固体物理题库-第一章-晶体的结构
固体物理第一章习题
第一章 晶体的结构习题一、填空题1.固体一般分为_____ _____ _____2.晶体的三大特征是_____ _____ _____3._____是晶格中最小的重复单元,_____既反映晶格的周期性又反映晶格的对称性。
4._____和_____均是表示晶体原子排列紧密程度。
5.独立的对称操作有______二、证明题1.试证明体心立方格子和面心立方格子互为正倒格子。
2.证明倒格子矢量112233G h b h b h b =++ 垂直于密勒指数为123()h h h 的晶面系。
3.对于简方晶格,证明密勒单立指数为(,,)h k l 的晶面系,面间距d 满足:22222()d a h k l =++,其中a 为立方边长;并说明面指数简单的晶面,其面密度较大,容易解理。
4.证明不存在5度旋转对称轴。
5.证明正格矢和倒格矢之间的关系式为:()为整数m m R G π2=⋅三、计算题1.已知某种晶体固体物理学原胞基矢为(1)求原胞体积。
(2)求倒格子基矢。
(3)求第一布里渊区体积。
2.一晶体原胞基矢大小m a 10104-⨯=,m b 10106-⨯=,m c 10108-⨯=,基矢间夹角90=α, 90=β, 120=γ。
试求:(1)倒格子基矢的大小; (2)正、倒格子原胞的体积; (3) 正格子(210)晶面族的面间距。
j 2a 3i 2a a 1+=j 2a 3i 2a -a 2+=k c a 3=3.如图1.所示,试求: (1) 晶列ED ,FD 和OF 的晶列指数;(2) 晶面AGK ,FGIH 和MNLK 的密勒指数;(3) 画出晶面(120),(131)。
a 2xy zA B D C G F E OIH y x Aa 2K O GLNM z图1.4.矢量a ,b ,c 构成简单正交系。
求:晶面族)(hkl 的面间距。
5.设有一简单格子,它的基矢分别为i a 31=,j a 32=,)(5.13k j i a ++=。
固体物理题库
固体物理题库一、填空题第一章1.一些晶体的物理性质是各向异性的:原因是晶体中的原子排列(在不同方向上具有不同的周期性)2.按结构划分,晶体可分为大晶系,共布喇菲格子?3、面心立方原胞的体积为;第一布里渊区的体积为。
4.简单立方原始单元的体积为;第一布里渊区的体积为。
5.BCC原细胞的体积为;第一个布里渊区的体积是。
6、对于立方晶系,有、和三种布喇菲格子。
7.钻石晶体是一种晶格,由两个子晶格沿空间对角线位移1/4的长度组成。
晶胞中有一个碳原子。
8.原胞是的晶格重复单元。
对于布喇菲格子,原胞只包含个原子。
9.具有规则对称晶面的固体,以及具有长程有序特性的固体称为;在没有结晶(即有序化)的缩合过程中,原子的排列是长程无序固体。
10.由完全相同的一种原子构成的格子,格子中只有一个原子,称为布喇菲格子。
满足关系的b1,b2,b3为基矢,由gh=h1b1+h2b2+h3b3构成的格子,称为。
由若干个布喇菲格子相套而成的格子,叫做,其原胞中有以上的原子。
11.CSCL晶体是一种晶格,由两个子晶格组成,对角线位移为1/2的长度套构而成。
12.对于晶格常数为a的SC晶体,与正晶格向量r=AI+2aj+2ak正交的逆晶格平面族面指数为,其面间距为。
122,2.3a13。
晶体有一定的熔点,晶体的熔化热实际上是能量(破坏晶体结构或将晶体从结晶状态转变为非晶状态)14、一个面心立方晶格单元(晶胞)包含有个面心原子和个顶点原子,其原胞拥有个原子(3,1,1)15.晶胞是一种能反射晶体的结构单元。
在固体物理学中,理解单胞的结构(晶格的对称性和周期性)很重要16、根据晶胞对称性,晶体分为晶系;根据晶格特点,晶格分为bravais格子(7种,14种)18.格分为简单格和复合格。
NaCI是复合晶格,CSCI是复合晶格(面心立方,简立方)19.晶格常数是晶胞的边长,可通过实验(X射线衍射)测量20、常用的x射线衍射方法主要有、和转动单晶法(劳厄法、粉末法)21.单晶具有规则的几何形状,这是(晶体中原子排列具有周期性)22.根据原子排列特征,固体分为:、和准晶(晶体和非晶)23、晶体分为单晶和多晶,单晶是长程有序,具有规则的和物理性质(几何外形、各向异性)24.金属晶体是典型的多晶,多晶的单晶晶粒尺寸为m(10-6~10-5)25、晶体结构的基本特征是原子排列的周期性,原胞是能够反映的最小单元,一个原胞拥有一个原子(晶格周期性)26.单中心立方晶格单元(单元)包含一个顶点原子和一个单中心原子,其原始单元包含原子(1,1,1)28.晶格是晶体中原子排列的结构特征,称为布拉瓦晶格。
《固体物理学》房晓勇主编教材-习题解答参考01第一章 晶体的结构
(h
2 1
2 + k + l12 ) i( h22 + k22 + l2 ) 2 1 12
h1h2 + k1k2 + l1l2
12
பைடு நூலகம்
解:三个晶轴相互垂直且等于晶格常数 a,则晶胞基矢为
a1 = ai, a2 = a j, a3 = ak ,
其倒格子基矢为
b1 =
2π 2π 2π i, b2 = i, b3 = i a a a 2π ( hi + k j + lk ) a
a 2 +j a 0 − 2
a 2
a 2 +k a 0 2
0 a 2
=−
b 1=
a2 a2 a2 i+ j+ k 4 4 4
2π 2π a 2 ⎛ a 2 a2 a2 a 2 × a3 = 3 − i + j + ⎜ a Ω 2 ⎝ 4 4 4 4 2π 2π b 2= i − j + k ,b 3= i+ j−k a a
i = −( h + k )
得证 (2)由上可知,h,k,i 不是独立的, ( 001) , 133 , 110 , 323 , (100 ) , ( 010 ) , 213 . 中各 i 等于
( )( )( )
( )
i1 = −(h1 + k1 ) = −(0 + 0) = 0, i2 = 2 , i3 = 0 , i4 = 1 , i5 = 1 i6 = 1 , i7 = 3 即得
a1 ⋅ n = h1d , a2 ⋅ nh2 d , a3 ⋅ n = h3d ,
假定 h1 , h2 , h3 不是互质的数,则有公约数 p,且 p>1;设 k1 , k2 , k3 为互质的三个数,满足
固体物理习题1
固体物理习题1第⼀章晶体结构和倒格⼦1. 画出下列晶体的惯⽤元胞和布拉菲格⼦,写出它们的初基元胞基⽮表达式,指明各晶体的结构及两种元胞中的原⼦个数和配位数。
(1) 氯化钾(2)氯化钛(3)硅(4)砷化镓(5)碳化硅(6)钽酸锂(7)铍(8)钼(9)铂2. 对于六⾓密积结构,初基元胞基⽮为→1a =→→+j i a 3(2 →→→+-=j i a a 3(22 求其倒格⼦基⽮,并判断倒格⼦也是六⾓的。
3.⽤倒格⽮的性质证明,⽴⽅晶格的[hkl]晶向与晶⾯(hkl )垂直。
4. 若轴⽮→→→c b a 、、构成简单正交系,证明。
晶⾯族(h 、k 、l )的⾯间距为 2222)()()(1c l b k a h hkl d ++= 5.⽤X 光衍射对Al 作结构分析时,测得从(111)⾯反射的波长为1.54?反射⾓为θ=19.20 求⾯间距d 111。
6.试说明:1〕劳厄⽅程与布拉格公式是⼀致的;2〕劳厄⽅程亦是布⾥渊区界⾯⽅程;7.在图1-49(b )中,写出反射球⾯P 、Q 两点的倒格⽮表达式以及所对应的晶⾯指数和衍射⾯指数。
8.求⾦刚⽯的⼏何结构因⼦,并讨论衍射⾯指数与衍射强度的关系。
9.说明⼏何结构因⼦S h 和坐标原点选取有关,但衍射谱线强度和坐标选择⽆关。
10. 能量为150eV 的电⼦束射到镍粉末上,镍是⾯⼼⽴⽅晶格,晶格常数为3.25×10-10m,求最⼩的布拉格衍射⾓。
附:1eV=1.602×10-19J, h=6.262×10-34J ·s, c=2.9979×108m/s第⼆章晶体结合1.已知某晶体两相邻原⼦间的互作⽤能可表⽰成nm r b r a r U +-=)( (1) 求出晶体平衡时两原⼦间的距离;(2) 平衡时的⼆原⼦间的互作⽤能;(3) 若取m=2,n=10,两原⼦间的平衡距离为3?,仅考虑⼆原⼦间互作⽤则离解能为4ev ,计算a 及b 的值;(4)若把互作⽤势中排斥项b/r n 改⽤玻恩-梅叶表达式λexp(-r/p),并认为在平衡时对互作⽤势能具有相同的贡献,求n 和p 间的关系。
固体物理考题第一章晶体的结构
第一章晶体的结构简单回答下面的问题:1 a原胞与单胞有什么不同?何谓布拉菲格子?何谓倒格子?以一结点为顶点,以三个不同方向的周期为边长的平行六面体可作为晶格的一个重复单元.体积最小的重复单元,称为原胞或固体物理学原胞.它能反映晶格的周期性.原胞的选取不是惟一的,但它们的体积都相等.为了同时反映晶体对称的特征,结晶学上所取的重复单元,体积不一定最小,结点不仅在顶角上,还可以是体心或面心.这种重复单元称作晶胞、惯用晶胞或布喇菲原胞.晶体内部结构可以看成是由一些相同的点子在空间作规则的周期性无限分布,这些点子的总体称为布喇菲点阵。
布拉菲格子:由基元代表点(格点)在空间中的周期性排列所形成的晶格。
倒格子*(Reciprocal Lattice,Reciprocal有相互转换的含意)已知有正格子基矢,定义倒格矢基矢为:;; .其中为正格子原胞体积。
由平移操作所产生的格点叫倒格点:为倒格矢;倒格点的总体叫倒格子,叫一组倒格基矢。
由与所决定的点阵为互为倒格子b晶体的宏观对称性可以概括为多少点群?晶体中有几种基本对称素?多少个晶系?这些晶系分别包括哪些布拉菲格子?晶体学中共有32种点群八种基本对称素C1 (1)、C2 (2)、C3 (3)、C4 (4)、C6 (6)、Ci (i)、CS (m)和 S4七大晶系十四种布拉菲格子c什么是晶体、准晶体和非晶体?晶体:组成固体的原子(或离子)在微观上的排列具有长程周期性非晶体:组成固体的粒子只有短程序(在近邻或次近邻原子间的键合:如配位数、键长和键角等具有一定的规律性),无长程周期性准晶:有长程的取向序,沿取向序的对称轴方向有准周期性,但无长程周期性2试推导面心和体心立方点阵的x射线衍射的系统消光规律3多晶体与单晶体的x射线衍射图有什么区别?多晶(衍射环对应一个晶面);单晶(衍射点对应一个晶面)4a)何谓晶体、准晶体及非晶体?它们的x光或电子衍射有何区别?黄昆第45页晶体:衍射图样是一组组清晰的斑点非晶体:由于原子排列是长程无序的,衍射图样呈现为弥散的环,没有表征晶态的斑点准晶体:衍射图样具有五重对称的斑点分布,斑点的明锐程度不亚于晶体的情况(b)何谓布拉菲格子、晶体学点群、晶系和晶体学空间群?C1 (1)、C2 (2)、C3 (3)、C4 (4)、C6 (6)及S1,S2,S3,S4,S5这十种对称素组成32个不同的点群结晶学中把a, b, c满足同一类要求的一种或数种布喇菲格子称为一个晶系。
固体物理题库-zzk-第一至第五章
第一章 晶体结构和X 射线1、试证体心立方和面心立方各自互为正、倒格子2、如果基矢a,b,c 构成正交关系,证明晶面族(h k l )的面间距满足:222)()()(1c l b k a hd hkl ++=3、证明以下结构晶面族的面间距:(1) 立方晶系:d hkl =a [h 2+k 2+l 2]-1/2(2) 六角晶系:2/12222])()(34[-+++=c l ahk k h d hkl 4、等体积的硬球堆积成体心立方结构和面心立方结构,试求他们在这两种结构中的致密度分别为0.68和0.74。
5、试证密积六方结构中,c/a=1.633。
6、在立方晶胞中,画出(1 0 1),(0 2 1),(221)和(012)晶面。
7、如下图,B 和C 是面心立方晶胞上的两面心。
(1) 求ABC 面的密勒指数;(2) 求AC 晶列的指数,并求相应原胞坐标系中的指数。
8、六角晶胞的基矢为.,223,223k c c j a i a b j a i a a =+-=+=求其倒格子基矢。
9、求晶格常数为a 的面心立方和体心立方晶体晶面族(h 1 h 2 h 3)之间的面间距(指导p30,10)。
10、讨论六角密积结构,X 光衍射的消光条件。
11、求出体心立方、面心立方的几何因子和消光条件。
12、原胞和晶胞的区别?13、倒空间的物理意义?14、布拉格衍射方程,原子和几何结构因子在确定晶格结构上分别起何作用?15、什么是布拉格简单格子,什么是复式格子?第二章 自由电子气1、设有一个长度为L 的一维金属线,它有N 个导电电子,若把这些导电电子看成自由电子气,试求:(1) 电子的状态密度(2) 绝对零度下的电子费米能级,以及费米能级随温度的变化关系。
(3) 电子的平均能量。
(4) 电子的比热。
2、二维电子气的能态密度2)( πm E N =,证明费米能 ]1ln[/2-=T mk n B F b eT k E π 3、求出一维金属中自由电子的能态密度、费米能级、电子的平均动能以及一个电子对于比热的贡献。
固体物理参考答案(前七章)
固体物理习题参考答案(部分)第一章 晶体结构1.氯化钠:复式格子,基元为Na +,Cl -金刚石:复式格子,基元为两个不等价的碳原子 氯化钠与金刚石的原胞基矢与晶胞基矢如下:原胞基矢)ˆˆ()ˆˆ()ˆˆ(213212211j i a a i k a a k j a a +=+=+= , 晶胞基矢 ka a j a a ia a ˆˆˆ321===2. 解:31A A O ':h:k;l;m==-11:211:11:111:1:-2:1 所以(1 1 2 1) 同样可得1331B B A A :(1 1 2 0); 5522A B B A :(1 1 0 0);654321A A A A A A :(0 0 0 1)3.简立方: 2r=a ,Z=1,()63434r 2r a r 3333πππ===F体心立方:()πππ833r4r 342a r 3422a 3r 4a r 4a 33333=⨯=⨯=∴===F Z ,,则面心立方:()πππ622r 4r 34434442r 4a r 4a 233ar 33=⨯=⨯=∴===F Z ,,则 六角密集:2r=a, 60sin 2c a V C = a c 362=,πππ622336234260sin 34223232=⨯⨯⨯=⨯=⎪⎭⎫ ⎝⎛a a c a r F a金刚石:()πππ163r 38r 348a r 3488Z r 8a 33333=⨯=⨯===F ,, 4. 解:'28109)31arccos(312323)ˆˆˆ()ˆˆˆ(cos )ˆˆˆ()ˆˆˆ(021*******12211=-=-=++-⋅+-=⋅=++-=+-=θθa a k j i a k j i a a a a a kj i a a kj i a a 5.解:对于(110)面:2a 2a a 2S =⋅=所包含的原子个数为2,所以面密度为22a2a22=对于(111)面:2a 2323a 22a 2S =⨯⨯= 所包含的原子个数为2,所以面密度为223a34a 232=8.证明:ABCD 是六角密堆积结构初基晶胞的菱形底面,AD=AB=a 。
固体物理学_答案(黄昆)
《固体物理学》习题解答黄昆原著韩汝琦改编 (陈志远解答,仅供参考)第一章晶体结构1.1、解:实验表明,很多元素的原子或离子都具有或接近于球形对称结构。
因此,可以把这些原子或离子构成的晶体看作是很多刚性球紧密堆积而成。
这样,一个单原子的晶体原胞就可以看作是相同的小球按点阵排列堆积起来的。
它的空间利用率就是这个晶体原胞所包含的点的数目n 和小球体积V 所得到的小球总体积nV 与晶体原胞体积Vc 之比,即:晶体原胞的空间利用率,VcnV x =(1)对于简立方结构:(见教材P2图1-1) a=2r ,V=3r 34π,Vc=a 3,n=1 ∴52.06r8r34ar 34x 3333=π=π=π=(2)对于体心立方:晶胞的体对角线BG=x 334a r 4a 3=⇒=n=2, Vc=a 3∴68.083)r 334(r 342ar342x 3333≈π=π⨯=π⨯=(3)对于面心立方:晶胞面对角线BC=r 22a ,r 4a 2=⇒= n=4,Vc=a 374.062)r 22(r344ar344x 3333≈π=π⨯=π⨯=(4)对于六角密排:a=2r 晶胞面积:S=6260sin a a 6S ABO ⨯⨯=⨯∆=2a 233晶胞的体积:V=332r 224a23a 38a 233C S ==⨯=⨯n=1232126112+⨯+⨯=6个74.062r224r 346x 33≈π=π⨯=(5)对于金刚石结构,晶胞的体对角线BG=3r 8a r 24a 3=⇒⨯= n=8, Vc=a 334.063r338r 348ar348x 33333≈π=π⨯=π⨯=1.2、试证:六方密排堆积结构中633.1)38(a c2/1≈= 证明:在六角密堆积结构中,第一层硬球A 、B 、O 的中心联线形成一个边长a=2r 的正三角形,第二层硬球N 位于球ABO 所围间隙的正上方并与这三个球相切,于是: NA=NB=NO=a=2R.即图中NABO 构成一个正四面体。
固体物理课后习题答案
(
)
⎞ 2π k⎟= −i + j + k 同理 ⎠ a
(
)
(
)
(
)
2π ⎧ ⎪b1 = a −i + j + k ⎪ 2π ⎪ i− j+k ⎨b 2 = a ⎪ 2π ⎪ ⎪b3 = a i + j − k ⎩
(
)
(
)
(
)
由此可得出面心立方格子的倒格子为一体心立方格子; 所以体心立方格子和面心立方格子互为正倒格子。 2.2 在六角晶系中,晶面常用四个指数(hkil)来表示,如图 所示,前三个指数表示晶面族中最靠近原点的晶面在互成 1200的 共面轴 a1 , a2 , a3 上的截距为
设两法线之间的夹角满足
K 1 i K 2 = K1 i K 2 cos γ
K 1iK 2 cos γ = = K1 i K 2 2π 2π (h1 i + k1 j + l1 k )i (h2 i + k2 j + l2 k ) a a 2π 2π 2π 2π (h1 i + k1 j + l1 k )i (h1 i + k1 j + l1 k ) i (h2 i + k2 j + l2 k )i (h2 i + k2 j + l2 k ) a a a a
a1 a2 a3 , , ,第四个指数表示该晶面 h k i
在六重轴c上的截距为
c 。证明: l
i = −(h + k )
并将下列用(hkl)表示的晶面改用(hkil)表示:
2
第一章 晶体的结构
( 001) , (133) , (110 ) , ( 323) , (100 ) , ( 010 ) , ( 213) .
固体物理学答案朱建国版完整版
固体物理学答案朱建国版3HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】固体物理学·习题指导配合《固体物理学(朱建国等编着)》使用2022年4月28日第1章晶体结构 0第2章晶体的结合 (11)第3章晶格振动和晶体的热学性质 (17)第4章晶体缺陷 (26)第5章金属电子论 (30)第1章 晶体结构1.1 有许多金属即可形成体心立方结构,也可以形成面心立方结构。
从一种结构转变为另一种结构时体积变化很小.设体积的变化可以忽略,并以R f 和R b 代表面心立方和体心立方结构中最近邻原子间的距离,试问R f /R b 等于 多少?答:由题意已知,面心、体心立方结构同一棱边相邻原子的距离相等,都设为a :对于面心立方,处于 面心的原子与顶角原子的距离为:R f =2a对于体心立方,处于体心的原子与顶角原子的距离为:R b那么,RfRb =31.2 晶面指数为(123)的晶面ABC 是离原点O 最近的晶面,OA 、OB 和OC 分别与基失a 1,a 2和a 3重合,除O 点外,OA ,OB 和OC 上是否有格点若ABC 面的指数为(234),情况又如何答:晶面族(123)截a 1,a 2,a 3分别为1,2,3等份,ABC 面是离原点O 最近的晶面,OA 的长度等于a 1的长度,OB 的长度等于a 2长度的1/2,OC 的长度等于a 3长度的1/3,所以只有A 点是格点。
若ABC 面的指数为(234)的晶面族,则A 、B 和C 都不是格点。
1.3 二维布拉维点阵只有5种,试列举并画图表示之。
答:二维布拉维点阵只有五种类型,两晶轴b a 、,夹角 ,如下表所示。
1 简单斜方2 简单正方3 简单六角4 简单长方5 有心长方二维布拉维点阵1.4 在六方晶系中,晶面常用4个指数(hkil )来表示,如图所示,前3个指数表示晶面族中最靠近原点的晶面在互成120°的共平面轴a 1,a 2,a 3上的截距a 1/h ,a 2/k ,a 3/i ,第四个指数表示该晶面的六重轴c 上的截距c/l.证明:i=-(h+k ) 并将下列用(hkl )表示的晶面改用(hkil )表示:(001)(133)(110)(323)(100)(010)(213) 答:证明设晶面族(hkil )的晶面间距为d ,晶面法线方向的单位矢量为n °。
本科阶段固体物理期末重点计算题
第一章 晶体结构1. 氯化钠与金刚石型结构是复式格子还是布拉维格子,各自的基元为何写出这两种结构的原胞与晶胞基矢,设晶格常数为a 。
解:氯化钠与金刚石型结构都是复式格子。
氯化钠的基元为一个Na +和一个Cl -组成的正负离子对。
金刚石的基元是一个面心立方上的C原子和一个体对角线上的C原子组成的C原子对。
由于NaCl 和金刚石都由面心立方结构套构而成,所以,其元胞基矢都为:123()2()2()2a a a ⎧=+⎪⎪⎪=+⎨⎪⎪=+⎪⎩a j k a k i a i j 相应的晶胞基矢都为:,,.a a a =⎧⎪=⎨⎪=⎩a ib jc k2. 六角密集结构可取四个原胞基矢123,,a a a 与4a ,如图所示。
试写出13O A A '、1331A A B B 、2255A B B A 、123456A A A A A A 这四个晶面所属晶面族的晶面指数()h k l m 。
解:(1).对于13O A A '面,其在四个原胞基矢上的截矩分别为:1,1,12-,1。
所以,其晶面指数为()1121。
(2).对于1331A A B B 面,其在四个原胞基矢上的截矩分别为:1,1,12-,∞。
所以,其晶面指数为()1120。
(3).对于2255A B B A 面,其在四个原胞基矢上的截矩分别为:1,1-,∞,∞。
所以,其晶面指数为()1100。
(4).对于123456A A A A A A 面,其在四个原胞基矢上的截矩分别为:∞,∞,∞,1。
所以,其晶面指数为()0001。
3. 如将等体积的硬球堆成下列结构,求证球体可能占据的最大体积与总体积的比为:简立方:6π;面心立方:6616。
证明:由于晶格常数为a ,所以:(1).构成简立方时,最大球半径为2m aR =,每个原胞中占有一个原子, 334326m a V a ππ⎛⎫∴== ⎪⎝⎭36m V a π∴=(2).构成体心立方时,体对角线等于4倍的最大球半径,即:4m R ,每个晶胞中占有两个原子,33422348m V a a π⎛⎫∴=⨯= ⎪ ⎪⎝⎭328m V a ∴=(3).构成面心立方时,面对角线等于4倍的最大球半径,即:4m R ,每个晶胞占有4个原子,33444346m V a a π⎛⎫∴=⨯= ⎪ ⎪⎝⎭34m V a ∴= (4).构成六角密集结构时,中间层的三个原子与底面中心的那个原子恰构成一个正四面体,其高则正好是其原胞基矢c 的长度的一半,由几何知识易知3m R =c 。
固体物理 第一章 晶体结构习题
第一章晶体结构1.试述晶态、非晶态、准晶、多晶和单晶的特征性质。
解:晶态固体材料中的原子有规律的周期性排列,或称为长程有序。
非晶态固体材料中的原子不是长程有序地排列,但在几个原子的范围内保持着有序性,或称为短程有序。
准晶态是介于晶态和非晶态之间的固体材料,其特点是原子有序排列,但不具有平移周期性。
另外,晶体又分为单晶体和多晶体:整块晶体内原子排列的规律完全一致的晶体称为单晶体;而多晶体则是由许多取向不同的单晶体颗粒无规则堆积而成的。
2.晶格点阵与实际晶体有何区别和联系?解:晶体点阵是一种数学抽象,其中的格点代表基元中某个原子的位置或基元质心的位置,也可以是基元中任意一个等价的点。
当晶格点阵中的格点被具体的基元代替后才形成实际的晶体结构。
晶格点阵与实际晶体结构的关系可总结为:晶格点阵+基元=实际晶体结构3.晶体结构可分为Bravais格子和复式格子吗?解:晶体结构可以分为Bravais格子和复式格子,当基元只含一个原子时,每个原子的周围情况完全相同,格点就代表该原子,这种晶体结构就称为简单格子或Bravais格子;当基元包含2个或2个以上的原子时,各基元中相应的原子组成与格点相同的网格,这些格子相互错开一定距离套构在一起,这类晶体结构叫做复式格子。
4.图1.34所示的点阵是布喇菲点阵(格子)吗?为什么?如果是,指明它属于那类布喇菲格子?如果不是,请说明这种复式格子的布喇菲格子属哪类?(a)(b)(c)(d)图1.34(a)“面心+体心”立方;(b)“边心”立方;(c)“边心+体心”立方;(d)面心四方解:(a)“面心+体心”立方不是布喇菲格子。
从“面心+体心”立方体的任一顶角上的格点看,与它最邻近的有12个格点;从面心任一点看来,与它最邻近的也是12个格点;但是从体心那点来看,与它最邻近的有6个格点,所以顶角、面心的格点与体心的格点所处的几何环境不同,即不满足所有格点完全等价的条件,因此不是布喇菲格子,而是复式格子,此复式格子属于简立方布喇菲格子。
固体物理:1-晶体结构-1
1 4
a1
1 4
a2
1 4
a3
晶列、晶向、晶面、及其指数标记
在布拉伐格子中作一簇平行的直线,这些平行直线 可以将所有的格点包括无遗。
—— 在一个平面里,相邻晶列之间的距离相等 —— 每一簇晶列定义了一个方向 —— 晶向
沿晶向到最短的一个格点的位矢
l1a1 l2a2 l3a3
晶向指数 [l1, l2 , l3 ]
Graphene, 石墨烯(2010 Nobel Prize)
布拉维格子(Bravais lattice)
晶体可以看作是在布拉维点阵(Bravais Lattice)的 每一个格点上放上一组基元(Basis )
原胞(元胞,初基元胞) primitive cell
和一个给定格点的最近邻格点的数量为配位数 z
原子球排列为:AB AB AB ……
Be、Mg、Zn、Cd
各种晶格的堆积比
金刚石晶格结构(diamond)
碳原子构成的一个面心立方原胞内还有四个 原子,分别位于四个空间对角线的 1/4处
NaCl晶体的结构 (sodium chloride)
CsCl晶体的结构(cesium chloride)
CsCl结构 —— 由两个简单立方子晶格彼此沿立方体空间对角线位移1/2 的 长度套构而成
闪锌矿结构 (zinc blende) ZnS
立方系的硫化锌 —— 具有金刚石类似的结构 化合物半导体 —— 锑化铟、砷化镓、磷化铟
钙钛矿结构 (perovskite)
钙钛矿型的化学式可写为ABO3 —— A代表二价或一价的金属 —— B代表四价或五价的金属 —— BO3称为氧八面体基团, 是钙钛矿型晶体结构的特点
晶体结构1
固体物理基础第1章-晶体结构
ˆ a3 ck
*
*
一个原胞中包含A层
和B层原子各一个 共两个原子
六角密排晶格的原胞和单胞一样
第一讲回顾
什么是固体? 研究固体的思路?复杂到简单
为什么从研究晶体开始? 原胞的选取唯一吗?
1-3 晶格的周期性
1.3.3 复式晶格
• 简单晶格:原胞中仅包含1个原子,所有原子的几何位置和化 学性质完全等价 • 复式晶格:包含两种或更多种等价的原子(或离子) * 两种不同原子或离子构成:NaCl, CsCl * 同种原子但几何位置不等价:金刚石结构、六方密排结构
管原子是金或银还是铜,不管原子之间间距的大小,那他们是完全相 同的,就是他们的结构完全相同!
数学方法抽象描写:不区分物理、化学成分,每个原子都是不可区分
的,只有原子(数学上仅仅是一个几何点)的相对几何排列有意义。
1-2 晶格
• 理想晶体:实际晶体的数学抽象 以完全相同的基本结构单元(基元)规则地,重复的以完 全相同的方式无限地排列而成 • 格点(结点):基元位置,代表基元的几何点 • 晶格(点阵):格点(结点)的总和
1-4 晶向和晶面
1.4.1 晶向
晶向指数
晶向指数
1-4 晶向和晶面
1.4.1 晶向 简单立方晶格的主要晶向
# 立方边OA的晶向
立方边共有6个不同的晶向<100>
# 面对角线OB的晶向
面对角线共有12个不同的晶向<110>
# 体对角线OC晶向
体对角线共有?个不同的晶向<111>
1-4 晶向和晶面
1-3 晶格的周期性
Wigner-Seitz 原胞
以某个格点为中心,作其与邻近格点的中垂面,这些 中垂面所包含最小体积的区域为维格纳-赛兹原胞
《固体物理学》思考题解答参考01第一章_晶体的结构
易在晶体生长过程中显露在外表面,所以面指数简单的晶面往往暴露在外表面。
1.2 任何晶面族中最靠近原点的那个晶面必定通过一个或多个基矢的末端吗?
解答:
根据《固体物理学》式(1-10a)
( ) ⎧⎪a1 cos a1, n = h1d ( ) ⎪⎨a2 cos a2 , n = h2d ( ) ⎪
⎪⎩a3 cos a3, n = h3d
原子间距的数量级为10−10 m ,要使原子晶格成为光波的衍射光栅,光波的波长应小于10−10 m 。但可见光
的波长为 (4.0 ∼ 7.6) ×10−7 m ,是晶体中原子间距的 1000 倍。因此,在晶体衍射中,不能用可见光。
1.17 在晶体的 X 射线衍射中,为了实现来自相继晶面的辐射发生相长干涉,对于高指数的晶面,应采用 长的还是短的波长? 解答: 1.18 高指数的晶面族与低指数的晶面族相比,对于同级衍射,哪一晶面衍射光弱?为什么? 解答:(参考王矜奉 1.1.14)
如果是立方晶系, cosθ = 1 ,表示平行,即晶列 hkl 垂直于同指数的晶面(hkl)
如果不是立方晶系,例如四方晶系 (α = β = γ = π , a = b ≠ c) 2
cosθ = n ⋅ R = n⋅R
( ) h2 + k 2 + l2
h2 + k2 + l2 × a2 a2 c2
h2a2 + k2a2 + l2c2
1.9 晶面指数为(123)的晶面 ABC 是离原点 O 最近的晶面,OA、OB、和 OC 分别与基矢 a1, a2, a3 重合,
除 O 点外,,OA、OB、和 OC 上是否有格点?若 ABC 的面指数为(234),情况又如何? 解答:参考 1.2.5
总结固体物理作业
6 第一章 晶体结构1. 如果将等体积球分别排成下列结构,设x 表示刚球所占体积与总体积之比,证明:结构 X简单立方 52.06/≈π体心立方 68.08/3≈π 面心立方 74.06/2≈π 六方密排 74.06/2≈π金刚石34.016/3≈π2. 试证:六方密排堆积结构中633.1382/1≈⎪⎭⎫⎝⎛=a c 。
又:金属Na 在273K 因“马氏体相变”从体心立方转变为六角密堆积结构,假定相变时金属的密度维持不变,已知立方相的晶格常数a=0.423 nm , 设六角密堆积结构相的c/a 维持理想值,试求其晶格常数。
解(1)a AC AE AO 333332===a a a AO AD OD 32312222=-=-=633.138322221≈⎪⎭⎫ ⎝⎛===a OD a c(2)体心立方每个单胞包含2个基元,一个基元所占的体积为23c c a V =, 单位体积内的格点数为.1Vc六角密堆积每个单胞(晶胞)包含6个基元,一个基元所占的体积为32122223843436/323aa a c a c a a V s =⎪⎭⎫ ⎝⎛⨯==⨯⎪⎪⎭⎫ ⎝⎛⨯⨯=因为密度不变,所以 s c V V 11=,即:33222/aa c = nm a a c s 377.02/61==nma c s 615.0633.1==3. 证明:体心立方晶格的倒格子是面心立方;面心立方晶格的倒格子是体心立方。
解 由倒格子定义2311232a a b a a a π⨯=⋅⨯ 3121232a a b a a a π⨯=⋅⨯ 1231232a a b a a a π⨯=⋅⨯体心立方格子原胞基矢123(),(),()222a a aa i j k a i j k a i j k =-++=-+=-+ 倒格子基矢231123022()()22a a a ab i j k i j k a a a v ππ⨯==⋅-+⨯+-⋅⨯202()()4a i j k i j k v π=⋅-+⨯+-2()j k a π=+ 同理31212322()a ab i k a a a a ππ⨯==+⋅⨯ 32()b i j aπ=+可见由123,,b b b 为基矢构成的格子为面心立方格子 面心立方格子原胞基矢123()/2()/2()/2a a j k a a k i a a i j =+=+=+ 倒格子基矢2311232a ab a a a π⨯=⋅⨯ 12()b i j k aπ=-++ 同理22()b i j k a π=-+ 32()b i j k aπ=-+ 可见由123,,b b b 为基矢构成的格子为体心立方格子4. 证明:简单六角布拉伐格子的倒格子仍为简单六角布拉伐格子,并给出其倒格子的晶格常数。
固体物理期末复习题目及答案
第一章 晶体结构1、把等体积的硬球堆成下列结构,求球可能占据的最大体积和总体积之比。
(1)简立方 (2)体心立方 (3)面心立方(4)金刚石 解:(1)、简立方,晶胞内含有一个原子n=1,原子球半径为R ,立方晶格的顶点原子球相切,立方边长a=2R,体积为()32R ,所以 ()33344330.5262n R R K V R πππ⋅==== (2)、体心立方晶胞内含有2个原子n=2,原子球半径为R ,晶胞边长为a ,立方晶格的体对角线原子球相切,体对角线长为4个原子半径,所以43a R =3334423330.68843n R R K V R πππ⋅⨯====⎛⎫⎪⎝⎭(3)、面心立方晶胞内含有4个原子n=4,晶胞的面对角线原子球相切,面对角线长度为4个原子半径,立方体边长为a,所以42a R =3334442330.74642n R R K V R πππ⋅⨯====⎛⎫⎪⎝⎭(4)、金刚石在单位晶格中含有8个原子,碳原子最近邻长度2R 为体对角线14长,体对角线为83R a = 3334483330.341683n R R K V R πππ⋅⨯====⎛⎫⎪⎝⎭2、证明面心立方和体心立方互为倒格子。
09级微电子学专业《固体物理》期末考复习题目至诚 学院 信息工程 系 微电子学 专业 姓名: 陈长彬 学号: 2109918033、证明:倒格子原胞体积为()3*2cvvπ=,其中v c为正格子原胞的体积。
4、证明正格子晶面 与倒格矢正交。
5能写出任一晶列的密勒指数,也能反过来根据密勒指数画出晶列;能写出任一晶面的晶面指数,也能反过来根据晶面指数画出晶面。
见课件例题 以下作参考: 15.如图1.36所示,试求:(1) 晶列ED ,FD 和OF 的晶列指数;(2) 晶面AGK ,FGIH 和MNLK 的密勒指数; (3) 画出晶面(120),(131)。
密勒指数:以晶胞基矢定义的互质整数( )。
黄昆固体物理习题解答
因此只要先求出倒格点 Ghkl ,求出其大小即可。
由正格子基矢 a = ai , b = bj , c = ck ,可以马上求出:
a∗ = 2π i , b ∗ = 2π j , c∗ = 2π k
a
b
c
因为倒格子基矢互相正交,因此其大小为
Ghkl =
(ha∗ )2 + (kb∗ )2 + (lc∗ )2 = 2π
(h)2 + (k )2 + ( l )2 abc
则带入前边的关系式,即得晶面族的面间距。 1.7 写出体心立方和面心立方晶格结构的金属中,最近邻和次近邻的原子数。若立方边长为
a ,写出最近邻和次近邻的原子间距。
答:体心立方晶格的最近邻原子数(配位数)为 8,最近邻原子间距等于 3 a ,次近邻原 2
=V0
∂2U ( ∂r2
)r0
=
N 2
[−
m(m +1)α r m+2
0
+
n(n +1)β r n+2
0
=
N 2
{−
1 r02
m2α [( r0m
−
n2β r0n
)
+
(
mα r0m
−
nβ r0n
)]}
=
N 2
[−
1 r02
m2α ( r0m
−
n2β r0n
)]
=
N 2
[−
1 r m+2
0
(m2α
−
n2β nβ
AB = a (i − j − k ) 2
c
B
b
C
O
a
OB ⋅ AB =| OB || AB | cosθ = a2 (−1) 4
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 晶体的结构一、填空体〔每空1分〕1. 晶体具有的共同性质为长程有序、自限性、各向异性。
2. 对于简立方晶体,如果晶格常数为a ,它的最近邻原子间距为 a ,次近邻原子间距为a 2,原胞与晶胞的体积比 1:1 ,配位数为 6 。
3. 对于体心立方晶体,如果晶格常数为a ,它的最近邻原子间距为a 2/3,次近邻原子间距为 a ,原胞与晶胞的体积比 1:2 ,配位数为 8 。
4. 对于面心立方晶体,如果晶格常数为a ,它的最近邻原子间距为a 2/2,次近邻原子间距为 a ,原胞与晶胞的体积比 1:4 ,配位数为 12 。
5. 面指数(h1h2h3)所标志的晶面把原胞基矢a1,a2,a3分割,其中最靠近原点的平面在a1,a2,a3上的截距分别为__1/h1_,_1/h2__,__1/h3_。
6. 根据组成粒子在空间排列的有序度和对称性,固体可分为晶体、准晶体和非晶体。
7. 根据晶体晶粒排列的特点,晶体可分为单晶和多晶。
8. 常见的晶体堆积结构有简立方〔结构〕、体心立方〔结构〕、面心立方〔结构〕和六角密排〔结构〕等,例如金属钠〔Na 〕是体心立方〔结构〕,铜〔Cu 〕晶体属于面心立方结构,镁〔Mg 〕晶体属于六角密排结构。
9. 对点阵而言,考虑其宏观对称性,他们可以分为7个晶系,如果还考虑其平移对称性,那么共有14种布喇菲格子。
10.晶体结构的宏观对称只可能有以下10种元素: 1 ,2 ,3 ,4 ,6 ,i , m ,3,4,6,其中 3和 6不是独立对称素,由这10种对称素对应的对称操作只能组成32个点群。
11.晶体按照其基元中原子数的多少可分为 复式晶格 和 简单晶格 ,其中简单晶格基元中有 1 个原子。
12. 晶体原胞中含有 1 个格点。
13. 格纳-塞茨原胞中含有 1 个格点。
二、根本概念 1. 原胞原胞:晶格最小的周期性单元。
2. 晶胞结晶学中把晶格中能反映晶体对称特征的周期性单元成为晶胞。
3. 散射因子原子所有电子在某一方向上引起的散射波的振幅的几何和,与某一电子在该方向上引起的散射波的振幅之比。
4. 几何结构因子原胞所有原子在某一方向上引起的散射波的总振幅与某一电子在该方向上所引起的散射波的振幅之比。
5. 配位数晶体最近邻原子数 8. 简单晶格基元中只含一个原子的晶体 9. 复式晶格基元中含两个或两个以上原子的晶体10.几何结构因子:原胞所有原子在某一方向上引起的散射波的总振幅与某一电子在该方向上所引起的散射波的振幅之比。
11. 几何结构因子原胞所有原子在某一方向上引起的散射波的总振幅与某一电子在该方向上所引起的散射波的振幅之比。
12. 结点:空间点阵中的点子代表着结构中一样的位置,称为结点。
13. 晶格:通过点阵中的结点,可以做许多平行的直线族和平行的平面,这样点阵就成为一些网格,称为晶格14. 维格纳-赛兹原胞(W-S 原胞):以某一阵点为原点,原点与其它阵点连线的中垂面(或中垂线) 将空间划分成各个区域。
围绕原点的最小闭合区域为维格纳-赛兹原胞。
一个维格纳-赛兹原胞平均包含一个结点,其体积等于固体物理学原胞的体积。
15.点阵常数(晶格常数):布喇菲原胞〔晶胞〕棱边的长度。
16. 致密度:晶胞原子所占的体积和晶胞体积之比。
三、简答题1. 倒格矢与正格矢有什么关系。
1〕倒格矢与正格矢互为倒格矢2〕倒格原胞与正格原胞的体积比等于〔2π〕33〕倒格矢332211b h b h b h K h++=与正格子晶面族〔h 1h 2h 3〕正交。
4〕倒格矢h K的模与晶面族〔h 1h 2h 3〕的面间距成反比。
2.晶体的主要特征有哪些?答:1〕长程有序与周期性 2〕自限性 3〕各向异性3. 晶体宏观对称性的根本对称操作有哪些?〔5分〕答:有1、2、3、4和5次旋转对称轴与4次旋转反演轴4,中心反演操作i ,镜面操作m 。
4. 解理面是面指数低的晶面还是指数高的晶面?为什么?答:晶体容易沿解理面劈裂,说明平行于解理面的原子层之间的结合力弱,即平行解理面的原子层的间距大. 因为面间距大的晶面族的指数低, 所以解理面是面指数低的晶面.5. 基矢为1=a ai , 2=a a j , ()3=2++aa i j k 的晶体为何种结构?为什么? 答:有条件, 可计算出晶体的原胞的体积()31232Ω=⋅⨯=a a a a .由原胞的体积推断, 晶体结构为体心立方.我们可以构造新的矢量()31=2=--++au a a i j k ,()32=2=--+av a a i j k ,()123=2=+-+-aw a a a i j k .,,u v w 满足选作基矢的充分条件.可见基矢为1=a ai , 2=a a j , ()3=2++aa i j k 的晶体为体心立方结构。
6. 在结晶学中, 晶胞是按晶体的什么特性选取的?答: 在结晶学中, 晶胞选取的原那么是既要考虑晶体结构的周期性又要考虑晶体的宏观对称性.7. 六角密积属何种晶系? 一个晶胞包含几个原子?答:六角密积属六角晶系, 一个晶胞(平行六面体)包含两个原子.8. 高指数的晶面族与低指数的晶面族相比, 对于同级衍射, 哪一晶面族衍射光弱? 为什么?答: 对于同级衍射, 高指数的晶面族衍射光弱, 低指数的晶面族衍射光强. 低指数的晶面族面间距大, 晶面上的原子密度大, 这样的晶面对射线的反射(衍射)作用强. 相反, 高指数的晶面族面间距小, 晶面上的原子密度小, 这样的晶面对射线的反射(衍射)作用弱. 另外, 由布拉格反射公式可知, 面间距大的晶面, 对应一个小的光的掠射角. 面间距小的晶面, 对应一个大的光的掠射角. 越大, 光的透射能力就越强, 反射能力就越弱. 9. 试述晶态、非晶态、准晶、多晶和单晶的特征性质。
答:晶态固体材料中的原子有规律的周期性排列,称为长程有序;非晶态固体材料中的原子不是长程有序地排列,但在几个原子的围保持着有序性,或称为短程有序;准晶态是介于晶态和非晶态之间的固体材料,其特点是原子有序排列,但不具有平移周期性。
晶体又分为单晶体和多晶体:整块晶体原子排列的规律完全一致的晶体称为单晶体;而多晶体那么是由许多取向不同的单晶体颗粒无规那么堆积而成的。
10. 温度升高时, 衍射角如何变化? X 光波长变化时, 衍射角如何变化? 答:温度升高时, 由于热膨胀, 面间距逐渐变大. 由布拉格反射公式可知, 对应同一级衍射, 当X 光波长不变时, 面间距逐渐变大, 衍射角逐渐变小.所以温度升高, 衍射角变小. 当温度不变, X 光波长变大时, 对于同一晶面族, 衍射角随之变大. 11.晶格点阵与实际晶体有何区别和联系?答:晶体点阵是一种数学抽象,其中的格点代表基元中某个原子的位置或基元质心的位置,也可以是基元中任意一个等价的点。
当晶格点阵中的格点被具体的基元代替后才形成实际的晶体结构。
晶格点阵与实际晶体结构的关系可总结为:晶格点阵+基元=实际晶体结构。
12.六角密积结构是复式格子还是简单格子,平均每个原胞包含几个原子,属于哪种晶系? 答:六角密积结构是复式格子,平均每个原胞包含2个原子,属于六角晶系。
13.晶体Si 、Cu 、CsCL 、NaCL 和ZnS 的结构分别属于那种点阵形式?答:Si :面心立方;Cu :面心立方;CsCL :体心立方;NaCL :面心立方;ZnS :面心立方14.金刚石晶体的基元含有几?其晶胞含有几个碳原子?原胞中有几个碳原子?是复式格子还是简单格子?答:金刚石晶体的基元含有2个原子,晶胞含有8碳原子,原胞中有2原子,复式格子. 15.写出金属Mg 和GaAs 晶体的结构类型。
答:六角密堆,金刚石。
16. 以堆积模型计算由同种原子构成的同体积的体心和面心立方晶体中的原子数之比. 答:设原子的半径为R , 体心立方晶胞的空间对角线为4R , 晶胞的边长为3/4R , 晶胞的体积为()33/4R , 一个晶胞包含两个原子, 一个原子占的体积为()2/3/43R ,单位体积晶体中的原子数为()33/4/2R ; 面心立方晶胞的边长为2/4R , 晶胞的体积为()32/4R , 一个晶胞包含四个原子, 一个原子占的体积为()4/2/43R , 单位体积晶体中的原子数为()32/4/4R . 因此,同体积的体心和面心立方晶体中的原子数之比为2/323⎪⎪⎭⎫ ⎝⎛=0.272.17.与晶列[l 1l 2l 3]垂直的倒格面的面指数是什么?答:正格子与倒格子互为倒格子. 正格子晶面(h 1h 2h 3)与倒格式=h K h 11b +h 22b +h 33b 垂直, 那么倒格晶面(l 1l 2l 3)与正格矢=l R l 11a + l 22a + l 33a 正交. 即晶列[l 1l 2l 3]与倒格面(l 1l 2l 3) 垂直.18.分别指出简单立方 体心立方 面心立方倒易点阵类型 答:简单立方 面心立方 体心立方19.在晶体衍射中,为什么不能用可见光? 答:晶体中原子间距的数量级为1010-米,要使原子晶格成为光波的衍射光栅,光波的波长应小于1010-米. 但可见光的波长为7.6 4.0710-⨯米, 是晶体中原子间距的1000倍. 因此, 在晶体衍射中,不能用可见光.20.写出晶体绕直角坐标X 、Y 和Z 轴转动θ角的操作矩阵和中心反演的操作矩阵。
答:晶体绕直角坐标X 、Y 和Z 轴转动θ角的操作矩阵分别为:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=θθθθcos sin 0sin cos 0001x A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=1000cos sin 0sin cos θθθθz A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=θθθθcos 0sin 010sin 0cos y A 中心反演的操作矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=100010001A 。
21.分别在体心立方和面心立方晶体的晶胞中画出其原胞,并给出他们晶胞基矢与原胞基矢的关系。
答:体心立方和面心立方晶体的晶胞中的原胞:体心立方 面心立方体心立方:)(21k j i a a ++-=,)(22k j i a a +-=,)(23k j i a a-+=面心立方:)(21k j a a +=,)(22k i a a +=,)(23j i a a+=22. 在立方晶胞中,画出〔100〕、〔111〕和〔210〕晶面。
解:23.在立方晶胞中,画出〔021〕和〔011〕晶面。
解:c c四、证明计算1. 劳厄方程与布拉格公式是一致的。
证明:由坐标空间劳厄方程:πμ2)(0=-⋅k k R l与正倒格矢关系πμ2=⋅h l k R 比拟可知:假设0k k k h -=成立即入射波矢0k ,衍射波矢k 之差为任意倒格矢h k ,那么k 方向产生衍射光,0k k k h -=式称为倒空间劳厄方程又称衍射三角形。