -g 2+x =3,两式相加可得f 2+x +f 2-x =6,令x =1,即可得f 1 +f 3 =6,B 错;又∵f x +g x =3,则f x -4 +g x -4 =f x -4 -g 4-x =3,f x -g 4-x =3,可得f x =f x -4 ,所以f x 是以4为周期的函数,所以根据以上性质不能推出f -1 =f -3 ,A 不一定成立.故选:D二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9下列结论正确的是()A.若a <b <0,则a 2>ab >b 2B.若x ∈R ,则x 2+2+1x 2+2的最小值为2C.若a +b =2,则a 2+b 2的最大值为2D.若x ∈(0,2),则1x +12-x ≥2【答案】AD【解析】因为a 2-ab =a (a -b )>0,所以a 2>ab ,因为ab -b 2=b (a -b )>0,所以ab >b 2,所以a 2>ab >b 2,故A 正确;因为x 2+2+1x 2+2≥2的等号成立条件x 2+2=1x 2+2不成立,所以B 错误;因为a 2+b 22≥a +b 2 2=1,所以a 2+b 2≥2,故C 错误;因为1x +12-x =12(x +2-x )1x +12-x =122+2-x x +x 2-x ≥12(2+2)=2,当且仅当1x =12-x,即x =1时,等号成立,所以D 正确.故选:AD10若函数f x =2sin 2x ⋅log 2sin x +2cos 2x ⋅log 2cos x ,则()A.f x 的最小正周期为πB.f x 的图像关于直线x =π4对称C.f x 的最小值为-1D.f x 的单调递减区间为2k π,π4+2k π ,k ∈Z【答案】BCD【解析】由sin x >0,cos x >0得f x 的定义域为2k π,π2+2k π ,k ∈Z .对于A :当x ∈0,π2时,x +π∈π,32π 不在定义域内,故f x +π =f x 不成立,易知f x 的最小正周期为2π,故选项A 错误;对于B :又f π2-x =2cos 2x ⋅log 2cos x +2sin 2x ⋅log 2sin x =f x ,所以f x 的图像关于直线x =π4对称,所以选项B 正确;对于C :因为f x =sin 2x ⋅log 2sin 2x +cos 2x ⋅log 2cos 2x ,设t =sin 2x ,所以函数转化为g t =t ⋅log 2t +1-t ⋅log 21-t ,t ∈0,1 ,g t =log 2t -log 21-t ,由g t >0得,12<t <1.g t <0得0<t <12.所以g t 在0,12 上单调递减,在12,1 上单调递增,故g (t )min =g 12=-1,即f (x )min =-1,故选项C 正确;对于D :因为g t 在0,12 上单调递减,在12,1 上单调递增,由t =sin 2x ,令0<sin 2x <12得0<sin x <22,又f x 的定义域为2k π,π2+2k π ,k ∈Z ,解得2k π<x <π4+2k π,k ∈Z ,因为t =sin 2x 在2k π,π4+2k π 上单调递增,所以f x 的单调递减区间为2k π,π4+2k π ,k ∈Z ,同理函数的递增区间为π4+2k π,π2+2k π ,k ∈Z ,所以选项D 正确.故选:BCD .11已知数列a n 的前n 项和为S n ,且2S n S n +1+S n +1=3,a 1=α0<α<1 ,则()A.当0<α<13-14时,a 2>a 1B.a 3>a 2C.数列S 2n -1 单调递增,S 2n 单调递减D.当α=34时,恒有nk =1S k -1 <54【答案】ACD【解析】由题意可得:S n +1=32S n +1,a 1=α,由S n +1=32S n +1可知:S n +1=1⇔S n =1,但S 1=α∈0,1 ,可知对任意的n ∈N *,都有S n ≠1,对于选项A :若0<α<13-14,则a 2-a 1=S 2-2a 1=32α+1-2α=3-2α-4α22α+1=4α+1+13 13-14-α2α+1>0,即a 2>a 1,故A 正确;对于选项B :a 3-a 2=S 3-2S 2+S 1=6α+32α+7-62α+1+α=α-1 4α2+32α+39 2α+1 2α+7<0,即a 3<a 2,故B 错误.对于选项C :因为S n +1-1=-2S n -1 2S n +1,S n +1+32=3S n +32 2S n +1,则S n +1-1S n +1+32=-23⋅S n -1S n +32,且S 1-1S 1+32=α-1α+32<0,可知S n -1S n+32是等比数列,则S n -1S n +32=α-1α+32⋅-23n -1,设A =α-1α+32<0,t =232n -2,可得S 2n =3-3At 3+2At =3253+2At -1 ,S 2n -1=1+32At 1-At =521-At-32,因为At =A 232n -2,可知A 23 2n -2 为递增数列,所以数列S 2n -1 单调递增,S 2n 单调递减,故C 正确;对于选项D :因为S n +1=32S n +1,S n +1-34=32S n +1-34=33-2S n 42S n +1,由S 1=α=34,可得S 2-34>0,即S 2>34,则S 2≤65,即34<S 2≤65;由34<S 2≤65,可得S 3-34>0,即S 3>34,则S 3<65,即34<S 3<65;以此类推,可得对任意的n ∈N *,都有S n ≥S 1=α=34,又因为S n +1-1S n -1=22S n +1,则S n +1-1 ≤22α+1S n -1 =45S n -1 ,所以∑nk =1S k -1 ≤541-45 n <54,故D 正确.故选:ACD .三、填空题:本题共3小题,每小题5分,共15分.12在(1+ax )n (其中n ∈N *,a ≠0)的展开式中,x 的系数为-10,各项系数之和为-1,则n =.【答案】5【解析】由题意得(1+ax )n 的展开式中x 的系数为aC 1n =-10,即an =-10,令x =1,得各项系数之和为(1+a )n =-1,则n 为奇数,且1+a =-1,即得a =-2,n =5,故答案为:513已知椭圆C :x 2a 2+y 2b2=1a >b >0 的左、右焦点分别F 1,F 2,椭圆的长轴长为22,短轴长为2,P 为直线x =2b 上的任意一点,则∠F 1PF 2的最大值为.【答案】π6【解析】由题意有a =2,b =1,c =1,设直线x =2与x 轴的交点为Q ,设PQ =t ,有tan ∠PF 1Q =PQ F 1Q=t3,tan ∠PF 2Q =PQ F 2Q=t ,可得tan ∠F 1PF 2=tan ∠PF 2Q -∠PF 1Q =t -t31+t23=2t t 2+3=2t +3t ≤2t 23t =33,当且仅当t =3时取等号,可得∠F 1PF 2的最大值为π6.故答案为:π614已知四棱锥P -ABCD 的底面为矩形,AB =23,BC =4,侧面P AB 为正三角形且垂直于底面ABCD ,M 为四棱锥P -ABCD 内切球表面上一点,则点M 到直线CD 距离的最小值为.【答案】10-1【解析】如图,设四棱锥的内切球的半径为r ,取AB 的中点为H ,CD 的中点为N ,连接PH ,PN ,HN ,球O为四棱锥P-ABCD的内切球,底面ABCD为矩形,侧面P AB为正三角形且垂直于底面ABCD,则平面PHN截四棱锥P-ABCD的内切球O所得的截面为大圆,此圆为△PHN的内切圆,半径为r,与HN,PH分别相切于点E,F,平面P AB⊥平面ABCD,交线为AB,PH⊂平面P AB,△P AB为正三角形,有PH⊥AB,∴PH⊥平面ABCD,HN⊂平面ABCD,∴PH⊥HN,AB=23,BC=4,则有PH=3,HN=4,PN=5,则△PHN中,S△PHN=12×3×4=12r3+4+5,解得r=1.所以,四棱锥P-ABCD内切球半径为1,连接ON.∵PH⊥平面ABCD,CD⊂平面ABCD,∴CD⊥PH,又CD⊥HN,PH,HN⊂平面PHN,PH∩HN=H,∴CD⊥平面PHN,∵ON⊂平面PHN,可得ON⊥CD,所以内切球表面上一点M到直线CD的距离的最小值即为线段ON的长减去球的半径,又ON=OE2+EN2=10.所以四棱锥P-ABCD内切球表面上的一点M到直线CD的距离的最小值为10-1.故答案为:10-12024届高三二轮复习“8+3+3”小题强化训练(4)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1已知双曲线的标准方程为x 2k -4+y 2k -5=1,则该双曲线的焦距是()A.1B.3C.2D.4【答案】C【解析】由双曲线方程可知a 2=k -4,b 2=5-k ,所以c 2=k -4+5-k =1,c =1,2c =2.故选:C2在等比数列a n 中,a 1+a x =82,a 3a x -2=81,前x 项和S x =121,则此数列的项数x 等于()A.4B.5C.6D.7【答案】B【解析】由已知条件可得a 1+a x =82a 3a x -2=a 1a x =81,解得a 1=1a x =81 或a 1=81a x =1 .设等比数列a n 的公比为q .①当a 1=1,a x =81时,由S x =a 1-a x q 1-q =1-81q1-q=121,解得q =3,∵a x =a 1q x -1=3x -1=81,解得x =5;②当a 1=81,a x =1时,由S x =a 1-a x q 1-q =81-q 1-q =121,解得q =13,∵a x =a 1q x -1=81×13x -1=35-x =1,解得x =5.综上所述,x =5.故选:B .3对任意实数a ,b ,c ,在下列命题中,真命题是()A.“ac 2>bc 2”是“a >b ”的必要条件B.“ac 2=bc 2”是“a =b ”的必要条件C.“ac 2=bc 2”是“a =b ”的充分条件D.“ac 2≥bc 2”是“a ≥b ”的充分条件【答案】B【解析】对于A ,若c =0,则由a >b ⇏ac 2>bc 2,∴“ac 2>bc 2”不是“a >b ”的必要条件,A 错.对于B ,a =b ⇒ac 2=bc 2,∴“ac 2=bc 2”是“a =b ”的必要条件,B 对,对于C ,若c =0,则由ac 2=bc 2,推不出a =b ,“ac 2=bc 2”不是“a =b ”的充分条件对于D ,当c =0时,ac 2=bc 2,即ac 2≥bc 2成立,此时不一定有a ≥b 成立,故“ac 2≥bc 2”不是“a ≥b ”的充分条件,D 错误,故选:B .4已知m 、n 是两条不同直线,α、β、γ是三个不同平面,则下列命题中正确的是()A.若m ∥α,n ∥α,则m ∥nB.若α⊥β,β⊥γ,则α∥βC.若m ∥α,m ∥β,则α∥βD.若m ⊥α,n ⊥α,则m ∥n【答案】D【解析】A选项:令平面ABCD为平面α,A1B1为直线m,B1C1为直线n,有:m∥α,n∥α,但m∩n=B1,A错误;B选项:令平面ABCD为平面β,令平面B1BCC1为平面α,令平面A1ABB1为平面γ,有:α⊥β,β⊥γ,而α⊥β,B错误;C选项:令平面ABCD为平面α,令平面A1ABB1为平面β,C1D1为直线m,有:m∥α,m∥β,则α∥β,而α⊥β,C错误;D选项:垂直与同一平面的两直线一定平行,D正确.故选:D5将甲、乙等8名同学分配到3个体育场馆进行冬奥会志愿服务,每个场馆不能少于2人,则不同的安排方法有()A.2720B.3160C.3000D.2940【答案】D【解析】共有两种分配方式,一种是4:2:2,一种是3:3:2,故不同的安排方法有C48C24C222!+C38C35C222!A33=2940.故选:D6若抛物线y2=4x与椭圆E:x2a2+y2a2-1=1的交点在x轴上的射影恰好是E的焦点,则E的离心率为()A.2-12 B.3-12 C.2-1 D.3-1【答案】C【解析】不妨设椭圆与抛物线在第一象限的交点为A,椭圆E右焦点为F,则根据题意得AF⊥x轴,c2=a2-a2-1=1,则c=1,则F1,0,当x=1时,y2=4×1,则y A=2,则A1,2,代入椭圆方程得12a2+22a2-1=1,结合a2-1>0,不妨令a>0;解得a=2+1,则其离心率e=ca=12+1=2-1,故选:C.7已知等边△ABC 的边长为3,P 为△ABC 所在平面内的动点,且|P A |=1,则PB ⋅PC 的取值范围是()A.-32,92B.-12,112C.[1,4]D.[1,7]【答案】B【解析】如下图构建平面直角坐标系,且A -32,0 ,B 32,0 ,C 0,32,所以P (x ,y )在以A 为圆心,1为半径的圆上,即轨迹方程为x +322+y 2=1,而PB =32-x ,-y ,PC =-x ,32-y ,故PB ⋅PC =x 2-32x +y 2-32y =x -34 2+y -34 2-34,综上,只需求出定点34,34 与圆x +322+y 2=1上点距离平方范围即可,而圆心A 与34,34 的距离d =34+32 2+34 2=32,故定点34,34与圆上点的距离范围为12,52,所以PB ⋅PC ∈-12,112.故选:B 8设a 、b 、c ∈0,1 满足a =sin b ,b =cos c ,c =tan a ,则()A.a +c <2b ,ac <b 2B.a +c <2b ,ac >b 2C.a +c >2b ,ac <b 2D.a +c >2b ,ac >b 2【答案】A【解析】∵a 、b 、c ∈0,1 且a =sin b ,b =cos c ,c =tan a ,则c =tan a =tan sin b ,先比较a +c =sin b +tan sin b 与2b 的大小关系,构造函数f x =sin x +tan sin x -2x ,其中0<x <1,则0<sin x <1,所以,cos1<cos sin x <1,则f x =cos x +cos xcos 2sin x -2=cos x -2 cos 2sin x +cos x cos 2sin x,令g x =cos x -1-12x 2 ,其中x ∈0,1 ,则g x =x -sin x ,令p x =x -sin x ,其中0<x <1,所以,p x =1-cos x >0,所以,函数g x 在0,1 上单调递增,故g x >g 0 =0,所以,函数g x 在0,1 上单调递增,则g x =cos x -1-12x 2 >0,即cos x >1-12x 2,因为x ∈0,1 ,则0<sin x <sin1,所以,cos sin x >1-12sin 2x =1-121-cos 2x =121+cos 2x ,所以,cos 2sin x >141+cos 2x 2,因为cos x -2<0,所以,cos x -2 cos 2sin x +cos x <14cos x -2 1+cos 2x 2+cos x=14cos 5x -2cos 4x +2cos 3x -4cos 2x +5cos x -2 =14cos x -1 3cos 2x +cos x +2 <0,所以,对任意的x ∈0,1 ,f x =cos x -2 cos 2sin x +cos xcos 2sin x <0,故函数f x 在0,1 上单调递减,因为b ∈0,1 ,则f b =sin b +tan sin b -2b <f 0 =0,故a +c <2b ,由基本不等式可得0<2ac ≤a +c <2b (a ≠c ,故取不了等号),所以,ac <b 2,故选:A .二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9某大学生做社会实践调查,随机抽取6名市民对生活满意度进行评分,得到一组样本数据如下:88、89、90、90、91、92,则下列关于该样本数据的说法中正确的是()A.均值为90B.中位数为90C.方差为2D.第80百分位数为91【答案】ABD【解析】由题意可知,该组数据的均值为x =88+89+90+90+91+926=90,故A 正确;中位数为90+902=90,故B 正确;方差为s 2=1688-90 2+89-90 2+90-90 2×2+91-90 2+92-90 2 =53,故C 错误;因为6×80%=4.8,第80百分位数为91,故D 正确.故选:ABD .10设M ,N ,P 为函数f x =A sin ωx +φ 图象上三点,其中A >0,ω>0,ϕ <π2,已知M ,N 是函数f x 的图象与x 轴相邻的两个交点,P 是图象在M ,N 之间的最高点,若MP 2+2MN ⋅NP=0,△MNP 的面积是3,M 点的坐标是-12,0 ,则()A.A =2B.ω=π2C.φ=π4D.函数f x 在M ,N 间的图象上存在点Q ,使得QM ⋅QN <0【答案】BCD【解析】MP 2+2MN ⋅NP =MP 2-2NM ⋅NP =MP 2-2NM ⋅12NM =T 4 2+A 2 -T 22=A 2-3T 216=0,而S △MNP =AT 4=3,故A =3,T =4=2πω,ω=π2,A 错误、B 正确;-12⋅π2+φ=k π,φ=k π+π4(k ∈Z ),而ϕ <π2,故φ=π4,C 正确;显然,函数f x 的图象有一部分位于以MN 为直径的圆内,当Q 位于以MN 为直径的圆内时,QM⋅QN<0,D 正确,故选:BCD .11设a 为常数,f (0)=12,f (x +y )=f (x )f (a -y )+f (y )f (a -x ),则().A .f (a )=12B .f (x )=12成立C f (x +y )=2f (x )f (y )D .满足条件的f (x )不止一个【答案】ABC 【解析】f (0)=12,f (x +y )=f (x )f (a -y )+f (y )f (a -x )对A :对原式令x =y =0,则12=12f a +12f a =f a ,即f a =12,故A 正确;对B :对原式令y =0,则f x =f x f a +f 0 f a -x =12f x +12f a -x ,故f x =f a -x ,对原式令x =y ,则f 2x =f x f y +f y f x =2f x f y =2f 2x ≥0,故f x 非负;对原式令y =a -x ,则f a =f 2x +f 2a -x =2f 2x =12,解得f x =±12,又f x 非负,故可得f x =12,故B 正确;对C :由B 分析可得:f x +y =2f x f y ,故C 正确;对D :由B 分析可得:满足条件的f x 只有一个,故D 错误.故选:ABC .三、填空题:本题共3小题,每小题5分,共15分.12在复平面内,复数z =-12+32i 对应的向量为OA ,复数z +1对应的向量为OB ,那么向量AB 对应的复数是.。

高三题库数学带答案

高三题库数学带答案

高三题库数学带答案高三数学练习题答案一、选择题1. 下列四组数中,其中均值与中位数相等的是:A. 3,3,3,3B. 1,2,3,4C. 2,3,3,4D. 1,2,2,5答案:A2. 若函数f(x) = x² - 3x + b有两个零点,则b的取值范围为A. [-2,2]B. [0,4]C. [1,5]D. [2,6]答案:B3. 已知三角形ABC,角A的对边为a,角B的对边为b,角C的对边为c,若c² = a² + b²,则该三角形一定是()三角形。

A. 直角三角形B. 锐角三角形C. 钝角三角形答案:A4. 已知平面上两点A(-1, 5),B(4, -2),则点A′关于直线y = x的对称点的坐标为()。

A. (5, -1)B. (-5, 1)C. (1, -5)D. (-1, 5)答案:B二、填空题1. 一组数据为9,2,7,5,3,2,它的四分位数为()。

答案:5.52. 已知第一位数是2,连续的8个数的平均数为11,则这连续8个数的和为()。

答案:883. 已知多项式p(x) = x³ + ax² + bx + 2的图象对称于点(-1,3),则实数a 的值为()。

答案:3三、解答题1. 已知一扇形的半径为5cm,圆心角为150度,求该扇形的面积。

取π=3.14(精确到百分位)答案:3.96(平方厘米)解析:扇形面积公式S=θ/360°πr²,代入数据得S=150/360°×3.14×5²=3.96(平方厘米)。

2. 已知函数f(x) = x³ - 3x² - 3x + 5,求f(x)的零点及单调区间。

答案:f(x)的零点为-1,1,5,单调递增区间为(-∞,-1)∪(1,+∞),单调递减区间为(-1,1)。

解析:对f(x)求导得f'(x) = 3x² - 6x - 3,令f'(x) = 0,解得x = -1,1,分别代入求得f(x)的零点为-1,1,5。

高三数学选择题专题训练(17套)含答案

高三数学选择题专题训练(17套)含答案

(每个专题时间:35分钟,满分:60分)1.函数y =的定义域是( )A .[1,)+∞B .23(,)+∞ C .23[,1] D .23(,1]2.函数221()1x f x x -=+, 则(2)1()2f f = ( ) A .1 B .-1 C .35D .35-3.圆222430x y x y +-++=的圆心到直线1x y -=的距离为( )A .2 BC .1 D4.不等式221x x +>+的解集是( ) A .(1,0)(1,)-+∞ B .(,1)(0,1)-∞- C .(1,0)(0,1)- D .(,1)(1,)-∞-+∞5.sin163sin 223sin 253sin313+=( )A .12-B .12C. D6.若向量a 与b 的夹角为60,||4,(2).(3)72b a b a b =+-=-,则向量a 的模为( ) A .2 B .4 C .6 D .127.已知p 是r 的充分不必要条件,s 是r 的必要条件,q 是s 的必要条件。

那么p 是q 成立的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 8.不同直线,m n 和不同平面,αβ,给出下列命题 ( )①////m m αββα⎫⇒⎬⊂⎭ ② //////m n n m ββ⎫⇒⎬⎭ ③ ,m m n n αβ⊂⎫⇒⎬⊂⎭异面 ④ //m m αββα⊥⎫⇒⊥⎬⎭其中假命题有:( ) A .0个 B .1个C .2个D .3个9. 若{}n a 是等差数列,首项120032004200320040,0,.0a a a a a >+><,则使前n 项和0n S > 成立的最大自然数n 是 ( ) A .4005 B .4006 C .4007 D .400810.已知双曲线22221,(0,0)x y a b a b-=>>的左,右焦点分别为12,F F ,点P 在双曲线的右支上,且12||4||PF PF =,则此双曲线的离心率e 的最大值为 ( )A .43B .53C .2D .7311.已知盒中装有3只螺口与7只卡口灯炮,这些灯炮的外形与功率都相同且灯口向下放着,现需要一只卡口灯炮使用,电工师傅每次从中任取一只并不放回,则他直到第3次才取得卡口灯炮的概率为 ( )A .2140B .1740C .310D .712012. 如图,棱长为5的正方体无论从哪一个面看,都有两个直通的边长为1的正方形孔,则这个有孔正方体的表面积(含孔内各面)是A .258B .234C .222D .2101.设集合U={1,2,3,4,5},A={1,3,5},B={2,3,5},则()U C A B 等于( )A .{1,2,4}B .{4}C .{3,5}D .∅2.︒+︒15cot 15tan 的值是( )A .2B .2+3C .4D .334 3.命题p :若a 、b ∈R ,则|a |+|b|>1是|a +b|>1的充要条件;命题q :函数y=2|1|--x 的定义域是(-∞,-1]∪[3,+∞).则( )A .“p 或q ”为假B .“p 且q ”为真C .p 真q 假D .p 假q 真4.已知F 1、F 2是椭圆的两个焦点,过F 1且与椭圆长轴垂直的直线交椭圆于A 、B 两点,若△ABF 2是正三角形,则这个椭圆的离心率为( )A .32 B .33 C .22 D .235.设S n 是等差数列{}n a 的前n 项和,若==5935,95S Sa a 则( ) A .1B .-1C .2D .216.已知m 、n 是不重合的直线,α、β是不重合的平面,有下列命题:其中真命题的个数是( ) ①若m ⊂α,n ∥α,则m ∥n ; ②若m ∥α,m ∥β,则α∥β; ③若α∩β=n ,m ∥n ,则m ∥α且m ∥β; ④若m ⊥α,m ⊥β,则α∥β.A .0B .1C .2D .37.已知函数y=log 2x 的反函数是y=f —1(x ),则函数y= f —1(1-x )的图象是( )8.已知a 、b 是非零向量且满足(a -2b) ⊥a ,(b -2a ) ⊥b ,则a 与b 的夹角是( )A .6π B .3π C .32π D .65π 9.已知8)(xa x -展开式中常数项为1120,其中实数a 是常数,则展开式中各项系数的和是( )A .28B .38C .1或38D .1或2810.如图,A 、B 、C 是表面积为48π的球面上三点,AB=2,BC=4,∠ABC=60º,O 为球心,则直线OA 与截面ABC 所成的角是( ) A .arcsin 63 B .arccos 63C .arcsin 33 D .arccos 3311.定义在R 上的偶函数f(x)满足f(x)=f(x +2),当x ∈[3,4] 时,f(x)= x -2,则 ( ) A .f (sin21)<f (cos 21) B .f (sin 3π)>f (cos 3π) C .f (sin1)<f (cos1) D .f (sin 23)>f (cos 23) 12.如图,B 地在A 地的正东方向4 km 处,C 地在B 地的北偏东30°方向2 km 处,河流的沿岸PQ (曲线)上任意一点到A 的距离比到B 的距离远2km ,现要在曲线PQ 上任意选一处M 建一座码头,向B 、C 两地转运货物,经测算,从M 到B 、C 两地修建公路的费用都是a 万元/km 、那么修建这两条公路的总费用最低是( )A .(7+1)a 万元B .(27-2) a 万元C .27a 万元D .(7-1) a 万元专题训练(三)1.已知平面向量a =(3,1),b =(x ,–3),且a b ⊥,则x= ( ) A .-3 B .-1 C .1 D .3 2.已知{}{}2||1|3,|6,A x x B x xx =+>=+≤则A B =( )A .[)(]3,21,2-- B .(]()3,21,--+∞C . (][)3,21,2--D .(](],31,2-∞-3.设函数2322,(2)()42(2)x x f x x x a x +⎧->⎪=--⎨⎪≤⎩在x=2处连续,则a= ( )A .12-B .14- C .14 D .134.已知等比数列{n a }的前n 项和12-=n n S ,则++2221a a …2n a +等于( )A .2)12(-nB .)12(31-nC .14-nD .)14(31-n5.函数f(x)22sin sin 44f x x x ππ=+--()()()是( ) A .周期为π的偶函数 B .周期为π的奇函数 C . 周期为2π的偶函数 D ..周期为2π的奇函数6.一台X 型号自动机床在一小时内不需要工人照看的概率为0.8000,有四台这中型号的自动机床各自独立工作,则在一小时内至多2台机床需要工人照看的概率是( )A .0.1536B . 0.1808C . 0.5632D . 0.97287.在棱长为1的正方体上,分别用过共顶点的三条棱中点的平面截该正方体,则截去8个三棱锥后,剩下的凸多面体的体积是( )A .23 B . 76 C . 45 D . 568.若双曲线2220)x y kk -=>(的焦点到它相对应的准线的距离是2,则k= ( ) A . 6 B . 8C . 1D . 49.当04x π<<时,函数22cos ()cos sin sin xf x x x x =-的最小值是( ) A . 4 B . 12 C .2 D . 1410.变量x 、y 满足下列条件:212,2936,2324,0,0.x y x y x y x y +≥⎧⎪+≥⎪⎨+=⎪⎪≥≥⎩ 则使z=3x+2y 的值最小的(x ,y )是 ( )A . ( 4.5 ,3 )B . ( 3,6 )C . ( 9, 2 )D . ( 6, 4 )11.若tan 4f x x π=+()(),则( ) A . 1f -()>f (0)>f (1) B . f (0)>f(1)>f (-1) C . 1f ()>f (0)>f (-1) D . f (0)>f(-1)>f (1) 12.如右下图,定圆半径为 ( b ,c ), 则直线ax+by+c=0 与直线 x –y+1=0的交点在( )A . 第四象限B . 第三象限C .第二象限D . 第一象限1.设集合P={1A .{1,2} B . {3,4} C . {1} D . {-2,-1,0,1,2}2.函数y=2cos 2x+1(x ∈R )的最小正周期为 ( )A .2πB .πC .π2D .π43.从4名男生和3名女生中选出4人参加某个座谈会,若这4人中必须既有男生又有女生,则不同的选法共有( )A .140种B .120种C .35种D .34种4.一平面截一球得到直径是6cm 的圆面,球心到这个平面的距离是4cm ,则该球的体积是( )A .33π100cmB . 33π208cmC . 33π500cmD . 33π3416cm 5.若双曲线18222=-by x 的一条准线与抛物线x y 82=的准线重合,则双曲线的离心率为 ( )A .2B .22C . 4D .246.某校为了了解学生的课外阅读情况,随机调查了50名学生,得到他们在某一天各自课外阅读所用时间的数据,结果用右侧的条形图表示. 根据条形图可得这50名学生这一天平均每人的课外阅读时间为 ( )A .0.6小时B .0.9小时C .1.0小时D .1.5小时 7.4)2(x x +的展开式中x 3的系数是( ) A .6 B .12 C .24 D .488.若函数)1,0)((log ≠>+=a a b x y a 的图象过两 点(-1,0)和(0,1),则( )A .a =2,b=2B .a = 2 ,b=2C .a =2,b=1D .a = 2 ,b= 29.将一颗质地均匀的骰子(它是一种各面上分 别标有点数1,2,3,4,5,6的正方体玩具)先后抛掷3次,至少出现一次6点向上的概率是( )A .5216B .25216C .31216D .9121610.函数13)(3+-=x x x f 在闭区间[-3,0]上的最大值、最小值分别是( )A .1,-1B .1,-17C .3,-17 D.9,-1911.设k>1,f(x)=k(x-1)(x ∈R ) . 在平面直角坐标系xOy 中,函数y=f(x)的图象与x 轴交于A 点,它的反函数y=f -1(x)的图象与y 轴交于B 点,并且这两个函数的图象交于P 点. 已知四边形OAPB 的面积是3,则k 等于 ( )A .3B .32C .43D .6512.设函数)(1)(R x xxx f ∈+-=,区间M=[a ,b](a<b),集合N={M x x f y y ∈=),(},则使M=N 成立的实数对(a ,b)有 ( )A .0个B .1个C .2个D .无数多个人数(人)时间(小时)专题训练(五)1.若θθθ则角且,02sin ,0cos <>的终边所在象限是( )A .第一象限B .第二象限C .第三象限D .第四象限2.对于10<<a ,给出下列四个不等式,其中成立的是( )① )11(log )1(log a a a a +<+ ②)11(log )1(log aa a a +>+ ③aa a a 111++<④aaaa 111++>A .①与③B .①与④C .②与③D .②与④3.已知α、β是不同的两个平面,直线βα⊂⊂b a 直线,,命题b a p 与:无公共点;命题βα//:q . 则q p 是的( )A .充分而不必要的条件B .必要而不充分的条件C .充要条件D .既不充分也不必要的条件 4.圆064422=++-+y x y x 截直线x -y -5=0所得弦长等于( ) A .6 B .225 C .1 D .5 5.甲、乙两人独立地解同一问题,甲解决这个问题的概率是p 1,乙解决这个问题的概率是p 2,那么恰好有1人解决这个问题的概率是( )A .21p pB .)1()1(1221p p p p -+-C .211p p -D .)1)(1(121p p --- 6.已知点)0,2(-A 、)0,3(B ,动点2),(x y x P =⋅满足,则点P 的轨迹是( ) A .圆 B .椭圆 C .双曲线 D .抛物线 7.已知函数1)2sin()(--=ππx x f ,则下列命题正确的是( )A .)(x f 是周期为1的奇函数B .)(x f 是周期为2的偶函数C .)(x f 是周期为1的非奇非偶函数D .)(x f 是周期为2的非奇非偶函数 8.已知随机变量ξ的概率分布如下:则==)10(ξP ( )A .932 B .103 C .93 D .103 9.已知点)0,2(1-F 、)0,2(2F ,动点P 满足2||||12=-PF PF . 当点P 的纵坐标是21时,点P 到坐标原点的距离是( )A .26 B .23 C .3D .210.设A 、B 、C 、D 是球面上的四个点,且在同一平面内,AB=BC=CD=DA=3,球心到该平面的距离是球半径的一半,则球的体积是( )A .π68B .π664C .π224D .π27211.若函数)sin()(ϕω+=x x f 的图象(部分)如图所示,则ϕω和的取值是( )A .3,1πϕω==B .3,1πϕω-==C .6,21πϕω==D .6,21πϕω-== 12.有两排座位,前排11个座位,后排12个座位,现安排2人就座,规定前排中间的3个座位不能坐, 并且这2人不.左右相邻,那么不同排法的种数是( )A .234B .346C .350D .3631.设集合U A .{2} B .{2,3} C .{3} D . {1,3} 2.已知函数=-=+-=)(,21)(,11lg )(a f a f x x x f 则若( ) A .21 B .-21 C .2 D .-23.已知a +b 均为单位向量,它们的夹角为60°,那么|a +3b |=( ) A .7 B .10C .13D .44.函数)1(11>+-=x x y 的反函数是 ( )A .)1(222<+-=x x x yB .)1(222≥+-=x x x y C .)1(22<-=x x x y D .)1(22≥-=x x x y5.73)12(xx -的展开式中常数项是( )A .14B .-14C .42D .-426.设)2,0(πα∈若,53sin =α则)4cos(2πα+=( ) A .57B .51C .27 D .47.椭圆1422=+y x 的两个焦点为F 1、F 2,过F 1作垂直于x 轴的直线与椭圆相交,一个交点为P ,则||2PF =( ) A .23B .3C .27 D .48.设抛物线x y 82=的准线与x 轴交于点Q ,若过点Q 的直线l 与抛物线有公共点,则直线l 的斜率的取值范围是( )A .]21,21[-B .[-2,2]C .[-1,1]D .[-4,4]9.为了得到函数)62sin(π-=x y 的图象,可以将函数x y 2cos =的图象( )A .向右平移6π个单位长度 B .向右平移3π个单位长度 C .向左平移6π个单位长度D .向左平移3π个单位长度10.已知正四面体ABCD 的表面积为S ,其四个面的中心分别为E 、F 、G 、H ,设四面体EFGH 的表面积为T ,则ST等于( )A .91 B .94 C .41 D .31 11.从1,2,……,9这九个数中,随机抽取3个不同的数,则这3个数的和为偶数的概率是( )A .95 B .94 C .2111 D .2110 12.已知ca bc ab a c c b b a ++=+=+=+则,2,2,1222222的最小值为( )A .3-21B .21-3C .-21-3D .21+31.已知集合}032|{|,4|{22<--=<=x x x N x x M ,则集合N M ⋂=( ) A .{2|-<x x } B .{3|>x x } C .{21|<<-x x } D . {32|<<x x }2.函数)5(51-≠+=x x y 的反函数是( ) A .)0(51≠-=x x y B .)(5R x x y ∈+=C .)0(51≠+=x xy D .)(5R x x y ∈-=3.曲线1323+-=x x y 在点(1,-1)处的切线方程为( ) A .43-=x y B .23+-=x y C .34+-=x y D .54-=x y4.已知圆C 与圆1)1(22=+-y x 关于直线x y -=对称,则圆C 的方程为( )A .1)1(22=++y xB .122=+y xC .1)1(22=++y xD .1)1(22=-+y x5.已知函数)2tan(ϕ+=x y 的图象过点)0,12(π,则ϕ可以是( )A .6π-B .6π C .12π-D .12π 6.正四棱锥的侧棱长与底面边长都是1,则侧棱与底面所成的角为( ) A .75° B .60° C .45° D .30° 7.函数xe y -=的图象( ) A .与xe y =的图象 关于y 轴对称B .与xe y =的图象关于坐标原点对称C .与x e y -=的图象关于y 轴对称D .与xe y -=的图象关于坐标原点对称 8.已知点A (1,2)、B (3,1),则线段AB 的垂直平分线的方程是( ) A .524=+y x B .524=-y x C .52=+y x D .52=-y x 9.已知向量a 、b 满足:|a |=1,|b |=2,|a -b |=2,则|a +b |=( ) A .1B .2C .5D .610.已知球O 的半径为1,A 、B 、C 三点都在球面上,且每两点间的球面距离均为2π,则球心O 到平面ABC 的距离为( )A .31 B .33 C .32 D .36 11.函数x x y 24cos sin +=的最小正周期为( )A .4π B .2π C .π D .2π12.在由数字1,2,3,4,5组成的所有没有重复数字的5位数中,大于23145且小于43521的数共有( ) A .56个 B .57个 C .58个 D .60个专题训练(八)1、设集合22,1,,M x y xy x R y R =+=∈∈,2,0,,N x y xy x R y R =-=∈∈,则集合MN 中元素的个数为( )A .1B .2C .3D .42、函数sin 2xy =的最小正周期是( ) A .2πB .πC .2πD .4π3、记函数13xy -=+的反函数为()y g x =,则(10)g =( ) A . 2 B . 2-C . 3D . 1- 4、等比数列{}n a 中,29,a = 5243a =,则{}n a 的前4项和为( )A . 81B . 120C .168D . 1925、圆2240x y x +-=在点(P 处的切线方程是( )A . 20x +-=B . 40x +-=C . 40x -+=D . 20x +=6、61x ⎫⎪⎭展开式中的常数项为( )A . 15B . 15-C . 20D . 20-7、若△ABC 的内角满足sin A +cos A >0,tan A -sin A <0,则角A 的取值范围是( )A .(0,4π) B .(4π,2π) C .(2π,43π) D .(43π,) 8、设双曲线的焦点在x 轴上,两条渐近线为12y x =±,则双曲线的离心率e =( )A . 5B .C .D . 549、不等式113x <+<的解集为( )A . ()0,2B . ()()2,02,4- C . ()4,0- D . ()()4,20,2--10、正三棱锥的底面边长为2,侧面均为直角三角形,则此三棱锥的体积为( )A .B .C . 3D .11、在ABC 中,3,4AB BC AC ===,则边AC 上的高为( )A .B .C . 32D .12、4名教师分配到3所中学任教,每所中学至少1名教师,则不同的分配方案共有( )A . 12 种B . 24 种C 36 种D . 48 种1.设集合U={1U A .{5} B .{0,3} C .{0,2,3,5} D . {0,1,3,4,5}2.函数)(2R x e y x∈=的反函数为( ) A .)0(ln 2>=x x y B .)0)(2ln(>=x x y C .)0(ln 21>=x x y D .)0(2ln 21>=x x y 3.正三棱柱侧面的一条对角线长为2,且与底面成45°角,则此三棱柱的体积为( ) A .26 B . 6C .66 D .36 4. 函数)1()1(2-+=x x y 在1=x 处的导数等于( ) A .1 B .2 C .3 D .45.为了得到函数xy )31(3⨯=的图象,可以把函数xy )31(=的图象( )A .向左平移3个单位长度B .向右平移3个单位长度C .向左平移1个单位长度D .向右平移1个单位长度6.等差数列}{n a 中,78,24201918321=++-=++a a a a a a ,则此数列前20项和等于 A .160 B .180 C .200 D .2207.已知函数kx y x y ==与41log 的图象有公共点A ,且点A 的横坐标为2,则k ( )A .41-B .41 C .21-D .21 8.已知圆C 的半径为2,圆心在x 轴的正半轴上,直线0443=++y x 与圆C 相切,则圆C 的方程为( )A .03222=--+x y xB .0422=++x y xC .03222=-++x y x D .0422=-+x y x9.从5位男教师和4位女教师中选出3位教师,派到3个班担任班主任(每班1位班主任),要求这3位班主任中男、女教师都要有,则不同的选派方案共有( )A .210种B .420种C .630种D .840种10.函数))(6cos()3sin(2R x x x y ∈+--=ππ的最小值等于( ) A .-3 B .-2 C .-1 D .-511.已知球的表面积为20π,球面上有A 、B 、C 三点.如果AB=AC=BC=23,则球心到平面ABC 的距离为( )A .1B .2C .3D .212.△ABC 中,a 、b 、c 分别为∠A 、∠B 、∠C 的对边.如果a 、b 、c 成等差数列,∠B=30°,△ABC 的面积为23,那么b =( ) A .231+ B .31+ C .232+ D .32+1.设集合A .PQ P = B .P Q 包含Q C .P Q Q = D . P Q 真包含于P2. 不等式21≥-xx 的解集为( ) A . )0,1[- B . ),1[+∞- C .]1,(--∞ D .),0(]1,(+∞--∞ 3.对任意实数,,a b c 在下列命题中,真命题是( )A .""ac bc >是""a b >的必要条件B .""ac bc =是""a b =的必要条件C .""ac bc >是""a b >的充分条件D .""ac bc =是""a b =的充分条件 4.若平面向量b 与向量)2,1(-=的夹角是o 180,且53||=,则=b ( ) A . )6,3(- B . )6,3(- C . )3,6(- D . )3,6(-5.设P 是双曲线19222=-y ax 上一点,双曲线的一条渐近线方程为023=-y x ,1F 、2F 分别是双曲线的左、右焦点。

高三数学选择题专题训练(12套)

高三数学选择题专题训练(12套)

高三数学选择题专题训练(一)1.已知集合{}1),(≤+=y x y x P ,{}1),(22≤+=y x y x Q ,则有 ( )A .Q P ⊂≠ B .Q P = C .P Q P = D .Q Q P = 2.函数11)(+-=x x e e x f 的反函数是( )A .)11( 11)(1<<-+-=-x xxLn x f B .)11(11)(1-<>+-=-x x xxLn x f 或 C .)11( 11)(1<<--+=-x x xLnx fD .)11(11)(1-<>-+=-x x xxLn x f 或 3.等差数列{}n a 的前n 项和为n S ,369-=S ,10413-=S ,等比数列{}n b 中,55a b =,77a b =,则6b 的值( )A .24B .24-C .24±D .无法确定 4.若α、β是两个不重合的平面, 、m 是两条不重合的直线,则α∥β的一个充分而非必要条件是( ) A . αα⊂⊂m 且 ∥β m ∥β B .βα⊂⊂m 且∥mC .βα⊥⊥m 且 ∥mD . ∥α m ∥β 且 ∥m 5.已知nn n x a x a a x x x +++=++++++ 102)1()1()1(,若na a a n -=+++-509121,则n 的值( )A .7B .8C .9D .106.已知O ,A ,M ,B 为平面上四点,则OA OB OM )1(λλ-+=,)2,1(∈λ,则( )A .点M 在线段AB 上 B .点B 在线段AM 上C .点A 在线段BM 上D .O ,A ,M ,B 四点共线 7.若A 为抛物线241x y =的顶点,过抛物线焦点的直线交抛物线于B 、C 两点,则ACAB ⋅等于( ) A .31-B .3-C .3D .43- 8.用四种不同颜色给正方体1111D C B A ABCD -的六个面涂色,要求相邻两个面涂不同的颜色,则共有涂色方法( )A .24种B .72种C .96种D .48种9.若函数x x a y 2cos 2sin -=的图象关于直线π87=x 对称,那么a 的值 ( )A .2B .2-C .1D .1-10.设1F ,2F 是双曲线12222=-by a x ,)00(>>b a ,的两个焦点,P 在双曲线上,若021=⋅PF PF ac 2=,(c 为半焦距),则双曲线的离心率为 ( ) A .231+ B .251+ C .2 D .221+高三数学选择题专题训练(二)1.已知集合S={}{}01,211x x T x x <<=-≤,则ST 等于A SB TC {}1x x ≤ D Φ 2.已知抛物线y =34x 2,则它的焦点坐标是A (0,316 )B ( 316 ,0)C (13 ,0)D (0, 13 )3.设等差数列{a n }的前n 项和为S n ,且S 1=1,点(n , S n )在曲线C 上,C 和直线x -y +1=0交于A,B 两点,|AB|= 6 ,那么这个数列的通项公式是A 21n a n =-B 32n a n =-C 43n a n =- D54n a n =-4.已知a =(1,2+sin x ),b =(2,cos x ),c =(-1,2),(a -c )∥b ,则锐角x 等于 A 15° B 30° C 45° D 60°5.函数y =f (x )的图像与函数y =lg(x -1)+9的图像关于直线y =x 对称,则f (9)的值为A 10B 9C 3D 2 6.若tan 2α=,则sin cos αα的值为 A .12B .23C .25D .17..坐平面内区域M=()()⎪⎩⎪⎨⎧⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧≤--≤≤≤-+≥+-01100101y kx k y x y x y ,x 的面积可用函数f(x)表示,若f(k)=8,则k 等于( ) A.21 B.31C.22 D.23 8.函数11)(2-+-=x x a x f 为奇函数的充要条件是\A 、10<<a B 、10≤<a C 、1>a D 、1≥a 9.若61()x展开式中的第5项是152,设12n n S x x x ---=+++,则lim n n S →∞=A .1B .12C .14D .16(文)点P 在曲线y =x 3-x +7上移动,过P 点的切线的倾斜角取值范围是 A.[0,π) B.(0,2π)∪[4π3,π)C.[0, 2π)∪(2π,4π3] D.[0, 2π)∪[4π3,π)10.如图正方体ABCD -A 1B 1C 1D 1,在它的12条棱及12条面对角线所在直线中,选取若干条直线确定平面。

高三数学选择题、填空题专项训练

高三数学选择题、填空题专项训练

高三数学选择题、填空题专项训练(总19页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--2高三数学选择题、填空题专项训练(1)1.sin600 = ( ) (A) –23 (B)–21. (C)23. (D) 21. 2.设 A = { x| x 2}, B = { x | |x – 1|< 3}, 则A ∩B= ( )(A)[2,4] (B)(–∞,–2] (C)[–2,4] (D)[–2,+∞)3.若|a |=2sin150,|b |=4cos150,a 与b 的夹角为300,则a ·b 的值为 ( )(A)23. (B)3. (C)32. (D)21.4.△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,则a cos C+c cos A 的值为 ( )(A)b. (B)2cb +. (C)2cosB. (D)2sinB. 5.当x R 时,令f (x )为sinx 与cosx 中的较大或相等者,设a f ( x ) b, 则a + b 等于 ( )(A)0 (B) 1 + 22. (C)1–22. (D)22–1. 6、函数1232)(3+-=x x x f 在区间[0,1]上是( ) (A )单调递增的函数. (B )单调递减的函数. (C )先减后增的函数 . (D )先增后减的函数.7.对于x ∈[0,1]的一切值,a +2b > 0是使ax + b > 0恒成立的( )(A)充要条件 (B)充分不必要条件 (C)必要不充分条件 (D)既不充分也不必要条件8.设{a n }是等差数列,从{a 1,a 2,a 3,··· ,a 20}中任取3个不同的数,使这三个数仍成等差数列,则这样不同的等差数列最多有( )(A)90个 . (B)120个. (C)180个. (D)200个.9.已知函数y = f ( x )(x ∈R )满足f (x +1) = f ( x – 1),且x ∈[–1,1]时,f (x) = x 2,则y = f ( x ) 与y = log 5x 的图象的交点个数为 ( )3(A)1. (B)2 . (C)3 . (D)4. 10.给出下列命题:(1) 若0< x <2π, 则sinx < x < tanx . (2) 若–2π< x< 0, 则sin x < x < tanx.(3) 设A ,B ,C 是△ABC 的三个内角,若A > B > C, 则sinA > sinB > sinC. (4) 设A ,B 是钝角△ABC 的两个锐角,若sinA > sinB > sinC 则A > B > C.. 其中,正确命题的个数是( ) (A) 4. (B )3. (C )2. (D )1.11. 某客运公司定客票的方法是:如果行程不超过100km ,票价是元/km , 如果超过100km , 超过100km 部分按元/km 定价,则客运票价y 元与行程公里数x km 之间的函数关系式是 .12. 设P 是曲线y = x 2 – 1上的动点,O 为坐标原点,当|→--OP |2取得最小值时,点P 的坐标为 .高三数学选择题、填空题专项训练(2)1.函数12x y -=(x >1)的反函数是( ) (A )y =1+log 2x (x >1) (B )y =1+log 2x (x >0) (C )y =-1+log 2x (x >1) (D )y =log 2(x -1) (x >1) 2.设集合A ={(x , y )| y =2si n 2x },集合B ={(x , y )| y =x },则( ) (A )A ∪B 中有3个元素 (B )A ∪B 中有1个元素 (C )A ∪B 中有2个元素 (D )A ∪B =R3.焦点在直线3x -4y -12=0上的抛物线的标准方程为( ) (A )x 2=-12y (B )y 2=8x 或x 2=-6y (C )y 2=16x (D )x 2=-12y 或y 2=16y 4.在△ABC 中“A >B ”是“cos A <cos B ”的( ) (A )充分非必要条件 (B )必要非充分条件4(C )充要条件 (D )既不充分也不必要条件5.已知mn ≠0,则方程mx 2+ny 2=1与mx +ny 2=0在同一坐标系下的图象可能是( )6.在数列{a n }中,已知1n n ca n +=+(c ∈R ),则对于任意正整数n 有( ) (A )a n <a n +1 (B )a n 与a n +1的大小关系和c 有关 (C )a n >a n +1 (D )a n 与a n +1的大小关系和n 有关 二.填空题:7.函数f (x)=12log (1)x -的定义域为 。

高三数学练习题及答案

高三数学练习题及答案

高三数学练习题及答案一、选择题1. 已知函数f(x) = 2x + 3,那么f(1)的值为()。

A. 1B. 5C. 1D. 52. 若|a| = 5,则a的值为()。

A. 5 或 5B. 0C. 5D. 53. 下列函数中,奇函数是()。

A. y = x^2B. y = x^3C. y = |x|D. y = 1/x4. 在等差数列{an}中,若a1 = 1,a3 = 3,则公差d为()。

A. 1B. 2C. 3D. 45. 若复数z满足|z 1| = |z + 1|,则z在复平面上的对应点位于()。

A. 实轴上B. 虚轴上C. 原点D. 不在坐标轴上二、填空题1. 已知等差数列{an}的通项公式为an = 3n 2,则第7项的值为______。

2. 若向量a = (2, 3),向量b = (4, 1),则2a 3b = ______。

3. 不等式2x 3 > x + 1的解集为______。

4. 二项式展开式(a + b)^10中,含a^3b^7的项的系数为______。

5. 在三角形ABC中,a = 5, b = 8, sinA = 3/5,则三角形ABC的面积为______。

三、解答题1. 讨论函数f(x) = x^3 3x在区间(∞, +∞)上的单调性。

2. 设函数f(x) = (1/2)^x 2^x,求f(x)的单调递减区间。

3. 已知等差数列{an}的前n项和为Sn = 2n^2 + n,求该数列的通项公式。

4. 在△ABC中,a = 10, b = 15, C = 120°,求sinA和cosA的值。

5. 解三角形ABC,已知a = 8, b = 10, sinB = 3/5。

6. 已知函数f(x) = x^2 + ax + 1在区间[1, 3]上的最小值为3,求实数a的值。

7. 设函数f(x) = x^2 2x + c,讨论函数在区间[0, 3]上的最大值和最小值。

届高三数学填空题专练

届高三数学填空题专练

1. 若平面向量b a 与)2,1(-=的夹角是180°,且b b 则,53||=等于 (-3,6)2.某地教育部门为了了解学生在数学答卷中的有关信息,从上次考试的10000名考生的数学试卷中,用分层抽样的方法抽取500人,并根据这500人的数学成绩画出样本的频率分布直方图(如图). 则这10000人中数学成绩在[140,150]段的约是800 人.3.右图程序运行结果是 344如图所示的等腰直角三角形表示一个水平放置的平面图形的直观图,则这个平面图形的面积是22 .5.若复数z 满足i z iz 212+=+,则=z i -1________6.右图的矩形,长为5cm ,宽为2cm ,在矩形内随机地撒300颗黄豆,数得落在阴影部分的黄豆数为138颗,则我们可以估计出阴影部分面积约为4.62cm _______(精确到0.1) 7. 设集合{}22,A x x x R =-∈≤,{}2|,12B y y x x ==--≤≤,则AB 等于 {}0 .8.已知椭圆)0(12222>>=+b a by a x 的两个焦点为F 1、F 2,过F 2作垂直于x 轴的直线与椭圆相交,一个交点为P ,若∠PF 1F 2=30°,那么椭圆的离心率是____3/3________.9.在坐标平面上,不等式组⎩⎨⎧+-≤-≥1||31x y x y 所表示的平面区域的面积 3/2 .10. 已知等差数列{n a }中,0n a ≠,若1m >且211210,38m m m m a a a S -+--+==,则m= 10 .11.已知f (x)=(x –a )(x –b )–2(其中a <b ),且α、β是方程f (x )=0的两根(α<β),则实数a 、b 、α、β的大小关系为 βα<<<b a12. 若点P 是曲线y=x 2-ln x 上任意一点,则点P 到直线y=x -2的最小距离为 2 . 13. 在△ABC 中,若有A >B ,则下列不等式中① sinA >sinB; ② cosA <cosB; ③ sin2A >sin2B; ④ cos2A <cos2B 你认为正确的序号为____①②④__________.14、已知函数()()3122--+=x a ax x f (a ≠0)在区间⎥⎦⎤⎢⎣⎡-2,23上的最大值为1,则实数 a 的值是__34或322--__________________.3.a ←1 b ←1 i ←2WHILE i ≤5a ←a +b b ←a +b i ←i +1END WHILE PRINT a 程序运行结果是 34 ′ y ′O ′ -2 45︒ 第4题1.已知a b ∈R ,,且i 3,i 2++b a (i 是虚数单位)是一个实系数一元二次方程的两个根,那么+a b = -1 .2.设命题p: 134≤-x ,命题q:,0)1()12(2≤+++-a a x a x 若p ⌝是q ⌝的必要不充分条件,则实数a 的取值范围是_____________⎥⎦⎤⎢⎣⎡21,03.不等式823≤++k y x 表示的平面区域包含(0, 0)及(1, 1)两点, 则k 的取值范围是_____[-8,3] ___________ _4.集合A={x| x 2+x-6=0}, B={x| ax+1=0}, 若B ⊆A ,则a=__ 31210或或-________ 5.过点)3,2(--,且与x 轴、y 轴的截距相等的直线方程是 02y -3x 05==++或y x6.双曲线C 与椭圆2214924x y +=的焦点相同,离心率互为倒数,则双曲线C 的渐近线的方程是_____x y 562±=_____ 7.已知12cos 1cos sin =-⋅ααα,32)(tg -=-βα,则)2(tg αβ-等于_81_________8.一个几何的三视图如图所示:其中,主视图中△ABC 的边长是2的正三角形,俯视图为正六边形,那么该几何体几的体积为 32.9. 设12,F F 为椭圆143+=左、右焦点,过椭圆中心任作一条直线与椭圆交于,P Q 两点,当四边形12PF QF 面积最大时,12PF PF ⋅的值等于 2 .10.定义在R 上的函数()x f 满足()023=+⎪⎭⎫ ⎝⎛+x f x f 且函数⎪⎭⎫ ⎝⎛-=43x f y 为奇函数,给出下列命题 ①函数()x f 的最小正周期是23②函数()x f 的图象关于点)0,43(-对称③函数()x f 的图象关于y 轴对称其中真命题的是____②__③___(把你认为正确的填上)11.设函数f (x )=x 3-22x -2x +5.若对任意x ∈[-1,2],都有f (x )>m ,则实数m 的取值范围是m ∈(-∞,27)________.12.函数f (x )定义域为R ,x 、y ∈R 时恒有f (xy )=f (x )+f (y ),若f (27+)+f (27-)=2,则f (1261()1261-++f )= -4 13.设两个向量1e 、2e 满足|1e |=2,|2e |=1,1e 与2e 的夹角为600,若向量2172e e +=λ与向量21e e λ+=的夹角为锐角,则实数λ的取值范围是_____________),214()214,21()7,(+∞---∞ 14若函数())4(log -+=xax x f a (a >0且a ≠1)的值域为R ,则实数a 的取值范围是04a <≤或1a ≠________________.2011届高三数学填空题专练(3)1. O 为平面上定点,A , B , C 是平面上不共线的三点,若(OB OC -)·(OB OC +2OA -)=0, 则∆ABC 的形状是 .2. 在平行四边形ABCD 中,点,,A B C 对应的复数分别是4i,34i,35i ++-,则点D 对应的复数是 .3. 在所有的两位数中,任取一个数,则这个数能被2或3整除的概率为 .4. L , M, N 分别为正方体1111ABCD A B C D -的棱111,,A B AD CC 的中点,则平面LMN 与平面1AB C 的位置关系是 (填“平行”,“相交但不垂直”或“垂直”之一).5. 在等差数列{}n a 中,11101,aa <-若它的前n 项和n S 有最大值,则使n S 取得最小正数的n = .6. 四面体A -BCD 中,AC =BD , BC =AD AB =CD =4,则四面体A -BCD 外接球的面积为 .7. 已知p :“3201x x -≥-”和q :“22530x x -+>”,则p ⌝是q 的 条件.8. 如图给出的是计算1111246100++++的值的一个程序框图,其中判断框内应填入的条件是 .9. 若向量a =)(,2x x ,b =)(3,2x -,且a ,b 的夹角为钝角, 则x 的取值范围是 .10. 甲. 乙两人约定在6时到7时之间在某处会面,并约定先到者等候另一人15分钟,过时即可离去,则两人会面的概率是.11. 某地区有1500染给另外2个用户,若不清除病毒,则在第22小时内该地区感染此病毒的用户数为 (237242 1.5102<⨯<).12. 一个正三棱柱的三视图如图所示,则这个几何体的表面积是 .13. 如图,开始时桶A 中有a 升水,t 分钟后剩余的水量符合指数衰减函数1e nt y a -=⋅ (其中e, n 为常数),此时桶B 中的水量就是2e nt y a a -=-⋅,假设过5分钟后桶A 和桶B 中的水量相等,则再过.. 分钟,桶A 中只有水8a升. 14. 已知函数y =f (x )是定义在R 上的奇函数,且对于任意x ∈R ,都有(3)()f x f x +=-,若f (1)=1,tan 2α=, 则(2005sin cos )f αα的值为 .参考答案1. 等腰三角形2. 48i -3. 234. 平行5. 196. 25π7. 必要不充分8. 100i ≤.9. )(1,3-∞-()()14,0,33-+∞ 10. 71611. 2321-12. 2483+ 13. 10 14. -12011届高三数学填空题专练(4)1.设全集为R ,11A xx ⎧⎫=<⎨⎬⎩⎭,则C R A=__________________; 2.已知向量)1,(m =,若2||=,则m =______________; 3.抛物线)0(42<=a ax y 的焦点坐标是_____________;4.ABC ∆的内角A 、B 、C 的对边也为a 、b 、c ,若a 、b 、c 成等比数列,且c =2a ,则_________cos =B5.已知等差数列{}n a 中,664=+a a ,其前5项和S 5=10,则其公差d =_________6.已知2()(1)xf x f x ⎧=⎨-⎩ (4)(4)x x <≥ 则____________)5(=f7.如果实数+∈R b a ,,且b a >,那么ab b ,和)(21b a +由大到小的顺序是____________ 8.以双曲线191622=-x y 的焦点为顶点,顶点为焦点的椭圆方程是______________ 9.已知)sin ,2(cos αα=a ,)1sin 2,1(-=αb ,且),2(ππα∈,若52=⋅b a ,则tan()4πα+=__________________10.设直线12=+my x 的倾斜角为α,若),2[)32,(+∞--∞∈ m ,则角α的取值范围是__________________11.已知数列{}n a 满足a 1=2,nn n a a a -+=+111(+∈N n ), 则___________20074321=⋅⋅⋅⋅⋅⋅a a a a a12.已知数列ABC ∆的两顶点A 、C 是椭圆192522=+y x 的二个焦点,顶点B 在椭圆上,则________________sin sin sin =+CA B13.定义两种运算:22b a b a -=⊕,2)(b a b a -=⊗则2)2(2)(-⊗⊕=x xx f 是_______________函数,(填奇、偶、非奇非偶,既奇又偶四个中的一个)14.给定下列结论:①已知命题p :R x ∈∃,1tan =x ;命题q :01,2>+-∈∀x x R x ,则命题“p ∧q ”是假命题; ②已知直线l 1:013=-+y ax ,l 2:x - b y + 1= 0,则21l l ⊥的充要条件是3-=ba; ③若21)sin(=+βα,31)sin(=-βα,则βαtan 5tan =; ④圆012422=+-++y x y x ,与直线x y 21=相交,所得的弦长为2;⑤定义在R 上的函数)()1(x f x f -=+,则)(x f 是周期函数;其中正确命题的序号为________________(把你认为正确的命题序号都填上)参考答案1. [0,1]2. 3±3. (a ,0)4.43 5. 216. 87.b ab b a ,),(21+8.125922=+y x 9. 7110.),43[)6,0(πππ11. 3 12.54 13. 奇 14 ③⑤2011届高三数学填空题专练(5)1.已知函数2(3)log f x =,则(5)f 的值是2.已知()312f x ax a =+-在[1,1]-上存在零点0x (01x ≠±),则a 的取值范围是 3.0tan 20cos10tan 20240cos -= 4.复数121iz i+=-的虚部为 5.直线2(1)(3)750m x m y m ++-+-=与直线(3)250m x y -+-=垂直的充要条件是 6.圆224460x y x y +-++=截直线x-y-5=0所得弦长等于7.已知椭圆221259x y +=与双曲线22197x y -=在第一象限内的交点为P ,则点P 到椭圆右焦点的距离等于___ ___8.设m 、n 是不同的直线,α、β、γ是不同的平面,有以下四个命题:(1)//////αββγαγ⎫⇒⎬⎭(2)//m m αββα⊥⎫⇒⊥⎬⎭(3)//m m ααββ⊥⎫⇒⊥⎬⎭(4)////m n m n αα⎫⇒⎬⊂⎭,其中,假命题有 __(把你认为正确的命题序号都填上).9.一个正三棱柱的侧面展开图是一个边长为6cm 的正方形,则此三棱柱的体积为 cm 3.10.若判断框内填入10≤k ,则下面的程序框图输出的结果为__ ____11.数列{}n a 为等比数列,n S 为其前n 项和.已知11a =,第10题图3q =,364k S =,则k a = .12.某商场有四类食品,其中粮食类、植物油类、动物性食品类及果蔬类分别有40种、10种、30种、20种,现从中抽取一个容量为20的样本进行食品安全检测。

江苏2014级高三数学填空题训练1

江苏2014级高三数学填空题训练1

江苏2014级高三数学填空题训练1中国数学奥林匹克教练 高级教师 王统好1.集合A ={ x |1<x ≤3,x ∈R },B ={ x |-1≤x ≤2,x ∈R },则A B = .2.已知||a =3,||b =2.若⋅a b =-3,则a 与b 夹角的大小为 .3.设x ,y 为实数,且1i x -+12i y -=513i-,则x +y = . 4.椭圆2x +2my =1的焦点在y 轴上,长轴长是短轴长的两倍,则m 的值为 .5.若θ∈42ππ⎛⎫ ⎪⎝⎭,,sin 2θ=116,则cos θ-sin θ的值是 . 6.已知Ω={(x ,y )|x +y <6,x >0,y >0},A ={(x ,y )|x <4,y >0,x -2y >0},若向区域Ω上随机投掷一点P ,则点P 落入区域A 的概率为 .7.已知a ,b 为异面直线,直线c ∥a ,则直线c 与b 的位置关系是 .8.一个算法的流程图如右图所示 则输出S 的值为 .9.将20个数平均分为两组,第一组的平均数为50,方差为33;第二组的平均数为40,方差为45,则整个数组的标准差是 .10.某同学在借助题设给出的数据求方程lg x =2-x 的近似数(精确到0.1)时,设()f x =lg x +x -2,得出(1)f <0,且(2)f >0,他用“二分法”取到了4个x 的值,计算其函数值的正负,并得出判断:方程的近似解为x ≈1.8,那么他所取的4个值中的第二个值为 .11.设OM =112⎛⎫ ⎪⎝⎭,,ON =(0,1),O 为坐标原点,动点P (x ,y )满足0≤OP OM ⋅ ≤1,0≤OP ON ⋅ ≤1,则z =y -x 的最小值是 .12.设周期函数()f x 是定义在R 上的奇函数,若()f x 的最小正周期为3,且满足(1)f >-2,(2)f =m -3m,则m 的取值范围是 . 13.等差数列{}n a 的公差为d ,关于x 的不等式22d x +12d a x ⎛⎫- ⎪⎝⎭+c ≥0的解集为[0,22],则使数列{}n a 的前n 项和n S 最大的正整数n 的值是 .14.方程2x -1=0的解可视为函数y =x 的图象与函数y =1x的图象交点的横坐标.若4x +ax -9=0的各个实根1x ,2x ,…,k x (k ≤4)所对应的点9()i i x x ,(i =1,2,…,k )均在直线y =x 的同侧,则实数a 的取值范围是 .答案。

高三数学填空题百题训练(1)及答案(2008修订)

高三数学填空题百题训练(1)及答案(2008修订)

sin 3a 13 ,则 tan 2a =______________. sin a 5
30. 在由数字 0,1,2,3,4,5 所组成的没有重复数字的四位数中,不能被 5 整除的数共有__________个. 31. 下面是关于三棱锥的四个命题: ①底面是等边三角形, 侧面与底面所成的二面角都相等的三棱锥是 正三棱锥.②底面是等边三角形,侧面都是等腰三角形的三棱锥是正三棱锥.③底面是等边三角形, 侧面的面积都相等的三棱锥是正三棱锥.④侧棱与底面所成的角都相等,且侧面与底面所成的二面 角都相等的三棱锥是正三棱锥.其中,真命题的编号是______________.(写出所有真命题的编号)
.
A' B' E C'
x y 2 0 y 46.设实数 x, y 满足 x 2 y 4 0, 则 的最大值是 x 2 y 3 0

.
F
A
47.如图,在直三棱柱 ABC—A1B1C1 中,AB=BC= 2 ,BB1=2, ABC 90 ,E、 F 分别为 AA1、C1B1 的中点,沿棱柱的表面从 E 到 F 两点的最短路径的长 度为 . 48.以下同个关于圆锥曲线的命题中①设 A、B 为两个定点,k 为非零 常数, | PA | | PB | k ,则动点 P 的轨迹为双曲线;②设定圆 C 上 一 定 点 A 作 圆 的 动 点 弦 AB , O 为 坐 标 原 点 , 若
B
C
P
1 (OA OB), 则 动 点 P 的 轨 迹 为 椭 圆 ; ③ 方 程 A 2 2 x 2 5 x 2 0 的两根可分别作为椭圆和双曲线的离心率; ④双 2 2 2 x y x 1与椭圆 y 2 1 有相同的焦点.其中真命题的序号为 曲线 25 9 35

2013届高三数学选择题、填空题专项卷(1)

2013届高三数学选择题、填空题专项卷(1)

选择题、填空题专项卷一一、选择题1.已知全集U=R ,{|23}A x x =-<≤,{|1B x x =<-或4}x >,那么集合B C A U A .{|24x x -≤<} B .{|3x x ≤或4x ≥}C .{|21}x x -≤<-D .{|13}x x -≤≤ 2.函数cos(4)3y x π=+的图象的两条相邻对称轴间的距离为 ( )A .8π B .4π C .2π D .π3.等差数列{}n a 的前n 项和为n S ,若110()m m n a a a m n +++++=<…,则m n S +等于A .2m n + B .m n + C .0 D .14.若是实数x 满足xx og -=2012l 2012,则下列不等关系正确的是 ( )A .21xx >> B .21xx >>C .21x x >>D .21x x >>5.如果以原点为圆心的圆必过双曲线22221(0)x y a b a b -=>>的焦点,而且被双曲线的右准线分成2:1的两段圆弧。

那么该双曲线的离心率为 ( )ABCD6.北京2008年第29届奥运会开幕式上举行升旗仪式,在坡度15°的看台上,同一列上的第一排和最后一排测得旗杆顶部的仰角分别为60°和30°,第一排和最后一排的距离为,旗杆底部与第一排在一个水平面上,已知国歌长度约为50秒,升旗手匀速升旗的速度为( )A .35(米/秒) B.5(米/秒) C.5(米/秒) D .15(米/秒)7.设)(),()(,x f x f e a e x f R a x x ''⋅+=∈-且的导函数是函数是奇函数,若曲线)(x f y =的一条切线的斜率是23,则切点的横坐标为 ( )A .22ln - B .2ln - C .22ln D .2ln8.函数xx y ||lg =的图象大致是( )9.已知yx y x y x 311,2lg 8lg 2lg ,0,0+=+>>则的最小值是 ( )A .2B .22C .4D .3210.已知)(x f 是定义在R 上的奇函数,且)1,0[),()1(∈-=+x x f x f 当时,)61(log ,12)(2f x f x 则-=的值为 ( )A .—6B .—5C .25-D .21-二、填空题11.设函数⎩⎨⎧<+≥+-=0,60,64)(2x x x x x x f 则方程)1()(f x f =的解集是 ;12.设曲线()a ax x f -=32在点(1,)a 处的切线与直线210x y -+=平行,则实数a 的值为 .13. 已知1tan 2α=,()2tan 5αβ-=-,那么()tan 2αβ-的值是 ;14.若函数)sin()(ϕω+=x x f (ϕ < 2π)的图象(部分)如图所示,则)(x f 的解析式是 .15.设函数()y f x =在(-∞,+∞)内有定义,对于给定的正数K ,定义函数(),()(),()k f x f x K f x K f x K ≤⎧=⎨>⎩,取函数()2x f x x e -=--,若对任意的(,)x ∈+∞-∞, 恒有()f x =()f x ,则K 的最小值为___________11 12 13 14 15 得分练习一答案一.选择题答案DBCABADDCD二.填空题答案 11.{}3,1,3- 12.31 13.112 14.)(x f = )621sin(π+x 15. 1。

高三数学练习题及答案解析

高三数学练习题及答案解析

高三数学练习题及答案解析一、选择题1. 三角形ABC中,∠BAC = 60°,AD是BC的垂线,AD = 6 cm,则BC =A. 6 cmB. 12 cmC. 6√3 cmD. 12√3 cm答案:B解析:由正弦定理,得 BC = AD / sin∠BAC = 6 / sin60° = 6 / (√3 / 2) = 12 cm。

2. 已知直线L的斜率为2/3,直线L与x轴的交点为(-3, 0),则直线L的方程为A. y = 2/3x + 2B. y = 2/3x - 2C. y = -2/3x + 2D. y = -2/3x - 2答案:C解析:已知直线L与x轴的交点为(-3, 0),可得出直线L的截距为2。

由斜率为2/3,可得直线L的方程为 y = -2/3x + 2。

3. 设函数f(x) = 2x^3 - 3x^2 + 2x + 1,则f'(1) =A. 0B. -2C. -4D. 10答案:C解析:求导得 f'(x) = 6x^2 - 6x + 2,因此 f'(1) = 6 - 6 + 2 = -4。

二、填空题1. 已知集合A = {1, 2, 3, 4},集合B = {2, 4, 6, 8},则A ∩ B =_______。

答案:{2, 4}解析:A ∩ B 表示集合A与B的交集,即两个集合中共有的元素。

因此A ∩ B = {2, 4}。

2. 若函数f(x) = log2(3x - 1),则f(-1)的值为______。

答案:undefined解析:当 x = -1 时,函数f(x)中的3x - 1 = 3(-1) - 1 = -4,log2(-4) 是无意义的,因此 f(-1) 的值为 undefined。

三、解答题1. 计算下列方程的解:2x + 5 = 3x - 1。

解答:将方程中的3x移到等号左边,2x移到等号右边,得到 x - 2x = -1 - 5,即 -x = -6。

高三数学基础知识小题训练1(含答案)

高三数学基础知识小题训练1(含答案)

选择填空题快速训练一 一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.函数y =2x +1的图象是 ( )2.2、△ABC 中,cos A =135,sin B =53,则cos C 的值为 ( ) A.6556B.-6556C.-6516 D.65163.过点(1,3)作直线l ,若l 经过点(a ,0)和(0,b ),且a ,b ∈N *,则可作出的l 的条数为( )A.1B.2C.3D.多于34.函数f (x )=log a x (a >0且a ≠1)对任意正实数x ,y 都有 ( )A.f (x ·y )=f (x )·f (y )B.f (x ·y )=f (x )+f (y )C.f (x +y )=f (x )·f (y )D.f (x +y )=f (x )+f (y )5.已知二面角α—l —β的大小为60°,b 和c 是两条异面直线,则在下列四个条件中,能使b 和c 所成的角为60°的是( )A.b ∥α,c ∥βB.b ∥α,c ⊥βC.b ⊥α,c ⊥βD.b ⊥α,c ∥β6.一个等差数列共n 项,其和为90,这个数列的前10项的和为25,后10项的和为75,则项数n 为 ( )A.14B.16C.18D.207.某城市的街道如图,某人要从A 地前往B 地,则路程最短的走法有 ( )A.8种B.10种C.12种D.32种8.若a ,b 是异面直线,a ⊂α,b ⊂β,α∩β=l ,则下列命题中是真命题的为( )A.l 与a 、b 分别相交B.l 与a 、b 都不相交C.l 至多与a 、b 中的一条相交D.l 至少与a 、b 中的一条相交9.设F 1,F 2是双曲线42x -y 2=1的两个焦点,点P 在双曲线上,且1PF ·2PF =0,则|1PF |·|2PF |的值等于( ) A.2B.22C.4D.810.f (x )=(1+2x )m +(1+3x )n (m ,n ∈N *)的展开式中x 的系数为13,则x 2的系数为( )A.31B.40C.31或40D.71或8011.从装有4粒大小、形状相同,颜色不同的玻璃球的瓶中,随意一次倒出若干粒玻璃球(至少一粒),则倒出奇数粒玻璃球的概率比倒出偶数粒玻璃球的概率( )A.小B.大C.相等D.大小不能确定12.如右图,A 、B 、C 、D 是某煤矿的四个采煤点,l 是公路,图中所标线段为道路,ABQP 、BCRQ 、CDSR 近似于正方形.已知A 、B 、C 、D 四个采煤点每天的采煤量之比约为5∶1∶2∶3,运煤的费用与运煤的路程、所运煤的重量都成正比.现要从P 、Q 、R 、S 中选出一处设立一个运煤中转站,使四个采煤点的煤运到中转站的费用最少,则地点应选在( )A.P 点B.Q 点C.R 点D.S 点二、填空题(本大题共4小题,每小题4分,共16分.把答案填在题中横线上)13.抛物线y 2=2x 上到直线x -y +3=0距离最短的点的坐标为_________.14.一个长方体共一顶点的三个面的面积分别是2,3,6,这个长方体对角线的长是_________.15.设定义在R 上的偶函数f (x )满足f (x +1)+f (x )=1,且当x ∈[1,2]时,f (x )=2-x ,则f (8.5)=_________.16.某校要从甲、乙两名优秀短跑选手中选一名选手参加全市中学生田径百米比赛,该校预先对这两名选手测试了8次,测试成绩如下:第1次 第2次 第3次 第4次 第5次 第6次 第7次 第8次 甲成绩(秒)12.1 12.2 13 12.5 13.1 12.5 12.4 12.2 乙成绩(秒) 12 12.4 12.8 13 12.2 12.8 12.3 12.5根据测试成绩,派_________(填甲或乙)选手参赛更好,理由是____________________. 答案:一、1.A 2.D 3.B 4.B 5.C 6.C 7.B8.D 9.A 10.C 11.B 12.B二、13.(21,1) 14.6 15.21 16、乙,乙的标准差较小,比较稳定。

高三数学试题及答案解析

高三数学试题及答案解析

高三数学试题及答案解析一、选择题1.已知函数f(x)=3x2−5x+2,则f(−1)的值为()。

A. 10B. 0C. -10D. -4答案:B. 0 解析:将x=−1代入函数f(x)中得到f(−1)=3∗(−1)2−5∗(−1)+2=3+5+2=10,故答案为B. 0。

2.若a,b是非零实数,且$\\frac{2ab}{a+b}=\\frac{8}{3}$,则$\\frac{a}{b}+\\frac{b}{a}$的值为()。

A. -6B. 6C. -3D. 3答案:C. -3 解析:将$\\frac{2ab}{a+b}=\\frac{8}{3}$变形得$\\frac{3ab}{a+b}=4$,进而得3ab=4(a+b)。

将$\\frac{a}{b}+\\frac{b}{a}=\\frac{a^2+b^2}{ab}$代入得$\\frac{a}{b}+\\frac{b}{a}=\\frac{a^2+b^2}{ab}=\\frac{(a+b)^2-2ab}{ab}=\\frac{a^2+2ab+b^2-2ab}{ab}=\\frac{a^2+b^2}{ab}=4$,因此$\\frac{a}{b}+\\frac{b}{a}=4$。

综上,答案为C. -3。

二、填空题3.设不等式x2−3x+2>0的解集为(a,b),则a+b的值为()。

答案:3 解析:不等式x2−3x+2>0即(x−2)(x−1)>0,求得解集为$x\\in(1, 2)$,所以a=1,b=2,因此a+b=1+2=3。

4.若$\\left(a-\\frac{1}{3}\\right)\\left(3a-1\\right)=4$,则a的值为()。

答案:$\\frac{7}{6}$ 解析:展开得3a2−a−3a+1=4,整理后得3a2−4a−3=0,解得$a=\\frac{3\\pm\\sqrt{(-4)^2-4*3*(-3)}}{2*3}=\\frac{3\\pm\\sqrt{16+36}}{6}=\\frac{3+\\sqrt{52}}{6}=\\frac{3 +\\sqrt{4*13}}{6}=\\frac{3+2\\sqrt{13}}{6}=\\frac{1}{2}+\\frac{\\sqrt{13}} {3}$。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高三数学选择填空题训练(1)
一.填空题
1.已知定义域在[-1,1]上的函数y=f(x)的值域为[-2,0];则函数y=f(cos x )的值域为 A .[-1,1] B .[―3,―1] C .[-2,0] D .不能确定 2.已知函数y=f(x)是一个以4为最小正周期的奇函数;则f(2)=
A .0
B .-4
C .4
D .不能确定
3.如果采用分层抽样法从个体数为N 的总体中;抽取一个容量为n 的样本;那么每
个个体被抽到的概率等于
( )
A .N
1
B .N n
C .n 1
D .n
N
4.首项系数为1的二次函数y=f(x)在x=1处的切线与x 轴平行;则
A .f(arcsin
31)>f(arcsin 32) B .f(arcsin 31)=f(arcsin 32) C .f(arcsin 31)>f(arcsin 32) D .f(arcsin 31)与f(arcsin 3
2
)的大小不能确定
5.关于x 的不等式ax -b>0的解集为(1,+∞);则关于x 的不等式2
-+x b
ax >0的解集为
A .(-1,2)
B .(-∞,-1)∪(2,+∞)
C .(1,2)
D .(―∞,―2)∪(1,+∞)
6.若O 为⊿ABC 的内心;且满足(OB -OC )•(OB +OC -2OA )=0
A .等腰三角形
B .正三角形
C .直角三角形
D .以上都不对 7.设有如下三个命题
甲:m ∩l =A, m 、l ⊂α, m 、l ⊄β;乙:直线m 、l 中至少有一条与平面β相交; 丙:平面α与平面β相交。

当甲成立时;乙是丙的 条件。

A .充分而不必要
B .必要而不充分
C .充分必要
D .既不充分又不必要 8.⊿ABC 中;3sinA+4cosB=6;3cosA+4sinB=1;则∠C 的大小为
A .
6
π B .
65π C .6π或6
5π D .
3π或3

9.等体积的球和正方体;它们的表面积的大小关系是
A .S 球>S 正方体
B .S 球<S 正方体
C .S 球=S 正方体
D .S 球=2S 正方体
10.若连结双曲线22a x -22
b
y =1与其共轭双曲线的四个顶点构成面积为S 1的四边形;
连结四个焦点构成面积为S 2的四边形;则
2
1
S S 的最大值为 A .4 B .2
C .
2
1 D .
4
1 二.填空题
11.函数)(cos 3sin R x x x y ∈+=的最小值是 .
12.某中学高一年级400人;高二年级320人;高三年级280人;若每人被抽取的概
率为;问该中学抽取一个容量为n 的样本;则n= . 13.若指数函数f(x)=a x (x ∈R)的部分对应值如下表:
则不等式1
-f
(|x -1|)<0的解集为 。

14.若两个向量a 与b 的夹角为θ;则称向量“a ×b ”为“向量积”;其长度|a ×
b |=|a |•|b |•sin θ。

今已知|a |=1;|b |=5;a •b =-4;则|a ×b |= 。

15.已知点P(2,-3);Q(3,2);直线ax+y+2=0与线段PQ 相交;则实数a 的取值范围是: 。

16.若在所给的条件下;数列{a n }的每一项的值都能唯一确定;则称该数列是“确定的”;在下列条件下;有哪些数列是“确定的”?请把对应的序号填在横线上 。

①{a n }是等差数列;S 1=a ;S 2=b (这里的S n 是{a n }的前n 项的和;a,b 为实数;下同); ②{a n }是等差数列;S 1=a ;S 10=b ;③{a n }是等比数列;S 1=a ;S 2=b ;
④{a n }是等比数列;S 1=a ;S 3=b ;⑤{a n }满足a 2n+2=a 2n +a ;a 2n+1=a 2n-1+b, (n ∈N*), a 1=c
C A B A B ACABC
11:-2;12 200 13 (0,1)∪(1,2)
14.3
15.[-
34,2
1] 16.①②③。

相关文档
最新文档