二次根式难题及答案
二次根式计算专题——30题(教师版含答案)
![二次根式计算专题——30题(教师版含答案)](https://img.taocdn.com/s3/m/19343591f7ec4afe05a1dfcb.png)
二次根式计算专题1.计算:⑴ ()()24632463+- ⑵ 20(3)(3)2732π++-+-【答案】(1)22; (2) 643-【解析】试题分析:(1)根据平方差公式,把括号展开进行计算即可求出答案.(2)分别根据平方、非零数的零次幂、二次根式、绝对值的意义进行计算即可得出答案. 试题解析:(1) ()()24632463+-22(36)(42)=-=54-32 =22.(2)2(3)(3)2732π++-+-313323=+-+- 643=-考点: 实数的混合运算. 2.计算(1)﹣×(2)(6﹣2x)÷3.【答案】(1)1;(2)13【解析】试题分析:先把二次根式化简后,再进行加减乘除运算,即可得出答案. 试题解析:2051123525532335=-⨯32=-1=;(2)1(62)34x x x÷62)3x x x x =÷ (3)3x x x =÷3x x =.13=.考点: 二次根式的混合运算.3.计算:⎛÷⎝【答案】143.【解析】试题分析:先将二次根式化成最简二次根式,再算括号里面的,最后算除法.试题解析:⎛÷⎝÷=143=.考点:二次根式运算.4.计算:322663-+-⨯【答案】22.【解析】试题分析:先算乘除、去绝对值符号,再算加减.试题解析:原式=23323-+-=22考点:二次根式运算.5.计算:)23(3182+-⨯【答案】-【解析】试题分析:先将二次根式化成最简二次根式,再化简.6=-考点:二次根式化简.6.计算:2421332--.【答案】22.【解析】试题分析:根据二次根式的运算法则计算即可.22-==.考点:二次根式的计算.7.计算:)13)(13(2612-++÷-.2.【解析】试题分析:先算乘除,再算加减,有括号的先算括号里面的,特别的能利用公式的应用公式简化计算过程.1)=31-2. 考点:二次根式的化简.8⎝【答案】0.【解析】试题分析: 根据二次根式运算法则计算即可.0==⎝. 考点:二次根式计算.9.计算:()0+1π.【答案】1-【解析】试题分析:任何非零数的零次方都为1,负数的绝对值等于它的相反数,再对二次根式进行化简即可.试题解析:()0+1π11=-=- 考点:二次根式的化简. 10.计算:435.03138+-+ 【答案】323223+. 【解析】试题分析:先化成最简二次根式,再进行运算. 试题解析:原式=2322322+-+=323223+. 考点:二次根式的化简. 11.计算:(1)(2)()02014120143π----.【答案】(1)1(2)3-【解析】 试题分析:(1)根据二次根式的运算法则计算即可;(2)针对有理数的乘方,零指数幂,二次根式化简,.绝对值4个考点分别进行计算,然后根据实数的运算法则求得计算结果. 试题解析:(1)(1==(2)()020141201431133π---=--+=-. 考点:1.实数的运算;2.有理数的乘方;3.零指数幂;4.二次根式化简;5.绝对值.12.计算: 212)31()23)(23(0+---+ 【答案】2.【解析】试题分析:本题主要考查了二次根式的混合运算.熟练化简二次根式后,在加减的过程中,有同类二次根式的要合并;相乘的时候,被开方数简单的直接让被开方数相乘,再化简;较大的也可先化简,再相乘,灵活对待.本题中先根据平方差公式计算乘法以及零指数幂的意义,去掉括号后,计算加减法. 试题解析:解:原式=2123+-- =2考点:二次根式的混合运算.130(2013)|+-+-.【答案】1. 【解析】0(2013)|-+-1=+1=.考点:二次根式化简. 14.计算12)824323(÷+- 【答案】262.【解析】试题分析:先化简二次根式,再合并同类二次根式,最后算除法即可求出答案.试题解析:248)12(62622)23(226)23 26考点: 二次根式的混合运算.15112 2322.【解析】试题分析:把二次根式化简,再合并同类二次根式即可求出答案.1122343222323考点: 二次根式的运算.16.化简:(1)83250+(2)2163)1526(-⨯-【答案】(1)92;(2)-【解析】试题分析:(1)先去分母,再把各二次根式化为最简二次根式,进行计算;(2)直接利用分配律去括号,再根据二次根式乘法法则计算即可.试题解析:(1)原式92=;(2)原式==-考点:二次根式的混合运算;17.计算(1)2(2)2【答案】(1)3(2)3.【解析】试题分析:(1)根据运算顺序计算即可;.(2)将括号内化为最简二次根式后合并再平方运算即可.试题解析:(1)233=-=.(2)(2223===.考点:二次根式化简.181)(1+- 【答案】17. 【解析】,运用平方差公式计算1)(1+,再进行计算求解.181--=17考点:实数的运算.19.计算:231|21|27)3(0++-+--【答案】-.【解析】试题分析: 本题涉及零指数幂、二次根式的化简、分母有理化、绝对值化简4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.试题解析:原式=11-+=-考点:1.实数的运算;2.零指数幂;3.分母有理化. 20.计算:①1 2⎛⎫+- ⎪⎝⎭ ② ⎛ ⎝ ③⎛- ⎝1;②143;③a3-. 【解析】试题分析:①针对算术平方根,绝对值,零指数3个考点分别进行计算,然后根据实数的运算法则求得计算结果;②根据二次根式运算法则计算即可;③根据二次根式运算法则计算即可.1112⎛⎫+-= ⎪⎝⎭.②143⎛⎛=÷ ⎝⎝.1a 2a 63⎛-=-⋅=- ⎝. 考点:1.二次根式计算;2.绝对值;3.0指数幂.21.计算:(1)2012101(1)5()1)2----++(2)【答案】(1)0;(2)【解析】 试题分析:(1)原式=152310-++-=;(2)原式==. 考点:1.实数的运算;2.二次根式的加减法. 22.计算与化简(1(0π (2)2(3(4+-【答案】(1)1;(2)5.【解析】 试题分析:(1)将前两项化为最简二次根式,第三项根据0指数幂定义计算,再合并同类二次根式即可;(2)应用完全平方公式和平方差公式展开后合并同类二次根式即可.试题解析:(1(011π==.(2)((()2344951675+--=+--=.考点:1.二次根式化简;2.0指数幂;3.完全平方公式和平方差公式. 23.(1)18282-+(2)3127112-+(3)0)31(33122-++(4))2332)(2332(-+【答案】(1)-(3)6;(4)6- 【解析】试题分析:本题主要考查根式的根式的混合运算和0次幂运算.根据运算法则先算乘除.法,是分式应该先将分式转化为整式,再按运算法则计算。
(专题精选)初中数学二次根式难题汇编及答案解析
![(专题精选)初中数学二次根式难题汇编及答案解析](https://img.taocdn.com/s3/m/c7c6589c80eb6294dc886c26.png)
(专题精选)初中数学二次根式难题汇编及答案解析一、选择题 1.使代数式a a +-有意义的a 的取值范围为()n nA .0a >B .0a <C .0a =D .不存在【答案】C【解析】试题解析:根据二次根式的性质,被开方数大于等于0,可知:a≥0,且-a≥0. 所以a=0.故选C .2.实数a ,b 在数轴上对应点的位置如图所示,化简|a |+2(a b )-的结果是( )A .2a+bB .-2a+bC .bD .2a-b 【答案】B【解析】【分析】根据数轴得出0a <,0a b -<,然后利用绝对值的性质和二次根式的性质化简.【详解】解:由数轴可知:0a <,0b >, ∴0a b -<,∴()()22a a b a b a a b -=-+-=-+, 故选:B .【点睛】本题考查了数轴、绝对值的性质和二次根式的性质,根据数轴得出0a <,0a b -<是解题的关键.3.在下列算式中:257=②523x x x =;188944+==;94a a a =,其中正确的是( ) A .①③B .②④C .③④D .①④ 【答案】B【解析】【分析】根据二次根式的性质和二次根式的加法运算,分别进行判断,即可得到答案.【详解】25①错误;=②正确;222==,故③错误;==④正确;故选:B.【点睛】本题考查了二次根式的加法运算,二次根式的性质,解题的关键是熟练掌握运算法则进行解题.4.下列计算结果正确的是()A3B±6CD.3+=【答案】A【解析】【分析】原式各项计算得到结果,即可做出判断.【详解】A、原式=|-3|=3,正确;B、原式=6,错误;C、原式不能合并,错误;D、原式不能合并,错误.故选A.【点睛】考查了实数的运算,熟练掌握运算法则是解本题的关键.5.m的值不可以是()A.18m=B.4m=C.32m=D.627m=【答案】B 【解析】【分析】【详解】A. 18m =时,12==84m ,是同类二次根式,故此选项不符合题意;B. 4m =时,=2m ,此选项符合题意C. 32m =时,=32=42m ,是同类二次根式,故此选项不符合题意;D. 627m =时,62==273m ,是同类二次根式,故此选项不符合题意 故选:B【点睛】本题考查二次根式的化简和同类二次根式的定义,掌握二次根式的化简法则是本题的解题关键.6.下列运算正确的是( )A .3+2=5B .(3-1)2=3-1C .3×2=6D .2253-=5-3 【答案】C【解析】【分析】根据二次根式的加减及乘除的法则分别计算各选项,然后与所给结果进行比较,从而可得出结果.【详解】解:A.3+25≠,故本选项错误;B. (3-1)2=3-23+1=4-23,故本选项错误;C. 3×2=6,故本选项正确;D.2253-=25916-= =4,故本选项错误.故选C.【点睛】本题考查了二次根式的混合运算,熟练化简二次根式后,在加减的过程中,有同类二次根式的要合并;相乘的时候,被开方数简单的直接让被开方数相乘,再化简;较大的也可先化简,再相乘,灵活对待.7.已知实数a 、b 在数轴上的位置如图所示,化简|a +b |-2()b a -,其结果是( )A .2a -B .2aC .2bD .2b -【答案】A【解析】【分析】,再结合绝对值的性质去绝对值符号,再合并同类项即可.【详解】解:由数轴知b <0<a ,且|a|<|b|,则a+b <0,b-a <0,∴原式=-(a+b )+(b-a )=-a-b+b-a=-2a ,故选A .【点睛】.8.下列计算或运算中,正确的是()A .=B =C .=D .-=【答案】B【解析】【分析】 根据二次根性质和运算法则逐一判断即可得.【详解】A 、=BC 、=D 、-=,此选项错误;故选B .【点睛】本题主要考查二次根式的混合运算,解题的关键是掌握二次根式的混合运算顺序和运算法则及二次根式的性质.9.x 的取值范围是( )A .1x ≥-B .12x -≤≤C .2x ≤D .12x -<<【答案】B【解析】【分析】【详解】解:要使二次根式有意义,则必须满足二次根式的被开方数为非负数,则1020xx+≥⎧⎨-≥⎩,解得:12x-≤≤故选:B.【点睛】本题考查二次根式的性质.10的值是一个整数,则正整数a的最小值是()A.1 B.2 C.3 D.5【答案】B【解析】【分析】根据二次根式的乘法法则计算得到a的最小值即可.【详解】∴正整数a是最小值是2.故选B.【点睛】本题考查了二次根式的乘除法,二次根式的化简等知识,解题的关键是理解题意,灵活应用二次根式的乘法法则化简.11.有意义的x的取值范围()A.x>2 B.x≥2C.x>3 D.x≥2且x≠3【答案】D【解析】试题分析:分式有意义:分母不为0;二次根式有意义,被开方数是非负数.根据题意,得20{30xx-≥-≠解得,x≥2且x≠3.考点:(1)、二次根式有意义的条件;(2)、分式有意义的条件12.有意义时,a的取值范围是()A.a≥2B.a>2 C.a≠2D.a≠-2【答案】B【解析】解:根据二次根式的意义,被开方数a﹣2≥0,解得:a≥2,根据分式有意义的条件:a﹣2≠0,解得:a≠2,∴a>2.故选B.13.计算÷的结果是()A B C.23D.34【答案】A【解析】【分析】根据二次根式的运算法则,按照运算顺序进行计算即可.【详解】解:÷1(24=⨯÷=16=⨯2=.故选:A.【点睛】此题主要考查二次根式的运算,根据运算顺序准确求解是解题的关键.14.婴儿游泳是供婴儿进行室内或室外游泳的场所,婴儿游泳池的样式多种多样,现已知积为()A.B.C.D.【答案】D【解析】【分析】根据底面积=体积÷高列出算式,再利用二次根式的除法法则计算可得.【详解】故选:D .【点睛】考核知识点:二次根式除法.理解题意,掌握二次根式除法法则是关键.15.在实数范围内有意义,则x 的取值范围是( )A .3x >B .3x ≠C .3x ≥D .0x ≥【答案】C【解析】【分析】先根据二次根式有意义的条件是被开方式大于等于0,列出关于x 的不等式,求出x 的取值范围即可.【详解】在实数范围内有意义,∴x-3≥0,解得x≥3.故选:C .【点睛】本题考查的是二次根式有意义的条件,即被开方数大于等于0.16.当实数x 41y x =+中y 的取值范围是( ) A .7y ≥-B .9y ≥C .9y <-D .7y <-【答案】B【解析】【分析】根据二次根式有意义易得x 的取值范围,代入所给函数可得y 的取值范围.【详解】解:由题意得20x -≥,解得2x ≥, 419x ∴+≥,即9y ≥.故选:B .【点睛】本题考查了函数值的取值的求法;根据二次根式被开方数为非负数得到x 的取值是解决本题的关键.17.下列运算正确的是( )A =B =C 123=D 2=-【答案】B【解析】【分析】根据二次根式的性质,结合算术平方根的概念对每个选项进行分析,然后做出选择.【详解】A .≠A 错误;B .=,故B 正确;C .=C 错误;D .2=,故D 错误.故选:B .【点睛】本题主要考查了二次根式的性质和二次根式的化简,熟练掌握运算和性质是解题的关键.18.有意义的条件是( )A .x>3B .x>-3C .x≥3D .x≥-3 【答案】D【解析】【分析】根据二次根式被开方数大于等于0即可得出答案.【详解】根据被开方数大于等于0有意义的条件是+30≥x解得:-3≥x故选:D【点睛】本题主要考查二次根式有意义的条件,掌握二次根式有意义的条件是解题的关键.19.下列根式中属最简二次根式的是( )A.21a+B.12C.8D.2【答案】A【解析】试题分析:最简二次根式是指无法进行化简的二次根式.A、无法化简;B、原式=;C、原式=2;D、原式=.考点:最简二次根式20.下列计算正确的是()A1836=B822=C.332=D2(5)5-=-【答案】B【解析】【分析】根据二次根式的混合运算顺序和运算法则逐一计算可得.【详解】A1831836=÷=822222==C.2333=,此选项计算错误;2(5)5-=,此选项计算错误;故选:B.【点睛】本题主要考查二次根式的混合运算,解题的关键是熟练掌握二次根式的混合运算顺序和运算法则.。
二次根式经典难题(含答案)
![二次根式经典难题(含答案)](https://img.taocdn.com/s3/m/f7bcfb3990c69ec3d5bb7538.png)
二次根式经典难题1. 当时,有意义。
2. 若有意义,则的取值范围是 。
3. 当时,是二次根式。
4. 在实数范围内分解因式:。
5. 若,则的取值范围是 。
6. 已知,则的取值范围是 。
7. 化简:的结果是 。
8. 当时,。
9. 把的根号外的因式移到根号内等于 。
10. 使等式成立的条件是 。
11. 若与互为相反数,则。
12. 在式子中,二次根式有( )A. 2个B. 3个C. 4个D. 5个14. 下列各式一定是二次根式的是( )A. B. C. D.15. 若,则等于( )A. B. C. D.16. 若,则( )A. B. C. D.18. 能使等式成立的的取值范围是( )A. B. C. D.19. 计算:的值是( )A. 0B.C.D. 或20. 下面的推导中开始出错的步骤是( )A. B. C. D.21. 若,求的值。
23. 去掉下列各根式内的分母:24. 已知,求的值。
25. 已知为实数,且,求的值。
21.2 二次根式的乘除1. 当,时,。
2. 若和都是最简二次根式,则。
3. 计算:。
4. 计算:。
5. 长方形的宽为,面积为,则长方形的长约为 (精确到0.01)。
7. 已知,化简二次根式的正确结果为( )A. B. C. D.8. 对于所有实数,下列等式总能成立的是( )A. B.C. D.9. 和的大小关系是( )A. B. C. D. 不能确定10. 对于二次根式,以下说法中不正确的是( )A. 它是一个非负数B. 它是一个无理数C. 它是最简二次根式D. 它的最小值为311. 计算:12. 化简:13. 把根号外的因式移到根号内:21.3 二次根式的加减1. 下列根式中,与是同类二次根式的是( )A. B. C. D.2. 下面说法正确的是( )A. 被开方数相同的二次根式一定是同类二次根式B. 与是同类二次根式C. 与不是同类二次根式D. 同类二次根式是根指数为2的根式3. 与不是同类二次根式的是( )A. B. C. D.5. 若,则化简的结果是( )A. B. C. 3 D. -36. 若,则的值等于( )A. 4B.C. 2D.8. 下列式子中正确的是( )A. B.C. D.9. 在中,与是同类二次根式的是 。
新初中数学二次根式难题汇编及答案
![新初中数学二次根式难题汇编及答案](https://img.taocdn.com/s3/m/9aa90ba283c4bb4cf7ecd19c.png)
新初中数学二次根式难题汇编及答案一、选择题1.9≤,则x 取值范围为( ) A .26x ≤≤B .37x ≤≤C .36x ≤≤D .17x ≤≤【答案】A【解析】【分析】先化成绝对值,再分区间讨论,即可求解.【详解】9, 即:23579x x x x -+-+-+-≤,当2x <时,则23579x x x x -+-+-+-≤,得2x ≥,矛盾;当23x ≤<时,则23579x x x x -+-+-+-≤,得2x ≥,符合;当35x ≤<时,则23579x x x x -+-+-+-≤,得79≤,符合;当57x ≤≤时,则23579x x x x -+-+-+-≤,得6x ≤,符合;当7x >时,则23579x x x x -+-+-+-≤,得 6.5x ≤,矛盾;综上,x 取值范围为:26x ≤≤,故选:A .【点睛】本题考查二次根式的性质和应用,一元一次不等式的解法,解题的关键是分区间讨论,熟练运用二次根式的运算法则.2.如果0,0ab a b >+<,那么给出下列各式=;a =-;正确的是( ) A .①②B .②③C .①③D .①②③ 【答案】B【解析】【分析】由题意得0a <,0b <,然后根据二次根式的性质和乘法法则逐个判断即可.【详解】解:∵0ab >,0a b +<,∴0a <,0b <,无意义,故①错误;==,故②正确;1====-,故③正确;a a故选:B.【点睛】本题考查了二次根式的性质和乘法运算,熟练掌握运算法则是解题的关键.3.在实数范围内有意义,则a的取值范围是()A.a≤﹣2 B.a≥﹣2 C.a<﹣2 D.a>﹣2【答案】B【解析】【分析】在实数范围内有意义,则其被开方数大于等于0;易得a+2≥0,解不等式a+2≥0,即得答案.【详解】在实数范围内有意义,∴a+2≥0,解得a≥-2.故选B.【点睛】本题是一道关于二次根式定义的题目,应熟练掌握二次根式有意义的条件;x=-时,二次根m等于()4.当3C DA B.2【答案】B【解析】解:把x=﹣3代入二次根式得,原式=,依题意得:=.故选B.5.下列各式计算正确的是( )A.2+b=2b B=C.(2a2)3=8a5D.a6÷ a4=a2【答案】D【解析】解:A.2与b不是同类项,不能合并,故错误;B 不是同类二次根式,不能合并,故错误;C .(2a 2)3=8a 6,故错误;D .正确.故选D .6.x 的取值范围是( ) A .x≥76 B .x >76 C .x≤76 D . x <76【答案】B【解析】【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【详解】∵67x -是被开方数,∴670x -≥,又∵分母不能为零,∴670x ->,解得,x >76; 故答案为:B.【点睛】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数,解题的关键是熟练掌握其意义的条件.7.下列计算结果正确的是( )A 3B ±6CD .3+=【答案】A【解析】【分析】原式各项计算得到结果,即可做出判断.【详解】A 、原式=|-3|=3,正确;B 、原式=6,错误;C 、原式不能合并,错误;D 、原式不能合并,错误.故选A.【点睛】考查了实数的运算,熟练掌握运算法则是解本题的关键.8.下列运算正确的是()A B.1)2=3-1 C D5-3【答案】C【解析】【分析】根据二次根式的加减及乘除的法则分别计算各选项,然后与所给结果进行比较,从而可得出结果.【详解】解:≠,故本选项错误;1)2=3-,故本选项正确;= =4,故本选项错误.故选C.【点睛】本题考查了二次根式的混合运算,熟练化简二次根式后,在加减的过程中,有同类二次根式的要合并;相乘的时候,被开方数简单的直接让被开方数相乘,再化简;较大的也可先化简,再相乘,灵活对待.9.下列计算错误的是()A=B=C.3=D=【答案】C【解析】【分析】根据二次根式的运算法则逐项判断即可.【详解】解:==,正确;==C. =D. ==故选:C.【点睛】本题考查了二次根式的加减和乘除运算,熟练掌握运算法则是解题的关键.10.下列计算正确的是()A6=B=C.2=D5=-【答案】B【解析】【分析】根据二次根式的混合运算顺序和运算法则逐一计算可得.【详解】A====C.=,此选项计算错误;=,此选项计算错误;5故选:B.【点睛】本题主要考查二次根式的混合运算,解题的关键是熟练掌握二次根式的混合运算顺序和运算法则.11.下列运算正确的是()A+=B)﹣1=2C 2 D±3【答案】B【解析】【分析】直接利用二次根式的性质分别化简得出答案.【详解】解:A-=,正确;B、12C2=D3,故此选项错误;故选:B.【点睛】此题主要考查了二次根式的加减以及二次根式的性质,正确掌握二次根式的性质是解题关键.12.2在哪两个整数之间()A.4和5 B.5和6 C.6和7 D.7和8【答案】C【解析】【分析】== 1.414222≈,即可解答.【详解】== 1.414222≈,∴2 6.242≈,即介于6和7,故选:C.【点睛】本题考查了二次根式的运算以及无理数的估算,解题的关键是掌握二次根式的运算法则以及 1.414≈.13.婴儿游泳是供婴儿进行室内或室外游泳的场所,婴儿游泳池的样式多种多样,现已知积为()A.B.C.D.【答案】D【解析】【分析】根据底面积=体积÷高列出算式,再利用二次根式的除法法则计算可得.【详解】故选:D.【点睛】考核知识点:二次根式除法.理解题意,掌握二次根式除法法则是关键.14.下列计算正确的是()A.=B=C .=D -=【答案】B【解析】【分析】 根据二次根式的加减乘除运算法则逐一计算可得.【详解】A 、-B 、,此选项正确;C 、=(D 、= 故选B【点睛】本题主要考查二次根式的混合运算,解题的关键是掌握二次根式混合运算顺序和运算法则.15.计算201720192)2)的结果是( )A .B 2C .7D .7- 【答案】C【解析】【分析】先利用积的乘方得到原式= 201722)2)]2)⋅,然后根据平方差公式和完全平方公式计算.【详解】解:原式=201722)2)]2)+⋅=2017(34)(34)-⋅-1(7=-⨯-7=故选:C .【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.16.如图,矩形内三个相邻的正方形面积分别为4,3和2,则图中阴影部分的面积为( )A .2B .6C .236223+--D .23225+-【答案】D【解析】【分析】 将面积为2和3的正方形向下平移至下方边长和长方形的长边重合,可得两个阴影部分的图形的长和宽,计算可得答案.【详解】将面积为2和3的正方形向下平移至下方边长和长方形的长边重合,如下图所示:则阴影面积((222323=222233+=23225故选:D【点睛】本题考查算术平方根,解答本题的关键是明确题意,求出大小正方形的边长,利用数形结合的思想解答.17.当实数x 2x -41y x =+中y 的取值范围是( ) A .7y ≥-B .9y ≥C .9y <-D .7y <-【答案】B【解析】【分析】根据二次根式有意义易得x 的取值范围,代入所给函数可得y 的取值范围.【详解】解:由题意得20x -≥,解得2x ≥, 419x ∴+≥,即9y ≥.【点睛】本题考查了函数值的取值的求法;根据二次根式被开方数为非负数得到x的取值是解决本题的关键.18.下列根式中属最简二次根式的是()A.21a+B.12C.8D.2【答案】A【解析】试题分析:最简二次根式是指无法进行化简的二次根式.A、无法化简;B、原式=;C、原式=2;D、原式=.考点:最简二次根式19.若x+y=2,x﹣y=3﹣222x y-的值为()A.2B.1 C.6 D.3﹣2【答案】B【解析】【分析】根据二次根式的性质解答.【详解】解:∵x+y=2,x﹣y=3﹣2,22()()(322)(322)x y x y x y-=+-=+-1.故选:B.【点睛】本题考查了二次根式的混合运算,以及平方差公式的运用,解题的关键是熟练掌握平方差公式进行解题.20.mmn-有意义,那么直角坐标系中 P(m,n)的位置在()A.第一象限B.第二象限C.第三象限D.第四象限【答案】C【解析】【分析】先根据二次根式与分式的性质求出m,n的取值,即可判断P点所在的象限.依题意的-m≥0,mn>0,解得m<0,n<0,故P(m,n)的位置在第三象限,故选C.【点睛】此题主要考查坐标所在象限,解题的关键是熟知二次根式与分式的性质.。
二次根式计算专题-30题(教师版含答案解析)
![二次根式计算专题-30题(教师版含答案解析)](https://img.taocdn.com/s3/m/24ce75b58762caaedd33d47f.png)
完美WORD格式二次根式计算专题1.计算:⑴ 3 6 4 2 3 6 4 2 ⑵ 2 0( 3) ( 3) 27 3 2 【答案】(1)22; (2) 6 4 3【解析】试题分析:(1) 根据平方差公式,把括号展开进行计算即可求出答案.(2) 分别根据平方、非零数的零次幂、二次根式、绝对值的意义进行计算即可得出答案. 试题解析:(1) 3 6 4 2 3 6 4 22 2(3 6) (4 2)=54-32=22.(2) 2 0( 3) ( 3) 27 3 23 1 3 3 2 36 4 3考点: 实数的混合运算.2.计算(1)﹣×(2)(6 ﹣2x )÷ 3 .【答案】(1)1;(2)【解析】1 3试题分析:先把二次根式化简后,再进行加减乘除运算,即可得出答案. 试题解析:(1)20 5 15 3122 5 5 35 32 33 21;(2)(6 2 1 ) 3xx x 4x6 x 2x x( ) 32 xx(3 x 2 x) 3 xx 3 x专业知识分享13.考点: 二次根式的混合运算.3.计算:13 12 2 48 2 33.【答案】【解析】14 3.试题分析:先将二次根式化成最简二次根式, 再算括号里面的, 最后算除法.试题解析:13 12 2 48 2 332=(6 3 3 4 3) 2 332833 2 3143.考点:二次根式运算.64.计算: 3 6 2 32【答案】 2 2 .【解析】试题分析:先算乘除、去绝对值符号, 再算加减.试题解析:原式=3 2 3 3 2= 2 2考点:二次根式运算.5.计算: 2 18 3( 3 2)【答案】 3 3.【解析】试题分析:先将二次根式化成最简二次根式, 再化简.试题解析: 2 18 3( 3 2)= 2 3 2 3 3 6 3 3.考点:二次根式化简.6.计算:1 4 323 .22 2【答案】.2【解析】试题分析:根据二次根式的运算法则计算即可.试题解析:1 4 32 2 3234 2 2 22 2 2 2.考点:二次根式的计算.试卷第 2 页,总10 页完美WORD格式7.计算:1262(31)(31).【答案】32.【解析】试题分析:先算乘除,再算加减,有括号的先算括号里面的,特别的能利用公式的应用公式简化计算过程.试题解析:1262(31)(31)=23331=32.考点:二次根式的化简.8.计算:12236322【答案】0.【解析】试题分析:根据二次根式运算法则计算即可.试题解析:36331 12226660.2222考点:二次根式计算.9.计算:0+1123.【答案】13.【解析】试题分析:任何非零数的零次方都为1,负数的绝对值等于它的相反数,再对二次根式进行化简即可.试题解析:0+1123123313.考点:二次根式的化简.10.计算:83130.53433【答案】3222【解析】.试题分析:先化成最简二次根式,再进行运算.试题解析:原式=2333223=232222.考点:二次根式的化简.11.计算:(1)2712451 3(2)020141182014223专业知识分享【答案】(1)1 15; (2) 3 2 .【解析】试题分析:(1)根据二次根式的运算法则计算即可;(2)针对有理数的乘方,零指数幂,二次根式化简,. 绝对值 4 个考点分别进行计算,然后根据实数的运算法则求得计算结果.试题解析:( 1 )1 1 127 12 45 3 3 2 3 3 5 3 3 3 5 3 1 153 3 3.(2)020141 18 20142 23 1 3 2 1 2 2 3 3 2 .考点:1. 实数的运算;2. 有理数的乘方;3. 零指数幂;4. 二次根式化简;5. 绝对值.12.计算:( 3 2)( 3 2) (1 03) 2 1 2【答案】 2 .【解析】试题分析:本题主要考查了二次根式的混合运算.熟练化简二次根式后,在加减的过程中,有同类二次根式的要合并;相乘的时候,被开方数简单的直接让被开方数相乘,再化简;较大的也可先化简,再相乘,灵活对待.本题中先根据平方差公式计算乘法以及零指数幂的意义,去掉括号后,计算加减法.试题解析:解:原式= 3 2 1 2= 2考点:二次根式的混合运算.13.计算:327 ( 2013) | 2 3 |3.【答案】4 3 1. 【解析】试题分析:解:327 ( 2013) | 2 3 |33 3 3 1 2 34 3 1.考点:二次根式化简.214.计算(3 24 8) 123【答案】2 6- + .2 3试卷第 4 页,总10 页完美WORD格式【解析】试题分析:先化简二次根式,再合并同类二次根式,最后算除法即可求出答案.试题解析:2(3 - 24 + 8) ? 12 ( 6 - 2 6 +22) ? 2 3 (2 2 - 6) ? 2 332 6= - +2 3考点: 二次根式的混合运算.15.计算:12 1 2 1- -2 3【答案】4 3 2- .3 2【解析】试题分析:把二次根式化简,再合并同类二次根式即可求出答案.试题解析:1 12 234 3 2 12 - - 2 = 2 3 - - = -2 3 2 3 3 2考点: 二次根式的运算.50 32 16.化简:(1)8(2)( 6 2 15) 3 6 1 2【答案】(1)【解析】92;(2) 6 5 .试题分析:(1)先去分母,再把各二次根式化为最简二次根式,进行计算;(2)直接利用分配律去括号,再根据二次根式乘法法则计算即可.试题解析:(1)原式= 5 2 4 2 922 2;(2)原式= 6 3 2 15 3 3 2 3 2 6 5 3 2 6 5 .考点:二次根式的混合运算;17.计算(1)27 3 3 22 12 3(2)【答案】(1)3 3 ; (2)3.【解析】试题分析:(1)根据运算顺序计算即可;专业知识分享(2)将括号内化为最简二次根式后合并再平方运算即可.试题解析:(1)27 3 3 2 3 3 3 2 3 3 3 .(2)2 2 212 3 2 3 3 3 3 .考点:二次根式化简.18.计算:18(3 2 1)(1 3 2)2 4【答案】17. 【解析】试题分析:先化简12和84,运用平方差公式计算(3 2 1)(1 3 2) ,再进行计算求解 .试题解析:原式==172 218 12 2考点: 实数的运算.119.计算:( 3) 27 |1 2 |32【答案】 2 3 .【解析】试题分析:本题涉及零指数幂、二次根式的化简、分母有理化、绝对值化简 4 个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.试题解析:原式=1 3 3 2 1 3 2 2 3考点:1.实数的运算;2.零指数幂;3.分母有理化.20.计算:1 2 0②16 3 2 48 123①8 2③2 a 1 2a3a 32 2 3【答案】① 2 1;②【解析】143;③a3.试题分析:①针对算术平方根,绝对值,零指数 3 个考点分别进行计算,然后根据实数的运算法则求得计算结果;②根据二次根式运算法则计算即可;③根据二次根式运算法则计算即可.试题解析:①18 2 =2 2 2 1 2 1.2试卷第 6 页,总10 页完美WORD格式②1 2 28 14 6 3 2 48 12 6 3 3 4 3 2 3 3 2 33 3 3 3.③ 2 a 1 2a 1 2 2 2a 1 2 1 a3a 3 = 3a = 4a 2a2 23 6 a 3 6 6 3. 考点:1. 二次根式计算; 2. 绝对值; 3.0 指数幂.21.计算:(1)2012 1 1 3 0( 1) 5 ( ) 27 ( 2 1)2(2)1 13 12 3 48 273 2【答案】(1)0;(2)43.【解析】试题分析:(1)原式=1 5 2 3 1 0;(2)原式=6 3 3 2 3 3 3 4 3 .考点:1.实数的运算;2.二次根式的加减法.22.计算与化简(1)327 33(2) 2(3 5) (4 7)(4 7)【答案】(1)2 3 1;(2)6 5 5 .【解析】试题分析:(1)将前两项化为最简二次根式,第三项根据0 指数幂定义计算,再合并同类二次根式即可;(2)应用完全平方公式和平方差公式展开后合并同类二次根式即可.试题解析:(1)3 027 3 3 3- 3 1 2 3 1.3(2)23 54 7 4 7 9 65 5 167 6 5 5 .考点:1. 二次根式化简; 2.0 指数幂; 3. 完全平方公式和平方差公式. 23.(1) 2 8 2 18(2)1212713(3)212 33(1 03)(4)(2 3 3 2 )(2 3 3 2)【答案】(1) 3 2 ;(2) 16 39【解析】;(3)6;(4) 6试题分析:本题主要考查根式的根式的混合运算和0 次幂运算. 根据运算法则先算乘除专业知识分享法,是分式应该先将分式转化为整式,再按运算法则计算。
100道二次根式含答案 (2)
![100道二次根式含答案 (2)](https://img.taocdn.com/s3/m/aca63e5b53d380eb6294dd88d0d233d4b04e3f44.png)
100道二次根式题目及答案第一部分:简单题(共50题)1. $\\sqrt{9}$答案:32. $\\sqrt{25}$答案:53. $\\sqrt{81}$答案:94. $\\sqrt{64}$答案:85. $\\sqrt{100}$答案:106. $\\sqrt{121}$答案:11答案:128. $\\sqrt{169}$ 答案:139. $\\sqrt{196}$ 答案:1410. $\\sqrt{225}$ 答案:1511. $\\sqrt{256}$ 答案:1612. $\\sqrt{289}$ 答案:1713. $\\sqrt{324}$ 答案:18答案:1915. $\\sqrt{400}$ 答案:2016. $\\sqrt{441}$ 答案:2117. $\\sqrt{484}$ 答案:2218. $\\sqrt{529}$ 答案:2319. $\\sqrt{576}$ 答案:2420. $\\sqrt{625}$ 答案:25答案:2622. $\\sqrt{729}$ 答案:2723. $\\sqrt{784}$ 答案:2824. $\\sqrt{841}$ 答案:2925. $\\sqrt{900}$ 答案:3026. $\\sqrt{961}$ 答案:3127. $\\sqrt{1024}$ 答案:32答案:3329. $\\sqrt{1156}$ 答案:3430. $\\sqrt{1225}$ 答案:3531. $\\sqrt{1296}$ 答案:3632. $\\sqrt{1369}$ 答案:3733. $\\sqrt{1444}$ 答案:3834. $\\sqrt{1521}$ 答案:39答案:4036. $\\sqrt{1681}$ 答案:4137. $\\sqrt{1764}$ 答案:4238. $\\sqrt{1849}$ 答案:4339. $\\sqrt{1936}$ 答案:4440. $\\sqrt{2025}$ 答案:4541. $\\sqrt{2116}$ 答案:46答案:4743. $\\sqrt{2304}$ 答案:4844. $\\sqrt{2401}$ 答案:4945. $\\sqrt{2500}$ 答案:5046. $\\sqrt{2601}$ 答案:5147. $\\sqrt{2704}$ 答案:5248. $\\sqrt{2809}$ 答案:53答案:5450. $\\sqrt{3025}$答案:55第二部分:中等题(共25题)51. $\\sqrt{10} + \\sqrt{2}$答案:$\\sqrt{10} + \\sqrt{2}$52. $\\sqrt{5} + \\sqrt{20}$答案:$\\sqrt{5} + 2\\sqrt{5} = 3\\sqrt{5}$53. $\\sqrt{15} + \\sqrt{12}$答案:$\\sqrt{15} + \\sqrt{12} = \\sqrt{15} + 2\\sqrt{3}$ 54. $\\sqrt{7} - \\sqrt{8}$答案:$\\sqrt{7} - \\sqrt{8}$55. $\\sqrt{9} - \\sqrt{6}$答案:$\\sqrt{9} - \\sqrt{6} = 3 - \\sqrt{6}$答案:$\\sqrt{26} + \\sqrt{14}$57. $\\sqrt{30} - \\sqrt{10}$答案:$\\sqrt{30} - \\sqrt{10}$58. $\\sqrt{5} \\cdot \\sqrt{10}$答案:$\\sqrt{5} \\cdot \\sqrt{10} = \\sqrt{50}$59. $\\sqrt{10} \\cdot \\sqrt{2}$答案:$\\sqrt{10} \\cdot \\sqrt{2} = 2\\sqrt{5}$60. $\\sqrt{18} \\cdot \\sqrt{3}$答案:$\\sqrt{18} \\cdot \\sqrt{3} = 3\\sqrt{6}$61. $\\sqrt{32} - \\sqrt{8}$答案:$\\sqrt{32} - \\sqrt{8} = 4\\sqrt{2} - 2\\sqrt{2} = 2\\sqrt{2}$ 62. $\\sqrt{24} - \\sqrt{6}$答案:$\\sqrt{24} - \\sqrt{6} = 4\\sqrt{6} - \\sqrt{6} = 3\\sqrt{6}$答案:$(\\sqrt{2} + \\sqrt{3})^2 = 2 + 2\\sqrt{2}\\sqrt{3} + 3 = 5 +2\\sqrt{6}$64. $(\\sqrt{2} - \\sqrt{3})^2$答案:$(\\sqrt{2} - \\sqrt{3})^2 = 2 - 2\\sqrt{2}\\sqrt{3} + 3 = 5 - 2\\sqrt{6}$65. $(\\sqrt{2} + \\sqrt{3})(\\sqrt{2} - \\sqrt{3})$答案:$(\\sqrt{2} + \\sqrt{3})(\\sqrt{2} - \\sqrt{3}) = 2 - 3 = -1$66. $(\\sqrt{5} + \\sqrt{6})(\\sqrt{5} - \\sqrt{6})$答案:$(\\sqrt{5} + \\sqrt{6})(\\sqrt{5} - \\sqrt{6}) = 5 - 6 = -1$67. $3\\sqrt{2}(\\sqrt{2} - \\sqrt{3})$答案:$3\\sqrt{2}(\\sqrt{2} - \\sqrt{3}) = 3\\sqrt{2} \\cdot \\sqrt{2} -3\\sqrt{2} \\cdot \\sqrt{3} = 6 - 3\\sqrt{6}$68. $(\\sqrt{2}\\sqrt{5})(\\sqrt{3}\\sqrt{6})$答案:$(\\sqrt{2}\\sqrt{5})(\\sqrt{3}\\sqrt{6}) = \\sqrt{2\\cdot 5} \\cdot \\sqrt{3\\cdot 6} = \\sqrt{10} \\cdot \\sqrt{18} = \\sqrt{180}$69. $\\frac{\\sqrt{8}}{\\sqrt{2}}$答案:$\\frac{\\sqrt{8}}{\\sqrt{2}} = \\sqrt{4} = 2$70. $\\frac{\\sqrt{15}}{\\sqrt{5}}$答案:$\\frac{\\sqrt{15}}{\\sqrt{5}} = \\sqrt{3}$71. $\\frac{\\sqrt{18}}{\\sqrt{6}}$答案:$\\frac{\\sqrt{18}}{\\sqrt{6}} = \\sqrt{3}$72. $\\frac{\\sqrt{50}}{\\sqrt{2}}$答案:$\\frac{\\sqrt{50}}{\\sqrt{2}} = \\sqrt{25} = 5$73. $\\frac{\\sqrt{35}}{\\sqrt{5}}$答案:$\\frac{\\sqrt{35}}{\\sqrt{5}} = \\sqrt{7}$74. $\\frac{\\sqrt{40}}{\\sqrt{8}}$答案:$\\frac{\\sqrt{40}}{\\sqrt{8}} = \\sqrt{5}$75. $\\frac{\\sqrt{72}}{\\sqrt{18}}$答案:$\\frac{\\sqrt{72}}{\\sqrt{18}} = \\sqrt{4} = 2$第三部分:困难题(共25题)76. $\\sqrt{2} \\cdot \\sqrt{3} + \\sqrt{6}$答案:$\\sqrt{2} \\cdot \\sqrt{3} + \\sqrt{6} = \\sqrt{6} + \\sqrt{6} = 2\\sqrt{6}$答案:$\\sqrt{7} \\cdot \\sqrt{11} - \\sqrt{77} = \\sqrt{7\\cdot11} - \\sqrt{77} = \\sqrt{77} - \\sqrt{77} = 0$78. $(\\sqrt{3} + \\sqrt{5})^2 - (\\sqrt{3} - \\sqrt{5})^2$答案:$(\\sqrt{3} + \\sqrt{5})^2 - (\\sqrt{3} - \\sqrt{5})^2 =4\\sqrt{3}\\sqrt{5} = 4\\sqrt{15}$79. $(\\sqrt{2} + \\sqrt{5})^2 - (\\sqrt{2} - \\sqrt{5})^2$答案:$(\\sqrt{2} + \\sqrt{5})^2 - (\\sqrt{2} - \\sqrt{5})^2 =4\\sqrt{2}\\sqrt{5} = 4\\sqrt{10}$80. $\\sqrt{2\\sqrt{2}}$答案:$\\sqrt{2\\sqrt{2}} = \\sqrt{\\sqrt{2^2}\\sqrt{2}} =\\sqrt{\\sqrt{4}\\sqrt{2}} = \\sqrt{2}\\sqrt{2} = 2$81. $\\sqrt{3\\sqrt{3}}$答案:$\\sqrt{3\\sqrt{3}} = \\sqrt{\\sqrt{3^2}\\sqrt{3}} =\\sqrt{\\sqrt{9}\\sqrt{3}} = \\sqrt{3}\\sqrt{3} = 3$82. $\\sqrt{5\\sqrt{5}}$答案:$\\sqrt{5\\sqrt{5}} = \\sqrt{\\sqrt{5^2}\\sqrt{5}} =\\sqrt{\\sqrt{25}\\sqrt{5}} = \\sqrt{5}\\sqrt{5} = 5$答案:$(\\sqrt{5} + \\sqrt{3})^2 + 2\\sqrt{15} = 5 + 3 + 2\\sqrt{15} = 8 + 2\\sqrt{15}$84. $(\\sqrt{2} - \\sqrt{3})^2 + 2\\sqrt{6}$答案:$(\\sqrt{2} - \\sqrt{3})^2 + 2\\sqrt{6} = 2 - 2\\sqrt{2}\\sqrt{3} + 3 + 2\\sqrt{6} = 5 + 2\\sqrt{6}$85. $3\\sqrt{2} - \\sqrt{8}$答案:$3\\sqrt{2} - \\sqrt{8} = 3\\sqrt{2} - 2\\sqrt{2} = \\sqrt{2}$86. $2\\sqrt{3} + \\sqrt{12}$答案:$2\\sqrt{3} + \\sqrt{12} = 2\\sqrt{3} + 2\\sqrt{3} = 4\\sqrt{3}$87. $\\sqrt{8} + \\sqrt{72}$答案:$\\sqrt{8} + \\sqrt{72} = 2\\sqrt{2} + 6\\sqrt{2} = 8\\sqrt{2}$88. $\\sqrt{5}\\sqrt{10} - \\sqrt{10}$答案:$\\sqrt{5}\\sqrt{10} - \\sqrt{10} = \\sqrt{5\\cdot10} - \\sqrt{10} = \\sqrt{50} - \\sqrt{10} = 5\\sqrt{2} - \\sqrt{10}$89. $\\sqrt{3}\\sqrt{6} + \\sqrt{18}$答案:$\\sqrt{3}\\sqrt{6} + \\sqrt{18} = \\sqrt{3\\cdot6} + \\sqrt{18} =\\sqrt{18} + \\sqrt{18} = 2\\sqrt{18} = 6\\sqrt{2}$90. $\\sqrt{16} - \\sqrt{32}$答案:$\\sqrt{16} - \\sqrt{32} = 4 - 4\\sqrt{2} = 4(1 - \\sqrt{2})$91. $\\sqrt{12} - \\sqrt{20} + \\sqrt{5}$答案:$\\sqrt{12} - \\sqrt{20} + \\sqrt{5} = 2\\sqrt{3} - 2\\sqrt{5} + \\sqrt{5} = 2\\sqrt{3} - \\sqrt{5}$92. $\\sqrt{7}\\sqrt{35} - \\sqrt{7}$答案:$\\sqrt{7}\\sqrt{35} - \\sqrt{7} = \\sqrt{7\\cdot35} - \\sqrt{7} =\\sqrt{245} - \\sqrt{7}$93. $\\sqrt{50} + \\sqrt{200} - \\sqrt{8}$答案:$\\sqrt{50} + \\sqrt{200} - \\sqrt{8} = 5 + 10\\sqrt{2} - 2\\sqrt{2} = 5 + 8\\sqrt{2}$94. $5\\sqrt{2} - 2\\sqrt{18} + \\sqrt{32}$答案:$5\\sqrt{2} - 2\\sqrt{18} + \\sqrt{32} = 5\\sqrt{2} - 2\\cdot3\\sqrt{2} + 4\\sqrt{2} = 9\\sqrt{2}$95. $\\sqrt{72} - \\sqrt{18} + \\sqrt{32} - \\sqrt{8}$答案:$\\sqrt{72} - \\sqrt{18} + \\sqrt{32} - \\sqrt{8} = 6\\sqrt{2} -3\\sqrt{2} + 4\\sqrt{2} - 2\\sqrt{2} = 5\\sqrt{2}$96. $\\sqrt{3}(\\sqrt{15} - \\sqrt{5})$答案:$\\sqrt{3}(\\sqrt{15} - \\sqrt{5}) = \\sqrt{3}\\sqrt{15} -\\sqrt{3}\\sqrt{5} = \\sqrt{45} - \\sqrt{15} = 3\\sqrt{5} - \\sqrt{15}$97. $\\sqrt{2}(\\sqrt{16} - \\sqrt{8})$答案:$\\sqrt{2}(\\sqrt{16} - \\sqrt{8}) = \\sqrt{2}\\cdot4\\sqrt{2} - \\sqrt{2}\\cdot2\\sqrt{2} = 8 - 4\\sqrt{2} = 4(2 - \\sqrt{2})$98. $\\sqrt{5}(\\sqrt{12} + \\sqrt{3})$答案:$\\sqrt{5}(\\sqrt{12} + \\sqrt{3}) = \\sqrt{5}\\cdot2\\sqrt{3} + \\sqrt{5}\\sqrt{3} = 2\\sqrt{15} + \\sqrt{15} = 3\\sqrt{15}$99. $\\sqrt{7}(\\sqrt{7} + \\sqrt{11})$答案:$\\sqrt{7}(\\sqrt{7} + \\sqrt{11}) = \\sqrt{7}\\cdot\\sqrt{7} + \\sqrt{7}\\sqrt{11} = 7 + \\sqrt{77}$100. $\\sqrt{8}(\\sqrt{6} - \\sqrt{2})$答案:$\\sqrt{8}(\\sqrt{6} - \\sqrt{2}) = \\sqrt{8}\\cdot2\\sqrt{2} - \\sqrt{8}\\cdot\\sqrt{2} = 4\\sqrt{2} - 2\\sqrt{2} = 2\\sqrt{2}$结束语本文共提供了100道二次根式题目及其答案。
二次根式计算专题-30题(教师版含答案解析)
![二次根式计算专题-30题(教师版含答案解析)](https://img.taocdn.com/s3/m/a9c81966312b3169a451a452.png)
完美WORD格式二次根式计算专题1.计算:⑴ 3 6 4 2 3 6 4 2 ⑵ 2 0( 3) ( 3) 27 3 2 【答案】(1)22; (2) 6 4 3【解析】试题分析:(1) 根据平方差公式,把括号展开进行计算即可求出答案.(2) 分别根据平方、非零数的零次幂、二次根式、绝对值的意义进行计算即可得出答案. 试题解析:(1) 3 6 4 2 3 6 4 22 2(3 6) (4 2)=54-32=22.(2) 2 0( 3) ( 3) 27 3 23 1 3 3 2 36 4 3考点: 实数的混合运算.2.计算(1)﹣×(2)(6 ﹣2x )÷ 3 .【答案】(1)1;(2)【解析】1 3试题分析:先把二次根式化简后,再进行加减乘除运算,即可得出答案. 试题解析:(1)20 5 15 3122 5 5 35 32 33 21;(2)(6 2 1 ) 3xx x 4x6 x 2x x( ) 32 xx(3 x 2 x) 3 xx 3 x专业知识分享13.考点: 二次根式的混合运算.3.计算:13 12 2 48 2 33.【答案】【解析】14 3.试题分析:先将二次根式化成最简二次根式, 再算括号里面的, 最后算除法.试题解析:13 12 2 48 2 332=(6 3 3 4 3) 2 332833 2 3143.考点:二次根式运算.64.计算: 3 6 2 32【答案】 2 2 .【解析】试题分析:先算乘除、去绝对值符号, 再算加减.试题解析:原式=3 2 3 3 2= 2 2考点:二次根式运算.5.计算: 2 18 3( 3 2)【答案】 3 3.【解析】试题分析:先将二次根式化成最简二次根式, 再化简.试题解析: 2 18 3( 3 2)= 2 3 2 3 3 6 3 3.考点:二次根式化简.6.计算:1 4 323 .22 2【答案】.2【解析】试题分析:根据二次根式的运算法则计算即可.试题解析:1 4 32 2 3234 2 2 22 2 2 2.考点:二次根式的计算.试卷第 2 页,总10 页完美WORD格式7.计算:1262(31)(31).【答案】32.【解析】试题分析:先算乘除,再算加减,有括号的先算括号里面的,特别的能利用公式的应用公式简化计算过程.试题解析:1262(31)(31)=23331=32.考点:二次根式的化简.8.计算:12236322【答案】0.【解析】试题分析:根据二次根式运算法则计算即可.试题解析:36331 12226660.2222考点:二次根式计算.9.计算:0+1123.【答案】13.【解析】试题分析:任何非零数的零次方都为1,负数的绝对值等于它的相反数,再对二次根式进行化简即可.试题解析:0+1123123313.考点:二次根式的化简.10.计算:83130.53433【答案】3222【解析】.试题分析:先化成最简二次根式,再进行运算.试题解析:原式=2333223=232222.考点:二次根式的化简.11.计算:(1)2712451 3(2)020141182014223专业知识分享【答案】(1)1 15; (2) 3 2 .【解析】试题分析:(1)根据二次根式的运算法则计算即可;(2)针对有理数的乘方,零指数幂,二次根式化简,. 绝对值 4 个考点分别进行计算,然后根据实数的运算法则求得计算结果.试题解析:( 1 )1 1 127 12 45 3 3 2 3 3 5 3 3 3 5 3 1 153 3 3.(2)020141 18 20142 23 1 3 2 1 2 2 3 3 2 .考点:1. 实数的运算;2. 有理数的乘方;3. 零指数幂;4. 二次根式化简;5. 绝对值.12.计算:( 3 2)( 3 2) (1 03) 2 1 2【答案】 2 .【解析】试题分析:本题主要考查了二次根式的混合运算.熟练化简二次根式后,在加减的过程中,有同类二次根式的要合并;相乘的时候,被开方数简单的直接让被开方数相乘,再化简;较大的也可先化简,再相乘,灵活对待.本题中先根据平方差公式计算乘法以及零指数幂的意义,去掉括号后,计算加减法.试题解析:解:原式= 3 2 1 2= 2考点:二次根式的混合运算.13.计算:327 ( 2013) | 2 3 |3.【答案】4 3 1. 【解析】试题分析:解:327 ( 2013) | 2 3 |33 3 3 1 2 34 3 1.考点:二次根式化简.214.计算(3 24 8) 123【答案】2 6- + .2 3试卷第 4 页,总10 页完美WORD格式【解析】试题分析:先化简二次根式,再合并同类二次根式,最后算除法即可求出答案.试题解析:2(3 - 24 + 8) ? 12 ( 6 - 2 6 +22) ? 2 3 (2 2 - 6) ? 2 332 6= - +2 3考点: 二次根式的混合运算.15.计算:12 1 2 1- -2 3【答案】4 3 2- .3 2【解析】试题分析:把二次根式化简,再合并同类二次根式即可求出答案.试题解析:1 12 234 3 2 12 - - 2 = 2 3 - - = -2 3 2 3 3 2考点: 二次根式的运算.50 32 16.化简:(1)8(2)( 6 2 15) 3 6 1 2【答案】(1)【解析】92;(2) 6 5 .试题分析:(1)先去分母,再把各二次根式化为最简二次根式,进行计算;(2)直接利用分配律去括号,再根据二次根式乘法法则计算即可.试题解析:(1)原式= 5 2 4 2 922 2;(2)原式= 6 3 2 15 3 3 2 3 2 6 5 3 2 6 5 .考点:二次根式的混合运算;17.计算(1)27 3 3 22 12 3(2)【答案】(1)3 3 ; (2)3.【解析】试题分析:(1)根据运算顺序计算即可;专业知识分享(2)将括号内化为最简二次根式后合并再平方运算即可.试题解析:(1)27 3 3 2 3 3 3 2 3 3 3 .(2)2 2 212 3 2 3 3 3 3 .考点:二次根式化简.18.计算:18(3 2 1)(1 3 2)2 4【答案】17. 【解析】试题分析:先化简12和84,运用平方差公式计算(3 2 1)(1 3 2) ,再进行计算求解 .试题解析:原式==172 218 12 2考点: 实数的运算.119.计算:( 3) 27 |1 2 |32【答案】 2 3 .【解析】试题分析:本题涉及零指数幂、二次根式的化简、分母有理化、绝对值化简 4 个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.试题解析:原式=1 3 3 2 1 3 2 2 3考点:1.实数的运算;2.零指数幂;3.分母有理化.20.计算:1 2 0②16 3 2 48 123①8 2③2 a 1 2a3a 32 2 3【答案】① 2 1;②【解析】143;③a3.试题分析:①针对算术平方根,绝对值,零指数 3 个考点分别进行计算,然后根据实数的运算法则求得计算结果;②根据二次根式运算法则计算即可;③根据二次根式运算法则计算即可.试题解析:①18 2 =2 2 2 1 2 1.2试卷第 6 页,总10 页完美WORD格式②1 2 28 14 6 3 2 48 12 6 3 3 4 3 2 3 3 2 33 3 3 3.③ 2 a 1 2a 1 2 2 2a 1 2 1 a3a 3 = 3a = 4a 2a2 23 6 a 3 6 6 3. 考点:1. 二次根式计算; 2. 绝对值; 3.0 指数幂.21.计算:(1)2012 1 1 3 0( 1) 5 ( ) 27 ( 2 1)2(2)1 13 12 3 48 273 2【答案】(1)0;(2)43.【解析】试题分析:(1)原式=1 5 2 3 1 0;(2)原式=6 3 3 2 3 3 3 4 3 .考点:1.实数的运算;2.二次根式的加减法.22.计算与化简(1)327 33(2) 2(3 5) (4 7)(4 7)【答案】(1)2 3 1;(2)6 5 5 .【解析】试题分析:(1)将前两项化为最简二次根式,第三项根据0 指数幂定义计算,再合并同类二次根式即可;(2)应用完全平方公式和平方差公式展开后合并同类二次根式即可.试题解析:(1)3 027 3 3 3- 3 1 2 3 1.3(2)23 54 7 4 7 9 65 5 167 6 5 5 .考点:1. 二次根式化简; 2.0 指数幂; 3. 完全平方公式和平方差公式. 23.(1) 2 8 2 18(2)1212713(3)212 33(1 03)(4)(2 3 3 2 )(2 3 3 2)【答案】(1) 3 2 ;(2) 16 39【解析】;(3)6;(4) 6试题分析:本题主要考查根式的根式的混合运算和0 次幂运算. 根据运算法则先算乘除专业知识分享法,是分式应该先将分式转化为整式,再按运算法则计算。
人教版初中数学二次根式难题汇编含答案
![人教版初中数学二次根式难题汇编含答案](https://img.taocdn.com/s3/m/6595c70ca8956bec0975e3be.png)
∵ 1 0 ,且 a 0 , a
∴a<0,
∴ a 1 >0, a
∴ a 1 = 1 (a)2 1 a2 = a ,
aa
a
故选:A.
【点睛】
此题考查平方根的定义,二次根式的化简,正确理解二次根式的被开方数大于等于 0 得到
a 的取值范围是解题的关键.
6.若代数式 x 3 在实数范围内有意义,则实数 x 的取值范围是( ) x 1
故选:B 【点睛】 本题考查了无理数大小的估算,用有理数逼近无理数,求无理数的近似值.考查了二次根 式的混合运算顺序,先乘方、再乘除、最后加减,有括号的先算括号里面的.
3.已知 x 3 5 x 2,则化简 1 x2 5 x2 的结果是( )
A.4 【答案】A 【解析】
B. 6 2x
C. 4
D. 2x 6
x 3 0
由 x 3 5 x 2可得{
,∴3≤x≤5,∴
5 x 0
1 x2
5 x2 =x-1+5-x=4,故选
A.
4.计算 (3)2 的结果为( )
A.±3 【答案】C 【解析】 【分析】
B.-3
C.3
根据 a2 =|a|进行计算即可.
【详解】
(3)2 =|-3|=3,
14.实数 a, b 在数轴上对应的点位置如图所示,则化简 a2 | a b | b2 的结果是( )
A. 2a
【答案】A 【解析】 【分析】
B. 2b
C. 2a b
D. 2a b
利用 a2 a , 再根据去绝对值的法则去掉绝对值,合并同类项即可.
【详解】
解: a<0<b, a >b , a b<0,
二次根式计算专题——30题(教师版含答案)
![二次根式计算专题——30题(教师版含答案)](https://img.taocdn.com/s3/m/bcf739bb760bf78a6529647d27284b73f3423642.png)
二次根式计算专题——30题(教师版含答案)二次根式计算专题——30题(教师版含答案)在代数学中,二次根式是指形如√a的数,其中a是非负实数。
二次根式的计算是代数学的重要组成部分,对于学生来说也是一项基本技能。
本文将介绍30道关于二次根式的计算题,并附上教师版含答案,供教师参考。
题目1: 计算√9的值。
解答: 由于9是一个完全平方数,所以√9=3。
题目2: 计算√25的值。
解答: 由于25是一个完全平方数,所以√25=5。
题目3: 计算√2的值。
解答: √2是一个无理数,无法精确计算,可以使用近似值1.414进行计算。
题目4: 计算√32的值。
解答: 首先将32分解为16×2,再将16分解为4×4,可以得到√32=√(4×4×2)=4√2。
题目5: 计算√(3×5)的值。
解答: √(3×5)=√15。
题目6: 计算√(8×12)的值。
解答: 首先将8和12分别分解为2×2×2和2×2×3,可以得到√(8×12)=√(2×2×2×2×2×3)=4√6。
题目7: 计算√(a^2×b^2)的值。
解答: √(a^2×b^2)=√(a^2)×√(b^2)=|a|×|b|。
题目8: 计算√(16÷4)的值。
解答: 首先计算16÷4=4,然后√4=2,所以√(16÷4)=2。
题目9: 计算√(x^2÷y^2)的值。
解答: √(x^2÷y^2)=√(x^2)÷√(y^2)=|x|÷|y|。
题目10: 计算√(4^2÷2^2)的值。
解答: 首先计算4^2=16和2^2=4,然后16÷4=4,所以√(4^2÷2^2)=√4=2。
二次根式计算专题——30题(教师版含答案)
![二次根式计算专题——30题(教师版含答案)](https://img.taocdn.com/s3/m/1a0822e3d15abe23482f4dc1.png)
1
【答案】(1)1;(2)
3
【解析】
试题分析:先把二次根式化简后,再进行加减乘除运算,即可得出答案.试题解析:(1) 20 Fra bibliotek5 1 12
5
3
2 5 5 32 3
5
3
3 2 1;
(2) (6 x 2x 1 ) 3 x
4
x
(6 x 2x x ) 3 x 2x
考点:1.根式运算 2.幂的运算
24.计算: 3 8 3 2 25 2
【答案】0 【解析】 试题分析:先根据立方根的性质、绝对值的规律、二次根式的性质化简,再合并同类 二次根式即可.
解:原式= 2 3 2 5 2 =0.
考点:实数的运算 点评:计算题是中考必考题,一般难度不大,学生要特别慎重,尽量不在计算上失分. 25.求下列各式的值
2 9;
22 2
(2)原式= 6 3 2 15 3 3 2 3 2 6 5 3 2 6 5 .
考点:二次根式的混合运算; 17.计算
(1) 27 3 3 2 2
(2) 12 3
【答案】(1) 3 3 ; (2)3. 【解析】 试题分析:(1)根据运算顺序计算即可;
试题解析: 3 12 2
1 3
48 2
3 =(6
32 3
3 4 3) 2 3
28 3 2 3 14 .
3
3
考点:二次根式运算.
4.计算: 3 6 6 2 3 2
【答案】 2 2 .
【解析】 试题分析:先算乘除、去绝对值符号,再算加减.
27 12 45 1 3 3 2 3 3 5 1 3 3 3 5 1 3 1 15 .
二次根式难题汇编附答案解析
![二次根式难题汇编附答案解析](https://img.taocdn.com/s3/m/8ff2f94c16fc700aba68fc12.png)
二次根式难题汇编附答案解析一、选择题1.下列计算正确的是( )A .3=B =C .1=D 2= 【答案】D【解析】【分析】根据合并同类二次根式的法则及二次根式的乘除运算法则计算可得.【详解】A 、=,错误;BC 、22=⨯=D 2==,正确; 故选:D .【点睛】本题主要考查二次根式的混合运算,解题的关键是掌握合并同类二次根式的法则及二次根式的乘除运算法则.2.把(a b -根号外的因式移到根号内的结果为( ).A B C .D .【答案】C【解析】【分析】先判断出a -b 的符号,然后解答即可.【详解】 ∵被开方数10b a≥-,分母0b a -≠,∴0b a ->,∴0a b -<,∴原式(b a =--== 故选C . 【点睛】=|a |.也考查了二次根式的成立的条件以及二次根式的乘法.3.下列各式计算正确的是( )A 1082==-= B .()()236==-⨯-=C 115236==+=D .54==- 【答案】D【解析】【分析】根据二次根式的性质对A 、C 、D 进行判断;根据二次根式的乘法法则对B 进行判断.【详解】解:A 、原式,所以A 选项错误;B 、原式,所以B 选项错误;C 、原式6,所以C 选项错误;D 、原式54==-,所以D 选项正确. 故选:D .【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.4.已知实数a 满足2006a a -=,那么22006a -的值是( ) A .2005B .2006C .2007D .2008【答案】C【解析】【分析】先根据二次根式有意义的条件求出a 的取值范围,然后去绝对值符号化简,再两边平方求出22006a -的值.【详解】∵a-2007≥0, ∴a ≥2007,∴2006a a -=可化为a 2006a -+=,2006=,∴a-2007=20062,∴22006a -=2007.故选C .【点睛】本题考查了绝对值的意义、二次根式有意义的条件,求出a 的取值范围是解答本题的关键.5.x 的取值范围是( ) A .x≥76 B .x >76 C .x≤76 D . x <76【答案】B【解析】【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【详解】∵67x -是被开方数,∴670x -≥,又∵分母不能为零,∴670x ->,解得,x >76; 故答案为:B.【点睛】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数,解题的关键是熟练掌握其意义的条件.6.下列运算正确的是( )A B .1)2=3-1 C D 5-3 【答案】C【解析】【分析】根据二次根式的加减及乘除的法则分别计算各选项,然后与所给结果进行比较,从而可得出结果.【详解】解:≠,故本选项错误;1)2=3-,故本选项正确;= =4,故本选项错误.故选C.【点睛】本题考查了二次根式的混合运算,熟练化简二次根式后,在加减的过程中,有同类二次根式的要合并;相乘的时候,被开方数简单的直接让被开方数相乘,再化简;较大的也可先化简,再相乘,灵活对待.7.下列二次根式:5、13、0.5a、22a b-、22x y+中,是最简二次根式的有( )A.2个B.3个C.4个D.5个【答案】A【解析】试题解析:5,是最简二次根式;1 3=3,不是最简二次根式;0.5a=2a,不是最简二次根式;22a b-=2|a|b,不是最简二次根式;22x y+, 是最简二次根式.共有2个最简二次根式.故选A.点睛:最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.8.如图,数轴上的点可近似表示(4630-)6÷的值是()A.点A B.点B C.点C D.点D 【答案】A【解析】【分析】先化简原式得45-5545【详解】原式=45-由于25<<3,∴1<42.故选:A .【点睛】本题考查实数与数轴、估算无理数的大小,解题的关键是掌握估算无理数大小的方法.9.下列式子正确的是( )A 6=±B C 3=- D 5=- 【答案】C【解析】【分析】根据算术平方根、立方根的定义和性质求解即可.【详解】解:6=,故A 错误.B 错误.3=-,故C 正确.D. 5=,故D 错误.故选:C【点睛】此题主要考查算术平方根和立方根的定义及性质,熟练掌握概念是解题的关键.10.一次函数y mx n =-+的结果是( )A .mB .m -C .2m n -D .2m n -【答案】D【解析】【分析】根据题意可得﹣m <0,n <0,再进行化简即可.【详解】∵一次函数y =﹣mx +n 的图象经过第二、三、四象限,∴﹣m <0,n <0,即m >0,n <0,=|m ﹣n |+|n |=m ﹣n ﹣n=m ﹣2n ,故选D.【点睛】本题考查了二次根式的性质与化简以及一次函数的图象与系数的关系,熟练掌握一次函数的图象与性质是解题的关键.11.下列二次根式中是最简二次根式的是()DA B C【答案】B【解析】【分析】根据最简二次根式的定义(被开方数不含有能开的尽方的因式或因数,被开方数不含有分数),判断即可.【详解】解:A,故本选项错误;BCD,故本选项错误.故选:B.【点睛】本题考查对最简二次根式的理解,能熟练地运用定义进行判断是解此题的关键.12.a的取值范围是()A.a>1 B.a≥1C.a=1 D.a≤1【答案】B【解析】【分析】根据二次根式有意义的条件可得a﹣1≥0,再解不等式即可.【详解】由题意得:a﹣1≥0,解得:a≥1,故选:B.【点睛】此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.13.下列计算正确的是()A.=B=C.=D-=【答案】B【解析】【分析】 根据二次根式的加减乘除运算法则逐一计算可得.【详解】A、-B 、,此选项正确; C、=(D 、= 故选B【点睛】本题主要考查二次根式的混合运算,解题的关键是掌握二次根式混合运算顺序和运算法则.14.2a =-,那么( )A .2x <B .2x ≤C .2x >D .2x ≥【答案】B【解析】(0)0(0)(0)a a a a a a ><⎧⎪===⎨⎪-⎩,由此可知2-a≥0,解得a≤2.故选B点睛:此题主要考查了二次根式的性质,解题关键是明确被开方数的符号,然后根据性质(0)0(0)(0)a a a a a a ><⎧⎪===⎨⎪-⎩可求解.15.下列二次根式是最简二次根式的是( )ABCD【答案】D【解析】【分析】检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【详解】A 、被开方数含分母,故A 不符合题意;B 、被开方数含开的尽的因数,故B 不符合题意;C 、被开方数是小数,故C 不符合题意;D 、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故D 符合题意. 故选:D .【点睛】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.16.实数,a b 在数轴上对应的点位置如图所示,则化简22||a a b b +++的结果是( )A .2a -B .2b -C .2a b +D .2a b -【答案】A【解析】【分析】 2,a a = 再根据去绝对值的法则去掉绝对值,合并同类项即可.【详解】解:0,,a b a b Q <<> 0,a b ∴+<22||a a b b a a b b ∴++=+++()a a b b =--++a ab b =---+2.a =-故选A .【点睛】 本题考查的是二次根式与绝对值的化简运算,掌握化简的法则是解题关键.17.下列运算正确的是( )A 532=B 822=C 123= D 2=-【答案】B【解析】【分析】 根据二次根式的性质,结合算术平方根的概念对每个选项进行分析,然后做出选择.【详解】A .≠A 错误;B .=,故B 正确;C .=C 错误;D .2=,故D 错误.故选:B .【点睛】本题主要考查了二次根式的性质和二次根式的化简,熟练掌握运算和性质是解题的关键.18.若a b > )A .-B .-C .D .【答案】D【解析】【分析】首先根据二次根式有意义的条件求得a 、b 的取值范围,然后再利用二次根式的性质进行化简即可; 【详解】∴-a 3b≥0∵a >b ,∴a >0,b <0=,故选:D .【点睛】此题考查二次根式的性质及化简,解题的关键是根据二次根式有意义的条件判断字母的取值范围.19.下列各式中,属于同类二次根式的是( )A B.C.3D.【答案】C【解析】【分析】化简各选项后根据同类二次根式的定义判断.【详解】A的被开方数不同,所以它们不是同类二次根式;故本选项错误;B、C、3的被开方数相同,所以它们是同类二次根式;故本选项正确;D故选:C.【点睛】本题考查了同类二次根式的定义:化成最简二次根式后,被开方数相同,这样的二次根式叫做同类二次根式.20.有意义,那么直角坐标系中 P(m,n)的位置在()A.第一象限B.第二象限C.第三象限D.第四象限【答案】C【解析】【分析】先根据二次根式与分式的性质求出m,n的取值,即可判断P点所在的象限.【详解】依题意的-m≥0,mn>0,解得m<0,n<0,故P(m,n)的位置在第三象限,故选C.【点睛】此题主要考查坐标所在象限,解题的关键是熟知二次根式与分式的性质.。
二次根式经典难题(含答案)
![二次根式经典难题(含答案)](https://img.taocdn.com/s3/m/3713bb3d53ea551810a6f524ccbff121dd36c510.png)
二次根式经典难题(含答案)1.当x满足x+2+1-2x有意义时。
2.若-m+1/(m+1)有意义,则m的取值范围是什么。
3.当x满足1-x为二次根式时。
4.在实数范围内分解因式:x^4-9=(x^2+3)(x^2-3),x^2-22x+2=(x-11+3√3)(x-11-3√3)。
5.若4x^2=2x,则x的取值范围是0和1/2.6.已知(x-2)^2=2-x,则x的取值范围是{x|x≤2+√2或x≥2-√2}。
7.化简:x^2-2x+1(x+1)的结果是(x-1)^2.8.当1≤x≤5时,(x-1)^2+x-5=x^2-2x+5.9.把a-1/a的根号外的因式移到根号内等于|a-1|。
10.使等式(x+1)(x-1)=x-1/x+1成立的条件是x不等于1.11.若a-b+1与a+2b+4互为相反数,则(a-b)^2005=1.12.在式子x^2(x,2,y+1)(y=-2),-2x(x,3,3),x^2+1,x+y中,二次根式有2个。
14.下列各式一定是二次根式的是a2+1.15.若2a=3,则(2-a)^2-(a-3)^2等于5-2a。
16.若A=(a^2+4)^4,则A=(a^2+2)^2.18.能使等式x/(x-2)=x-2成立的x的取值范围是{x|x≠2且x≥2}。
19.计算:(2a-1)^2+(1-2a)^2的值是4a^2-4a+2.20.下面的推导中开始出错的步骤是(2)。
21.当a≤0,b≤0时,ab^3=-a^2b。
23.去掉下列各根式内的分母:(1) 2y/3x(x)。
(2) (x-1)/(x^5(x+1))(x-1)。
24.已知x^2-3x+1=0,求x^2+1/x^2-2的值为-1/3.25.已知a,b为实数,且1+a-(b-1)/(1-b)=0,求a^2005-b^2006的值为a^2005-b^2005.2.若 $2m+n-2$ 和 $33m-2n+2$ 都是最简二次根式,则$m=11,n=24$。
初中数学二次根式难题汇编附答案解析
![初中数学二次根式难题汇编附答案解析](https://img.taocdn.com/s3/m/67d09d04cf84b9d529ea7a12.png)
B. 8 2 2 ,故 B 错误;
C. (3)2 3 ,故 C 错误;
D. 27 3 27 3 9 3 ,正确.
故选 D.
15.计算 2 12 3 3 2 的结果是( ) 4
A. 2 2
B. 3 3
C. 2 3
【答案】A
【解析】
【分析】
根据二次根式的运算法则,按照运算顺序进行计算即可.
D.6 到 7 之间பைடு நூலகம்
【答案】A
【解析】
【分析】
先根据二次根式乘法法则进行计算,得到一个二次根式后再利用夹逼法对二次根式进行估
算即可得解.
【详解】
解: 2 6 2 12 2
∵ 9 12 16 ∴ 9 12 16 ∴ 3 12 4
∴估计 2 6 2 值应在 3 到 4 之间. 2
故选:A 【点睛】 本题考查了二次根式的乘法、无理数的估算,熟练掌握相关知识点是解决问题的关键.
b a 1 b a2 1 b a .
ba
ba
故选 C.
【点睛】
本题考查了二次根式的性质与化简: a2 |a|.也考查了二次根式的成立的条件以及二
次根式的乘法.
4.下列各式计算正确的是( )
A. 102 82 102 82 10 8 2
B.
49 4 9 23 6
C. 1 1 1 1 1 1 5 49 4 9 236
故选:A. 【点睛】 本题考查二次根式的性质和应用,一元一次不等式的解法,解题的关键是分区间讨论,熟 练运用二次根式的运算法则.
14.下列计算或化简正确的是( )
A. 2 3 4 2 6 5
B. 8 4 2
C. (3)2 3
D. 27 3 3
新初中数学二次根式难题汇编含解析(1)
![新初中数学二次根式难题汇编含解析(1)](https://img.taocdn.com/s3/m/ce7294a4551810a6f52486ce.png)
新初中数学二次根式难题汇编含解析(1)一、选择题1.式子2a +有意义,则实数a 的取值范围是( ) A .a≥-1B .a≤1且a≠-2C .a≥1且a≠2D .a>2【答案】B【解析】【分析】直接利用二次根式有意义的条件分析得出答案.【详解】式子2a +有意义,则1-a≥0且a+2≠0, 解得:a≤1且a≠-2.故选:B .【点睛】 此题主要考查了二次根式有意义的条件,正确把握二次根式的定义是解题关键.2.下列各式中计算正确的是()A +=B .2+=C =D .22= 【答案】C【解析】【分析】结合选项,分别进行二次根式的乘法运算、加法运算、二次根式的化简、二次根式的除法运算,选出正确答案.【详解】解:不是同类二次根式,不能合并,故本选项错误;B.2=D.2=1,原式计算错误,故本选项错误. 故选:C.【点睛】本题考查二次根式的加减法和乘除法,在进行此类运算时,掌握运算法则是解题的关键.3.下列式子为最简二次根式的是( )A .B .C .D .【答案】A【解析】【分析】【详解】解:选项A ,被开方数不含分母;被开方数不含能开得尽方的因数或因式, A 符合题意; 选项B ,被开方数含能开得尽方的因数或因式,B 不符合题意;选项C ,被开方数含能开得尽方的因数或因式, C 不符合题意;选项D ,被开方数含分母, D 不符合题意,故选A .4.1x -x 的取值范围是( )A .x <1B .x ≥1C .x ≤﹣1D .x <﹣1【答案】B【解析】【分析】根据二次根式有意义的条件判断即可.【详解】解:由题意得,x ﹣1≥0,解得,x ≥1,故选:B .【点睛】本题主要考查二次根式有意义的条件,熟悉掌握是关键.5.67x -x 的取值范围是( ) A .x≥76 B .x >76 C .x≤76 D . x <76【答案】B【解析】【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【详解】∵67x -是被开方数,∴670x -≥,又∵分母不能为零,∴670x ->,解得,x >76; 故答案为:B.本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数,解题的关键是熟练掌握其意义的条件.6.把-( )AB .C .D 【答案】A【解析】【分析】由二次根式-a 是负数,根据平方根的定义将a 移到根号内是2a ,再化简根号内的因式即可.【详解】 ∵10a-≥,且0a ≠, ∴a<0,∴-,∴-= 故选:A.【点睛】此题考查平方根的定义,二次根式的化简,正确理解二次根式的被开方数大于等于0得到a 的取值范围是解题的关键.7.若代数式y =有意义,则实数x 的取值范围是( ) A .0x ≥B .0x ≥且1x ≠C .0x >D .0x >且1x ≠【答案】B【解析】【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x 的范围.【详解】 根据题意得:010x x ≥⎧⎨-≠⎩, 解得:x≥0且x≠1.【点睛】此题考查分式有意义的条件,二次根式有意义的条件,解题关键在于掌握分母不为0;二次根式的被开方数是非负数.8.下列运算正确的是()A B.1)2=3-1 C D5-3【答案】C【解析】【分析】根据二次根式的加减及乘除的法则分别计算各选项,然后与所给结果进行比较,从而可得出结果.【详解】解:≠,故本选项错误;1)2=3-,故本选项正确;= =4,故本选项错误.故选C.【点睛】本题考查了二次根式的混合运算,熟练化简二次根式后,在加减的过程中,有同类二次根式的要合并;相乘的时候,被开方数简单的直接让被开方数相乘,再化简;较大的也可先化简,再相乘,灵活对待.9.在实数范围内有意义,则a的取值范围是()A.a≤﹣2 B.a≥﹣2 C.a<﹣2 D.a>﹣2【答案】B【解析】【分析】在实数范围内有意义,则其被开方数大于等于0;易得a+2≥0,解不等式a+2≥0,即得答案.【详解】在实数范围内有意义,∴a+2≥0,解得a≥-2.故选B.【点睛】本题是一道关于二次根式定义的题目,应熟练掌握二次根式有意义的条件;10.如果一个三角形的三边长分别为12、k 、72|2k ﹣5|的结果是( )A .﹣k ﹣1B .k +1C .3k ﹣11D .11﹣3k【答案】D【解析】【分析】 求出k 的范围,化简二次根式得出|k-6|-|2k-5|,根据绝对值性质得出6-k-(2k-5),求出即可.【详解】 ∵一个三角形的三边长分别为12、k 、72, ∴72-12<k <12+72, ∴3<k <4,,=-|2k-5|,=6-k-(2k-5),=-3k+11,=11-3k ,故选D .【点睛】本题考查了绝对值,二次根式的性质,三角形的三边关系定理的应用,解此题的关键是去绝对值符号,题目比较典型,但是一道比较容易出错的题目.11.估计值应在( ) A .3到4之间B .4到5之间C .5到6之间D .6到7之间 【答案】A【解析】【分析】先根据二次根式乘法法则进行计算,得到一个二次根式后再利用夹逼法对二次根式进行估算即可得解.【详解】解:=∵91216<<<<∴34<<∴估计值应在3到4之间. 故选:A【点睛】本题考查了二次根式的乘法、无理数的估算,熟练掌握相关知识点是解决问题的关键.12.a =-成立,那么a 的取值范围是( )A .0a ≤B .0a ≥C .0a <D .0a >【答案】A【解析】【分析】由根号可知等号左边的式子为正,所以右边的式子也为正,所以可得答案.【详解】得-a≥0,所以a≤0,所以答案选择A 项.【点睛】本题考查了求解数的取值范围,等号两边的值相等是解答本题的关键.13.下列计算错误的是( )A .BCD 【答案】A【解析】【分析】【详解】选项A ,不是同类二次根式,不能够合并;选项B ,原式=2÷=选项C ,原式=选项D ,原式==. 故选A.14.有意义时,a 的取值范围是( ) A .a ≥2B .a >2C .a ≠2D .a ≠-2【答案】B【解析】解:根据二次根式的意义,被开方数a ﹣2≥0,解得:a ≥2,根据分式有意义的条件:a ﹣2≠0,解得:a≠2,∴a>2.故选B.15.计算÷的结果是()A B C.23D.34【答案】A【解析】【分析】根据二次根式的运算法则,按照运算顺序进行计算即可.【详解】解:÷1(24=⨯÷=16=⨯=.故选:A.【点睛】此题主要考查二次根式的运算,根据运算顺序准确求解是解题的关键.16.下列计算正确的是()A.=B=C.=D-=【答案】B【解析】【分析】根据二次根式的加减乘除运算法则逐一计算可得.【详解】A、-B、,此选项正确;C 、() 75153-÷=(53-15)÷3=5-5,此选项错误;D 、 1818339-=2222-=-,此选项错误; 故选B【点睛】本题主要考查二次根式的混合运算,解题的关键是掌握二次根式混合运算顺序和运算法则.17.已知1212a b ==+-,,则,a b 的关系是( ) A .a b =B .1ab =-C .1a b =D .=-a b 【答案】D【解析】【分析】根据a 和b 的值去计算各式是否正确即可.【详解】A. 1122212121212a b -+-+-=--==---,错误; B. 12112ab +=≠--,错误; C. 12112ab +=≠-,错误; D. 112221201212a b +-+-+=++==--,正确; 故答案为:D .【点睛】本题考查了实数的运算问题,掌握实数运算法则是解题的关键.18.如图,矩形内三个相邻的正方形面积分别为4,3和2,则图中阴影部分的面积为( )A .2B 6C .236223D .23225【答案】D【解析】【分析】将面积为2和3的正方形向下平移至下方边长和长方形的长边重合,可得两个阴影部分的图形的长和宽,计算可得答案.【详解】将面积为2和3的正方形向下平移至下方边长和长方形的长边重合,如下图所示:则阴影面积=()()222323⨯-+⨯-=222233-+-=23225+-故选:D【点睛】本题考查算术平方根,解答本题的关键是明确题意,求出大小正方形的边长,利用数形结合的思想解答.19.若x 2+在实数范围内有意义,则x 的取值范围在数轴上表示正确的是( ) A .B .C .D . 【答案】D【解析】【分析】根据二次根式有意义的条件:被开方数为非负数可得x+2≥0,再解不等式即可.【详解】2x +∴被开方数x+2为非负数,∴x+2≥0,解得:x≥-2.故答案选D.【点睛】本题考查了二次根式有意义的条件,解题的关键是熟练的掌握二次根式有意义的条件.20.已知实数a 、b 在数轴上的位置如图所示,化简|a +b 2()b a - )A .2a -B .2aC .2bD .2b - 【答案】A【解析】【分析】 2a ,再结合绝对值的性质去绝对值符号,再合并同类项即可.【详解】解:由数轴知b <0<a ,且|a|<|b|,则a+b <0,b-a <0,∴原式=-(a+b )+(b-a )=-a-b+b-a=-2a ,故选A .【点睛】 2a .。
二次根式计算专题-30题(教师版含答案解析)
![二次根式计算专题-30题(教师版含答案解析)](https://img.taocdn.com/s3/m/a9c81966312b3169a451a452.png)
完美WORD格式二次根式计算专题1.计算:⑴ 3 6 4 2 3 6 4 2 ⑵ 2 0( 3) ( 3) 27 3 2 【答案】(1)22; (2) 6 4 3【解析】试题分析:(1) 根据平方差公式,把括号展开进行计算即可求出答案.(2) 分别根据平方、非零数的零次幂、二次根式、绝对值的意义进行计算即可得出答案. 试题解析:(1) 3 6 4 2 3 6 4 22 2(3 6) (4 2)=54-32=22.(2) 2 0( 3) ( 3) 27 3 23 1 3 3 2 36 4 3考点: 实数的混合运算.2.计算(1)﹣×(2)(6 ﹣2x )÷ 3 .【答案】(1)1;(2)【解析】1 3试题分析:先把二次根式化简后,再进行加减乘除运算,即可得出答案. 试题解析:(1)20 5 15 3122 5 5 35 32 33 21;(2)(6 2 1 ) 3xx x 4x6 x 2x x( ) 32 xx(3 x 2 x) 3 xx 3 x专业知识分享13.考点: 二次根式的混合运算.3.计算:13 12 2 48 2 33.【答案】【解析】14 3.试题分析:先将二次根式化成最简二次根式, 再算括号里面的, 最后算除法.试题解析:13 12 2 48 2 332=(6 3 3 4 3) 2 332833 2 3143.考点:二次根式运算.64.计算: 3 6 2 32【答案】 2 2 .【解析】试题分析:先算乘除、去绝对值符号, 再算加减.试题解析:原式=3 2 3 3 2= 2 2考点:二次根式运算.5.计算: 2 18 3( 3 2)【答案】 3 3.【解析】试题分析:先将二次根式化成最简二次根式, 再化简.试题解析: 2 18 3( 3 2)= 2 3 2 3 3 6 3 3.考点:二次根式化简.6.计算:1 4 323 .22 2【答案】.2【解析】试题分析:根据二次根式的运算法则计算即可.试题解析:1 4 32 2 3234 2 2 22 2 2 2.考点:二次根式的计算.试卷第 2 页,总10 页完美WORD格式7.计算:1262(31)(31).【答案】32.【解析】试题分析:先算乘除,再算加减,有括号的先算括号里面的,特别的能利用公式的应用公式简化计算过程.试题解析:1262(31)(31)=23331=32.考点:二次根式的化简.8.计算:12236322【答案】0.【解析】试题分析:根据二次根式运算法则计算即可.试题解析:36331 12226660.2222考点:二次根式计算.9.计算:0+1123.【答案】13.【解析】试题分析:任何非零数的零次方都为1,负数的绝对值等于它的相反数,再对二次根式进行化简即可.试题解析:0+1123123313.考点:二次根式的化简.10.计算:83130.53433【答案】3222【解析】.试题分析:先化成最简二次根式,再进行运算.试题解析:原式=2333223=232222.考点:二次根式的化简.11.计算:(1)2712451 3(2)020141182014223专业知识分享【答案】(1)1 15; (2) 3 2 .【解析】试题分析:(1)根据二次根式的运算法则计算即可;(2)针对有理数的乘方,零指数幂,二次根式化简,. 绝对值 4 个考点分别进行计算,然后根据实数的运算法则求得计算结果.试题解析:( 1 )1 1 127 12 45 3 3 2 3 3 5 3 3 3 5 3 1 153 3 3.(2)020141 18 20142 23 1 3 2 1 2 2 3 3 2 .考点:1. 实数的运算;2. 有理数的乘方;3. 零指数幂;4. 二次根式化简;5. 绝对值.12.计算:( 3 2)( 3 2) (1 03) 2 1 2【答案】 2 .【解析】试题分析:本题主要考查了二次根式的混合运算.熟练化简二次根式后,在加减的过程中,有同类二次根式的要合并;相乘的时候,被开方数简单的直接让被开方数相乘,再化简;较大的也可先化简,再相乘,灵活对待.本题中先根据平方差公式计算乘法以及零指数幂的意义,去掉括号后,计算加减法.试题解析:解:原式= 3 2 1 2= 2考点:二次根式的混合运算.13.计算:327 ( 2013) | 2 3 |3.【答案】4 3 1. 【解析】试题分析:解:327 ( 2013) | 2 3 |33 3 3 1 2 34 3 1.考点:二次根式化简.214.计算(3 24 8) 123【答案】2 6- + .2 3试卷第 4 页,总10 页完美WORD格式【解析】试题分析:先化简二次根式,再合并同类二次根式,最后算除法即可求出答案.试题解析:2(3 - 24 + 8) ? 12 ( 6 - 2 6 +22) ? 2 3 (2 2 - 6) ? 2 332 6= - +2 3考点: 二次根式的混合运算.15.计算:12 1 2 1- -2 3【答案】4 3 2- .3 2【解析】试题分析:把二次根式化简,再合并同类二次根式即可求出答案.试题解析:1 12 234 3 2 12 - - 2 = 2 3 - - = -2 3 2 3 3 2考点: 二次根式的运算.50 32 16.化简:(1)8(2)( 6 2 15) 3 6 1 2【答案】(1)【解析】92;(2) 6 5 .试题分析:(1)先去分母,再把各二次根式化为最简二次根式,进行计算;(2)直接利用分配律去括号,再根据二次根式乘法法则计算即可.试题解析:(1)原式= 5 2 4 2 922 2;(2)原式= 6 3 2 15 3 3 2 3 2 6 5 3 2 6 5 .考点:二次根式的混合运算;17.计算(1)27 3 3 22 12 3(2)【答案】(1)3 3 ; (2)3.【解析】试题分析:(1)根据运算顺序计算即可;专业知识分享(2)将括号内化为最简二次根式后合并再平方运算即可.试题解析:(1)27 3 3 2 3 3 3 2 3 3 3 .(2)2 2 212 3 2 3 3 3 3 .考点:二次根式化简.18.计算:18(3 2 1)(1 3 2)2 4【答案】17. 【解析】试题分析:先化简12和84,运用平方差公式计算(3 2 1)(1 3 2) ,再进行计算求解 .试题解析:原式==172 218 12 2考点: 实数的运算.119.计算:( 3) 27 |1 2 |32【答案】 2 3 .【解析】试题分析:本题涉及零指数幂、二次根式的化简、分母有理化、绝对值化简 4 个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.试题解析:原式=1 3 3 2 1 3 2 2 3考点:1.实数的运算;2.零指数幂;3.分母有理化.20.计算:1 2 0②16 3 2 48 123①8 2③2 a 1 2a3a 32 2 3【答案】① 2 1;②【解析】143;③a3.试题分析:①针对算术平方根,绝对值,零指数 3 个考点分别进行计算,然后根据实数的运算法则求得计算结果;②根据二次根式运算法则计算即可;③根据二次根式运算法则计算即可.试题解析:①18 2 =2 2 2 1 2 1.2试卷第 6 页,总10 页完美WORD格式②1 2 28 14 6 3 2 48 12 6 3 3 4 3 2 3 3 2 33 3 3 3.③ 2 a 1 2a 1 2 2 2a 1 2 1 a3a 3 = 3a = 4a 2a2 23 6 a 3 6 6 3. 考点:1. 二次根式计算; 2. 绝对值; 3.0 指数幂.21.计算:(1)2012 1 1 3 0( 1) 5 ( ) 27 ( 2 1)2(2)1 13 12 3 48 273 2【答案】(1)0;(2)43.【解析】试题分析:(1)原式=1 5 2 3 1 0;(2)原式=6 3 3 2 3 3 3 4 3 .考点:1.实数的运算;2.二次根式的加减法.22.计算与化简(1)327 33(2) 2(3 5) (4 7)(4 7)【答案】(1)2 3 1;(2)6 5 5 .【解析】试题分析:(1)将前两项化为最简二次根式,第三项根据0 指数幂定义计算,再合并同类二次根式即可;(2)应用完全平方公式和平方差公式展开后合并同类二次根式即可.试题解析:(1)3 027 3 3 3- 3 1 2 3 1.3(2)23 54 7 4 7 9 65 5 167 6 5 5 .考点:1. 二次根式化简; 2.0 指数幂; 3. 完全平方公式和平方差公式. 23.(1) 2 8 2 18(2)1212713(3)212 33(1 03)(4)(2 3 3 2 )(2 3 3 2)【答案】(1) 3 2 ;(2) 16 39【解析】;(3)6;(4) 6试题分析:本题主要考查根式的根式的混合运算和0 次幂运算. 根据运算法则先算乘除专业知识分享法,是分式应该先将分式转化为整式,再按运算法则计算。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次根式难题及答案【篇一:二次根式提高练习习题(含答案)】判断题:(每小题1分,共5分)21.(?2)ab=-2ab.???????()2.-2的倒数是3+2.()23.(x?1)=(x?1)2.?()4.ab、5.8x,13a3b、?2a是同类二次根式.?() xb1,9?x2都不是最简二次根式.() 31有意义. x?3(二)填空题:(每小题2分,共20分)6.当x__________时,式子7.化简-15828.a-a2?1的有理化因式是____________. 9.当1<x<4时,|x-4|+x2?2x?1=________________.ab?c2d2ab?cd2210.方程2(x-1)=x+1的解是____________. 11.已知a、b、c为正数,d为负数,化简12.比较大小:-=______.127_________-14.y?3=0,则(x-1)2+(y+3)2=____________.15.x,y分别为8-的整数部分和小数部分,则2xy-y2=____________.(三)选择题:(每小题3分,共15分)16.已知x3?3x2=-xx?3,则??????()(a)x≤0(b)x≤-3(c)x≥-3(d)-3≤x≤0222217.若x<y<0,则x?2xy?y+x?2xy?y=?????????()(a)2x(b)2y(c)-2x(d)-2y 18.若0<x<1,则(x?)?4-(x?(a)1x212)?4等于?????????() x22(b)-(c)-2x(d)2x xx?a3(a<0)得????????????????????????() 19.化简a(a)?a(b)-a(c)-?a(d)a20.当a<0,b<0时,-a+2ab-b可变形为???????????????()(a)(a?b)2 (b)-(a?b)2 (c)(?a??b)2 (d)(?a??b)2(四)计算题:(每小题6分,共24分)21.(5??2)(5?3?2);22.54?-42-;?73?23.(a2abn-mmmn+n24.(a+a?babb?ababab?bab?aa?(五)求值:(每小题7分,共14分)x3?xy23?2?25.已知x=,y=,求4的值. 3223xy?2xy?xy3?2?226.当x=1-2时,求xx?a?xx?a2222+2x?x2?a2x?xx?a222+1x?a22的值.六、解答题:(每小题8分,共16分)27.计算(2+1)(1111+++?+).1?22??4?28.若x,y为实数,且y=?4x+4x?1+(一)判断题:(每小题1分,共5分)1xyxy.求?2?-?2?的值. 2yxyx2、【提示】1?23?4?223、(x?1)=|x-1|,(x≥1).两式相等,必须x≥1.但等式左边x 可取任何数.【答(x?1)2=x-113a3b、?2a化成最简二次根式后再判断.【答案】√. xb6、【提示】x何时有意义?x≥0.分式何时有意义?分母不等于零.【答案】x≥0且x≠9.7、【答案】-2aa.【点评】注意除法法则和积的算术平方根性质的运用.8、【提示】(a-a2?1)(________)=a2-(a2?1)2.a+a2?1.【答案】a+a2?1. 9、【提示】x2-2x+1=()2,x-1.当1<x<4时,x-4,x-1是正数还是负数?x-4是负数,x-1是正数.【答案】3. 10、【提示】把方程整理成ax=b的形式后,a、b分别是多少?2?1,2?1.【答案】x=3+22. 11、【提示】c2d2=|cd|=-cd.【答案】ab+cd.【点评】∵ ab=(ab)2(ab>0),∴ ab-c2d2=(ab?cd)(ab?cd). 12、【提示】27=28,43=48.【答案】<.【点评】先比较28,48的大小,再比较-111,的大小,最后比较-与2848281的大小. 48【点评】注意在化简过程中运用幂的运算法则和平方差公式. 14、【答案】40.【点评】x?1≥0,y?3≥0.当x?1+y?3=0时,x+1=0,y-3=0.15、【提示】∵ 3<<4,∴ _______<8-<__________.[4,5].由于8-介于4与5之间,则其整数部分x=?小数部分y=?[x=4,y=4-]【答案】5.【点评】求二次根式的整数部分和小数部分时,先要对无理数进行估算.在明确了二次根式的取值范围后,其整数部分和小数部分就不难确定了.(三)选择题:(每小题3分,共15分) 16、【答案】d.【点评】本题考查积的算术平方根性质成立的条件,(a)、(c)不正确是因为只考虑了其中一个算术平方根的意义. 17、【提示】∵ x<y<0,∴ x-y<0,x+y<0.∴x2?2xy?y2=(x?y)2=|x-y|=y-x.x2?2xy?y2=(x?y)2=|x+y|=-x-y.【答案】c.【点评】本题考查二次根式的性质a2=|a|.18、【提示】(x-12111)+4=(x+)2,(x+)2-4=(x-)2.又∵ 0<x<1, xxxx11∴ x+>0,x-<0.【答案】d.xx【点评】本题考查完全平方公式和二次根式的性质.(a)不正确是因为用性质时没有注意当0<x<1时,x-1<0. x19、【提示】?a3=?a?a2=?aa2=|a|?a=-a?a.【答案】c. 20、【提示】∵ a<0,b<0,∴-a>0,-b>0.并且-a=(?a)2,-b=(?b)2,ab=(?a)(?b).【答案】c.【点评】本题考查逆向运用公式(a)2=a(a≥0)和完全平方公式.注意(a)、(b)不正确是因为a<0,b<0时,a、b都没有意义.(四)计算题:(每小题6分,共24分)21、【提示】将?看成一个整体,先用平方差公式,再用完全平方公式.【解】原式=(5?)2-(2)2=5-2+3-2=6-2. 22、【提示】先分别分母有理化,再合并同类二次根式.【解】原式=5(4?)4(?)2(3?)--=4+---3+7=1.16?1111?79?7abnm1nm-)22 mn+mmnabmn1nnmmmm?-? mn?+22mabmabmnnnn11a2?ab?1-+=. aba2b2a2b223、【提示】先将除法转化为乘法,再用乘法分配律展开,最后合并同类二次根式.【解】原式=(a21b21=2b=【解】原式=24、【提示】本题应先将两个括号内的分式分别通分,然后分解因式并约分.a??b?abaa(a?)?b(a?b)?(a?b)(a?b)a?bab(a?)(a?b)a?ba2?aab?bab?b2?a2?b2a?bab(a?)(a?b)=a?bab(a?b)(a?)=-?.a?b?ab(a?b)【点评】本题如果先分母有理化,那么计算较烦琐.(五)求值:(每小题7分,共14分) 25、【提示】先将已知条件化简,再将分式化简最后将已知条件代入求值.【解】∵ x=3?2=(3?2)2=5+2,3?23?2y==(3?2)2=5-26.3?2∴ x+y=10,x-y=46,xy=52-(26)2=1.2x(x?y)(x?y)x?y46x3?xy26.====2243223xy(x?y)xy(x?y)1?105xy?2xy?xy【点评】本题将x、y化简后,根据解题的需要,先分别求出“x+y”、“x-y”、“xy”.从而使求值的过程更简捷.26、【提示】注意:x2+a2=(x2?a2)2,∴ x2+a2-xx2?a2=x2?a2(x2?a2-x),x2-xx2?a2=-x (x2?a2-x).【解】原式=xx?a(x?a?x)2222-2x?x2?a2x(x?a?x)22+1x?a22=x2?x2?a2(2x?x2?a2)?x(x2?a2?x)xx?a(x?a?x)xx2?a2(x2?a2?x)2222222222222=x?2xx?a?(x?a)?xx?a?x=(x2?a2)2?xx2?a2=xx2?a2(x2?a2?x)x2?a2(x2?a2?x) xx2?a2(x2?a2?x)11.当x=1-2时,原式==-1-2.【点评】本题如果将前两个“分式”分拆成两个“分x1?2122x式”之差,那么化简会更简便.即原式=-2x?x?a+22222222x?ax?a(x?a?x)x(x?a?x)11111=(=1. ?)+?)-(2xx?a2?xxx2?a2x2?a2?xx2?a2=六、解答题:(每小题8分,共16分) 27、【提示】先将每个部分分母有理化后,再计算.【解】原式=(25+1)(2?13?24??+++?+) 2?13?24?3100?99=(25+1)[(2?1)+(?2)+(4?)+?+(?)]=(25+1)(00?1)=9(25+1).【点评】本题第二个括号内有99个不同分母,不可能通分.这里采用的是先分母有理化,将分母化为整数,从而使每一项转化成两数之差,然后逐项相消.这种方法也叫做裂项相消法.1?x???1?4x?0?4]28、【提示】要使y有意义,必须满足什么条件?[? ]你能求出x,y的值吗?[?14x?1?0.??y?.?2?1?x???1?4x?0111?4【解】要使y有意义,必须[?,即?∴ x=.当x=时,y=.442?4x?1?0?x?1.?4?又∵xxyxy??2?-?2?=(yyxyxy2-xy2 )(?)xyx【篇二:二次根式及经典习题及答案】>知识点一:二次根式的概念形如()的式子叫做二次根式。
注:在二次根式中,被开放数可以是数,也可以是单项式、多项式、分式等代数式,但必须注意:因为负数没有平方根,所以如,,式。
知识点二:取值范围等是二次根式,而是,为二次根式的前提条件,等都不是二次根1. 二次根式有意义的条件:由二次根式的意义可知,当a≧0时,有意义,是二次根式,所以要使二次根式有意义,只要使被开方数大于或等于零即可。
2. 二次根式无意义的条件:因负数没有算术平方根,所以当a﹤0时,有意义。
知识点三:二次根式(即0(()的非负性()是一个非负数,没)表示a的算术平方根,也就是说,)。
(注:因为二次根式)表示a的算术平方根,而正数的算术平方根是正数,0的算术平方根是0,所以非负数()的算术平方根是非负数,即0(),这个性质也就是非负数的算术平方根的性质,和绝对值、偶次方类似。
这个性质在解答题目时应用较多,如若,则a=0,b=0;若知识点四:二次根式()的性质,则a=0,b=0;若,则a=0,b=0。
()文字语言叙述为:一个非负数的算术平方根的平方等于这个非负数。
注:二次根式的性质公式上面的公式也可以反过来应用:若(,则)是逆用平方根的定义得出的结论。