二元一次不等式组训练题

合集下载

次函数与二元一次方程组不等式专项练习60题

次函数与二元一次方程组不等式专项练习60题

二次函数与二元一次方程组、不等式专项练习60题(有答案)1.已知二次函数y=ax 2+bx+c (a≠0)的图象如图所示,则下列结论:(1)4a+2b+c >0;(2)方程ax 2+bx+c=0两根之和小于零;(3)y 随x 的增大而增大;(4)一次函数y=x+bc 的图象 一定不过第二象限,其中错误的个数是( )A . 4个B . 3个C . 2个D . 1个2.如图是二次函数y=ax 2+bx+c 的图象,图象上有两点分别为A (,﹣)、B (,),则方程ax 2+bx+c=0 的一个解只可能是( ) A . B . C . ﹣ D .3.方程x 2+3x ﹣1=0的根可看作是函数y=x+3的图象与函数y=的图象交点的横坐标,那么用此方法可推断出方程x 3﹣x ﹣1=0的实数根x 0所在的范围是( ) A . ﹣1<x 0<0 B . 0<x 0<1 C . 1<x 0<2 D . 2<x 0<34.根据二次函数y=ax 2+bx+c (a≠0,a 、b 、c 为常数)得到一些对应值,列表如下:判断一元二次方程ax 2+bx+c=0的一个解x 1的范围是( ) A . <x 1<B . <x 1<C . <x 1<D . <x 1<5.已知二次函数y=ax 2+bx+c 的y 与x 的部分对应值如下表:则下列判断中正确的是( )A . 抛物线开口向上B . 抛物线与y 轴交于负半轴C . 当x=3时,y <0D . 方程ax 2+bx+c=0有两个相等实数根6.二次函数y=ax 2+bx+c (a≠0)中,自变量x 与函数y 的对应值如下表:若,则一元二次方程ax 2+bx+c=0的两个根x 1,x 2的取值范围是( )A .﹣1<x1<0,2<x2<3B .﹣2<x1<﹣1,1<x2<2C . 0<x1<1,1<x2<2D .﹣2<x1<﹣1,3<x2<47.根据抛物线y=x 2+3x ﹣1与x 轴的交点的坐标,可以求出下列方程中哪个方程的近似解( )A . x 2﹣1=﹣3xB . x 2+3x+1=0C . 3x 2+x ﹣1=0D . x 2﹣3x+1=08.已知二次函数y=x 2+2x ﹣10,小明利用计算器列出了下表:那么方程x 2+2x ﹣10=0的一个近似根是( ) A . ﹣ B . ﹣ C . ﹣ D . ﹣x y ﹣ ﹣x … ﹣2 ﹣1 0 1 2 3 4 … y…m ﹣2mm ﹣2…x ﹣ ﹣ ﹣ ﹣ x 2+2x ﹣10 ﹣﹣ ﹣ x 0 1据关于x 的一元二次方程x 2+px+q=0,9.根可列表如下:则方程x 2+px+q=0的正数解满足( )A . 解的整数部分是0,十分位是5B . 解的整数部分是0,十分位是8C .解的整数部分是1,十分位是1D .解的整数部分是1,十分位是210.根据下列表格中的二次函数y=ax 2+bx+c (a≠0,a 、b 、c 为常数)的自变量x 与函数y 的对应值,判断ax 2+bx+c=0 的一个解x 的取值范围为( )A . <x <B . <x <C . <x <D . <x <11.已知二次函数y=ax 2+bx+c (a≠0)的顶点坐标(﹣1,﹣)及部分图象(如图),由图象可知关于x 的一元二次方程ax 2+bx+c=0的两个根分别是x 1=和x 2=( )A . ﹣B . ﹣C . ﹣D . ﹣12.如图,已知二次函数y=ax 2+bx+c 的部分图象,由图象可知关于x 的一元二次方程ax 2+bx+c=0的两个根分别 是x 1=,x 2=( )A . ﹣B .C .D . 以上都不对 13.二次函数y=x 2﹣6x+n 的部分图象如图所示,若关于x 的一元二次方程x 2﹣6x+n=0的一个解为x 1=1,则另一个 解x 2= _________ .14.如图,已知抛物线y=x 2+bx+c 经过点(0,﹣3),请你确定一个b 的值,使该抛物线与x 轴的一个交点在 (1,0)和(3,0)之间.你确定的b 的值是 _________ .15.抛物线y=x 2﹣4x+m 与x 轴的一个交点的坐标为(1,0),则此抛物线与x 轴的另一个交点的坐标是 _________ .16.已知二次函数y=﹣x 2+2x+m 的部分图象如图所示,则关于x 的一元二次方程﹣x 2+2x+m=0的解为 _________ .17.抛物线y=x 2﹣4x+与x 轴的一个交点的坐标为(1,0),则此抛物线与x 轴的另一个交点的坐标是 _________ .18.开口向下的抛物线y=(m 2﹣2)x 2+2mx+1的对称轴经过点(﹣1,3),则m= _________ .19.已知二次函数y=ax 2+bx+c (a≠0)的顶点坐标(﹣1,﹣)及部分图象(如图),由图象可知关于x 的方程ax 2+bx+c=0的两个根分别是x 1=和x 2= _________ .20.如图,已知二次函数y=ax 2+bx+c 的部分图象,由图象可知关于x 的一元二次方程ax 2+bx+c=0的两个根分别是 _________ .21.对于二次函数y=x 2+2x ﹣5,当x=时,y=﹣<0,当x=时,y=>0;所以方程x 2+2x ﹣5=0的一个正根的近似值是 _________ .(精确到).x 2+px+q﹣15﹣ ﹣2 ﹣ xy=ax 2+bx+c﹣ ﹣22.根据下列表格中y=ax2+bx+c的自变量x与函数值y的对应值,判断方程ax2+bx+c=0(a≠0,a,b,c为常数)的一个解x的范围是_________ .xy=ax2+bx+c﹣﹣23.抛物线y=2x2﹣4x+m的图象的部分如图所示,则关于x的一元二次方程2x2﹣4x+m=0的解是_________ .24.二次函数y=ax2+bx+c的部分对应值如下表:x…﹣3﹣20135…y…70﹣8﹣9﹣57…①抛物线的顶点坐标为(1,﹣9);②与y轴的交点坐标为(0,﹣8);③与x轴的交点坐标为(﹣2,0)和(2,0);④当x=﹣1时,对应的函数值y为﹣5.以上结论正确的是_________ .25.二次函数y=ax2+bx+c的自变量x与函数值y的部分对应值如下表:x…﹣10123…y…﹣1﹣﹣2﹣…根据表格中的信息,完成下列各题(1)当x=3时,y= _________ ;(2)当x= _________ 时,y有最_________ 值为_________ ;(3)若点A(x1,y1)、B(x2,y2)是该二次函数图象上的两点,且﹣1<x1<0,1<x2<2,试比较两函数值的大小:y1_______ y2(4)若自变量x的取值范围是0≤x≤5,则函数值y的取值范围是_________ .26.阅读材料,解答问题.例用图象法解一元二次不等式:.x2﹣2x﹣3>0解:设y=x2﹣2x﹣3,则y是x的二次函数.∵a=1>0,∴抛物线开口向上.又∵当y=0时,x2﹣2x﹣3=0,解得x1=﹣1,x2=3.∴由此得抛物线y=x2﹣2x﹣3的大致图象如图所示.观察函数图象可知:当x<﹣1或x>3时,y>0.∴x2﹣2x﹣3>0的解集是:x<﹣1或x>3.(1)观察图象,直接写出一元二次不等式:x2﹣2x﹣3>0的解集是_________ ;(2)仿照上例,用图象法解一元二次不等式:x2﹣1>0.27.一元二次方程x2+7x+9=1的根与二次函数y=x2+7x+9的图象有什么关系试把方程的根在图象上表示出来.28.画出函数y=﹣2x2+8x﹣6的图象,根据图象回答:(1)方程﹣2x2+8x﹣6=0的解是什么;(2)当x取何值时,y>0;(3)当x取何值时,y<0.29.已知二次函数y=﹣x2+2x+m的部分图象如图所示,你能确定关于x的一元二次方程﹣x2+2x+m=0的解30.小明在复习数学知识时,针对“求一元二次方程的解”整理了以下几种方法,请你将有关内容补充完整: 例题:求一元二次方程x 2﹣x ﹣1=0的两个解.(1)解法一:选择合适的一种方法(公式法、配方法、分解因式法). (2)解法二:利用二次函数图象与两坐标轴的交点求解.如图,把方程x 2﹣x ﹣1=0的解看成是二次函数y= _________ 的图象与x 轴交点的横坐标即x 1,x 2就是方程的解.(3)解法三:利用两个函数图象的交点求解①把方程x 2﹣x ﹣1=0的解看成是二次函数y= _________ 的图象与一个一次函数y= _________ 的图象交点的横坐标②画出这两个函数的图象,用x 1,x 2在x 轴上标出方程的解.31.如图是二次函数y=ax 2+bx+c 的部分图象,由图象可知不等式ax 2+bx+c <0的解集是( )A . ﹣1<x <5B . x >5C . x <﹣1且x >5D . x <﹣1或x >532.二次函数y=ax 2+bx+c (a≠0)的图象如图所示,则下列结论中,正确的是( )A . a bc <0B . a +c <bC . b >2aD . 4a >2b ﹣c33.现定义某种运算a⊕b=a(a >b ),若(x+2)⊕x 2=x+2,那么x 的取值范围是( ) A . ﹣1<x <2 B . x >2或x <﹣1 C . x >2 D . x <﹣134.如图,一次函数y 1=kx+n (k≠0)与二次函数y 2=ax 2+bx+c (a≠0)的图象相交于A (﹣1,5)、B (9,2)两点,则关于x 的不等式kx+n≥ax 2+bx+c 的解集为( )A . ﹣1≤x≤9B . ﹣1≤x<9C . ﹣1<x≤9D . x ≤﹣1或x≥935.如图所示的抛物线是二次函数y=ax 2﹣3x+a 2﹣1的图象,那么下列结论错误的是( ) y=x 2﹣4x 36.已知:二次函数﹣a ,下列说法中错误的个数是( )①若图象与x 轴有交点,则a≤4;②若该抛物线的顶点在直线y=2x 上,则a 的值为﹣8; ③当a=3时,不等式x 2﹣4x+a >0的解集是(3,0);④若将图象向上平移1个单位,再向左平移3个单位后过点x ,则a=﹣1;⑤若抛物线与x 轴有两个交点,横坐标分别为x 1、x 2,则当x 取x 1+x 2时的函数值与x 取0时的函数值相等. A . 1 B . 2 C . 3 D . 437.二次函数y=ax 2的图象如图所示,则不等式ax >a 的解集是( )A . x >1B . x <1C . x >﹣1D . x <﹣138.如图,函数y=x 2﹣2x+m (m 为常数)的图象如图,如果x=a 时,y <0;那么x=a ﹣2时,函数值( )A . y <0B . 0<y <mC . y =mD . y >m39.已知:二次函数y=x 2﹣4x+a ,下列说法中错误的个数是 ( ) ①当x <1时,y 随x 的增大而减小A . 当y <0时,x >0B . 当﹣3<x <0时,y >0C . 当x <时,y 随x 的增大而增大D . 上述抛物线可由抛物线y=﹣x 2平移得到②若图象与x轴有交点,则a≤4③当a=3时,不等式x2﹣4x+a>0的解集是1<x<3④若将图象向上平移1个单位,再向左平移3个单位后过点(1,﹣2),则a=﹣3.A.1B.2C.3D.440.如图,二次函数y1=ax2+bx+c与一次函数y2=kx+n的图象相交于A(0,4),B(4,1)两点,下列三个结论:①不等式y1>y2的解集是0<x<4②不等式y1<y2的解集是x<0或 x>4③方程ax2+bx+c=kx+n的解是x1=0,x2=4其中正确的个数是()A.0个B.1个C.2个D.3个41.二次函数y=x2﹣2x﹣3的图象如图所示.当y<0时,自变量x的取值范围是_________ .42. 如图是抛物线y=ax2+bx+c的一部分,其对称轴为直线x=1,若其与x轴一交点为B(3,0),则由图象可知,不等式ax2+bx+c>0的解集是_________ .43.已知二次函数y=x2﹣6x+5.(1)请写出该函数的对称轴,顶点坐标;(2)函数图象与x轴交点坐标为_________ ,与y轴的交点坐标为_________ ;(3)当_________ 时y>0,_________ 时y随x的增大而增大;(4)写出不等式x2﹣6x+5<0的解集._________44.如图,二次函数y=ax2+bx+c的图象与x轴相交于两个点,根据图象回答:(1)b _________ 0(填“>”、“<”、“=”);(2)当x满足_________ 时,ax2+bx+c>0;(3)当x满足_________ 时,ax2+bx+c的值随x增大而减小.45.二次函数y=ax2+bx+c(a≠0)的图象如图所示,根据图象解答下列问题:(1)写出方程ax2+bx+c=0的两个根.x1= _________ ,x2= _________ ;(2)写出不等式ax2+bx+c>0的解集._________ ;(3)写出y随x的增大而减小的自变量x的取值范围._________ ;(4)若方程ax2+bx+c=k有两个不相等的实数根,求k的取值范围._________ .46.二次函数y=ax2+bx+c的图象如图所示,给出下列说法:①ac>0;②2a+b=0;③a+b+c=0;④当x>1时,函数y随x的增大而增大;⑤当y>0时,﹣1<x<3.其中,正确的说法有_________ .(请写出所有正确说法的序号)47.如图是函数y=x2+bx﹣1的图象,根据图象提供的信息,确定使﹣1≤y≤2的自变量x的取值范围是_________ .48.已知抛物线y=x2﹣x﹣6,则不等式x2﹣x﹣6<0的解集为_________ .49.已知二次函数y=x2﹣2x﹣3的函数值y<0,则x的取值范围为_________ .50.二次函数y=ax2+bx+c(a≠0)的图象如图所示,根据图象解答下列问题:(1)不等式ax2+bx+c>0的解集为_________ .(2)若y随x的增大而减小,则自变量x的取值范围是_________ .(3)若方程ax2+bx+c=k有两个不相等的实数根,求k的取值范围是_________ .51.如图,直线y=x+m和抛物线y=x2+bx+c都经过点A(1,0)和B(3,2),不等式x2+bx+c>x+m 的解集为_________ .52.函数y=x2﹣2x﹣2的图象如图所示,观察图象,使y≥l成立的x的取值范围是_________ .53.已知函数y1=x2与y2=﹣x+3的图象大致如图,若y1≤y2,则自变量x的取值范围是_________ .54.已知二次函数y=4x2﹣4x﹣3的图象如图所示,,则函数值y _________ 0.55.函数y=x2﹣2x﹣2的图象如图所示,根据其中提供的信息,可求得使y≥1成立的x的取值范围是_________ .56.已知抛物线y=﹣x2﹣3x﹣(1)写出抛物线的开口方向、对称轴和顶点坐标;(2)求抛物线与x轴、y轴的交点坐标;(3)画出草图;(4)观察草图,指出x为何值时,y>0,y=0,y<0.57.如图是二次函数y=x2﹣2x﹣3的图象.(1)求该抛物线的顶点坐标、与x轴的交点坐标(2)观察图象直接指出x在什么范围内时,y>058.如图,直线y=x+m和抛物线y=x2+bx+c都经过点A(1,0),B(3,2).(1)求m的值和抛物线的解析式;(2)求抛物线的对称轴和顶点坐标;(3)求不等式x2+bx+c>x+m的解集.(直接写出答案)59.如图,二次函数的图象与x轴交于A、B 两点,与y轴交于点C,且点B的坐标为(1,0),点C的坐标为(0,﹣3),一次函数y2=mx+n的图象过点A、C.(1)求二次函数的解析式;(2)求二次函数的图象与x轴的另一个交点A的坐标;(3)根据图象写出y2<y1时,x的取值范围.60.已知抛物线y1=x2+(m+1)x+m﹣4与x轴交于A、B两点(点A在点B左侧),且对称轴为x=﹣1.(1)求m的值;(2)画出这条抛物线;(2)若直线y2=kx+b过点B且与抛物线交于点P(﹣2m,﹣3m),根据图象回答:当x取什么值时,y1≥y2.二次函数与二元一次方程组、不等式60题参考答案:1.解:∵当x=2时,y=4a+2b+c,对应的y值即纵坐标为正,即4a+2b+c>0;故(1)正确;∵由二次函数y=ax2+bx+c(a≠0)的图象可知:函数图象与x轴有两个不同的交点,即对应方程有两个不相等的实数根;并且正根的绝对值较大,∴方程ax2+bx+c=0两根之和大于零;故(2)错误;∵函数的增减性需要找到其对称轴才知具体情况;不能在整个自变量取值范围内说y随x的增大而增大;故(3)错误;∵由图象可知:c<0,b<0,∴bc>0,∴一次函数y=x+bc的图象一定经过第二象限,故(4)错误;∴错误的个数为3个,故选B.2.解:∵图象上有两点分别为A(,﹣)、B(,),∴当x=时,y=﹣;x=时,y=,∴当y=0时,<x<,只有选项D符合,故选D.3.解:方程x3﹣x﹣1=0,∴x2﹣1=,∴它的根可视为y=x2﹣1和y=的交点的横坐标,当x=1时,x2﹣1=0,=1,交点在x=1的右边,当x=2时,x2﹣1=3,=,交点在x=2的左边,又∵交点在第一象限.∴1<x0<2,故选C.4. :根据表格可知,ax2+bx+c=0时,对应的x的值在~之间.故选C.5.解:∵由图表可以得出当x=0或2时,y=1,可以求出此函数的对称轴是x=1,顶点坐标为(1,3),∴二次函数解析式为:y=a(x﹣1)2+3,再将(0,1)点代入得:1=a(﹣1)2+3,解得:a=﹣2,∴y=﹣2(x﹣1)2+3,∵a<0∴A,抛物线开口向上错误,故:A错误;∵y=﹣2(x﹣1)2+3=﹣2x2+4x+1,与y轴交点坐标为(0,1),故与y轴交于正半轴,故:B错误;∵x=3时,y=﹣5<0,故:C正确;∵方程ax2+bx+c=0,△=16+4×2×1=22>0,此方程有两个不相等的实数根,故:D.方程有两个相等实数根错误;故选:C6.解:∵,∴﹣1<m﹣2<﹣,<m﹣<1,∴函数y=ax2+bx+c的图象与x轴的交点就是方程ax2+bx+c=0的根,函数y=ax2+bx+c的图象与x轴的交点的纵坐标为0.由表中数据可知:y=0在y=m﹣2与y=m﹣之间,故对应的x的值在﹣1与0之间,即﹣1<x1<0,y=0在y=m﹣2与y=m﹣之间,故对应的x的值在2与3之间,即2<x2<3.故选:A.7.解:∵抛物线y=x2+3x﹣1与x轴的交点的横坐标就是方程x2+3x﹣1=0的根,∴可以求出方程x2+3x﹣1=0的根,方程x2﹣1=﹣3x与方程x2+3x﹣1=0等价,∴可以求出方程x2﹣1=﹣3x的根.故选A.8.解:根据表格得,当﹣<x<﹣时,﹣<y<,即﹣<x2+2x﹣10<,∵0距﹣近一些,∴方程x2+2x﹣10=0的一个近似根是﹣,故选C.9. 解:根据表中函数的增减性,可以确定函数值是0时,x应该是大于而小于.所以解的整数部分是1,十分位是1.故选C.10.解:由表可以看出,当x取与之间的某个数时,y=0,即这个数是ax2+bx+c=0的一个根.ax2+bx+c=0的一个解x的取值范围为<x<.故选C11.解:方法一:∵二次函数y=ax2+bx+c的顶点坐标(﹣1,﹣)∴﹣=﹣1则﹣=﹣2∵x1x2是一元二次方程ax2+bx+c=0的两根∴x1+x2=﹣又∵x1=∴x1+x2=+x2=﹣2解得x2=﹣.方法二:根据对称轴为;x=﹣1,关于x的一元二次方程ax2+bx+c=0的两个根分别是x1=,则=﹣1,即=﹣1,解得:x2=﹣,故选D12.解:由抛物线图象可知其对称轴为x=3,又抛物线是轴对称图象,∴抛物线与x轴的两个交点关于x=3对称,而关于x的一元二次方程ax2+bx+c=0的两个根分别是x1,x2,那么两根满足2×3=x1+x2,而x1=,∴x2=.故选C.13.解:由图可知,对称轴为x=﹣==3,根据二次函数的图象的对称性,=3,解得x2=5.故答案为:514.解:把(0,﹣3)代入抛物线的解析式得:c=﹣3,∴y=x2+bx﹣3,∵使该抛物线与x轴的一个交点在(1,0)和(3,0)之间,∴把x=1代入y=x2+bx﹣3得:y=1+b﹣3<0把x=3代入y=x2+bx﹣3得:y=9+3b﹣3>0,∴﹣2<b<2,即在﹣2<b<2范围内的任何一个数都符合,故答案为:在﹣2<b<2范围内的任何一个数.15.解:把点(1,0)代入抛物线y=x2﹣4x+m中,得m=3,所以,原方程为y=x2﹣4x+3,令y=0,解方程x2﹣4x+3=0,得x1=1,x2=3,∴抛物线与x轴的另一个交点的坐标是(3,0).故答案为:(3,0).16.解:依题意得二次函数y=﹣x2+2x+m的对称轴为x=1,与x轴的一个交点为(3,0),∴抛物线与x轴的另一个交点横坐标为1﹣(3﹣1)=﹣1,∴交点坐标为(﹣1,0)∴当x=﹣1或x=3时,函数值y=0,即﹣x2+2x+m=0,∴关于x的一元二次方程﹣x2+2x+m=0的解为x1=﹣1或x2=3.故填空答案:x1=﹣1或x2=3.17. 解:把点(1,0)代入抛物线y=x2﹣4x+中,得m=6,所以,原方程为y=x2﹣4x+3,令y=0,解方程x2﹣4x+3=0,得x1=1,x2=3 ∴抛物线与x轴的另一个交点的坐标是(3,0)18.解:由于抛物线y=(m2﹣2)x2+2mx+1的对称轴经过点(﹣1,3),∴对称轴为直线x=﹣1,x==﹣1,解得m1=﹣1,m2=2.由于抛物线的开口向下,所以当m=2时,m2﹣2=2>0,不合题意,应舍去,∴m=﹣1.19.解:二次函数y=ax2+bx+c(a≠0)的顶点坐标是(﹣1,﹣),则对称轴为x=﹣1;所以=﹣1,又因为x1=,所以x2=﹣2﹣x1=﹣2﹣=﹣.20. 解:依题意得二次函数y=ax2+bx+c的部分图象的对称轴为x=3,而对称轴左侧图象与x轴交点与原点的距离,约为,∴x1=;又∵对称轴为x=3,则=3,∴x2=2×3﹣=.21. 解:∵二次函数y=x2+2x﹣5中a=1>0,∴抛物线开口方向向上,∵对称轴x=﹣=﹣1,∴x>﹣1时y随x的增大而增大,∵当x=时,y=﹣<0,当x=时,y=>0,∴方程x2+2x﹣5=0的一个正根:<x<,∴近似值是.答案.22.解:由表格中的数据看出﹣和更接近于0,故x应取对应的范围.故答案为:<x<.23.解:观察图象可知,抛物线y=2x2﹣4x+m与x轴的一个交点为(﹣1,0),对称轴为x=1,∴抛物线与x轴的另一交点坐标为(3,0),∴一元二次方程2x2﹣4x+m=0的解为x1=﹣1,x2=3.故本题答案为:x1=﹣1,x2=3.24.解:根据上表可画出函数的图象,由图象可得,①抛物线的顶点坐标为(1,﹣9);②与y轴的交点坐标为(0,﹣8);③与x轴的交点坐标为(﹣2,0)和(4,0);④当x=﹣1时,对应的函数值y为﹣5.故答案为:①②④.25.解:(1)由表得,解得,∴二次函数的解析式为y=x2﹣x﹣,当x=3时,y==﹣1;(2)将y=x2﹣x﹣配方得,y=(x﹣1)2﹣2,∵a=>0,∴函数有最小值,当x=1时,最小值为﹣2;(3)令y=0,则x=±2+1,抛物线与x轴的两个交点坐标为(2+1,0)(﹣2+1,0)∵﹣1<x1<0,1<x2<2,∴x1到1的距离大于x2到1的距离,∴y1>y2(4)∵抛物线的顶点为(1,﹣2),∴当x=5时,y最大,即y=2;当x=1时,y最小,即y=﹣2,∴函数值y的取值范围是﹣2≤y≤2;故答案为﹣1;1、小、﹣2;>;﹣2≤y≤2.26.解:(1)x<﹣1或x>3;(2)设y=x2﹣1,则y是x的二次函数,∵a=1>0,∴抛物线开口向上.又∵当y=0时,x2﹣1=0,解得x1=﹣1,x2=1.∴由此得抛物线y=x2﹣1的大致图象如图所示.观察函数图象可知:当x<﹣1或x>1时,y>0.∴x2﹣1>0的解集是:x<﹣1或x>1.27.解:一元二次方程x2+7x+9=1的根是二次函数y=x2+7x+9图象中y=1时,所对应的x的值;当y=1时,x2+7x+9=1,∴作出二次函数y=x2+7x+9的图象如图,由图中可以看出,当y=1时,x≈﹣或﹣,∴一元二次方程x2+7x+9=1的根为x1≈﹣,x2≈﹣.28.解:函数y=﹣2x2+8x﹣6的图象如图.由图象可知:(1)方程﹣2x2+8x﹣6=0的解x1=1,x2=3.(2)当1<x<3时,y>0.(3)当x<1或x>3时,y<0.29.解:根据图象可知,二次函数y=﹣x2+2x+m的部分图象经过点(3,0),所以该点适合方程y=﹣x2+2x+m,代入,得﹣32+2×3+m=0解得,m=3 ①把①代入一元二次方程﹣x2+2x+m=0,得﹣x2+2x+3=0,②解②,得x1=3,x2=﹣130.解:(1)由原方程,得:=0,即=;解得x1=,x2=.(2)设二次函数方程为y=ax2+bx+c(a,b,c均为实数,且a≠0).由图象得知,该函数过点(0,﹣1),所以该点满足方程y=ax2+bx+c,∴把(0,﹣1)代入方程y=ax2+bx+c,得c=﹣1,①二次函数方程为y=ax2+bx+c与x轴交点的横坐标就是方程x2﹣x﹣1=0的解;∴x1•x2==﹣1,即c=﹣a;②x1+x2==1;③由①②③,得:;∴二次函数方程为y=x2﹣x﹣1.(3)31.解:由图象得:对称轴是x=2,其中一个点的坐标为(5,0),∴图象与x轴的另一个交点坐标为(﹣1,0).利用图象可知:ax2+bx+c<0的解集即是y<0的解集,∴x<﹣1或x>5.故选:D.32.解:A、∵图象开口向下,∴a<0,∵与y轴交于正半轴,∴c>0,∵对称轴在y轴左侧,﹣<0,∴b<0,∴abc>0,故本选项错误;B、∵当x=﹣1时,对应的函数值y>0,即a﹣b+c>0,∴a+c>b,故本选项错误;C、∵抛物线的对称轴为直线x=﹣>﹣1,又a<0,∴b>2a,故本选项正确;D、∵当x=﹣2时,对应的函数值y<0,即4a﹣2b+c<0,∴4a<2b﹣c,故本选项错误.故选C.33. 解:由定义运算得:x+2>x2,即解不等式x2﹣x﹣2<0,设y=x2﹣x﹣2,函数图象开口向上,图象与x轴交点是(﹣1,0),(2,0),由图象可知,当﹣1<x<2时,y<0,即x的取值范围﹣1<x<2.故选A.34.解:由图形可以看出:抛物线y2=ax2+bx+c(a≠0)和一次函数y1=kx+n(k≠0)的交点的横坐标分别为﹣1,9,当y1≥y2时,x的取值范围正好在两交点之内,即﹣1≤x≤9.故选A.35.解:由图象可知,抛物线经过原点(0,0),所以a2﹣1=0,解得a=±1,∵图象开口向下,a<0,∴a=﹣1.∴y=﹣x2﹣3x,∴二次函数与图象的交点为:(﹣3,0),(0,0),∴当y<0时,x<﹣3或x>0,故A选项错误;当﹣3<x<0时,y>0,故B选项正确;当x<时,y随x的增大而增大故C选项正确;上述抛物线可由抛物线y=﹣x2平移得到,故D选项正确;故选:A.36.解:①∵图象与x轴有交点,则△=16﹣4×1×(﹣a)≥0,解得a≥﹣4;故本选项错误;②∵二次函数y=x2﹣4x﹣a的顶点坐标为(2,﹣a﹣4),代入y=2x得,﹣a﹣4=2×2,a=﹣8,故本选项正确;③表达错误,解集不能表示为(3,0),故本选项错误;④表达错误,点不能用x表示,故本选项错误;⑤由根与系数的关系,x1+x2=4,当x=4时,y=16﹣16﹣a=﹣a,当x=0时,y=﹣a,故本选项正确.故选C.37.解:由图象可知a<0,∴不等式ax>a的解集为x<1.故选B.38.解:x=a代入函数y=x2﹣2x+m中得:y=a2﹣2a+m=a(a﹣2)+m,∵x=a时,y<0,∴a(a﹣2)+m<0,由图象可知:m>0,∴a(a﹣2)<0,又∵x=a时,y<0,∴a>0则a﹣2<0,由图象可知:x=0时,y=m,又∵x<1时y随x的增大而减小,∴x=a﹣2时,y>m.故选:D.39.解:二次函数为y=x2﹣4x+a,对称轴为x=2,图象开口向上.则:A、当x<1时,y随x的增大而减小,故说法正确;B、若图象与x轴有交点,即△=16﹣4a≥0,则a≤4,故说法正确;C、当a=3时,不等式x2﹣4x+3<0的解集是x<0或x>3,故说法错误;D、原式可化为y=(x﹣2)2﹣4+a,将图象向上平移1个单位,再向左平移3个单位后所得函数解析式是y=(x+1)2﹣3+a,函数过点(1,﹣2),代入解析式得到:a=﹣3.故说法正确.故选A.40.①通过图象可知,在点A和B之间y1的图象在y2的上面,也就是y1>y2,且解集是0<x<4,此选项正确;②通过图象可知,在点A的左边和在B的右边,y1的图象在y2的下面,也就是y1<y2,且解集是x<0或x>4,此选项正确;③两函数图象的交点就是y1=y2的解,且解是x1=0,x2=4,此选项正确.故选D.41.解:∵二次函数y=x2﹣2x﹣3的图象如图所示.∴图象与x轴交在(﹣1,0),(3,0),∴当y<0时,即图象在x轴下方的部分,此时x的取值范围是:﹣1<x<3,故答案为:﹣1<x<3.42.解:∵抛物线与x轴的一个交点(3,0)而对称轴x=1∴抛物线与x轴的另一交点(﹣1,0)当y=ax2+bx+c>0时,图象在x轴上方此时x<﹣1或x>3故填空答案:x<﹣1或x>3.43.解:(1)根据二次函数的性质可知对称轴为x=﹣=﹣=3顶点坐标为x=﹣=3,y===﹣4,故对称轴为x=3,顶点坐标为(3,﹣4);(2)令y=0,即x2﹣6x+5=0解得x1=1,x2=5故函数图象与x轴交点为(1,0),(5,0)∴c=0,故图象与y轴交点为(0,5);(3)由图象可知当x<1或x>5时,y>0当x>3时,y随x的增大而增大(4)由图象可知,x2﹣6x+5<0的解集为1<x<5.44.解:(1)根据图象得二次函数y=ax2+bx+c(a≠0)的图象,a>0,∵对称轴经过x轴的负半轴,即可得出a,b同号,∴b>0,故答案为:b>0;(2)根据图象得二次函数y=ax2+bx+c(a≠0)的图象与x轴交点坐标为(2,0)、(﹣4,0),而ax2+bx+c>0,即y>0,∴x<﹣4或x>2;故答案为:x<﹣4或x>2;(3)根据图象得二次函数y=ax2+bx+c(a≠0)的图象与x轴交点坐标为(2,0)、(﹣4,0),∴抛物线的对称轴为x=﹣1,∴当x<﹣1时,y随x的增大而减小.故答案为:x<﹣1.45.解:(1)∵二次函数y=ax2+bx+c的图象与x轴的交点为(1,0),(3,0)∴方程ax2+bx+c=0的两个根x1=1,x2=3;(2)由二次函数y=ax2+bx+c的图象可知:1<x<3时,二次函数y=ax2+bx+c的值大于0∴不等式ax2+bx+c>0的解集为1<x<3;(3)由图象可知:二次函数y=ax2+bx+c的对称轴为x=2∴y随x的增大而减小的自变量x的取值范围为x>2;(4)由图象可知:二次函数y=ax2+bx+c的顶点坐标为(2,2),当直线y=k,在(0,2)的下边时,一定与抛物线有两个不同的交点,因而当k<2时,方程ax2+bx+c=k有两个不相等的实数根.46.解:∵抛物线的开口向下,与y轴的交点在y轴的正半轴上,∴a<0,c>0,∴ac<0,∴①错误;由图象可知:﹣=1,∴2a+b=0,∴②正确;当x=1时,y=a+b+c>0,∴③错误;由图象可知:当x>1时,函数y随x的增大而减小,∴④错误;根据图象,当﹣1<x<3时,y>0,∴⑤正确;正确的说法有②⑤.47.解:∵y=x2+bx﹣1经过(3,2)点,∴b=﹣2,∵﹣1≤y≤2,∴﹣1≤x2﹣2x﹣1≤2,解得2≤x≤3或﹣1≤x≤0.48. 解:∵x2﹣x﹣6=0∴x1=﹣2,x2=3∴抛物线y=x2﹣x﹣6与x轴的交点坐标为(﹣2,0),(3,0)而抛物线y=x2﹣x﹣6开口向上当y<0时,图象在x轴的下方,此时﹣2<x<3故填空答案:﹣2<x<3.49. 解:当y=0时,即x2﹣2x﹣3=0,∴x1=﹣1,x2=3,∴图象与x轴的交点是(﹣1,0),(3,0),当y<0时,图象在x轴的下方,此时﹣1<x<3.故填空答案:﹣1<x<3.50.解:(1)依题意因为ax2+bx+c>0,得出x的取值范围为:1<x<3;(2)如图可知,当y随x的增大而减小,自变量x的取值范围为:x>2;(3)由顶点(2,2)设方程为a(x﹣2)2+2=0,∵二次函数与x轴的2个交点为(1,0),(3,0),∴a=﹣2,∴抛物线方程为y=﹣2(x﹣2)2+2,y=﹣2(x﹣2)2+2﹣k实际上是原曲线下移k个单位,由图形知,当k<2时,曲线与x轴有两个交点.故k<2.故答案为:(1)1<x<3;(2)x>2;(3)k<2.51.解:∵直线y=x+m和抛物线y=x2+bx+c都经过点A(1,0)和B(3,2),∴根据图象可知,不等式x2+bx+c>x+m 的解集为x<1或x>3;故答案为:x<1或x>3.52.解:直线y=1上方的函数图象所对应的自变量的取值为x≤﹣1或x≥3,故答案为x≤﹣1或x≥3.53.解:根据图象知,当y1≤y2时,自变量x的取值范围是﹣2≤x≤.故答案为﹣2≤x≤.54.解:由图可知,﹣<x<时,函数图象在x轴的下方,所以y<0.故答案为:<.55.解:当y=1时,x2﹣2x﹣2=1,解得(x+1)(x﹣3)=0,x1=﹣1,x2=3.由图可知,x≤﹣1或x≥3时y≥1.故答案为x≤﹣1或x≥3.56.解:(1)∵y=﹣x2﹣3x﹣=﹣(x2+6x+5)=﹣(x2+6x+9﹣4)=﹣(x+3)2+2,∴开口向下,对称轴为x=﹣3,顶点坐标为(﹣3,2);(2)∵令x=0,得:y=﹣,∴抛物线与y轴的交点坐标为:(0,﹣);令y=0,得到﹣x2﹣3x﹣=0,解得:x=﹣1或x=﹣5,故抛物线与x轴的交点坐标为:(﹣1,0)和(﹣5,0);(3)草图为:(4)根据草图知:当x=﹣1或x=﹣5时,y=0,当﹣5<x<﹣1时y>0,当x<﹣5或x>﹣1时y<0.57.解:(1)∵y=x2﹣2x﹣3=(x﹣1)2﹣4=(x+1)(x﹣3),∴抛物线的顶点坐标为(1,﹣4),对称轴为直线x=1,与x轴交点为(﹣1,0),(3,0);(2)由图象可知,当x>3或x<﹣1时,y>0.58.解:(1)把点A(1,0),B(3,2)分别代入直线y=x+m和抛物线y=x2+bx+c得:0=1+m,,∴m=﹣1,b=﹣3,c=2,所以y=x﹣1,y=x2﹣3x+2;(2)由(1)知,该抛物线的解析式为:y=x2﹣3x+2,∴y=(x﹣)2﹣,∴抛物线的对称轴是:x=;顶点坐标是(,﹣);(3)x2﹣3x+2>x﹣1,解得:x<1或x>3.59.解:(1)由二次函数的图象经过B(1,0)、C (0,﹣3)两点,得,解这个方程组,得,∴抛物线的解析式为;(2)令y1=0,得x2+2x﹣3=0,解这个方程,得x1=﹣3,x2=1,∴此二次函数的图象与x轴的另一个交点A的坐标为(﹣3,0);(3)当x<﹣3或x>0,y2<y1.60.解:(1)由题意,有,解得m=1.(2)∵m=1,∴y1=x2+2x﹣3,∴y1=(x+1)2﹣4,列表为:x…﹣3﹣2﹣101…y=x2+2x﹣3…0﹣3﹣4﹣30…描点并连线为:(3)∵m=1∴P(﹣2,﹣3),∴可以画出直线的图象.∴由图象得x≤﹣2或x≥1时,y1≥y2.。

二元一次不等式组100道利用方程不等式解决实际问题

二元一次不等式组100道利用方程不等式解决实际问题

二元一次不等式组100道利用方程不等式解决实际问题以下是100道利用方程(组)不等式(组)解决实际问题的例子:1.问题:一个矩形花坛的长是宽的2倍,其面积不小于10平方米。

求矩形花坛可能的长和宽。

解答:设矩形花坛的长为x,宽为y。

根据题意得到两个方程:x = 2y 和xy ≥ 10。

将第一个方程代入第二个方程得到2y^2 ≥ 10,化简得y^2 ≥ 5,解得y ≥ √5 或者y ≤ -√5、由于长和宽都不能为负数,所以y ≥ √5、再将y = √5 代入第一个方程得到 x = 2√5、因此,矩形花坛可能的长和宽为2√5 和√52.问题:小明与小红一起制作蛋糕,小明做了x个小时,小红做了y 个小时。

如果小明完成的蛋糕比小红多1个,而且他们总共做了不少于8个小时。

问小明和小红各自做的时间至少是多少?解答:设小明做蛋糕的时间为x,小红做蛋糕的时间为y。

根据题意得到两个不等式:x-y=1和x+y≥8、将第一个不等式整理得到x=y+1,代入第二个不等式得到y+1+y≥8,化简得y≥3/2、由于时间不能是小数,所以y≥2、再将y=2代入第一个不等式得到x=2+1=3、因此,小明和小红各自做蛋糕的时间至少是3小时和2小时。

3.问题:一家小超市每天至少卖出200瓶饮料和100袋薯片。

饮料一瓶价格为x元,薯片一袋价格为y元。

天总销售额不小于300元。

求饮料和薯片的最低价格。

解答:设饮料的价格为x元,薯片的价格为y元。

根据题意得到两个不等式:200x+100y≥300和x≥0,y≥0。

将第一个不等式化简得到2x+y≥3、我们希望价格最低,因此令x=0和y=0。

代入得到0≥3,不符合条件。

接下来我们令x=0,得到y≥3、再令y=0,得到2x≥3,化简得到x≥3/2、所以饮料的最低价格是3/2元,薯片的最低价格是3元。

二次函数与二元一次方程组不等式专项练习60题(有答案过程)ok

二次函数与二元一次方程组不等式专项练习60题(有答案过程)ok

二次函数与二元一次方程组、不等式专项练习60题(有答案)1.已知二次函数y=ax 2+bx+c (a ≠0)的图象如图所示,则下列结论:(1)4a+2b+c >0;(2)方程ax 2+bx+c=0两根之和小于零;(3)y 随x 的增大而增大;(4)一次函数y=x+bc 的图象 一定不过第二象限,其中错误的个数是( )A . 4个B . 3个C . 2个D . 1个2.如图是二次函数y=ax 2+bx+c 的图象,图象上有两点分别为A (2.18,﹣0.51)、B (2.68,0.54),则方程ax 2+bx+c=0的一个解只可能是( )A . 2.18B . 2.68C . ﹣0.51D . 2.453.方程x 2+3x ﹣1=0的根可看作是函数y=x+3的图象与函数y=的图象交点的横坐标,那么用此方法可推断出方程 x 3﹣x ﹣1=0的实数根x 0所在的范围是( )A . ﹣1<x 0<0B . 0<x 0<1C . 1<x 0<2D . 2<x 0<34.根据二次函数y=ax 2+bx+c (a ≠0,a 、b 、c 为常数)得到一些对应值,列表如下:判断一元二次方程ax 2+bx+c=0的一个解x 1的范围是( )A . 2.1<x 1<2.2B . 2.2<x 1<2.3C . 2.3<x 1<2.4D . 2.4<x 1<2.55.已知二次函数y=ax 2+bx+c 的y 与x 的部分对应值如下表:则下列判断中正确的是( )A . 抛物线开口向上B . 抛物线与y 轴交于负半轴C . 当x=3时,y <0D .方程ax 2+bx+c=0有两个相等实数根6.二次函数y=ax 2+bx+c (a ≠0)中,自变量x 与函数y 的对应值如下表: x 2.2 2.3 2.4 2.5y ﹣0.76 ﹣0.11 0.56 1.25 x…﹣2﹣11234…若,则一元二次方程ax 2+bx+c=0的两个根x 1,x 2的取值范围是( )A .﹣1<x1<0,2<x2<3B .﹣2<x1<﹣1,1<x2<2C . 0<x1<1,1<x2<2D .﹣2<x1<﹣1,3<x2<47.根据抛物线y=x 2+3x ﹣1与x 轴的交点的坐标,可以求出下列方程中哪个方程的近似解( )A . x 2﹣1=﹣3xB . x 2+3x+1=0C . 3x 2+x ﹣1=0D . x 2﹣3x+1=08.已知二次函数y=x 2+2x ﹣10,小明利用计算器列出了下表:那么方程x 2+2x ﹣10=0的一个近似根是( ) A . ﹣4.1 B . ﹣4.2 C . ﹣4.3 D . ﹣ 4.49.根据关于x 的一元二次方程x 2+px+q=0,可列表如下:则方程x 2+px+q=0的正数解满足( )A . 解的整数部分是0,十分位是5B . 解的整数部分是0,十分位是8C .解的整数部分是1,十分位是1D . 解的整数部分是1,十分位是210.根据下列表格中的二次函数y=ax 2+bx+c (a ≠0,a 、b 、c 为常数)的自变量x 与函数y 的对应值,判断ax 2+bx+c=0 的一个解x 的取值范围为( )A . 1.40<x <1.43B . 1.43<x <1.44C . 1.44<x <1.45D . 1.45<x <1.4611.已知二次函数y=ax 2+bx+c (a ≠0)的顶点坐标(﹣1,﹣3.2)及部分图象(如图),由图象可知关于x 的一元二次方程ax 2+bx+c=0的两个根分别是x 1=1.3和x 2=( )A . ﹣1.3B . ﹣2.3C . ﹣0.3D . ﹣3.312.如图,已知二次函数y=ax 2+bx+c 的部分图象,由图象可知关于x 的一元二次方程ax 2+bx+c=0的两个根分别是x 1=1.6,x 2=( )A . ﹣1.6B . 3.2C . 4.4D . 以上都不对y…m ﹣2mm ﹣2… x ﹣4.1 ﹣4.2 ﹣4.3 ﹣4.4 x 2+2x ﹣10 ﹣1.39 ﹣0.76﹣0.11 0.56 x 0 0.5 1 1.1 1.2 1.3 x 2+px+q﹣15 ﹣8.75 ﹣2 ﹣0.59 0.84 2.29 x 1.43 1.44 1.45 1.46y=ax 2+bx+c﹣0.095 ﹣0.046 0.003 0.05213.二次函数y=x2﹣6x+n的部分图象如图所示,若关于x的一元二次方程x2﹣6x+n=0的一个解为x1=1,则另一个解x2=_________.14.如图,已知抛物线y=x2+bx+c经过点(0,﹣3),请你确定一个b的值,使该抛物线与x轴的一个交点在(1,0)和(3,0)之间.你确定的b的值是_________.15.抛物线y=x2﹣4x+m与x轴的一个交点的坐标为(1,0),则此抛物线与x轴的另一个交点的坐标是_________.16.已知二次函数y=﹣x2+2x+m的部分图象如图所示,则关于x的一元二次方程﹣x2+2x+m=0的解为_________.17.抛物线y=x2﹣4x+与x轴的一个交点的坐标为(1,0),则此抛物线与x轴的另一个交点的坐标是_________.18.开口向下的抛物线y=(m2﹣2)x2+2mx+1的对称轴经过点(﹣1,3),则m=_________.19.已知二次函数y=ax2+bx+c(a≠0)的顶点坐标(﹣1,﹣3.2)及部分图象(如图),由图象可知关于x的方程ax2+bx+c=0的两个根分别是x1=1.3和x2=_________.20.如图,已知二次函数y=ax2+bx+c的部分图象,由图象可知关于x的一元二次方程ax2+bx+c=0的两个根分别是_________.21.对于二次函数y=x 2+2x ﹣5,当x=1.4时,y=﹣0.24<0,当x=1.45时,y=0.0025>0;所以方程x 2+2x ﹣5=0的一个正根的近似值是 _________ .(精确到0.1).22.根据下列表格中y=ax 2+bx+c 的自变量x 与函数值y 的对应值,判断方程ax 2+bx+c=0(a ≠0,a ,b ,c 为常数)的一个解x 的范围是 _________ . x 6.17 6.18 6.196.20y=ax 2+bx+c﹣0.03 ﹣0.01 0.02 0.0423.抛物线y=2x 2﹣4x+m 的图象的部分如图所示,则关于x 的一元二次方程2x 2﹣4x+m=0的解是 _________ .24.二次函数y=ax 2+bx+c 的部分对应值如下表:①抛物线的顶点坐标为(1,﹣9); ②与y 轴的交点坐标为(0,﹣8);③与x 轴的交点坐标为(﹣2,0)和(2,0);④当x=﹣1时,对应的函数值y 为﹣5.以上结论正确的是 _________ .25.二次函数y=ax 2+bx+c 的自变量x 与函数值y 的部分对应值如下表:x … ﹣1 0 1 2 3 …y … ﹣1 ﹣ ﹣2﹣…根据表格中的信息,完成下列各题 (1)当x=3时,y= _________ ;(2)当x= _________ 时,y 有最 _________ 值为 _________ ; (3)若点A (x 1,y 1)、B (x 2,y 2)是该二次函数图象上的两点,且﹣1<x 1<0,1<x 2<2,试比较两函数值的大 小:y 1 _______ y 2(4)若自变量x 的取值范围是0≤x ≤5,则函数值y 的取值范围是 _________ .26.阅读材料,解答问题.例 用图象法解一元二次不等式:.x 2﹣2x ﹣3>0解:设y=x 2﹣2x ﹣3,则y 是x 的二次函数.∵a=1>0,∴抛物线开口向上.又∵当y=0时,x 2﹣2x ﹣3=0,解得x 1=﹣1,x 2=3.∴由此得抛物线y=x 2﹣2x ﹣3的大致图象如图所示. 观察函数图象可知:当x <﹣1或x >3时,y >0. ∴x 2﹣2x ﹣3>0的解集是:x <﹣1或x >3.(1)观察图象,直接写出一元二次不等式:x 2﹣2x ﹣3>0的解集是 _________ ;(2)仿照上例,用图象法解一元二次不等式:x 2﹣1>0.x … ﹣3 ﹣20 1 3 5 … y … 7 0 ﹣8 ﹣9 ﹣5 7…27.一元二次方程x2+7x+9=1的根与二次函数y=x2+7x+9的图象有什么关系?试把方程的根在图象上表示出来.28.画出函数y=﹣2x2+8x﹣6的图象,根据图象回答:(1)方程﹣2x2+8x﹣6=0的解是什么;(2)当x取何值时,y>0;(3)当x取何值时,y<0.29.已知二次函数y=﹣x2+2x+m的部分图象如图所示,你能确定关于x的一元二次方程﹣x2+2x+m=0的解?30.小明在复习数学知识时,针对“求一元二次方程的解”整理了以下几种方法,请你将有关内容补充完整:例题:求一元二次方程x2﹣x﹣1=0的两个解.(1)解法一:选择合适的一种方法(公式法、配方法、分解因式法).(2)解法二:利用二次函数图象与两坐标轴的交点求解.如图,把方程x2﹣x﹣1=0的解看成是二次函数y=_________的图象与x轴交点的横坐标即x1,x2就是方程的解.(3)解法三:利用两个函数图象的交点求解①把方程x2﹣x﹣1=0的解看成是二次函数y=_________的图象与一个一次函数y=_________的图象交点的横坐标②画出这两个函数的图象,用x1,x2在x轴上标出方程的解.31.如图是二次函数y=ax2+bx+c的部分图象,由图象可知不等式ax2+bx+c<0的解集是()A.﹣1<x<5 B.x>5 C.x<﹣1且x>5 D.x<﹣1或x>532.二次函数y=ax 2+bx+c (a ≠0)的图象如图所示,则下列结论中,正确的是( )A . a bc <0B . a +c <bC . b >2aD . 4a >2b ﹣c33.现定义某种运算a ⊕b=a (a >b ),若(x+2)⊕x 2=x+2,那么x 的取值范围是( )A . ﹣1<x <2B . x >2或x <﹣1C . x >2D . x<﹣134.如图,一次函数y 1=kx+n (k ≠0)与二次函数y 2=ax 2+bx+c (a ≠0)的图象相交于A (﹣1,5)、B (9,2)两点,则关于x 的不等式kx+n ≥ax 2+bx+c 的解集为( )A . ﹣1≤x ≤9B . ﹣1≤x <9C . ﹣1<x ≤9D . x ≤﹣1或x ≥935.如图所示的抛物线是二次函数y=ax 2﹣3x+a 2﹣1的图象,那么下列结论错误的是( )36.已知:二次函数y=x 2﹣4x ﹣a ,下列说法中错误的个数是( )①若图象与x 轴有交点,则a ≤4;②若该抛物线的顶点在直线y=2x 上,则a 的值为﹣8;③当a=3时,不等式x 2﹣4x+a >0的解集是(3,0);④若将图象向上平移1个单位,再向左平移3个单位后过点x ,则a=﹣1;⑤若抛物线与x 轴有两个交点,横坐标分别为x1、x 2,则当x 取x 1+x 2时的函数值与x 取0时的函数值相等. A . 1 B . 2 C . 3 D . 437.二次函数y=ax 2的图象如图所示,则不等式ax >a 的解集是( )A . x >1B . x <1C . x >﹣1D . x <﹣138.如图,函数y=x 2﹣2x+m (m 为常数)的图象如图,如果x=a 时,y <0;那么x=a ﹣2时,函数值( )A . 当y <0时,x >0B . 当﹣3<x <0时,y >0C . 当x <时,y 随x 的增大而增大D .上述抛物线可由抛物线y=﹣x 2平移得到A.y<0 B.0<y<m C.y=m D.y>m39.已知:二次函数y=x2﹣4x+a,下列说法中错误的个数是()①当x<1时,y随x的增大而减小②若图象与x轴有交点,则a≤4③当a=3时,不等式x2﹣4x+a>0的解集是1<x<3④若将图象向上平移1个单位,再向左平移3个单位后过点(1,﹣2),则a=﹣3.A.1B.2C.3D.440.如图,二次函数y1=ax2+bx+c与一次函数y2=kx+n的图象相交于A(0,4),B(4,1)两点,下列三个结论:①不等式y1>y2的解集是0<x<4②不等式y1<y2的解集是x<0或x>4③方程ax2+bx+c=kx+n的解是x1=0,x2=4其中正确的个数是()A.0个B.1个C.2个D.3个41.二次函数y=x2﹣2x﹣3的图象如图所示.当y<0时,自变量x的取值范围是_________.42. 如图是抛物线y=ax2+bx+c的一部分,其对称轴为直线x=1,若其与x轴一交点为B(3,0),则由图象可知,不等式ax2+bx+c>0的解集是_________.43.已知二次函数y=x2﹣6x+5.(1)请写出该函数的对称轴,顶点坐标;(2)函数图象与x轴交点坐标为_________,与y轴的交点坐标为_________;(3)当_________时y>0,_________时y随x的增大而增大;(4)写出不等式x2﹣6x+5<0的解集._________44.如图,二次函数y=ax2+bx+c的图象与x轴相交于两个点,根据图象回答:(1)b_________0(填“>”、“<”、“=”);(2)当x满足_________时,ax2+bx+c>0;(3)当x满足_________时,ax2+bx+c的值随x增大而减小.45.二次函数y=ax2+bx+c(a≠0)的图象如图所示,根据图象解答下列问题:(1)写出方程ax2+bx+c=0的两个根.x1=_________,x2=_________;(2)写出不等式ax2+bx+c>0的解集._________;(3)写出y随x的增大而减小的自变量x的取值范围._________;(4)若方程ax2+bx+c=k有两个不相等的实数根,求k的取值范围._________.46.二次函数y=ax2+bx+c的图象如图所示,给出下列说法:①ac>0;②2a+b=0;③a+b+c=0;④当x>1时,函数y随x的增大而增大;⑤当y>0时,﹣1<x<3.其中,正确的说法有_________.(请写出所有正确说法的序号)47.如图是函数y=x2+bx﹣1的图象,根据图象提供的信息,确定使﹣1≤y≤2的自变量x的取值范围是_________.48.已知抛物线y=x2﹣x﹣6,则不等式x2﹣x﹣6<0的解集为_________.49.已知二次函数y=x2﹣2x﹣3的函数值y<0,则x的取值范围为_________.50.二次函数y=ax2+bx+c(a≠0)的图象如图所示,根据图象解答下列问题:(1)不等式ax2+bx+c>0的解集为_________.(2)若y随x的增大而减小,则自变量x的取值范围是_________.(3)若方程ax2+bx+c=k有两个不相等的实数根,求k的取值范围是_________.51.如图,直线y=x+m和抛物线y=x2+bx+c都经过点A(1,0)和B(3,2),不等式x2+bx+c>x+m 的解集为_________.52.函数y=x2﹣2x﹣2的图象如图所示,观察图象,使y≥l成立的x的取值范围是_________.53.已知函数y1=x2与y2=﹣x+3的图象大致如图,若y1≤y2,则自变量x的取值范围是_________.54.已知二次函数y=4x2﹣4x﹣3的图象如图所示,,则函数值y_________0.55.函数y=x2﹣2x﹣2的图象如图所示,根据其中提供的信息,可求得使y≥1成立的x的取值范围是_________.56.已知抛物线y=﹣x2﹣3x﹣(1)写出抛物线的开口方向、对称轴和顶点坐标;(2)求抛物线与x轴、y轴的交点坐标;(3)画出草图;(4)观察草图,指出x为何值时,y>0,y=0,y<0.57.如图是二次函数y=x2﹣2x﹣3的图象.(1)求该抛物线的顶点坐标、与x轴的交点坐标(2)观察图象直接指出x在什么范围内时,y>0?58.如图,直线y=x+m和抛物线y=x2+bx+c都经过点A(1,0),B(3,2).(1)求m的值和抛物线的解析式;(2)求抛物线的对称轴和顶点坐标;(3)求不等式x2+bx+c>x+m的解集.(直接写出答案)59.如图,二次函数的图象与x轴交于A、B 两点,与y轴交于点C,且点B的坐标为(1,0),点C的坐标为(0,﹣3),一次函数y2=mx+n的图象过点A、C.(1)求二次函数的解析式;(2)求二次函数的图象与x轴的另一个交点A的坐标;(3)根据图象写出y2<y1时,x的取值范围.60.已知抛物线y1=x2+(m+1)x+m﹣4与x轴交于A、B两点(点A在点B左侧),且对称轴为x=﹣1.(1)求m的值;(2)画出这条抛物线;(2)若直线y2=kx+b过点B且与抛物线交于点P(﹣2m,﹣3m),根据图象回答:当x取什么值时,y1≥y2.参考答案:1.解:∵当x=2时,y=4a+2b+c,对应的y值即纵坐标为正,即4a+2b+c>0;故(1)正确;∵由二次函数y=ax2+bx+c(a≠0)的图象可知:函数图象与x轴有两个不同的交点,即对应方程有两个不相等的实数根;并且正根的绝对值较大,∴方程ax2+bx+c=0两根之和大于零;故(2)错误;∵函数的增减性需要找到其对称轴才知具体情况;不能在整个自变量取值范围内说y随x的增大而增大;故(3)错误;∵由图象可知:c<0,b<0,∴bc>0,∴一次函数y=x+bc的图象一定经过第二象限,故(4)错误;∴错误的个数为3个,故选B.2.解:∵图象上有两点分别为A(2.18,﹣0.51)、B(2.68,0.54),∴当x=2.18时,y=﹣0.51;x=2.68时,y=0.54,∴当y=0时,2.18<x<2.68,只有选项D符合,故选D.3.解:方程x3﹣x﹣1=0,∴x2﹣1=,∴它的根可视为y=x2﹣1和y=的交点的横坐标,当x=1时,x2﹣1=0,=1,交点在x=1的右边,当x=2时,x2﹣1=3,=,交点在x=2的左边,又∵交点在第一象限.∴1<x0<2,故选C.4. :根据表格可知,ax2+bx+c=0时,对应的x的值在2.3~2.4之间.故选C.5.解:∵由图表可以得出当x=0或2时,y=1,可以求出此函数的对称轴是x=1,顶点坐标为(1,3),∴二次函数解析式为:y=a(x﹣1)2+3,再将(0,1)点代入得:1=a(﹣1)2+3,解得:a=﹣2,∴y=﹣2(x﹣1)2+3,∵a<0∴A,抛物线开口向上错误,故:A错误;∵y=﹣2(x﹣1)2+3=﹣2x2+4x+1,与y轴交点坐标为(0,1),故与y轴交于正半轴,故:B错误;∵x=3时,y=﹣5<0,故:C正确;∵方程ax2+bx+c=0,△=16+4×2×1=22>0,此方程有两个不相等的实数根,故:D.方程有两个相等实数根错误;故选:C.6.解:∵,∴﹣1<m﹣2<﹣,<m﹣<1,∴函数y=ax2+bx+c的图象与x轴的交点就是方程ax2+bx+c=0的根,函数y=ax2+bx+c的图象与x轴的交点的纵坐标为0.由表中数据可知:y=0在y=m﹣2与y=m﹣之间,故对应的x的值在﹣1与0之间,即﹣1<x1<0,y=0在y=m﹣2与y=m﹣之间,故对应的x的值在2与3之间,即2<x2<3.故选:A.7.解:∵抛物线y=x2+3x﹣1与x轴的交点的横坐标就是方程x2+3x﹣1=0的根,∴可以求出方程x2+3x﹣1=0的根,方程x2﹣1=﹣3x与方程x2+3x﹣1=0等价,∴可以求出方程x2﹣1=﹣3x的根.故选A.8.解:根据表格得,当﹣4.4<x<﹣4.3时,﹣0.11<y<0.56,即﹣0.11<x2+2x﹣10<0.56,∵0距﹣0.11近一些,∴方程x2+2x﹣10=0的一个近似根是﹣4.3,故选C.9. 解:根据表中函数的增减性,可以确定函数值是0时,x应该是大于1.1而小于1.2.所以解的整数部分是1,十分位是1.故选C.10.解:由表可以看出,当x取1.44与1.45之间的某个数时,y=0,即这个数是ax2+bx+c=0的一个根.ax2+bx+c=0的一个解x的取值范围为1.44<x<1.45.故选C11.解:方法一:∵二次函数y=ax2+bx+c的顶点坐标(﹣1,﹣3.2)∴﹣=﹣1则﹣=﹣2∵x1x2是一元二次方程ax2+bx+c=0的两根∴x1+x2=﹣又∵x1=1.3∴x1+x2=1.3+x2=﹣2解得x2=﹣3.3.方法二:根据对称轴为;x=﹣1,关于x的一元二次方程ax2+bx+c=0的两个根分别是x1=1.3,则=﹣1,即=﹣1,解得:x2=﹣3.3,故选D12.解:由抛物线图象可知其对称轴为x=3,又抛物线是轴对称图象,∴抛物线与x轴的两个交点关于x=3对称,而关于x的一元二次方程ax2+bx+c=0的两个根分别是x1,x2,那么两根满足2×3=x1+x2,而x1=1.6,∴x2=4.4.故选C.13.解:由图可知,对称轴为x=﹣==3,根据二次函数的图象的对称性,=3,解得x2=5.故答案为:514.解:把(0,﹣3)代入抛物线的解析式得:c=﹣3,∴y=x2+bx﹣3,∵使该抛物线与x轴的一个交点在(1,0)和(3,0)之间,∴把x=1代入y=x2+bx﹣3得:y=1+b﹣3<0把x=3代入y=x2+bx﹣3得:y=9+3b﹣3>0,∴﹣2<b<2,即在﹣2<b<2范围内的任何一个数都符合,故答案为:在﹣2<b<2范围内的任何一个数.15.解:把点(1,0)代入抛物线y=x2﹣4x+m中,得m=3,所以,原方程为y=x2﹣4x+3,令y=0,解方程x2﹣4x+3=0,得x1=1,x2=3,∴抛物线与x轴的另一个交点的坐标是(3,0).故答案为:(3,0).16.解:依题意得二次函数y=﹣x2+2x+m的对称轴为x=1,与x轴的一个交点为(3,0),∴抛物线与x轴的另一个交点横坐标为1﹣(3﹣1)=﹣1,∴交点坐标为(﹣1,0)∴当x=﹣1或x=3时,函数值y=0,即﹣x2+2x+m=0,∴关于x的一元二次方程﹣x2+2x+m=0的解为x1=﹣1或x2=3.故填空答案:x1=﹣1或x2=3.17. 解:把点(1,0)代入抛物线y=x2﹣4x+中,得m=6,所以,原方程为y=x2﹣4x+3,令y=0,解方程x2﹣4x+3=0,得x1=1,x2=3 ∴抛物线与x轴的另一个交点的坐标是(3,0)18.解:由于抛物线y=(m2﹣2)x2+2mx+1的对称轴经过点(﹣1,3),∴对称轴为直线x=﹣1,x==﹣1,解得m1=﹣1,m2=2.由于抛物线的开口向下,所以当m=2时,m2﹣2=2>0,不合题意,应舍去,∴m=﹣1.19.解:二次函数y=ax2+bx+c(a≠0)的顶点坐标是(﹣1,﹣3.2),则对称轴为x=﹣1;所以=﹣1,又因为x1=1.3,所以x2=﹣2﹣x1=﹣2﹣1.3=﹣3.3.20. 解:依题意得二次函数y=ax2+bx+c的部分图象的对称轴为x=3,而对称轴左侧图象与x轴交点与原点的距离,约为1.6,∴x1=1.6;又∵对称轴为x=3,则=3,∴x2=2×3﹣1.6=4.4.21. 解:∵二次函数y=x2+2x﹣5中a=1>0,∴抛物线开口方向向上,∵对称轴x=﹣=﹣1,∴x>﹣1时y随x的增大而增大,∵当x=1.4时,y=﹣0.24<0,当x=1.45时,y=0.0025>0,∴方程x2+2x﹣5=0的一个正根:1.4<x<1.45,∴近似值是1.4.答案1.4.22.解:由表格中的数据看出﹣0.01和0.02更接近于0,故x应取对应的范围.故答案为:6.18<x<6.19.23.解:观察图象可知,抛物线y=2x2﹣4x+m与x轴的一个交点为(﹣1,0),对称轴为x=1,∴抛物线与x轴的另一交点坐标为(3,0),∴一元二次方程2x2﹣4x+m=0的解为x1=﹣1,x2=3.故本题答案为:x1=﹣1,x2=3.24.解:根据上表可画出函数的图象,由图象可得,①抛物线的顶点坐标为(1,﹣9);②与y轴的交点坐标为(0,﹣8);③与x轴的交点坐标为(﹣2,0)和(4,0);④当x=﹣1时,对应的函数值y为﹣5.故答案为:①②④.25.解:(1)由表得,解得,∴二次函数的解析式为y=x2﹣x﹣,当x=3时,y==﹣1;(2)将y=x2﹣x﹣配方得,y=(x﹣1)2﹣2,∵a=>0,∴函数有最小值,当x=1时,最小值为﹣2;(3)令y=0,则x=±2+1,抛物线与x轴的两个交点坐标为(2+1,0)(﹣2+1,0)∵﹣1<x1<0,1<x2<2,∴x1到1的距离大于x2到1的距离,∴y1>y2(4)∵抛物线的顶点为(1,﹣2),∴当x=5时,y最大,即y=2;当x=1时,y最小,即y=﹣2,∴函数值y的取值范围是﹣2≤y≤2;故答案为﹣1;1、小、﹣2;>;﹣2≤y≤2.26.解:(1)x<﹣1或x>3;(2)设y=x2﹣1,则y是x的二次函数,∵a=1>0,∴抛物线开口向上.又∵当y=0时,x2﹣1=0,解得x1=﹣1,x2=1.∴由此得抛物线y=x2﹣1的大致图象如图所示.观察函数图象可知:当x<﹣1或x>1时,y>0.∴x2﹣1>0的解集是:x<﹣1或x>1.27.解:一元二次方程x2+7x+9=1的根是二次函数y=x2+7x+9图象中y=1时,所对应的x的值;当y=1时,x2+7x+9=1,∴作出二次函数y=x2+7x+9的图象如图,由图中可以看出,当y=1时,x≈﹣5.6或﹣1.4,∴一元二次方程x2+7x+9=1的根为x1≈﹣5.6,x2≈﹣1.4.28.解:函数y=﹣2x2+8x﹣6的图象如图.由图象可知:(1)方程﹣2x2+8x﹣6=0的解x1=1,x2=3.(2)当1<x<3时,y>0.(3)当x<1或x>3时,y<0.29.解:根据图象可知,二次函数y=﹣x2+2x+m的部分图象经过点(3,0),所以该点适合方程y=﹣x2+2x+m,代入,得﹣32+2×3+m=0解得,m=3 ①把①代入一元二次方程﹣x2+2x+m=0,得﹣x2+2x+3=0,②解②,得x1=3,x2=﹣130.解:(1)由原方程,得:=0,即=;解得x1=,x2=.(2)设二次函数方程为y=ax2+bx+c(a,b,c均为实数,且a≠0).由图象得知,该函数过点(0,﹣1),所以该点满足方程y=ax2+bx+c,∴把(0,﹣1)代入方程y=ax2+bx+c,得c=﹣1,①二次函数方程为y=ax2+bx+c与x轴交点的横坐标就是方程x2﹣x﹣1=0的解;∴x1•x2==﹣1,即c=﹣a;②x1+x2==1;③由①②③,得:;∴二次函数方程为y=x2﹣x﹣1.(3)31.解:由图象得:对称轴是x=2,其中一个点的坐标为(5,0),∴图象与x轴的另一个交点坐标为(﹣1,0).利用图象可知:ax2+bx+c<0的解集即是y<0的解集,∴x<﹣1或x>5.故选:D.32.解:A、∵图象开口向下,∴a<0,∵与y轴交于正半轴,∴c>0,∵对称轴在y轴左侧,﹣<0,∴b<0,∴abc>0,故本选项错误;B、∵当x=﹣1时,对应的函数值y>0,即a﹣b+c>0,∴a+c>b,故本选项错误;C、∵抛物线的对称轴为直线x=﹣>﹣1,又a<0,∴b>2a,故本选项正确;D、∵当x=﹣2时,对应的函数值y<0,即4a﹣2b+c<0,∴4a<2b﹣c,故本选项错误.故选C.33. 解:由定义运算得:x+2>x2,即解不等式x2﹣x﹣2<0,设y=x2﹣x﹣2,函数图象开口向上,图象与x轴交点是(﹣1,0),(2,0),由图象可知,当﹣1<x<2时,y<0,即x的取值范围﹣1<x<2.故选A.34.解:由图形可以看出:抛物线y2=ax2+bx+c(a≠0)和一次函数y1=kx+n(k≠0)的交点的横坐标分别为﹣1,9,当y1≥y2时,x的取值范围正好在两交点之内,即﹣1≤x≤9.故选A.35.解:由图象可知,抛物线经过原点(0,0),所以a2﹣1=0,解得a=±1,∵图象开口向下,a<0,∴a=﹣1.∴y=﹣x2﹣3x,∴二次函数与图象的交点为:(﹣3,0),(0,0),∴当y<0时,x<﹣3或x>0,故A选项错误;当﹣3<x<0时,y>0,故B选项正确;当x<时,y随x的增大而增大故C选项正确;上述抛物线可由抛物线y=﹣x2平移得到,故D选项正确;故选:A.36.解:①∵图象与x轴有交点,则△=16﹣4×1×(﹣a)≥0,解得a≥﹣4;故本选项错误;②∵二次函数y=x2﹣4x﹣a的顶点坐标为(2,﹣a﹣4),代入y=2x得,﹣a﹣4=2×2,a=﹣8,故本选项正确;③表达错误,解集不能表示为(3,0),故本选项错误;④表达错误,点不能用x表示,故本选项错误;⑤由根与系数的关系,x1+x2=4,当x=4时,y=16﹣16﹣a=﹣a,当x=0时,y=﹣a,故本选项正确.故选C.37.解:由图象可知a<0,∴不等式ax>a的解集为x<1.故选B.38.解:x=a代入函数y=x2﹣2x+m中得:y=a2﹣2a+m=a(a﹣2)+m,∵x=a时,y<0,∴a(a﹣2)+m<0,由图象可知:m>0,∴a(a﹣2)<0,又∵x=a时,y<0,∴a>0则a﹣2<0,由图象可知:x=0时,y=m,又∵x<1时y随x的增大而减小,∴x=a﹣2时,y>m.故选:D.39.解:二次函数为y=x2﹣4x+a,对称轴为x=2,图象开口向上.则:A、当x<1时,y随x的增大而减小,故说法正确;B、若图象与x轴有交点,即△=16﹣4a≥0,则a≤4,故说法正确;C、当a=3时,不等式x2﹣4x+3<0的解集是x<0或x>3,故说法错误;D、原式可化为y=(x﹣2)2﹣4+a,将图象向上平移1个单位,再向左平移3个单位后所得函数解析式是y=(x+1)2﹣3+a,函数过点(1,﹣2),代入解析式得到:a=﹣3.故说法正确.故选A.40.①通过图象可知,在点A和B之间y1的图象在y2的上面,也就是y1>y2,且解集是0<x<4,此选项正确;②通过图象可知,在点A的左边和在B的右边,y1的图象在y2的下面,也就是y1<y2,且解集是x<0或x>4,此选项正确;③两函数图象的交点就是y1=y2的解,且解是x1=0,x2=4,此选项正确.故选D.41.解:∵二次函数y=x2﹣2x﹣3的图象如图所示.∴图象与x轴交在(﹣1,0),(3,0),∴当y<0时,即图象在x轴下方的部分,此时x的取值范围是:﹣1<x<3,故答案为:﹣1<x<3.42.解:∵抛物线与x轴的一个交点(3,0)而对称轴x=1∴抛物线与x轴的另一交点(﹣1,0)当y=ax2+bx+c>0时,图象在x轴上方此时x<﹣1或x>3故填空答案:x<﹣1或x>3.43.解:(1)根据二次函数的性质可知对称轴为x=﹣=﹣=3顶点坐标为x=﹣=3,y===﹣4,故对称轴为x=3,顶点坐标为(3,﹣4);(2)令y=0,即x2﹣6x+5=0解得x1=1,x2=5故函数图象与x轴交点为(1,0),(5,0)∴c=0,故图象与y轴交点为(0,5);(3)由图象可知当x<1或x>5时,y>0当x>3时,y随x的增大而增大(4)由图象可知,x2﹣6x+5<0的解集为1<x<5.44.解:(1)根据图象得二次函数y=ax2+bx+c(a≠0)的图象,a>0,∵对称轴经过x轴的负半轴,即可得出a,b同号,∴b>0,故答案为:b>0;(2)根据图象得二次函数y=ax2+bx+c(a≠0)的图象与x轴交点坐标为(2,0)、(﹣4,0),而ax2+bx+c>0,即y>0,∴x<﹣4或x>2;故答案为:x<﹣4或x>2;(3)根据图象得二次函数y=ax2+bx+c(a≠0)的图象与x轴交点坐标为(2,0)、(﹣4,0),∴抛物线的对称轴为x=﹣1,∴当x<﹣1时,y随x的增大而减小.故答案为:x<﹣1.45.解:(1)∵二次函数y=ax2+bx+c的图象与x轴的交点为(1,0),(3,0)∴方程ax2+bx+c=0的两个根x1=1,x2=3;(2)由二次函数y=ax2+bx+c的图象可知:1<x<3时,二次函数y=ax2+bx+c的值大于0∴不等式ax2+bx+c>0的解集为1<x<3;(3)由图象可知:二次函数y=ax2+bx+c的对称轴为x=2∴y随x的增大而减小的自变量x的取值范围为x>2;(4)由图象可知:二次函数y=ax2+bx+c的顶点坐标为(2,2),当直线y=k,在(0,2)的下边时,一定与抛物线有两个不同的交点,因而当k<2时,方程ax2+bx+c=k有两个不相等的实数根.46.解:∵抛物线的开口向下,与y轴的交点在y轴的正半轴上,∴a<0,c>0,∴ac<0,∴①错误;由图象可知:﹣=1,∴2a+b=0,∴②正确;当x=1时,y=a+b+c>0,∴③错误;由图象可知:当x>1时,函数y随x的增大而减小,∴④错误;根据图象,当﹣1<x<3时,y>0,∴⑤正确;正确的说法有②⑤.47.解:∵y=x2+bx﹣1经过(3,2)点,∴b=﹣2,∵﹣1≤y≤2,∴﹣1≤x2﹣2x﹣1≤2,解得2≤x≤3或﹣1≤x≤0.48. 解:∵x2﹣x﹣6=0∴x1=﹣2,x2=3∴抛物线y=x2﹣x﹣6与x轴的交点坐标为(﹣2,0),(3,0)而抛物线y=x2﹣x﹣6开口向上当y<0时,图象在x轴的下方,此时﹣2<x<3故填空答案:﹣2<x<3.49. 解:当y=0时,即x2﹣2x﹣3=0,∴x1=﹣1,x2=3,∴图象与x轴的交点是(﹣1,0),(3,0),当y<0时,图象在x轴的下方,此时﹣1<x<3.故填空答案:﹣1<x<3.50.解:(1)依题意因为ax2+bx+c>0,得出x的取值范围为:1<x<3;(2)如图可知,当y随x的增大而减小,自变量x的取值范围为:x>2;(3)由顶点(2,2)设方程为a(x﹣2)2+2=0,∵二次函数与x轴的2个交点为(1,0),(3,0),∴a=﹣2,∴抛物线方程为y=﹣2(x﹣2)2+2,y=﹣2(x﹣2)2+2﹣k实际上是原曲线下移k个单位,由图形知,当k<2时,曲线与x轴有两个交点.故k<2.故答案为:(1)1<x<3;(2)x>2;(3)k<2.51.解:∵直线y=x+m和抛物线y=x2+bx+c都经过点A(1,0)和B(3,2),∴根据图象可知,不等式x2+bx+c>x+m 的解集为x<1或x>3;故答案为:x<1或x>3.52.解:直线y=1上方的函数图象所对应的自变量的取值为x≤﹣1或x≥3,故答案为x≤﹣1或x≥3.53.解:根据图象知,当y1≤y2时,自变量x的取值范围是﹣2≤x≤.故答案为﹣2≤x≤.54.解:由图可知,﹣<x<时,函数图象在x轴的下方,所以y<0.故答案为:<.55.解:当y=1时,x2﹣2x﹣2=1,解得(x+1)(x﹣3)=0,x1=﹣1,x2=3.由图可知,x≤﹣1或x≥3时y≥1.故答案为x≤﹣1或x≥3.56.解:(1)∵y=﹣x2﹣3x﹣=﹣(x2+6x+5)=﹣(x2+6x+9﹣4)=﹣(x+3)2+2,∴开口向下,对称轴为x=﹣3,顶点坐标为(﹣3,2);(2)∵令x=0,得:y=﹣,∴抛物线与y轴的交点坐标为:(0,﹣);令y=0,得到﹣x2﹣3x﹣=0,解得:x=﹣1或x=﹣5,故抛物线与x轴的交点坐标为:(﹣1,0)和(﹣5,0);(3)草图为:(4)根据草图知:当x=﹣1或x=﹣5时,y=0,当﹣5<x<﹣1时y>0,当x<﹣5或x>﹣1时y<0.57.解:(1)∵y=x2﹣2x﹣3=(x﹣1)2﹣4=(x+1)(x﹣3),∴抛物线的顶点坐标为(1,﹣4),对称轴为直线x=1,与x轴交点为(﹣1,0),(3,0);(2)由图象可知,当x>3或x<﹣1时,y>0.58.解:(1)把点A(1,0),B(3,2)分别代入直线y=x+m和抛物线y=x2+bx+c得:0=1+m,,∴m=﹣1,b=﹣3,c=2,所以y=x﹣1,y=x2﹣3x+2;(2)由(1)知,该抛物线的解析式为:y=x2﹣3x+2,∴y=(x﹣)2﹣,∴抛物线的对称轴是:x=;顶点坐标是(,﹣);(3)x2﹣3x+2>x﹣1,解得:x<1或x>3.59.解:(1)由二次函数的图象经过B(1,0)、C (0,﹣3)两点,得,解这个方程组,得,∴抛物线的解析式为;(2)令y1=0,得x2+2x﹣3=0,解这个方程,得x1=﹣3,x2=1,∴此二次函数的图象与x轴的另一个交点A的坐标为(﹣3,0);(3)当x<﹣3或x>0,y2<y1.60.解:(1)由题意,有,解得m=1.(2)∵m=1,∴y1=x2+2x﹣3,∴y1=(x+1)2﹣4,列表为:x …﹣3 ﹣2 ﹣1 0 1 …y=x2+2x﹣3 …0 ﹣3 ﹣4 ﹣3 0 …描点并连线为:(3)∵m=1∴P(﹣2,﹣3),∴可以画出直线的图象.∴由图象得x≤﹣2或x≥1时,y1≥y2.。

二元一次方程(不等式)组应用

二元一次方程(不等式)组应用

二元一次方程1.你知道吗?中国在近几届亚运会金牌榜上一直位居榜首,下表是第十五届亚运会中某日的金牌榜.根据此表你能列出方程组求出中国获得的金牌数吗?请试之.2.根据条件,设出适当的未知数,并列出二元一次方程或方程组.(1)摩托车的速度是货车的倍,它们速度之和是150km/h;(2)某时装的价格是某皮装价格的1.4倍,5件皮装要比3件时装贵2800元.3.根据题意列出方程组:(1)明明到邮局买0.8元与2元的邮票共13枚,共花去20元钱,问明明两种邮票各买了多少枚?(2)将若干只鸡放入若干笼中,若每个笼中放4只,则有一鸡无笼可放;若每个笼里放5只,则有一笼无鸡可放,问有多少只鸡,多少个笼?4.根据题意列二元一次方程组:(1)两批货物,第一批360吨,用5节火车皮和12辆汽车正好装完;第二批500吨,用7节火车皮和16辆汽车正好装完.每节火车皮和每辆汽车平均各装货物多少吨?(2)某校课外小组的学生准备外出活动;若每组7人,则余下3人;若每组8人,则有一组只有3人;求这个课外小组分成几组?共有多少人?5.甲、乙、丙三队要完成A、B两项工程.B工程的工作量比A工程的工作量多25%,甲、乙、丙三队单独完成A工程所需的时间分别是20天、24天、30天.为了共同完成这两项工程,先派甲队做A 工程,乙、丙二队做B工程;经过几天后,又调丙队与甲队共同完成A工程.问乙、丙二队合作了多少天?6.(2018•株洲)食品安全是老百姓关注的话题,在食品中添加过量的添加剂对人体有害,但适量的添加剂对人体无害且有利于食品的储存和运输.某饮料加工厂生产的A、B两种饮料均需加入同种添加剂,A饮料每瓶需加该添加剂2克,B饮料每瓶需加该添加剂3克,已知270克该添加剂恰好生产了A、B两种饮料共100瓶,问A、B两种饮料各生产了多少瓶?7.(2018•扬州)古运河是扬州的母亲河.为打造古运河风光带,现有一段长为180M的河道整治任务由A、B两工程队先后接力完成.A工程队每天整治12M,B工程队每天整治8M,共用时20天.(1)根据题意,甲、乙两名同学分别列出尚不完整的方程组如下:根据甲、乙两名问学所列的方程组,请你分别指出未知数x、y表示的意义,然后在方框中补全甲、乙两名同学所列的方程组:甲:x表示,y表示乙:x表示,y表示(2)求A、B两工程队分别整治河道多少M.8.(2018•烟台)小华从家里到学校的路是一段平路和一段下坡路.假设他始终保持平路每分钟走60M,下坡路每分钟走80M,上坡路每分钟走40M,从家里到学校需10分钟,从学校到家里需15分钟.请问小华家离学校多远?9.(2018•威海)为了参加2018年威海国际铁人三项(游泳,自行车,长跑)系列赛业余组的比赛,李明针对自行车和长跑工程进行专项训练.某次训练中,李明骑自行车的平均速度为每分钟600M,跑步的平均速度为每分钟200M,自行车路段和长跑路段共5千M,用时15分钟.求自行车路段和长跑路段的长度.10.(2018•台州)毕业在即,九年级某班为纪念师生情谊,班委决定花800元班费买两种不同单价的留念册,分别给50位同学和10位任课教师每人一本作纪念,其中送给任课教师的留念册单价比给同学的单价多8元.请问这两种不同留念册的单价分别是多少?11.(2018•泉州)某班将举行“庆祝建党90周年知识竞赛“活动,班长安排小明购买奖品,下面两图是小明买回奖品时与班长的对话情境:请根据上面的信息.解决问題:(1)试计算两种笔记本各买了多少本?(2)请你解释:小明为什么不可能找回68元?12.(2018•娄底)为建设节约型、环境友好型社会,克服因干旱而造成的电力紧张困难,切实做好节能减排工作.某地决定对居民家庭用电实际“阶梯电价”,电力公司规定:居民家庭每月用电量在80千瓦时以下(含80千瓦时,1千瓦时俗称1度)时,实际“基本电价”;当居民家庭月用电量超过80千瓦时时,超过部分实行“提高电价”.(1)小张家2018年4月份用电100千瓦时,上缴电费68元;5月份用电120千瓦时,上缴电费88元.求“基本电价”和“提高电价”分别为多少元/千瓦时?(2)若6月份小张家预计用电130千瓦时,请预算小张家6月份应上缴的电费.13.(2018•临沂)去年秋季以来,我市某镇遭受百年一遇的特大旱灾,为支援该镇抗旱,上级下达专项抗旱资金80万元用于打井,已知用这80万元打灌溉用井和生活用井共58口,每口灌溉用井和生活用井分别需要资金4万元和0.2万元,求这两种井各打多少口?14.(2018•济南)某小学在6月1日组织师生共110人到趵突泉公园游览,趵突泉公园规定:成人票价每位40元,学生票价每位20元.该学校购票共花费2400元,在这次游览活动中,教师和学生各有多少人?20(2018•长沙)某工程队承包了某标段全长1755M的过江隧道施工任务,甲、乙两个班组分别从东、西两端同时掘进.已知甲组比乙组平均每天多掘进0.6M,经过5天施工,两组共掘进了45M.(1)求甲、乙两个班组平均每天各掘进多少M?(2)为加快工程进度,通过改进施工技术,在剩余的工程中,甲组平均每天能比原来多掘进0.2M,乙组平均每天能比原来多掘进0.3M.按此旄工进度,能够比原来少用多少天完成任务?21.(2018•长春)在长为10m,宽为8m的矩形空地中,沿平行于矩形各边的方向分割出三个全等的小矩形花圃,其示意图如图所示.求小矩形花圃的长和宽.不等式(组)1.(2018•永州)某学校为开展“阳光体育”活动,计划拿出不超过3000元的资金购买一批篮球、羽毛球拍和乒乓球拍,已知篮球、羽毛球拍和乒乓球拍的单价比为8:3:2,且其单价和为130元.(1)请问篮球、羽毛球拍和乒乓球拍的单价分别是多少元?(2)若要求购买篮球、羽毛球拍和乒乓球拍的总数量是80个(副),羽毛球拍的数量是篮球数量的4倍,且购买乒乓球拍的数量不超过15副,请问有几种购买方案?2.(2018•温州)2018年5月20日是第22个中国学生营养日,某校社会实践小组在这天开展活动,调查快餐营养情况.他们从食品安全监督部门获取了一份快餐的信息(如图).根据信息,解答下列问题.(1)求这份快餐中所含脂肪质量;(2)若碳水化合物占快餐总质量的40%,求这份快餐所含蛋白质的质量;(3)若这份快餐中蛋白质和碳水化合物所占百分比的和不高于85%,求其中所含碳水化合物质量的最大值.6、(2018•铜仁地区)为鼓励学生参加体育锻炼,学校计划拿出不超过3200元的资金购买一批篮球和排球,已知篮球和排球的单价比为3:2,单价和为160元.(1)篮球和排球的单价分别是多少元?(2)若要求购买的篮球和排球的总数量是36个,且购买的排球数少于11个,有哪几种购买方案?7、(2018•绍兴)筹建中的城南中学需720套单人课桌椅(如图),光明厂承担了这项生产任务.该厂生产桌子的必须5人一组.每组每天可生产12张;生产椅子的必须4人一组,每组每天可生产24把.已知学校筹建组要求光明厂6天完成这项生产任务.(1)问光明厂平均毎天要生产多少套单人课桌椅?(2)现学校筹建组要求至少提前1天完成这项生产任务.光明厂生产课桌椅的员工增加到84名,试给出一种分配生产桌子、椅子的员工数的方案.8、(2018•邵阳)为庆祝建党90周年,某学校欲按如下规则组建一个学生合唱团参加我市的唱红歌比赛.规则一:合唱队的总人数不得少于50人,且不得超过55人.规则二:合唱队的队员中,九年级学生占合唱团总人数的,八年级学生占合唱团总人数的,余下的为七年级学生.请求出该合唱团中七年级学生的人数.9、(2018•清远)某电器城经销A型号彩电,今年四月份毎台彩电售价为2000元.与去年同期相比,结果卖出彩电的数量相同的,但去年销售额为5万元,今年销售额为4万元.(1)问去年四月份每台A型号彩电售价是多少元?(2)为了改善经营,电器城决定再经销B型号彩电,已知A型号彩电每台进货价为1800元,B型号彩电每台进货价为1500元,电器城预计用不多于3.3万元且不少于3.2万元的资金购进这两种彩电共20台,问有哪几种进货方案?(3)电器城准备把A型号彩电继续以原价每台2000元的价格出售,B型号彩电以每台1800元的价格出售,在这批彩电全部卖出的前提下,如何进货才能使电器城获利最大?最大利润是多少?10、(2018•宁波)我市某林场计划购买甲、乙两种树苗共800株,甲种树苗每株24元,乙种树苗每株30元.相关资料表明:甲、乙两种树苗的成活率分别为85%、90%.(1)若购买这两种树苗共用去21000元,则甲、乙两种树苗各购买多少株?(2)若要使这批树苗的总成活率不低于88%,则甲种树苗至多购买多少株?(3)在(2)的条件下,应如何选购树苗,使购买树苗的费用最低?并求出最低费用.11、(2018•内江)某电脑经销商计划购进一批电脑机箱和液晶显示器,若购电脑机箱10台和液液晶显示器8台,共需要资金7000元;若购进电脑机箱2台和液示器5台,共需要资金4120元.(1)每台电脑机箱、液晶显示器的进价各是多少元?(2)该经销商购进这两种商品共50台,而可用于购买这两种商品的资金不超过22240元.根据市场行情,销售电脑机箱、液晶显示器一台分别可获利10元和160元.该经销商希望销售完这两种商品,所获利润不少于4100元.试问:该经销商有哪几种进货方案?哪种方案获利最大?最大利润是多少?12、(2018•绵阳)王伟准备用一段长30M的篱笆围成一个三角形形状的小圈,用于饲养家兔.已知第一条边长为aM,由于受地势限制,第二条边长只能是第一条边长的2倍多2M.(1)请用a表示第三条边长;(2)问第一条边长可以为7M吗?请说明理由,并求出a的取值范围;(3)能否使得围成的小圈是直角三角形形状,且各边长均为整数?若能,说明你的围法;若不能,说明理由.数量的.请你通过计算,求出义洁中学从荣威公司购买18、(2018•桂林)某校志愿者团队在重阳节购买了一批牛奶到“夕阳红”敬老院慰问孤寡老人,如果给每个老人分5盒,则剩下38盒,如果给每个老人分6盒,则最后一个老人不足5盒,但至少分得一盒.(1)设敬老院有x名老人,则这批牛奶共有多少盒?(用含x的代数式表示).(2)该敬老院至少有多少名老人?最多有多少名老人?19、(2018•毕节地区)小明到一家批发兼零售的文具店给九年级学生购买考试用2B铅笔,请根据下列情景解决问题.(1)这个学校九年级学生总数在什么范围内?(2)若按批发价购买6支与按零售价购买5支的所付款相同,那么这个学校九年级学生有多少人?。

二元一次不等式(组)与简单线性规划问题练习题含答案

二元一次不等式(组)与简单线性规划问题练习题含答案

二元一次不等式(组)与简单的线性规划问题练习题
1、画出下列二元不等式所表示的平面区域:21
03
x y x y +-≤-+
2、已知二次函数()f x 的图象过原点,且1(1)2(1)4f f -≤-≤≤≤,求(2)f -的取值范围。

3、求函数23z x y =+的最大值,式中的,x y 满足约束条件23240700
x y x y x y +-≤⎧⎪-≤⎪
⎨≥⎪⎪≥⎩
4、某公司的A ,B 两仓库至多可以分别调运出某型号的机器14台,8台。

甲地需要10台,乙地需要8台。

已知从A 仓库将1台机器运到甲地的运费为400元,运到乙地的运费为800元;B 仓库将1台机器运到甲地的运费为300元,运到乙地的运费为500元.问怎样安排调运方案,可使运输费用最少?
5、某厂拟生产甲、乙两种适销产品,每件销售收入分别为3千元、2千元.甲、乙两种产品都需要在A ,B 两种机床上加工,A ,B 两种机床上每加工一件甲种产品所需时间分别为1小时、2小时;每加工一件乙种产品所需时间分别为2小时、1小时.如果A ,B 两种机床每月有效使用时数分别为400小时、500小时。

如何安排生产,才能使销售总收入最大?
6、要将两种大小不同的钢板截成A ,B ,C 三种规格的小钢板,每张钢板可截得三种规格的小钢板的块数如下表所示:
如果至少需要A ,B ,C 三种规格的小钢板各15块,18块,27块,问分别截这两种钢板各多少张可以满足需要,且使所用两种钢板的张数最少?
二元一次不等式(组)与简单的线性规划问题练习题 答案
1、 2、 3、24 4、 5、 6、
二元一次不等式(组)与简单的线性规划问题练习题 答案
1、
2、 3、24 4、 5、 6、。

方程与不等式之二元一次方程组技巧及练习题

方程与不等式之二元一次方程组技巧及练习题

方程与不等式之二元一次方程组技巧及练习题一、选择题1.夏季来临,某超市试销A 、B 两种型号的风扇,两周内共销售30台,销售收入5300元,A 型风扇每台200元,B 型风扇每台150元,问A 、B 两种型号的风扇分别销售了多少台?若设A 型风扇销售了x 台,B 型风扇销售了y 台,则根据题意列出方程组为( ) A .530020015030x y x y +=⎧⎨+=⎩ B .530015020030x y x y +=⎧⎨+=⎩C .302001505300x y x y +=⎧⎨+=⎩D .301502005300x y x y +=⎧⎨+=⎩ 【答案】C【解析】分析:直接利用两周内共销售30台,销售收入5300元,分别得出等式进而得出答案. 详解:设A 型风扇销售了x 台,B 型风扇销售了y 台,则根据题意列出方程组为:302001505300x y x y +=⎧⎨+=⎩. 故选C .点睛:本题主要考查了由实际问题抽象出二元一次方程组,正确得出等量关系是解题的关键.2.《孙子算经》是唐初作为“算学”教科书的著名的《算经十书》之一,共三卷,上卷叙述算筹记数的制度和乘除法则,中卷举例说明筹算分数法和开平方法,都是了解中国古代筹算的重要资料,下卷收集了一些算术难题,“鸡兔同笼”便是其中一题.下卷中还有一题,记载为:“今有甲乙二人,持钱各不知数.甲得乙中半,可满四十八;乙得甲太半,亦满四十八.问甲、乙二人持钱各几何?”意思是:“甲、乙两人各有若干钱,如果甲得到乙所有钱的一半,那么甲共有钱48文.如果乙得到甲所有钱的23,那么乙也共有钱48文.问甲、乙二人原来各有多少钱?”设甲原有钱x 文,乙原有钱y 文,可得方程组( ) A .14822483x y y x ⎧+=⎪⎪⎨⎪+=⎪⎩B .14822483y x x y ⎧+=⎪⎪⎨⎪+=⎪⎩C .14822483x y y x ⎧-=⎪⎪⎨⎪-=⎪⎩D .14822483y x x y ⎧-=⎪⎪⎨⎪-=⎪⎩【答案】A【解析】【分析】 根据题意,通过题目的等量关系,结合题目所设未知量列式即可得解.【详解】设甲原有x 文钱,乙原有y 文钱,根据题意,得:14822483x yy x⎧+=⎪⎪⎨⎪+=⎪⎩,故选:A.【点睛】本题主要考查了二元一次方程组的实际应用,准确设出未知量根据等量关系列式求解是解决本题的关键.3.已知方程组5430x yx y k-=⎧⎨-+=⎩的解也是方程3x-2y=0的解,则k的值是()A.k=-5 B.k=5 C.k=-10 D.k=10【答案】A【解析】【分析】根据方程组5430x yx y k-=⎧⎨-+=⎩的解也是方程3x-2y=0的解,可得方程组5320x yx y-=⎧⎨-=⎩,解方程组求得x、y的值,再代入4x-3y+k=0即可求得k的值.【详解】∵方程组5430x yx y k-=⎧⎨-+=⎩的解也是方程3x-2y=0的解,∴5320x yx y-=⎧⎨-=⎩,解得,1015xy=-⎧⎨=-⎩;把1015xy=-⎧⎨=-⎩代入4x-3y+k=0得,-40+45+k=0,∴k=-5.故选A.【点睛】本题考查了解一元二次方程,根据题意得出方程组5320x yx y-=⎧⎨-=⎩,解方程组求得x、y的值是解决问题的关键.4.若关于x,y的方程组4510(1)8x ykx k y+=⎧⎨--=⎩中x的值比y的相反数大2,则k是()A .-3B .-2C .-1D .1【答案】A【解析】【分析】 根据“x 的值比y 的相反数大2”得出“x=-y+2”,再代入到方程组的第一个方程得到y 的值,进而得出x 的值,把x ,y 的值代入方程组中第二方程中求出k 的值即可.【详解】∵x 的值比y 的相反数大2,∴x=-y+2,把x=-y+2代入4x+5y=10得,-4y+8+5y=10,解得,y=2,∴x=0,把x=0,y=2代入kx-(k-1)y=8,得k=-3.故选A.【点睛】此主要考查了与二元一次方程组的解有关的问题,解题的关键是列出等式“x=-y+2”.5.已知方程组32422x y x y -=⎧⎨-=⎩,则()2x y --=( ) A .14 B .12 C .2 D .4【答案】A【解析】32422x y x y =①=②-⎧⎨-⎩, ①-②得:x-y=2,则原式=-22=14. 故选A.6.已知2,1.x y =⎧⎨=⎩是方程25+=x ay 的解,则a 的值为( ) A .1B .2C .3D .4【答案】A【解析】 将21x y =⎧⎨=⎩代入方程2x+ay=5,得:4+a=5, 解得:a=1,故选:A.7.若方程6ax by +=的两个解是11x y =⎧⎨=⎩,21x y =⎧⎨=-⎩,则,a b 的值为( ) A .42a b =⎧⎨=⎩ B .24a b =⎧⎨=⎩ C .24a b =-⎧⎨=-⎩ D .42a b =-⎧⎨=-⎩【答案】A【解析】【分析】将方程的两组解代入6ax by +=中,可以得到一个关于a,b 的二元一次方程组,解方程组即可.【详解】∵方程6ax by +=的两个解是11x y =⎧⎨=⎩,21x y =⎧⎨=-⎩, ∴626a b a b +=⎧⎨-=⎩解得42a b =⎧⎨=⎩, 故选:A .【点睛】本题主要考查二元一次方程的解,掌握二元一次方程组的解法是解题的关键.8.小李去买套装6色水笔和笔记本,若购买4袋笔和6本笔记本,他身上的钱还差22元,若改 成购买1袋笔和2本笔记本,他身上的钱会剩下34元.若他把身上的钱都花掉,购买这两种 物品(两种都买)的方案有( )A .3种B .4种C .5种D .6种 【答案】C【解析】【分析】设1袋笔的价格为x 元,1本笔记本的价格为y 元,根据“若购买4袋笔和6本笔记本,他身上的钱还差22元,若改成购买1袋笔和2本笔记本,他身上的钱会剩下34元”,即可得出关于x ,y 的二元一次方程,结合x ,y 均为正整数即可得出结论,再设可购买a 袋笔和b 本笔记本,根据总价=单价×数量可得出关于a ,b 的二元一次方程,结合a ,b 均为正整数即可得出结论.【详解】设1袋笔的价格为x 元,1本笔记本的价格为y 元,依题意,得:4x+6y-22=x+2y+34,∴3x+4y=56,即y=14-34x . ∵x ,y 均为正整数,∴411xy⎧⎨⎩==,88xy⎧⎨⎩==,125xy⎧⎨⎩==,162xy⎧⎨⎩==.设可购买a袋笔和b本笔记本.①当x=4,y=11时,4x+6y-22=60,∴4a+11b=60,即a=15-114b,∵a,b均为正整数,∴44ab⎧⎨⎩==;②当x=8,y=8时,4x+6y-22=58,∴8a+8b=58,即a+b=294,∵a,b均为正整数,∴方程无解;③当x=12,y=5时,4x+6y-22=56,∴12a+5b=56,即b=56125a-,∵a,b均为正整数,∴34 ab==⎧⎨⎩;④当x=16,y=2时,4x+6y-22=54,∴16a+2b=54,即b=27-8a,∵a,b均为正整数,∴119ab⎧⎨⎩==,211ab⎧⎨⎩==,33ab⎧⎨⎩==.综上所述,共有5种购进方案.故选:C.【点睛】本题考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的关键.9.已知关于x的方程x-2m=7和x-5=3m是同解方程,则m值为()A.1 B.-1 C.2 D.-2【答案】C【解析】【分析】根据同解方程,可得方程组,根据解方程组,可得答案.【详解】解:由题意,得2753x m x m -=⎧⎨-=⎩①②, 由①得:7+2x m =,由②得:3+5x m =,∴7+23+5m m =,解得:2m =,故选C.【点睛】本题考查了同解方程,利用同解方程得出方程组是解题关键.10.关于x 、y 的方程组222x y mx y m+=⎧⎨+=+⎩的解为整数,则满足这个条件的整数m 的个数有( )A .4个B .3个C .2个D .无数个 【答案】A【解析】【分析】先解二元一次方程组x 、y ,然后利用解为整数解题即可【详解】 解方程组222x y mx y m +=⎧⎨+=+⎩得到242m x m y m ⎧=⎪⎪-⎨⎪=⎪-⎩因为方程组的解为整数,所以m 可以为0、1、3、4,所以满足条件的m 的整数有4个,选A【点睛】本题主要考查二元一次方程组的解,解出x 、y 再利用解为整数求解是本题关键11.某商店对一种商品进行促销,促销方式:若购买不超过10件,按每件a 元付款:若一次性购买10件以上,超出部分按每件b 元付款.小明购买了14件付款90元;小聪购买了19件付款115元,则a ,b 的值为( )A .7,5a b == B .5,7a b == C .8,5a b == D .7,4a b ==【答案】A【解析】【分析】根据题意可列出关于a 、b 的二元一次方程组,解方程组即可.【详解】解:由题意得:10490109115a b a b +=⎧⎨+=⎩①②, 由②−①得:525=b ,解得:5b =,将5b =代入①得:104590+⨯=a ,解得:7a =,∴方程组的解为75a b =⎧⎨=⎩, 故选:A .【点睛】此题考查了二元一次方程组的应用,解题的关键是读懂题意,找出题目中的数量关系,列出方程组.12.若2334a b x y +与634a b x y -的和是单项式,则a b +=( ) A .3-B .0C .3D .6【答案】C【解析】【分析】 根据同类项的定义可得方程组263a b a b +=⎧⎨-=⎩,解方程组即可求得a 、b 的值,即可求得a+b 的值.【详解】 ∵2334a b x y +与643a b x y -是同类项, ∴263a b a b +=⎧⎨-=⎩, 解得30a b =⎧⎨=⎩, ∴a+b=3.故选C.【点睛】本题考查了同类项的定义及二元一次方程组的解法,根据同类项的定义得到方程组263a b a b +=⎧⎨-=⎩是解决问题的关键.13.|21|0a b -+=,则2019()b a -等于( )A .1-B .1C .20195D .20195- 【答案】A【解析】【分析】根据二次根式的性质和绝对值的概念先列出关于a,b 的方程组,求出解,然后代入式子中求值.【详解】12110a b -+=,所以50,210,a b a b ++=⎧⎨-+=⎩①② 由②,得21b a =+③,将③代入①,得2150a a +++=,解得2a =-,把2a =-代入③中,得3b =-,所以20192019()(1)1b a -=-=-. 故选A.【点睛】本题考查了二元一次方程组的解法,也考查了二次根式和绝对值的性质,比较基础.14.学校八年级师生共466人准备参加社会实践活动,现已预备了49座和37座两种客车共10辆,刚好坐满.设49座客车x 辆,37座客车y 辆,根据题意可列出方程组( ) A .104937466x y x y +=⎧⎨+=⎩B .103749466x y x y +=⎧⎨+=⎩C .466493710x y x y +=⎧⎨+=⎩D .466374910x y x y +=⎧⎨+=⎩ 【答案】A【解析】【分析】 设49座客车x 辆,37座客车y 辆,根据49座和37座两种客车共10辆,及10辆车共坐466人,且刚好坐满,即可列出方程组.【详解】解:设49座客车x 辆,37座客车y 辆,根据题意得 :104937466x y x y +=⎧⎨+=⎩故选:A .本题考查了由实际问题抽象出二元一次方程组,根据实际问题中的条件列方程组时,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.15.方程5x+2y=-9与下列方程构成的方程组的解为212xy=-⎧⎪⎨=⎪⎩的是()A.x+2y=1 B.3x+2y =-8C.5x+4y=-3 D .3x-4y=-8【答案】D【解析】试题分析:将x与y的值代入各项检验即可得到结果.解:方程5x+2y=﹣9与下列方程构成的方程组的解为的是3x﹣4y=﹣8.故选D.点评:此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.16.《九章算术》中记载:“今有甲乙二人持钱不知其数,甲得乙半而钱五十,乙得甲太半而亦钱五十.问甲乙持钱各几何?”其大意是:今有甲、乙两人各带了若干钱.如果甲得到乙所有钱的一半,那么甲共有钱;如果乙得到甲所有钱的三分之二,那么乙也共有.问甲、乙两人各带了多少钱?设甲带钱为,乙带钱为,根据题意,可列方程组为()A.B.C.D.【答案】A【解析】【分析】设甲需带钱x,乙带钱y,根据题意可得,甲的钱+乙的钱的一半=50,乙的钱+甲所有钱的,据此列方程组可得.【详解】解:设甲需带钱x,乙带钱y,根据题意,得:故选:A.本题考查了由实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列出方程组.17.若关于x ,y 的方程组3,25x y m x y m -=+⎧⎨+=⎩的解满足x >y >0,则m 的取值范围是( ). A .m >2B .m >-3C .-3<m <2D .m <3或m >2 【答案】A【解析】【分析】先解方程组用含m 的代数式表示出x 、y 的值,再根据x >y >0列不等式组求解即可.【详解】解325x y m x y m -=+⎧⎨+=⎩,得 212x m y m =+⎧⎨=-⎩. ∵x >y >0,∴21220m m m +>-⎧⎨->⎩, 解之得m >2.故选A.【点睛】本题考查了二元一次方程组及一元一次不等式组的应用,用含m 的代数式表示出x 、y 的值是解答本题的关键.18.某校运动员分组训练,若每组7人,余3人;若每组8人,则缺5人;设运动员人数为x 人,组数为y 组,则列方程组为( )A .7385y x y x =-⎧⎨=+⎩B .7385y x y x =+⎧⎨-=⎩C .7385y x y x =+⎧⎨+=⎩D .7385y x y x =+⎧⎨=+⎩【答案】A【解析】【分析】 根据关键语句“若每组7人,余3人”可得方程7y+3=x ;“若每组8人,则缺5人.”可得方程8y-5=x ,联立两个方程可得方程组.【详解】设运动员人数为x 人,组数为y 组,由题意得:7385y x y x =-⎧⎨=+⎩. 故选A .【点睛】此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,抓住关键语句,列出方程.19.小颖家离学校1200米,其中有一段为上坡路,另一段为下坡路,她去学校共用了16分钟,假设小颖上坡路的平均速度是3千米/小时,下坡路的平均速度是5千米/小时,若设小颖上坡用了min x ,下坡用了min y ,根据题意可列方程组( )A .35120016x y x y +=⎧⎨+=⎩B .35 1.2606016x y x y ⎧+=⎪⎨⎪+=⎩C .35 1.216x y x y +=⎧⎨+=⎩D .351200606016x y x y ⎧+=⎪⎨⎪+=⎩ 【答案】B【解析】【分析】根据路程=时间乘以速度得到方程35 1.26060x y +=,再根据总时间是16分钟即可列出方程组.【详解】∵她去学校共用了16分钟,∴x+y=16,∵小颖家离学校1200米, ∴35 1.26060x y +=, ∴35 1.2606016x y x y ⎧+=⎪⎨⎪+=⎩, 故选:B.【点睛】此题考查二元一次方程组的实际应用,正确理解题意列出方程组,注意时间单位,这是解题中容易出现错误的地方.20.由方程组53x m y m-=⎧⎨+=⎩,可得到x 与y 的关系式是()A .2x y -=-B .2x y -=C .8x y -=D .8x y -=-【答案】C【解析】【分析】 先解方程组求得5x m =+、3y m =-,再将其相减即可得解.【详解】解:∵53x m y m -=⎧⎨+=⎩①② 由①得,5x m =+由②得,3y m =-∴()()53538x y m m m m -=+--=+-+=.故选:C【点睛】本题考查了解含参数的二元一次方程组、以及代数求值的知识点,熟练掌握相关知识点是解决本题的关键.。

初中数学二元一次不等式(组)精选试题(含答案和解析)

初中数学二元一次不等式(组)精选试题(含答案和解析)

初中数学二元一次不等式(组)精选试题一.选择题1. (2018·湖北江汉油田、潜江市、天门市、仙桃市·3分)若关于x的一元一次不等式组的解集是x>3.则m的取值范围是()A.m>4 B.m≥4C.m<4 D.m≤4【分析】先求出每个不等式的解集.再根据不等式组的解集和已知得出关于m的不等式.再求出解集即可.【解答】解:.∵解不等式①得:x>3.解不等式②得:x>m﹣1.又∵关于x的一元一次不等式组的解集是x>3.∴m﹣1≤3.解得:m≤4.故选:D.【点评】本题考查了解一元一次不等式组.能根据不等式的解集和已知得出关于m的不等式是解此题的关键.2. (2018·湖北襄阳·3分)不等式组的解集为()A.x>B.x>1 C.<x<1 D.空集【分析】首先解每个不等式.两个不等式的解集的公共部分就是不等式组的解集.【解答】解:解不等式2x>1﹣x.得:x>.解不等式x+2<4x﹣1.得:x>1.则不等式组的解集为x>1.故选:B.【点评】本题考查的是解一元一次不等式组.熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.3.(2018•江苏宿迁•3分)若a<b.则下列结论不一定成立的是()A. a-1<b-1B. 2a<2bC.D.【答案】D【分析】根据不等式的性质逐项进行判断即可得答案.【详解】A.∵a<b.∴ a-1<b-1.正确.故A不符合题意;B.∵a<b.∴ 2a<2b.正确.故B不符合题意;C.∵a<b.∴ .正确.故C不符合题意;D.当a<b<0时.a2>b2.故D选项错误.符合题意.故选D.【点睛】本题考查了不等式的基本性质.熟练掌握不等式的性质是解题的关键.不等式性质1:不等式两边同时加上(或减去)同一个数.不等号方向不变;不等式性质2:不等式两边同时乘以(或除以)同一个正数.不等号方向不变;不等式性质3:不等式两边同时乘以(或除以)同一个负数.不等号方向改变.4.(2018•江苏苏州•3分)若在实数范围内有意义.则x的取值范围在数轴上表示正确的是()A.B.C.D.【分析】根据二次根式有意义的条件列出不等式.解不等式.把解集在数轴上表示即可.【解答】解:由题意得x+2≥0.解得x≥﹣2.故选:D.【点评】本题考查的是二次根式有意义的条件.掌握二次根式中的被开方数是非负数是解题的关键.一.选择题5.(2018•山东聊城市•3分)已知不等式≤<.其解集在数轴上表示正确的是()A. B.C. D.【分析】把已知双向不等式变形为不等式组.求出各不等式的解集.找出解集的方法部分即可.【解答】解:根据题意得:.由①得:x≥2.由②得:x<5.∴2≤x<5.表示在数轴上.如图所示.故选:A.【点评】此题考查了解一元一次不等式组.以及在数轴上表示不等式的解集.熟练掌握运算法则是解本题的关键.6.(2018•山东东营市•3分)在平面直角坐标系中.若点P(m﹣2.m+1)在第二象限.则m的取值范围是()A.m<﹣1 B.m>2 C.﹣1<m<2 D.m>﹣1【分析】根据第二象限内点的横坐标是负数.纵坐标是正数列出不等式组求解即可.【解答】解:∵点P(m﹣2.m+1)在第二象限.∴.解得﹣1<m<2.故选:C.【点评】本题考查了各象限内点的坐标的符号特征以及解不等式.记住各象限内点的坐标的符号是解决的关键.四个象限的符号特点分别是:第一象限(+.+);第二象限(﹣.+);第三象限(﹣.﹣);第四象限(+.﹣).7. (2018•嘉兴•3分)不等式的解在数轴上表示正确的是()A. (A)B. (B)C. (C)D. (D)【答案】A【考点】解一元一次不等式【解析】【解答】解:因为1-x≥2.3≥x.所以不等式的解为x≤3.故答案为A。

方程与不等式之二元一次方程组基础测试题含答案

方程与不等式之二元一次方程组基础测试题含答案

方程与不等式之二元一次方程组基础测试题含答案一、选择题1.已知关于x ,y 的方程组34{3x y ax y a+=--=,其中-3≤a≤1,给出下列结论:①当a=1时,方程组的解也是方程x +y=4-a 的解;②当a=-2时,x 、y 的值互为相反数;③若x≤1,则1≤y≤4;④5{1x y ==-是方程组的解,其中正确的是( )A .①②B .③④C .①②③D .①②③④【答案】C 【解析】 【分析】 【详解】 解:解方程组34{3x y a x y a +=--=,得12{1x ay a=+=-,∵-3≤a ≤1,∴-5≤x ≤3,0≤y≤4,①当a=1时,x+y=2+a=3,4-a=3,方程x+y=4-a 两边相等,结论正确; ②当a=-2时,x=1+2a=-3,y=1-a=3,x ,y 的值互为相反数,结论正确; ③当x≤1时,1+2a≤1,解得a≤0,故当x≤1时,且-3≤a≤1, ∴-3≤a ≤0∴1≤1-a ≤4∴1≤y ≤4结论正确, ④5{1x y ==-不符合-5≤x≤3,0≤y≤4,结论错误;故选:C . 【点睛】本题考查二元一次方程组的解;解一元一次不等式组.2.某出租车起步价所包含的路程为0~2km ,超过2km 的部分按每千米另收费.津津乘坐这种出租车走了7km ,付了16元;盼盼乘坐这种出租车走了13km ,付了28元.设这种出租车的起步价为x 元,超过2km 后每千米收费y 元,则下列方程正确的是( ) A .7161328x y x y +=⎧⎨+=⎩B .()72161328x y x y ⎧+-=⎨+=⎩C .()71613228x y x y +=⎧⎨+-=⎩D .()()721613228x y x y ⎧+-=⎪⎨+-=⎪⎩【答案】D 【解析】 【分析】根据津津乘坐这种出租车走了7km ,付了16元;盼盼乘坐这种出租车走了13km ,付了28元可列方程组.【详解】设这种出租车的起步价为x 元,超过2km 后每千米收费y 元,则所列方程组为()()721613228x y x y ⎧+-=⎪⎨+-=⎪⎩,故选D . 【点睛】本题主要考查由实际问题抽象出二元一次方程组,解题的关键是理解题意,找到题目蕴含的相等关系.3.已知方程组5430x y x y k -=⎧⎨-+=⎩的解也是方程3x -2y=0的解,则k 的值是( )A .k=-5B .k=5C .k=-10D .k=10 【答案】A 【解析】 【分析】根据方程组5430x y x y k -=⎧⎨-+=⎩的解也是方程3x -2y=0的解,可得方程组5320x y x y -=⎧⎨-=⎩ ,解方程组求得x 、y 的值,再代入4x-3y+k=0即可求得k 的值. 【详解】∵方程组5430x y x y k -=⎧⎨-+=⎩的解也是方程3x -2y=0的解,∴5320x y x y -=⎧⎨-=⎩ , 解得,1015x y =-⎧⎨=-⎩; 把1015x y =-⎧⎨=-⎩代入4x-3y+k=0得,-40+45+k=0, ∴k=-5. 故选A. 【点睛】本题考查了解一元二次方程,根据题意得出方程组5320x y x y -=⎧⎨-=⎩,解方程组求得x 、y 的值是解决问题的关键.4.若方程6ax by +=的两个解是11x y =⎧⎨=⎩,21x y =⎧⎨=-⎩,则,a b 的值为( )A .42a b =⎧⎨=⎩B .24a b =⎧⎨=⎩C .24a b =-⎧⎨=-⎩D .42a b =-⎧⎨=-⎩【答案】A 【解析】 【分析】将方程的两组解代入6ax by +=中,可以得到一个关于a,b 的二元一次方程组,解方程组即可. 【详解】∵方程6ax by +=的两个解是11x y =⎧⎨=⎩,21x y =⎧⎨=-⎩,∴626a b a b +=⎧⎨-=⎩解得42a b =⎧⎨=⎩,故选:A . 【点睛】本题主要考查二元一次方程的解,掌握二元一次方程组的解法是解题的关键.5.某玩具车间每天能生产甲种玩具零件200个或乙种玩具零件100个,甲种玩具零件1个与乙种玩具零件2个能组成一个完整的玩具,怎样安排生产才能在30天内组装出最多的玩具?设生产甲种玩具零件x 天,生产乙种玩具零件y 天,则有( ) A .30200100x y x y +=⎧⎨=⎩B .30100200x y x y +=⎧⎨=⎩C .302200100x y x y +=⎧⎨⨯=⎩ D .302100200x y x y +=⎧⎨⨯=⎩【答案】C 【解析】 【分析】根据题意可以列出相应的二元一次方程组,本题得以解决. 【详解】 由题意可得,{x y 302200x 100y+=⨯=,故答案为C 【点睛】本题考查由实际问题抽象出二元一次方程组,解题的关键是明确题意,列出相应的方程组.6.若215(3)()x mx x x n +-=++,则m 的值为() A .-2 B .2C .-5D .5【答案】A 【解析】 【分析】将等式右边的整式展开,然后和等式左边对号入座进行对比:一次项系数相等、常数项相等,从而得到关于m 、n 的二元一次方程组,解方程组即可得解. 【详解】解:∵()()()2215333x mx x x n x n x n +-=++=+++∴3315m n n =+⎧⎨=-⎩①②由②得,5n =-把5n =-代入①得,2m =- ∴m 的值为2-. 故选:A 【点睛】本题考查了多项式乘以多项式法则、两个多项式相等即各项对应相等、解二元一次方程组等知识点,能够得到关于m 、n 的二元一次方程组是解决问题的关键.7.已知关于x 、y 的二元一次方程组356310x y x ky +=⎧⎨+=⎩,给出下列结论:①当5k =时,此方程组无解;②若此方程组的解也是方程61516x y +=的解,则10k =;③无论整数k何值,此方程组一定无整数解(x 、y 均为整数),其中正确的是() A .①② B .①③C .②③D .①②③【答案】D 【解析】 【分析】①将5k =代入方程组可得3563510x y x y +=⎧⎨+=⎩,解方程组即可作出判断;②将10k =代入方程组可得35631010x y x y +=⎧⎨+=⎩求得方程组的解后,再将解代入61516x y +=即可作出判断;③解356310x y x ky +=⎧⎨+=⎩得20231545x k y k ⎧=-⎪⎪-⎨⎪=⎪-⎩,根据k 为整数即可作出判断.【详解】解:①当5k =时,关于x 、y 的二元一次方程组为:3563510x y x y +=⎧⎨+=⎩,此时方程组无解,故本说法正确;②当10k =时,关于x 、y 的二元一次方程组为:35631010x y x y +=⎧⎨+=⎩,解得2345x y ⎧=⎪⎪⎨⎪=⎪⎩,将其代入61516x y +=,能使其左右两边相等,故本说法正确;③解356310x y x ky +=⎧⎨+=⎩得20231545x k y k ⎧=-⎪⎪-⎨⎪=⎪-⎩,因为k 为整数而x 、y 不能都为整数,故本说法正确. 故选:D 【点睛】此题考查了二元一次方程(组)的解、解二元一次方程组等,方程组的解即为能使方程组中两方程同时成立的未知数的值.8.三个二元一次方程37x y -=,231x y +=,9y kx =-有公共解,则k 的值是( ) A .3 B .163-C .-2D .4【答案】D 【解析】 【分析】先结合37x y -=,231x y +=,求出x 、y 的值,然后代入9y kx =-,即可求出k 的值. 【详解】 解:根据题意,有37231x y x y -=⎧⎨+=⎩, 解得:21x y =⎧⎨=-⎩;把21x y =⎧⎨=-⎩代入9y kx =-,得 291k -=-,解得:4k =; 故选:D . 【点睛】本题考查了解二元一次方程组,解题的关键是熟练掌握代入消元法和加减消元法.9.《九章算术》中记载:“今有共买羊,人出五,不足四十五人出七,不足三,问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱,问合伙人数、羊价各是多少?设合伙人数为x 人,羊价为y 钱,根据题意,可列方程组为( ). A .54573y x y x =+⎧⎨=-⎩B .54573y x y x =-⎧⎨=+⎩C .54573y x y x =+⎧⎨=+⎩D .54573y x y x =-⎧⎨=-⎩【答案】C 【解析】 【分析】根据羊价不变即可列出方程组. 【详解】解:由“若每人出5钱,还差45钱”可以表示出羊价为:545y x =+,由“若每人出7钱,还差3钱”可以表示出羊价为:73y x =+,故方程组为54573y x y x =+⎧⎨=+⎩.故选C. 【点睛】本题考查了二元一次方程组的应用,正确理解题意,明确羊价不变是列出方程组的关键.10.二元一次方程3x+y =7的正整数解有( )组. A .0 B .1C .2D .无数【答案】C 【解析】 【分析】分别令x=1、2进行计算即可得 【详解】 解:方程3x+y=7, 变形得:y=7-3x ,当x=1时,y=4;当x=2时,y=1, 则方程的正整数解有二组 故本题答案应为:C 【点睛】本题考查了二元一次方程的解,给出一个未知数的值求出另一个未知数的值即可.11.如果方程组x 35ax by =⎧⎨+=⎩的解与方程组y 42bx ay =⎧⎨+=⎩的解相同,则a 、b 的值是( ) A .a 12b =-⎧⎨=⎩B .a 12b =⎧⎨=⎩C .a 12b =⎧⎨=-⎩D .a 12b =-⎧⎨=-⎩【答案】A 【解析】【分析】 把34x y =⎧⎨=⎩代入方程中其余两个方程得345342a b b a +=⎧⎨+=⎩,解方程组可得.【详解】解:由于两个方程组的解相同,所以这个相同的解是34x y =⎧⎨=⎩, 把34x y =⎧⎨=⎩代入方程中其余两个方程得345342a b b a +=⎧⎨+=⎩ 解得a 12b =-⎧⎨=⎩故选A . 【点睛】本题考核知识点:解二元一次方程组.解题关键点:熟练解二元一次方程组.12.如图,10块相同的长方形墙砖拼成一个大长方形,设长方形墙砖的长和宽分别为x 厘米和y 厘米,则依题意所列方程组正确的是( )A .2753x y y x +=⎧⎨=⎩B .2753x y x y +=⎧⎨=⎩C .2753x y y x -=⎧⎨=⎩D .2753x y x y +=⎧⎨=⎩【答案】B 【解析】 【分析】根据图示可得:矩形的宽可以表示为x+2y ,宽又是75厘米,故x+2y=75,矩的长可以表示为2x ,或x+3y ,故2x=3y+x ,整理得x=3y ,联立两个方程即可. 【详解】根据图示可得,2753x y x y +=⎧⎨=⎩故选B . 【点睛】此题主要考查了由实际问题抽象出二元一次方程组,关键是看懂图示,分别表示出长方形的长和宽.13.学校八年级师生共466人准备参加社会实践活动,现已预备了49座和37座两种客车共10辆,刚好坐满.设49座客车x辆,37座客车y辆,根据题意可列出方程组()A.104937466x yx y+=⎧⎨+=⎩B.103749466x yx y+=⎧⎨+=⎩C.466493710x yx y+=⎧⎨+=⎩D.466374910x yx y+=⎧⎨+=⎩【答案】A【解析】【分析】设49座客车x辆,37座客车y辆,根据49座和37座两种客车共10辆,及10辆车共坐466人,且刚好坐满,即可列出方程组.【详解】解:设49座客车x 辆,37座客车y 辆,根据题意得:10 4937466x yx y+=⎧⎨+=⎩故选:A.【点睛】本题考查了由实际问题抽象出二元一次方程组,根据实际问题中的条件列方程组时,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.14.为奖励消防演练活动中表现优异的同学,某校决定用1200元购买篮球和排球,其中篮球每个120元,排球每个90元,在购买资金恰好用尽的情况下,购买方案有()A.4种B.3种C.2种D.1种【答案】B【解析】【分析】设购买篮球x个,排球y个,根据“购买篮球的总钱数+购买排球的总钱数=1200”列出关于x、y的方程,由x、y均为非负整数即可得.【详解】设购买篮球x个,排球y个,根据题意可得120x+90y=1200,则y=4043x-,∵x、y均为正整数,∴x=1、y=12或x=4、y=8或x=7、y=4,所以购买资金恰好用尽的情况下,购买方案有3种,故选B.【点睛】本题考查二元一次方程的应用,解题的关键是理解题意,依据相等关系列出方程.15.《九章算术》中记载:“今有甲乙二人持钱不知其数,甲得乙半而钱五十,乙得甲太半而亦钱五十.问甲乙持钱各几何?”其大意是:今有甲、乙两人各带了若干钱.如果甲得到乙所有钱的一半,那么甲共有钱;如果乙得到甲所有钱的三分之二,那么乙也共有.问甲、乙两人各带了多少钱?设甲带钱为,乙带钱为,根据题意,可列方程组为()A.B.C.D.【答案】A【解析】【分析】设甲需带钱x,乙带钱y,根据题意可得,甲的钱+乙的钱的一半=50,乙的钱+甲所有钱的,据此列方程组可得.【详解】解:设甲需带钱x,乙带钱y,根据题意,得:故选:A.【点睛】本题考查了由实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列出方程组.16.方程组2x yx y3n+=⎧+=⎨⎩的解为{x2y==n,则被遮盖的两个数分别为( )A.2,1 B.5,1 C.2,3 D.2,4【答案】B【解析】把x=2代入x+y=3中,得:y=1,把x=2,y=1代入得:2x+y=4+1=5,故选B.17.已知方程组31331x y mx y m+=+⎧⎨+=-⎩的解满足0x y+>,则m取值范围是()A .m >1B .m <-1C .m >-1D .m <1【答案】C 【解析】 【分析】直接把两个方程相加,得到12mx y ++=,然后结合0x y +>,即可求出m 的取值范围. 【详解】解:31331x y m x y m +=+⎧⎨+=-⎩,直接把两个方程相加,得: 4422x y m +=+,∴12mx y ++=, ∵0x y +>, ∴102m+>, ∴1m >-; 故选:C. 【点睛】本题考查了加减消元法解方程组,解题的关键是掌握解方程组的方法,正确得到12mx y ++=,然后进行解题.18.利用两块相同的长方体木块测量一张桌子的高度,首先按图①方式放置,再交换两木块的位置,按图②方式放置测量的数据如图,则桌子的高度是( )A .73cmB .74cmC .75cmD .76cm【答案】C 【解析】 【分析】设长方体木块的长是xcm ,宽是ycm ,由题意得5x y -=,再代入求出桌子的高度即可. 【详解】设长方体木块的长是xcm ,宽是ycm ,由题意得8070x y y x -+=-+可得5x y -=则桌子的高度是8080575x y cm -+=-=故答案为:C .【点睛】本题考查了二元一次方程的实际应用,掌握解二元一次方程的方法是解题的关键.19.我国古代数学著作《增删算法统宗》记载“绳索量竿”问题:“一条竿子一条索,索比竿子长一托,折回索子却量竿,却比竿子短一托”.其大意为:有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x 尺,竿长y 尺,则符合题意的方程组是( )A .5152x y x y =+⎧⎪⎨=-⎪⎩ B .5152x y x y =-⎧⎪⎨=+⎪⎩ C .525x y x y =+⎧⎨=-⎩ D .525x y x y =-⎧⎨=+⎩ 【答案】A【解析】【分析】 根据“用绳索去量竿,绳索比竿长5尺”可知5x y =+,然后进一步利用“如果将绳索对半折后再去量竿,就比竿短5尺”可知152x y =-,由此即可得出相应的方程组,从而得出答案.【详解】由题意得:绳索长x 尺,竿长y 尺,∵绳索比竿长5尺,∴5x y =+,又∵将绳索对半折后再去量竿,就比竿短5尺,∴152x y =-, ∴可列方程组为:5152x y x y =+⎧⎪⎨=-⎪⎩, 故选:A.【点睛】本题主要考查了二元一次方程组的实际应用,根据题意找出正确的等量关系是解题关键.20.如果方程组4x y m x y m +=⎧⎨-=⎩的解是二元一次方程3x ﹣5y ﹣30=0的一个解,那么m 的值为( )A .7B .6C .3D .2【答案】D【解析】【分析】理解清楚题意,运用三元一次方程组的知识,把x ,y 用含m 的代数式表示出来,代入方程3x-5y-30=0求得a 的值.【详解】()()142x y m x y m ⎧+⎪⎨-⎪⎩== (1)+(2)得x=52m , 代入(1)得y=-32m , 把x ,y 代入方程3x-5y-30=0得: 3×52m +5×32m -30=0, 解得m=2;故选D .【点睛】 本题的实质是解三元一次方程组,用加减法或代入法来解答.。

初中数学方程与不等式之二元一次方程组技巧及练习题附答案

初中数学方程与不等式之二元一次方程组技巧及练习题附答案

初中数学方程与不等式之二元一次方程组技巧及练习题附答案一、选择题1.如图, 10 块同样的长方形墙砖拼成一个大长方形,设长方形墙砖的长和宽分别为x 厘米和y 厘米,则依题意所列方程组正确的选项是()x2y 75x 2 y 75A .3xB .3yyx2x y 752x y 75C .3xD .3yyx【答案】 B 【分析】 【剖析】依据图示可得:矩形的宽能够表示为 x+2y ,宽又是 75 厘米,故 x+2y=75,矩的长能够表示为 2x ,或 x+3y ,故 2x=3y+x ,整理得 x=3y ,联立两个方程即可.【详解】x 2 y 75 依据图示可得,x 3 y应选 B .【点睛】本题主要考察了由实质问题抽象出二元一次方程组,重点是看懂图示,分别表示出长方形的长和宽.2.已知甲、乙两数之和是42,甲数的3 倍等于乙数的4 倍,求甲、乙两数.若设甲数为x ,乙数为y ,由题意得方程组()42 y xx y 4242x y x y 4211A .3yB .C .D .4y4x 4x3yxy3x34【答案】 D【分析】【剖析】依据题干关系分别列出二元一次方程,再组合行成二元一次方程组即可 .【详解】解:由甲、乙两数之和是42 可得, xy42 ;由甲数的3 倍等于乙数的4 倍可得,3x4 y ,故由题意得方程组为:x y42,3x 4 y应选择 D.【点睛】本题考察了二元一次方程组的应用,理清题干关系,分别列出两个二元一次方程即可.x=23.是方程 mx-3y=2 的一个解,则m 为 ( )y=7232319A.8B.2C.-2D.-2【答案】 B【分析】【剖析】把 x 与 y 的值代入方程计算即可求出m 的值.【详解】解:把x=2代入方程得: 2m-21=2,y=7解得: m= 23,2应选: B.【点睛】本题考察了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.4.二元一次方程2x+y= 5 的正整数解有()A.一组B.2 组C.3 组D.无数组【答案】B【分析】【剖析】因为要求二元一次方程的正整数解,可分别把x=1、 2、 3 分别代入方程,求出对应的值,进而确立二元一次方程的正整数解.【详解】解:当 x=1,则 2+y=5,解得 y=3,当 x=2,则 4+y=5,解得 y=1,当x=3,则 6+y=5,解得 y=-1,因此原二元一次方程的正整数解为,.应选 B.【点睛】本题考察认识二元一次方程:二元一次方程有无数组解;经常要确立二元一次方程的特别解.x5y a1的解 x 与y的差为3,则a的值为()5.若方程组y a33xA. 0B. 7C. 7D.8【答案】 B【分析】【剖析】3a7x先利用加减消元法解方程组获得8,再依据已知条件列出对于参数 a 的方程,a3y8而后解一元一次方程即可得解.【详解】x 5y a1①解:∵3x y a3②② -①×3得,ya38 3a7① +②×5得,x83a7x∴方程组的解为:8a3 y8x5y a1∵方程组y a 的解 x 与y的差为3,即 x y 33x33a7a33∴88∴ a7.应选: B【点睛】本题考察认识含参数的二元一次方程组、列一元一次方程并解一元一次方程,能获得对于参数 a 的方程是解决问题的重点.6.重庆育才中学 2019 年“见字如面读陶分享会”盛大举行,初一年级获得了必定数目的入场券,假如每个班 10 张,则多出 15 张,假如每个班 12 张,则差 5 张券,假定初一年级共有 x 个班,分派到的入场券有y张,列出方程组为()A .C .10x 5 y 12x 15 y10x y 512x 15 yB .D .10 x 5 y12 x 15 y 10x 5 y 12x 15 y【答案】 A 【分析】 【剖析】假定初一班级共有 x 个班,分派到的入场券有 y 张,依据 “假如每个班 10 张,则多出 5 张券;假如每个班 12 张,则差 15 张券 ”列出方程组.【详解】设初一班级共有 x 个班,分派到的入场券有 y 张,10x 5 y 则15 .12x y应选: A .【点睛】本题考察由实质问题抽象出二元一次方程组,解题的重点是明确题意,列出相应的方程组.7.用白铁皮做罐头盒,每张铁皮可制盒身 10 个或制盒底 40 个,一个盒身与两个盒底配成一套罐头盒,现有 120 张白铁皮,设用 x 张制盒身, y 张制盒底,得方程组 ()x y 120 x y 120 x y 120 x y 120 A .10 xB .40xC .20xD .40x40y10 y40y20y【答案】 C 【分析】【剖析】第一依据题意能够得出以下两个等量关系: ① 制作盒身的白铁皮张数 +制作盒底的白铁皮的张数 =120,② 盒身的个数 ×2=盒底的个数,据此进一步列出方程组即可.【详解】∵一共有 120 张白铁皮,此中 x 张制作盒身, y 张制作盒底,∴ x y 120 ,又∵每张铁皮可制盒身10 个或制盒底 40 个,一个盒身与两个盒底配成一套罐头盒,∴ 40 y 20x ,x y 120 ∴可列方程组为:,40 y 20x应选: C.【点睛】本题主要考察了二元一次方程组的实质应用,依据题意正确找出相应的等量关系是解题关键.8.某人购置甲种树苗12 棵,乙种树苗15 棵,共付款450 元,已知甲种树苗比乙种树苗每棵廉价 3 元,设甲种树苗每棵x 元,乙种树苗每棵y 元.由题意可列方程组()12x15y450 A.y3B.x12x15y450 C.3x D.y 【答案】 B【分析】【剖析】12x 15y450 y x312x 15y450 x 3 y依据“购置甲种树苗 12棵,乙种树苗15 棵,共付款450 元”可列方程 12x+15y=450;由“甲种树苗比乙种树苗每棵廉价3元”可列方程 y﹣ x=3,据此可得.【详解】设甲种树苗每棵x 元,乙种树苗每棵y 元.由题意可列方程组12x15 y450y x3,应选: B.【点睛】本题主要考察了由实质问题抽象出二元一次方程组,解题重点是要读懂题目的意思,依据题目给出的条件,找出适合的等量关系,列出方程组.9.二元一次方程3x4y 20 的正整数解有()A.1 组B.2 组C.3 组D.4 组【答案】 A【分析】【剖析】经过将方程变形,获得以x 的代数式,利用倍数逻辑关系,列举法可得.【详解】∵由 3x 4 y 20 可得, 4y 203x, y 35x ,x, y是正整数.4∴依据题意, x 是4的倍数,则 x0, y 5 (不符题意); x 4, y 2 是方程的解,x8, y 1 (不符题意).故答案是 A.【点睛】本题既考察正整数的观点又考察代数式的变形,理解二元一次方程解的观点是本题的重点.10.已知对于x、y的二元一次方程组3x 5 y6,给出以下结论:①当 k 5 时,此3x ky10方程组无解;② 若此方程组的解也是方程6x15 y16 的解,则k10 ;③不论整数 k何值,此方程组必定无整数解(x 、y均为整数),此中正确的选项是()A.①②B.①③C.②③D.①②③【答案】 D【分析】【剖析】①将 k53x 5 y6代入方程组可得3x 5 y,解方程组即可作出判断;10将 k10 代入方程组可得3x5y6②3x10y求得方程组的解后,再将解代入106x15y 16即可作出判断;3x5 y6x 2203k 15,依据 k 为整数即可作出判断.③ 解ky10得3x y4k 5【详解】解:①当 k 5 时,对于x、 y 的二元一次方程组为:3x 5 y63x 5 y ,此时方程组无解,10故本说法正确;23x 5 y6x 3,将其②当k 10时,对于 x 、y的二元一次方程组为:10 y 10,解得3x4y5代入 6x15 y16 ,能使其左右两边相等,故本说法正确;x 203x 5 y62得3k 15,因为 k 为整数而x、 y 不可以都为整数,故本说法③ 解ky103x4y5k正确.应选: D【点睛】本题考察了二元一次方程(组)的解、解二元一次方程组等,方程组的解即为能使方程组中双方程同时建立的未知数的值.x3y 4a、 b 的值是11.假如方程组的解与方程组的解同样,则ax by 5bx ay2( )a 1 a 1 a 1 a 1A .2B .2C .2D .2bbbb【答案】 A【分析】【剖析】x 3 3a 4b 5 把代入方程中其他两个方程得3b 4a,解方程组可得.y42【详解】解:因为两个方程组的解同样,因此这个同样的解是x 3,y 4x 3 把y 4代入方程中其他两个方程得3a 4b 5 3b 4a 2a 1解得b 2应选 A . 【点睛】本题查核知识点:解二元一次方程组.解题重点点:娴熟解二元一次方程组.12. 甲、乙两人在同一个地方练习跑步,假如让乙先跑10 米,甲跑5 秒钟就追上乙;如果甲让乙先跑2 秒钟,那么甲跑4 秒钟就能追上乙,若设甲、乙每秒钟分别跑x 、y 米,则列出方程组应是( )5x 10 5 y5x 5 y 105x5y 105 x y 10A .4 x 4 y 2B .4x 2 4 yC .4 x y 2yD .4 x y2x【答案】 C【分析】解:设甲、乙每秒分别跑x 米, y 米,由题意知:5x 5y 10.应选 C .4 xy2 y点睛:依据实质问题中的条件列方程组时,要注意抓住题目中的一些重点性词语,找出等量关系,列出方程组.13.已知对于 x,y 的二元一次方程组3x2y3m25 ,则 m 的2x3y m的解适合方程 x 2 y值为()A.1B. 2C. 3D. 4【答案】 C【分析】【剖析】整理方程为 3x+7y=2,与x2yx35 构成新的方程组,求解得,代入原方程组中随意一y1个方程即可求出 m.【详解】解:将 m=2x+3y 代入3x2y3m 2 中得,3x+7y=2,∵x,y 的二元一次方程组3x2y3m22 y 5 , 2x 3y m的解适合方程 xx 2 y5x3∴联立方程组7 y ,解得:y,3x21∴ m 2x 3y =3,应选 C.【点睛】本题考察解二元一次方程组的方法,属于简单题 ,娴熟掌握加减消元和代入消元的方法是解题重点 .14.某文具店一本练习本和一支水笔的单价共计为 3 元,小妮在该店买了20 本练习本和10 支水笔,共花了36 元.假如设练习本每本为x 元,水笔每支为y 元,那么依据题意,以下方程组中,正确的选项是()x y 3x y 3y x 3x y 3A.20x 10y36B.20x 10 y36C.20x 10y36D.10x 20 y 36【答案】 B【分析】剖析:依据等量关系“一本练习本和一支水笔的单价共计为 3 元”,“20本练习本的总价+10支水笔的总价 =36”,列方程组求解即可.详解:设练习本每本为x 元,水笔每支为y 元,依据单价的等量关系可得方程为x+y=3,依据总价 36 获得的方程为20x+10y=36,x y=3因此可列方程为:,20x10 y=36应选: B.点睛:本题主要考察了由实质问题抽象出二元一次方程组,获得单价和总价的2 个等量关系是解决本题的重点.2x 3 y 3()15. 用加减消元法解方程组2 y 11 ,以下变形正确的选项是3x4x 6 y 3 6 x 3 y 9 4x 6 y 6 6x 9 y 3 A .B .2 y22C .6 y33D .4y 119x 6 y 116 x 9x 6x 【答案】 C【分析】【剖析】运用加减法解方程组时,要知足方程组中某一个未知数的系数相等或互为相反数,把原方 程变形要依据等式的性质,本题中方程 ①×2, ②×3,便可把 y 的系数变为互为相反数.【详解】2x 3 y 3 解: {2 y 113x ①×2得, 4x+6y=6 ③,②×3得, 9x-6y=33 ④ ,4x 6y 6 构成方程组得: {.9x 6 y33应选 C .【点睛】本题考察二元一次方程组的解法有加减法和代入法两种,一般采用加减法解二元一次方程组较简单.运用加减法解方程组时,要知足方程组中某一个未知数的系数相等或互为相反数.16 .《九章算术》中记录: “ 今有甲乙二人持钱不知其数,甲得乙半而钱五十,乙得甲太半而亦钱五十 .问甲乙持钱各几何? ”其粗心是:今有甲、乙两人各带了若干钱 .假如甲获得乙 全部钱的一半,那么甲共有钱;假如乙获得甲全部钱的三分之二,那么乙也共有.问甲、乙两人各带了多少钱?设甲带钱为 ,乙带钱为 ,依据题意,可列方程组为()A .B .C .D .【答案】 A【分析】【剖析】设甲需带钱 x ,乙带钱 y ,依据题意可得,甲的钱+乙的钱的一半 =50,乙的钱 +甲全部钱的,据此列方程组可得.【详解】解:设甲需带钱x,乙带钱y,依据题意,得:应选: A.【点睛】本题考察了由实质问题抽象出二元一次方程组,解答本题的重点是读懂题意,设出未知数,找出适合的等量关系,列出方程组.17.某校运动员分组训练,若每组7 人,余为 x 人,组数为y 组,则列方程组为()3 人;若每组8 人,则缺 5 人;设运动员人数7 y x 37 y x 37y x 3D.7 y x 3A.B.C.8y x 58y 5 x8y 5 x8 y x 5【答案】 A【分析】【剖析】依据重点语句“若每组 7 人,余 3 人”可得方程 7y+3=x;“若每组 8人,则缺 5 人.”可得方程 8y-5=x,联立两个方程可得方程组.【详解】设运动员人数为 x 人,组数为 y 组,7 y x3由题意得:.8 y x5应选 A.【点睛】本题主要考察了由实质问题抽象出二元一次方程组,重点是正确理解题意,抓住重点语句,列出方程.18.利用两块同样的长方体木块丈量一张桌子的高度,第一按图①方式搁置,再互换两木块的地点,按图② 方式搁置丈量的数据如图,则桌子的高度是()A.73cm B.74cm C.75cm D.76cm【答案】 C【分析】【剖析】设长方体木块的长是xcm,宽是 ycm,由题意得x y 5 ,再代入求出桌子的高度即可.【详解】设长方体木块的长是xcm,宽是 ycm,由题意得80 x y 70 y x可得 x y5则桌子的高度是80 x y 80 5 75cm故答案为: C.【点睛】本题考察了二元一次方程的实质应用,掌握解二元一次方程的方法是解题的重点.19.图①的等臂天平呈均衡状态,此中左边秤盘有一袋石头,右边秤盘有一袋石头和 2 个各 10 克的砝码.将左边袋中一颗石头移至右边秤盘,并拿走右边秤盘的 1 个砝码后,天平仍呈均衡状态,如图② 所示.则被挪动石头的重量为()A.5 克B.10 克C.15 克D.20 克【答案】 A【分析】【剖析】【详解】解:设左天平的一袋石头重 x 克,右天平的一袋石头重 y 克,被挪动的石头重 z 克,由题意,得:x y20x z y z10解得 z=5答:被挪动石头的重量为 5 克.应选 A.【点睛】本题考察了列三元一次方程组解实质问题的运用,三元一次方程组的解法的运用,解答时理解图象天昭雪应的意义找到等量关系是重点.x m5 20.由方程组3,可获得 x 与y的关系式是()y mA.x y2B.x y 2C.x y 8D.x y8【答案】 C【分析】【剖析】先解方程组求得 x m5、y m 3 ,再将其相减即可得解.【详解】x m5①解:∵y 3m②由①得, x m5由② 得, y m3∴ x y m 5m 3 m 5 m 38 .应选: C【点睛】本题考察认识含参数的二元一次方程组、以及代数求值的知识点,娴熟掌握有关知识点是解决本题的重点.。

方程与不等式之二元一次方程组经典测试题附答案

方程与不等式之二元一次方程组经典测试题附答案

方程与不等式之二元一次方程组经典测试题附答案一、选择题1.已知关于x ,y 的方程组34{3x y ax y a+=--=,其中-3≤a≤1,给出下列结论:①当a=1时,方程组的解也是方程x +y=4-a 的解;②当a=-2时,x 、y 的值互为相反数;③若x≤1,则1≤y≤4;④5{1x y ==-是方程组的解,其中正确的是( )A .①②B .③④C .①②③D .①②③④【答案】C 【解析】 【分析】 【详解】 解:解方程组34{3x y a x y a +=--=,得12{1x ay a=+=-,∵-3≤a ≤1,∴-5≤x ≤3,0≤y≤4,①当a=1时,x+y=2+a=3,4-a=3,方程x+y=4-a 两边相等,结论正确; ②当a=-2时,x=1+2a=-3,y=1-a=3,x ,y 的值互为相反数,结论正确; ③当x≤1时,1+2a≤1,解得a≤0,故当x≤1时,且-3≤a≤1, ∴-3≤a ≤0∴1≤1-a ≤4∴1≤y ≤4结论正确, ④5{1x y ==-不符合-5≤x≤3,0≤y≤4,结论错误;故选:C . 【点睛】本题考查二元一次方程组的解;解一元一次不等式组.2.《九章算术》中记载:“今有共买羊,人出五,不足四十五人出七,不足三,问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱,问合伙人数、羊价各是多少设合伙人数为x 人,羊价为y 钱,根据题意,可列方程组为( ). A .54573y x y x =+⎧⎨=-⎩B .54573y x y x =-⎧⎨=+⎩C .54573y x y x =+⎧⎨=+⎩D .54573y x y x =-⎧⎨=-⎩【答案】C 【解析】 【分析】根据羊价不变即可列出方程组. 【详解】解:由“若每人出5钱,还差45钱”可以表示出羊价为:545y x =+,由“若每人出7钱,还差3钱”可以表示出羊价为:73y x =+,故方程组为54573y x y x =+⎧⎨=+⎩.故选C. 【点睛】本题考查了二元一次方程组的应用,正确理解题意,明确羊价不变是列出方程组的关键.3.《孙子算经》中有一道题,原文是:“今有木,不知长短.引绳度之,余绳四足五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5尺.将绳子对折再量长木,长木还剩余1尺,问木长多少尺,现设绳长x 尺,木长y 尺,则可列二元一次方程组为( )A . 4.5112y x y x -=⎧⎪⎨-=⎪⎩B . 4.5112x y y x -=⎧⎪⎨-=⎪⎩ C . 4.5112x y x y -=⎧⎪⎨-=⎪⎩D . 4.5112y x x y -=⎧⎪⎨-=⎪⎩【答案】B 【解析】 【分析】本题的等量关系是:绳长-木长 4.5=;木长12-绳长1=,据此可列方程组求解. 【详解】设绳长x 尺,长木为y 尺,依题意得 4.5112x y y x -=⎧⎪⎨-=⎪⎩, 故选B . 【点睛】此题考查二元一次方程组问题,关键是弄清题意,找准等量关系,列对方程组,求准解.4.用白铁皮做罐头盒,每张铁皮可制盒身10个或制盒底40个,一个盒身与两个盒底配成一套,现有120张白铁皮,设用x 张制盒身,y 张制盒底,得方程组( )A .1204016x y y x +=⎧⎨=⎩B .1204332x y y x +=⎧⎨=⎩C .12040210x y y x +=⎧⎨=⨯⎩D .以上都不对【答案】C 【解析】 【分析】根据题意可知,本题中的等量关系是(1)盒身的个数×2=盒底的个数;(2)制作盒身的白铁皮张数+制作盒底的白铁皮张数=120,从而列方程组. 【详解】解:根据题意,盒身的个数×2=盒底的个数,可得;2×10x=40y;制作盒身的白铁皮张数+制作盒底的白铁皮张数=120,可得x+y=120,故可得方程组120 40210x yy x+=⎧⎨=⨯⎩.故选:C.【点睛】本题考查了根据实际问题抽象二元一次方程组的知识,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,注意运用本题中隐含的一个相等关系:“一个盒身与两个盒底配成一套盒”.5.为了迎接体育中考,体育委员到体育用品商店购买排球和实心球,若购买2个排球和3个实心球共需95元,若购买5个排球和7个实心球共需230元,若设每个排球x元,每个实心球y元,则根据题意列二元一次方程组得()A.329557230x yx y+=⎧⎨+=⎩B.239557230x yx y+=⎧⎨+=⎩C.329575230x yx y+=⎧⎨+=⎩D.239575230x yx y+=⎧⎨+=⎩【答案】B【解析】分析:根据题意,确定等量关系为:若购买2个排球和3个实心球共需95元,若购买5个排球和7个实心球共需230元,根据所设未知数列方程,构成方程组即可.详解:设每个排球x元,每个实心球y元,则根据题意列二元一次方程组得:2395 57230x yx y+=⎧⎨+=⎩,故选B.点睛:此题主要考查了二元一次方程组的应用,关键是确定问题中的等量关系,列方程组.6.某家具生产厂生产某种配套桌椅(一张桌子,两把椅子),已知每块板材可制作桌子1张或椅子4把,现计划用120块这种板材生产一批桌椅(不考虑板材的损耗,恰好配套),设用x块板材做椅子,用y块板材做桌子,则下列方程组正确的是()A.12024x yx y+=⎧⎨=⎩B.12024x yx y+=⎧⎨⨯=⎩C.12042x yx y+=⎧⎨=⎩D.12024x yx y+=⎧⎨=⨯⎩【答案】C【解析】【分析】根据“用120块这种板材生产一批桌椅”,即可列出一个二元一次方程,根据“每块板材可做桌子1张或椅子4把,使得恰好配套,一张桌子两把椅子”,列出另一个二元一次方程,即可得到答案.解:设用x 块板材做椅子,用y 块板材做桌子, ∵用120块这种板材生产一批桌椅, ∴x+y=120 ①,生产了y 张桌子,4x 把椅子, ∵使得恰好配套,1张桌子2把椅子, ∴4x=2y ②, ①和②联立得:12042x y x y +=⎧⎨=⎩, 故选:C. 【点睛】本题考查了由实际问题抽象出二元一次方程组,正确找出等量关系,列出二元一次方程组是解题的关键.7.已知甲、乙两数之和是42,甲数的3倍等于乙数的4倍,求甲、乙两数.若设甲数为x ,乙数为y ,由题意得方程组( )A .4243y x x y+=⎧⎨=⎩B .4243x y x y+=⎧⎨=⎩C .421134x y x y -=⎧⎪⎨=⎪⎩D .4234x y x y+=⎧⎨=⎩【答案】D 【解析】 【分析】按照题干关系分别列出二元一次方程,再组合行成二元一次方程组即可. 【详解】解:由甲、乙两数之和是42可得,42x y +=;由甲数的3倍等于乙数的4倍可得,34x y =,故由题意得方程组为:4234x y x y +=⎧⎨=⎩, 故选择D. 【点睛】本题考查了二元一次方程组的应用,理清题干关系,分别列出两个二元一次方程即可.8.下列4组数值,哪个是二元一次方程2x+3y =5的解?( )A .035x y =⎧⎪⎨=⎪⎩B .11x y =⎧⎨=⎩C .23x y =⎧⎨=-⎩D .41x y =⎧⎨=⎩【解析】 【分析】二元一次方程2x+3y =5的解有无数个,所以此题应该用排除法确定答案,分别代入方程组,使方程左右相等的解才是方程组的解. 【详解】A 、把x =0,y =35代入方程,左边=0+95=95≠右边,所以不是方程的解; B 、把x =1,y =1代入方程,左边=右边=5,所以是方程的解;C 、把x =2,y =﹣3代入方程,左边=﹣5≠右边,所以不是方程的解;D 、把x =4,y =1代入方程,左边=11≠右边,所以不是方程的解. 故选B . 【点睛】此题考查二元一次方程的解的定义,要理解什么是二元一次方程的解,并会把x ,y 的值代入原方程验证二元一次方程的解.9.若方程组32232732x y k x y k -=-⎧⎨+=-⎩的解满足2020x y +=,则k 等于( )A .2018B .2019C .2020D .2021【答案】D 【解析】 【分析】把两个方程相加,可得5x +5y =5k-5,再根据2020x y +=可得到关于k 的方程,进而求k 即可. 【详解】解:32232732x y k x y k -=-⎧⎨+=-⎩①②①+②得 5x +5y =5k-5, ∴x +y =k -1. ∵2020x y +=, ∴k -1=2020, ∴k=2021. 故选:D . 【点睛】本题考查了二元一次方程组的特殊解法,依据方程系数特点整体代入是求值的关键.10.如图,将长方形ABCD的一角折叠,折痕为AE,∠BAD比∠BAE大18°.设∠BAE和∠BAD的度数分别为x,y,那么x,y所适合的一个方程组是()A.1890y xy x-=⎧⎨+=⎩B.18290y xy x-=⎧⎨+=⎩C.182y xy x-=⎧⎨=⎩D.18290x yy x-=⎧⎨+=⎩【答案】B【解析】【分析】首先根据题意可得等量关系:①∠BAD-∠BAE大18°;②∠BAD+2∠BAE=90°,根据等量关系列出方程组即可.【详解】解:设∠BAE和∠BAD的度数分别为x°和y°,依题意可列方程组:18290 y xy x-=⎧⎨+=⎩故选:B.【点睛】此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系,列出方程组.11.用5个大小相同的小长方形拼成了如图所示的大长方形,若大长方形的周长是28,则每个小长方形的周长是()A.12B.14C.13D.16【答案】A【解析】【分析】设小长方形的长为x,宽为y,根据题意列出方程组,解方程组求出x,y的值,进而可求小长方形的周长.【详解】设小长方形的长为x,宽为y,根据题意有2(3)228x y y x x =⎧⎨++⨯=⎩ 解得42x y =⎧⎨=⎩∴小长方形的周长为(42)212+⨯= , 故选:A . 【点睛】本题主要考查二元一次方程组的应用,读懂题意列出方程组是解题的关键.12.如图,10块相同的长方形墙砖拼成一个大长方形,设长方形墙砖的长和宽分别为x 厘米和y 厘米,则依题意所列方程组正确的是( )A .2753x y y x+=⎧⎨=⎩B .2753x y x y +=⎧⎨=⎩C .2753x y y x -=⎧⎨=⎩D .2753x y x y +=⎧⎨=⎩【答案】B 【解析】 【分析】根据图示可得:矩形的宽可以表示为x+2y ,宽又是75厘米,故x+2y=75,矩的长可以表示为2x ,或x+3y ,故2x=3y+x ,整理得x=3y ,联立两个方程即可. 【详解】 根据图示可得,2753x y x y +=⎧⎨=⎩故选B . 【点睛】此题主要考查了由实际问题抽象出二元一次方程组,关键是看懂图示,分别表示出长方形的长和宽.13.甲、乙两人在同一个地方练习跑步,如果让乙先跑10米,甲跑5秒钟就追上乙;如果甲让乙先跑2秒钟,那么甲跑4秒钟就能追上乙,若设甲、乙每秒钟分别跑x 、y 米,则列出方程组应是( )A .5105442x yx y +=⎧⎨-=⎩B .5510424x y x y =+⎧⎨-=⎩C .()5510 42x y x y y -=⎧⎨-=⎩ D .()()51042x y x y x ⎧-=⎪⎨-=⎪⎩【答案】C 【解析】解:设甲、乙每秒分别跑x 米,y 米,由题意知:()551042x y x y y -=⎧⎨-=⎩.故选C .点睛:根据实际问题中的条件列方程组时,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.14.已知关于x,y 的二元一次方程组323223x y m x y m+=-⎧⎨+=⎩ 的解适合方程25x y -=,则m 的值为( ) A .1 B .2C .3D .4【答案】C 【解析】 【分析】整理方程为3x+7y=2,与25x y -=组成新的方程组,求解得31x y =⎧⎨=-⎩,代入原方程组中任意一个方程即可求出m.【详解】解:将m=2x+3y 代入3232x y m +=-中得,3x+7y=2, ∵x,y 的二元一次方程组323223x y m x y m+=-⎧⎨+=⎩ 的解适合方程25x y -=,∴联立方程组25372x y x y -=⎧⎨+=⎩,解得:31x y =⎧⎨=-⎩, ∴23m x y =+=3, 故选C. 【点睛】本题考查解二元一次方程组的方法,属于简单题,熟练掌握加减消元和代入消元的方法是解题关键.15.在方程组657237x y m x y +=+⎧⎨-=⎩的解中,x 、y 的和等于9,则72m +的算术平方根为( )A .7B .7±CD .【答案】A 【解析】 【分析】根据条件得到二元一次方程组937y x y x ⎧⎨-=+=⎩,求出x ,y 的值,进而求出72m +的算术平方根,即可.∵657237x y m x y +=+⎧⎨-=⎩且x+y=9,∴937y x y x ⎧⎨-=+=⎩,解得:45x y =⎧⎨=⎩,∴72m +=65x y +=6×4+5×5=49, ∴72m +的算术平方根为:7. 故选A . 【点睛】本题主要考查二元一次方程组的解的意义,掌握解二元一次方程组的方法,是解题的关键.16.为奖励消防演练活动中表现优异的同学,某校决定用1200元购买篮球和排球,其中篮球每个120元,排球每个90元,在购买资金恰好用尽的情况下,购买方案有( ) A .4种 B .3种C .2种D .1种【答案】B 【解析】【分析】设购买篮球x 个,排球y 个,根据“购买篮球的总钱数+购买排球的总钱数=1200”列出关于x 、y 的方程,由x 、y 均为非负整数即可得. 【详解】设购买篮球x 个,排球y 个, 根据题意可得120x+90y=1200, 则y=4043x-, ∵x 、y 均为正整数,∴x=1、y=12或x=4、y=8或x=7、y=4,所以购买资金恰好用尽的情况下,购买方案有3种, 故选B .【点睛】本题考查二元一次方程的应用,解题的关键是理解题意,依据相等关系列出方程.17.小明在超市帮妈妈买回一袋纸杯,他把纸杯整齐地叠放在一起,如图请你根据图中的信息,若小明把100个纸杯整齐叠放在一起时,它的高度约是( )A .106cmB .110cmC .114cmD .116cm【答案】A 【解析】通过观察图形,可知题中有两个等量关系:单独一个纸杯的高度加上3个纸杯叠放在一起高出单独一个纸杯的高度等于9,单独一个纸杯的高度加上8个纸杯叠放在一起高出单独一个纸杯的高度等于14.根据这两个等量关系,可列出方程组,再求解. 【详解】解:设每两个纸杯叠放在一起比单独的一个纸杯增高xcm ,单独一个纸杯的高度为ycm ,则29714x y x y +=⎧⎨+=⎩,解得17x y =⎧⎨=⎩则99x +y =99×1+7=106即把100个纸杯整齐的叠放在一起时的高度约是106cm . 故选:A . 【点睛】本题以实物图形为题目主干,图形形象直观,直接反映了物体的数量关系,这是近年来比较流行的一种命题形式,主要考查信息的收集、处理能力.本题易错点是误把9cm 当作3个纸杯的高度,把14cm 当作8个纸杯的高度.18.方程组2x y x y 3+=⎧+=⎨⎩的解为{x 2y ==,则被遮盖的两个数分别为( )A .2,1B .5,1C .2,3D .2,4【答案】B 【解析】把x=2代入x+y=3中,得:y=1, 把x=2,y=1代入得:2x+y=4+1=5, 故选B .19.我国古代数学著作《增删算法统宗》记载“绳索量竿”问题:“一条竿子一条索,索比竿子长一托,折回索子却量竿,却比竿子短一托”.其大意为:有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x 尺,竿长y 尺,则符合题意的方程组是( )A .5152x y x y =+⎧⎪⎨=-⎪⎩B .5152x y x y =-⎧⎪⎨=+⎪⎩C .525x y x y =+⎧⎨=-⎩D .525x y x y =-⎧⎨=+⎩【答案】A 【解析】 【分析】根据“用绳索去量竿,绳索比竿长5尺”可知5x y =+,然后进一步利用“如果将绳索对半折后再去量竿,就比竿短5尺”可知152x y =-,由此即可得出相应的方程组,从而得出答案.【详解】由题意得:绳索长x 尺,竿长y 尺,∵绳索比竿长5尺,∴5x y =+,又∵将绳索对半折后再去量竿,就比竿短5尺,∴152x y =-, ∴可列方程组为:5152x y x y =+⎧⎪⎨=-⎪⎩, 故选:A.【点睛】本题主要考查了二元一次方程组的实际应用,根据题意找出正确的等量关系是解题关键.20.某人购买甲种树苗12棵,乙种树苗15棵,共付款450元,已知甲种树苗比乙种树苗每棵便宜3元,设甲种树苗每棵x 元,乙种树苗每棵y 元.由题意可列方程组( ) A .12154503x y x y +=⎧⎨-=⎩ B .12154503x y y x +=⎧⎨-=⎩C .12154503x y y x +=⎧⎨=-⎩D .12154503x y x y +=⎧⎨=-⎩ 【答案】B【解析】【分析】根据“购买甲种树苗12棵,乙种树苗15棵,共付款450元”可列方程12x+15y =450;由“甲种树苗比乙种树苗每棵便宜3元”可列方程y ﹣x =3,据此可得.【详解】设甲种树苗每棵x 元,乙种树苗每棵y 元.由题意可列方程组12154503x y y x +=⎧⎨-=⎩ , 故选:B .【点睛】本题主要考查了由实际问题抽象出二元一次方程组,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组.。

(易错题精选)初中数学方程与不等式之二元一次方程组专项训练解析含答案

(易错题精选)初中数学方程与不等式之二元一次方程组专项训练解析含答案

(易错题精选)初中数学方程与不等式之二元一次方程组专项训练解析含答案一、选择题1.为丰富同学们的课余活动,某校计划成立足球和篮球课外兴趣小组,现需购买篮球和足球若干个,已知购买篮球的数量比足球的数量少1个,篮球的单价为60元,足球的单价为30元,一共花了480元,问篮球和足球各买了多少个?设购买篮球x 个,购买足球y 个,可列方程组( )A .x y 160x 30y 480-=⎧+=⎨⎩B .x y 160x 30y 480=-⎧+=⎨⎩C .x y 130x 60y 480=-⎧+=⎨⎩D .x y 130x 60y 480-=⎧+=⎨⎩【答案】B 【解析】 【分析】根据“购买篮球的数量比足球的数量少1个,篮球的单价为60元,足球的单价为30元,一共花了480元”找到等量关系列出方程即可. 【详解】设购买篮球x 个,购买足球y 个,根据题意可列方程组:x y 160x 30y 480=-⎧+=⎨⎩, 故选:B . 【点睛】本题考查了由实际问题抽象出二元一次方程组的知识,解题的关键是能够找到题目中的等量关系,难度不大.2.若(x +y ﹣1)2+|x ﹣y +5|=0,则x =( ) A .﹣2 B .2C .1D .﹣1【答案】A 【解析】 【分析】由已知等式,利用非负数的性质列出方程组,求出方程组的解得到x 即可. 【详解】解:∵(x +y ﹣1)2+|x ﹣y +5|=0, ∴1050x y x y +-=⎧⎨-+=⎩,解得:23x y =-⎧⎨=⎩,故选:A. 【点睛】本题主要考查了非负数的性质和二元一次方程组的解法,根据两个非负数的和为零则这两个数均为零得出方程组是解决此题的的关键.3.已知x 、y 满足方程组2827x y x y +=⎧⎨+=⎩,则x +y 的值是( )A .3B .5C .7D .9【答案】B 【解析】 【分析】把两个方程相加可得3x+3y=15,进而可得答案. 【详解】两个方程相加,得3x+3y=15, ∴x+y=5, 故选B. 【点睛】本题主要考查解二元一次方程组,灵活运用整体思想是解题关键.4.甲乙两人同解方程 2{78ax by cx y +=-= 时,甲正确解得 3{2x y ==- ,乙因为抄错c 而得2{2x y =-= ,则a+b+c 的值是( )A .7B .8C .9D .10【答案】A 【解析】 【分析】根据题意可以得到a 、b 、c 的三元一次方程组,从而可以求得a 、b 、c 的值,本题得以解决. 【详解】解:根据题意可知,∴3a-2b=2,3c+14=8,-2a+2b=2 ∴c=-2,a=4,b=5 ∴a+b+c=7. 故答案为:A. 【点睛】此题考查二元一次方程组的解,解题的关键是明确题意,找出所求问题需要的条件.5.已知关于x 的方程x-2m=7和x-5=3m 是同解方程,则m 值为( ) A .1 B .-1C .2D .-2【答案】C【解析】 【分析】根据同解方程,可得方程组,根据解方程组,可得答案. 【详解】 解:由题意,得2753x m x m -=⎧⎨-=⎩①②, 由①得:7+2x m =, 由②得:3+5x m =, ∴7+23+5m m =, 解得:2m =, 故选C. 【点睛】本题考查了同解方程,利用同解方程得出方程组是解题关键.6.重庆育才中学2019年“见字如面读陶分享会” 隆重举行,初一年级得到了一定数量的入场券,如果每个班10张,则多出15张,如果每个班12张,则差5张券,假设初一年级共有x 个班,分配到的入场券有y 张,列出方程组为( )A .1051215x y x y +=⎧⎨-=⎩B .1051215x yx y -=⎧⎨+=⎩C .1051215x y x y =-⎧⎨+=⎩D .1051215x y x y -=⎧⎨=+⎩【答案】A 【解析】 【分析】假设初一班级共有x 个班,分配到的入场券有y 张,根据“如果每个班10张,则多出5张券;如果每个班12张,则差15张券”列出方程组. 【详解】设初一班级共有x 个班,分配到的入场券有y 张, 则1051215x yx y +=⎧⎨-=⎩.故选:A . 【点睛】此题考查由实际问题抽象出二元一次方程组,解题的关键是明确题意,列出相应的方程组.7.某人购买甲种树苗12棵,乙种树苗15棵,共付款450元,已知甲种树苗比乙种树苗每棵便宜3元,设甲种树苗每棵x 元,乙种树苗每棵y 元.由题意可列方程组( )A .12154503x y x y +=⎧⎨-=⎩B .12154503x y y x +=⎧⎨-=⎩C .12154503x y y x +=⎧⎨=-⎩D .12154503x y x y +=⎧⎨=-⎩【答案】B 【解析】 【分析】根据“购买甲种树苗12棵,乙种树苗15棵,共付款450元”可列方程12x+15y =450;由“甲种树苗比乙种树苗每棵便宜3元”可列方程y ﹣x =3,据此可得. 【详解】设甲种树苗每棵x 元,乙种树苗每棵y 元. 由题意可列方程组12154503x y y x +=⎧⎨-=⎩,故选:B . 【点睛】本题主要考查了由实际问题抽象出二元一次方程组,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组.8.若方程6ax by +=的两个解是11x y =⎧⎨=⎩,21x y =⎧⎨=-⎩,则,a b 的值为( )A .42a b =⎧⎨=⎩B .24a b =⎧⎨=⎩C .24a b =-⎧⎨=-⎩D .42a b =-⎧⎨=-⎩【答案】A 【解析】 【分析】将方程的两组解代入6ax by +=中,可以得到一个关于a,b 的二元一次方程组,解方程组即可. 【详解】∵方程6ax by +=的两个解是11x y =⎧⎨=⎩,21x y =⎧⎨=-⎩, ∴626a b a b +=⎧⎨-=⎩解得42a b =⎧⎨=⎩,故选:A . 【点睛】本题主要考查二元一次方程的解,掌握二元一次方程组的解法是解题的关键.9.二元一次方程3420x y +=的正整数解有( )A .1组B .2组C .3组D .4组【答案】A 【解析】 【分析】通过将方程变形,得到以x 的代数式,利用倍数逻辑关系,枚举法可得. 【详解】∵由3420x y += 可得,34y 203, 54x y x =-=-,,x y 是正整数. ∴根据题意,x 是4的倍数,则05x y ==,(不符题意);4,2x y == 是方程的解,8,1x y ==- (不符题意).故答案是A . 【点睛】本题既考查正整数的概念又考查代数式的变形,理解二元一次方程解的概念是本题的关键.10.下面几对数值是方程组233,22x y x y +=⎧⎨-=-⎩的解的是( )A .1,0x y =⎧⎨=⎩B .1,2x y =⎧⎨=⎩C .0,1x y =⎧⎨=⎩D .2,1x y =⎧⎨=⎩【答案】C 【解析】 【分析】利用代入法解方程组即可得到答案.【详解】23322x y x y +=⎧⎨-=-⎩①②, 由②得:x=2y-2③,将③代入①得:2(2y-2)+3y=3, 解得y=1,将y=1代入③,得x=0, ∴原方程组的解是01x y =⎧⎨=⎩, 故选:C. 【点睛】此题考查二元一次方程组的解法:代入法或加减法,根据每个方程组的特点选择恰当的解法是解题的关键.11.甲仓库与乙仓库共存粮450 吨、现从甲仓库运出存粮的60%.从乙仓库运出存粮的40%.结果乙仓库所余的粮食比甲仓库所余的粮食多30 吨。

七年级二元一次方程组及不等式(组)计算题训练

七年级二元一次方程组及不等式(组)计算题训练

二元一次方程组及不等式(组)计算题训练1.用加减消元法解下列方程组:(1)723,9219;x yx y-=⎧⎨+=-⎩(2)653,615;x yx y-=⎧⎨+=-⎩(3)435,25;s ts t+=⎧⎨-=-⎩(4)569,74 5.x yx y-=⎧⎨-=-⎩2.用代入消元法解下列方程组:(1)2,12;y xx y=⎧⎨+=⎩(2)5,24365;yxx y-⎧=⎪⎨⎪+=⎩(3)117;x yx y+=⎧⎨-=⎩(4)329,2 3.x yx y-=⎧⎨+=⎩3.解方程组:23,1,220. x y zx yx y z++=⎧⎪-=⎨⎪+-=⎩①②③4.用代入法解下列方程组:(1)23320a ba b=+⎧⎨=+⎩;(2)1367x yx y-=⎧⎨=-⎩;(3)4421x yx y-=⎧⎨+=-⎩;(4)51109110x yy x-=⎧⎨-=⎩.5.解下列方程组:(1)3(1)55(1)3(5)x yy x-=+⎧⎨-=+⎩;(2)2313424575615u vu v⎧+=⎪⎪⎨⎪+=⎪⎩.6.解下列三元一次方程组:(1)275322344y x x y z x z =-⎧⎪++=⎨⎪-=⎩;(2)491232119754x y y z x z ⎧⎪+=⎪-=⎨⎪⎪+=⎩.7.解方程组:(1)37528y x x y =-⎧⎨+=⎩ (2)22(1)2(2)5(1)x y x y -=-⎧⎨-=--⎩(3)5()3634()36x x y y x y ++=⎧⎨++=⎩(4)281223x y z x y x z y ++=⎧⎪-=-⎨⎪+=+⎩(5)32522435m n m n m n ++++==- (6)(0)ax y b a b bx y a -=⎧+≠⎨+=⎩8.解方程组:(1)()2534x y x x y +=⎧⎨-+=⎩ (2)12043314312x y x y ++=⎨--⎪-=⎪⎩ (3)2532415%25%4020%x y x y x y +-⎧=⎪⎨⎪+=⨯⎩(4)0.20.50.20.40.10.4x y x y +=⎧⎨+=⎩(5)32225453x y x y x y ++++==-9.解方程:(1)32339x y x y +=⎧⎨-=⎩(用代入消元法) (2)734831x y x y -=⎧⎨-=-⎩(用加减消元法)(3)12343314312x y x y ++⎧=⎪⎪⎨--⎪-=⎪⎩ (4)281223x y z x y x z y ++=⎧⎪-=-⎨⎪+=+⎩10.已知方程组202x y x y m -=⎧⎨+=⎩和方程组521x y x y n -=⎧⎨-=-⎩的解相同,求m 、n 的值.11.解下列不等式组:(1)2151132513(1)x x x x -+⎧-≤⎪⎨⎪-<+⎩ (2)273(1)423133x x x x -<-⎧⎪⎨+≥-⎪⎩12.解下列不等式组(1)24(5)82122x x x x --≥⎧⎪⎨->-⎪⎩ (2)23725123x x x x +≤+⎧⎪+⎨->-⎪⎩13.解下列不等式(组),并将解集在数轴上表示出来: (1)2(53)3(12)x x x +≤-- (2)2125671234x x x -+--≥-(3)|2|30x +-> (4)248322(4)x x x -<⎧⎨+≥+⎩14.求不等式27336105x x x ---≤<+的整数解.15.解不等式组()21511325131x x x x -+⎧-≤⎪⎪⎨⎪-<+⎪⎩,并在数轴上表示不等式组的解集.16.解方程组或不等式组(1)2724x y x y +=⎧⎨-=⎩①②(2)217263(4)3x x x ->⎧⎪⎨+-≤⎪⎩①②17.解不等式或不等式组,并将其解集在数轴上表示出来.(1)解不等式2151132x x -+-≥,并把它的解集在数轴上表示出来.(2)解不等式组233311362x x x x +>⎧⎪+-⎨-≥⎪⎩.18.解不等式组:322521232x x x x -≥-⎧⎪-⎨-<⎪⎩,并写出负整数解.19.解不等式组:365(2)543123x x x x +-⎧⎪--⎨-<⎪⎩,并求出最小整数解与最大整数解的和.20.求不等式组13482751020x x x x x -+⎧<⎪⎪⎨-⎪-≥-⎪⎩的非负整数解.答案1.(1)1,5;x y =-⎧⎨=-⎩ (2)2,3;x y =-⎧⎨=-⎩ (3)1,3;s t =-⎧⎨=⎩(4)3,4.x y =-⎧⎨=-⎩ 2.(1)4,8;x y =⎧⎨=⎩ (2)5,15;x y =⎧⎨=⎩ (3)9,2;x y =⎧⎨=⎩ (4)3,0.x y =⎧⎨=⎩ 3.986x y z =⎧⎪=⎨⎪=⎩4.(1)3117a b =-⎧⎨=-⎩;(2)174x y =⎧⎨=⎩;(3)76176x y ⎧=⎪⎪⎨⎪=-⎪⎩;(4)2515x y =⎧⎨=⎩. 5.(1)57x y =⎧⎨=⎩;(2)232v u =⎧⎪⎨=-⎪⎩. 6.(1)2312x y z ⎧⎪=⎪=-⎨⎪⎪=⎩;(2)34532x y z ⎧=-⎪⎪⎪=⎨⎪=⎪⎪⎩. 7.(1)21x y =⎧⎨=-⎩;(2)42x y =⎧⎨=⎩;(3)36113611x y ⎧=⎪⎪⎨⎪=⎪⎩; (4)123x y z =⎧⎪=⎨⎪=⎩;(5)21m n =⎧⎨=-⎩;(6)1x y a b =⎧⎨=-⎩ 8.(1)20x y =⎧⎨=⎩;(2)22x y =⎧⎨=⎩;(3)408x y =⎧⎨=⎩;(4)10x y =⎧⎨=⎩;(5)21x y =⎧⎨=-⎩ 9.(1)56x y =⎧⎨=⎩;(2)513x y =-⎧⎨=-⎩;(3)22x y =⎧⎨=⎩;(4)123x y z =⎧⎪=⎨⎪=⎩10.20m =-,1n =11.(1)12x -≤<;(2)1x ≥-.12.(1)564x <≤;(2)445x <≤ 13.(1)3x ≤- (2)12x ≤(3)1x >或5x <-(4)无解 14.2-15.-1≤x <216.(1)32x y =⎧⎨=⎩;(2)4<x ≤6. 17.(1)x ≤﹣1(2)﹣4≤x <318.-3≤x <-1,该不等式组的负整数解有-3、-219.38x -<,6 20.x =0、1、2、3、4。

二元一次方程组与不等式(组)习题14篇

二元一次方程组与不等式(组)习题14篇

二元一次方程组⑴1、下列方程:①xy+3x-y=5②3x+2=x-y ③y=5x ④x+y 1=3⑤xy=2⑥x 2-y 2=1⑦x+y+z=1中,二元一次方程有 (填序号).2、已知x a+b -3y a-1=2是关于x 、y 的二元一次方程,则a= ,b= . 3、已知x 、y 的值:①⎩⎨⎧==22x y ②⎩⎨⎧==23y x ③⎩⎨⎧-==21x y ④⎩⎨⎧-=-=23y x ,其中是二元一次方程2x-y=4的解是 (填序号).4、已知⎩⎨⎧==12x y 是方程3x+ay=4的一个解,则a= .5、方程5x-2y=1,当x= -2时,y= ;当y= -3时,x= .6、若方程x-ky=6的一个解是⎩⎨⎧==32y x ,则k 的值是 .7、若⎩⎨⎧-=-=121m y mx ,则x 与y 的关系是8、把下列方程化成用含x 的式子表示y 的形式:(1)x+3y=4 (2)3x-5y=29、判断⎩⎨⎧==13y x 是否是方程组⎩⎨⎧=-=+43252y x y x 的解?为什么?1、在下列二元一次方程中,有无数个正整数的解的是( )A 、x+3y=2008B 、x-y=3C 、2x+4y=7D 、x+2y=12、方程x-my=y+3是关于x 、y 的二元一次方程,则m 的取值范围是( )A 、m ≠0B 、m ≠1C 、m ≠-1D 、m ≠33、下列方程组中不是二元一次方程组的是( )A 、⎩⎨⎧==32y xB 、⎩⎨⎧=-=+21y x y xC 、⎩⎨⎧==+15xy y xD 、⎩⎨⎧=-=12y x x y 4、方程组⎩⎨⎧=+=-521y x y x 的解是( )A 、⎩⎨⎧-=-=21y xB 、⎩⎨⎧==12y xC 、⎩⎨⎧-==12y xD 、⎩⎨⎧==21y x 5、在方程3x+4y=6中,如果2y=3,那么x= .6、某人只带了面值2元和5元的两种货币,他要买一件27元的商品,则他在不需要找钱的情况下可以有几种付款方式.7、解方程组(1)⎩⎨⎧=+=-74823y x y x (2)⎩⎨⎧=+-=-33225y x y x1、已知方程12(x+1)=7(y-1),写出用x 表示y 的式子得 ,当x=2时,y= .2、将x=23-y-1代入方程4x-9y=8中,可得到一元一次方程的解是 . 3、若方程3x+y=51的一个解中的两个数互为相反数,则这个解是 . 4、用代入法解方程组⎩⎨⎧=-=+1472x y x y 由②得y= ③,把③代入①, 得 ,解得x= ,再把求得的x 值代入③得,y= ;所以方程组的解为 .5、已知⎩⎨⎧==32x y 是方程组⎩⎨⎧=-=-7253ny x y mx 的解,则2m+3n= .6、解方程组(1)⎩⎨⎧=--=52332b a b a (2)⎩⎨⎧=+=-15255s 3t s t7、已知关于x 、y 的方程mx+ny=8的两个解分别为⎩⎨⎧-==13y x 和⎩⎨⎧=-=21y x ,求m 、n 的值.二元一次方程组⑷1、若(2x-3y+5)2+︱x+y-2︱=0,则x= ,y= .2、已知3x 3m+5n+9+9y 4m-2n+3=5是二元一次方程,则n m 的值是 . 3、如果x+y=-4,x-y=8,那么多项式x 2-y 2的值是 .4、已知方程组⎩⎨⎧=+=-24by ax by ax 的解为⎩⎨⎧==12y x 则2a-3b= . 5、已知⎩⎨⎧=-=+32423t y t x ,则x 与y 之间的关系式是 .6、解方程组(1)⎩⎨⎧=+=-924523n m n m (2)⎩⎨⎧=+=-524753y x y x7、已知(3x-2y+1)2与︱4x-3y-3︱互为相反数,求x-y 的值.1、某电视机厂第一季度和第二季度共生产液晶电视机144000台,已知第一季度的产量是第二季度的80%,设第一季度的产量为x 台,第二季度的产量为y 台,则列出方程组是 .2、一艘轮船顺水航行104km,需要2h ;逆水航行3h 的路程为96km ;则轮船在静水中航2h 的路程是多少千米.可采取间接设的方法.设轮船在静水中航行的速度为xkm/h ,水流速度为ykm/h ,则列出方程组为 .3、10年前,母亲的年龄是儿子年龄的6倍;10年后,母亲的年龄是儿子年龄的2倍,求母亲现在的年龄和儿子现在的年龄各是多少岁?4、甲乙二人从相距20千米的两地同时出发,若同向而行甲5小时可追上乙;若相向而行35小时相遇,求甲乙二人的速度各是多少.5、已知甲、乙两种商品的原价和为200元.因市场变化,甲商品降价10%,乙商品提价10%,调价后甲、乙两种商品的单价和比原单价和提高了5%.求甲、乙两种商品的原单价各是多少元.1、要把一张面值为10元的人民币换成零钱,现在只有面值1元和5元的人民币,数量足够多,那么不同的换法共有种.2、某校运动员进行分组训练,若每组5人,则余2人;若每组6人,则缺少3人;设运动员人数共有x人,组数为y人,则列出方程组为 .3、某文具商店星期一共售出毛笔和签字笔200支,其中毛笔的数量是签字笔数量的3倍多8支,设售出毛笔x支,售出签字笔y支,则列出方程组为 .4、10年前,母亲的年龄是儿子年龄的6倍;10年后,母亲的年龄是儿子年龄的2倍,求母亲现在的年龄和儿子现在的年龄各是多少岁?5、已知一艘轮船载重量是500吨,容积是1000立方米.现有甲乙两种货物等待装运,甲种货物每吨体积是7立方米,乙种货物每吨体积是2立方米,求怎样装货才能最大限度的利用船的载重量和体积?6、用白铁皮制作罐头盒,每张铁皮可制盒身16个,或盒底48个,一个盒身与两个盒底配成一个罐头盒,现有150张铁皮,用多少张铁皮制作盒身,用多少张铁皮制作盒底,正好全部配套.1、小明和小亮分别从相距20千米的甲、乙两地相向而行,经过2小时两人相遇,相遇后小明立即返回甲地,小亮继续向甲地前进,小明返回到甲地时,小亮离甲地还有2千米.请求出两人的速度.2、一张方桌是由一个桌面和四条桌腿组成,如果1立方米木料可制作方桌桌面50个,或制作桌腿300条.现有5立方米木料,请你设计一下,用多少木料做桌面,用多少木料做桌腿,恰好制成方桌多少张?3、加工某种产品需要经过两道工序,第一道工序每人每天可完成900件,第二道工序每人每天可完成1200件.现有7位工人加工这种产品,问应怎样安排人力,才能使每天第一道工序、第二道工序所完成的产品件数相等?不等式⑴1、用不等式表示:(1) x 是负数;___________ (2) x 是非负数;____________(3) x 的一半小于-1;__________ (4) x 与4的和大于0.5;_________(5)a 与1的和是正数;__________ (6)x 的21与y 的31的差是非负数;__________ 2、当实数a <0时,6+a 6-a (填“<”或“>”).3、不等式2x ﹣1>3的解集为 .4、不等式2x+9≥3(x+2)的正整数解是 .5、下列各式中,是一元一次不等式的是( ).A.5+4>8 B.12-x C.x 2+3≤5D.x y 3-≥06、下列命题中正确的是( ).A.若m ≠n,则|m|≠|n| B.若a+b=0,则ab >0C.若ab <0,且a <b,则|a|<|b| D.互为倒数的两数之积必为正.7、无论x 取什么数,下列不等式总成立的是( ).A.x+5>0; B.x+5<0; C.-(x+5)2<0; D. (x-5)2≥0.8、若,a a -则a 必为( ).A 、负整数 B、 正整数 C、负数 D、正数9、下列说法,错误的是( ).A.33- x 的解集是1- x B.-10是102- x 的解C.2 x 的整数解有无数多个 D.2 x 的负整数解只有有限多个 10、下列按要求列出的不等式中正确的是 ( ).A.a 不是负数,则a>0B.b 是不大于0的数,则b<0C.m 不小于-1,则m>-1D.a+b 是负数,则a+b<011、不等式2-x<1的解集是( ).A.x>1B.x>-1C.x<1D.x<-1不等式⑵1、不等式6(x +1)-3x >3x +3的解集为( ).A .x >1B .无解C .x >-1D .任意数2、不等式4x -7≥5(x -1)的解集是( ).A .x ≥ 2B .x ≥-2C .x ≤-2D .x ≤23、若不等式(m -2)x >n 的解集为x <1,则m ,n 满足的条件是( ).A .m=n -2且m >2B .m=n -2且m <2C .n=m -2且m >2D .n=m -2且m <24、当k _____时,3k 与k 的差小于1. 5、不等式0823≤--x 的解集是____________. 6、解下列不等式,并把它们得解集在数轴上表示出来.(1) 7x+5>8x+6 (2)2x-1>5x+5(3)3(x +2)-1>8-2(x -1) (4)2[x -3(x -1)]≥5x不等式⑶1、若∣x -2∣=2-x ,则x 应满足( ).A .x ≥ 2B .x >2C .x <2D .x ≤22、如果不等式3x -m ≤0的正整数解为1,2,3,那么m 的取值范围是( ).A .9 ≤m <12B .9 <m ≤12C .m <12D .m ≥ 93、不等式3x -k ≤0的正整数解是1,2,那么k 的取值范围是___________.4、不等式3x -2≥4(x -1)的所有非负整数解的和等于___________.5、关于x 的不等式3x -2a ≤-2的解集是x ≤1,则a 的值是_________.6、若不等式-3x +n >0的解集是x <2,则不等式-3x +n <0的解集是________.7、解不等式,并在数轴表示不等式的解集.(1))4(410--x ≤1)-x (2 (2)145261≥--+y y(3)612131-≥--+x x x (4)12162312----+x x x >不等式⑷1、代数式1-m的值大于-1,又不大于3,则m的取值范围是( )..13.31.22.22 A m B m C m D m-<≤-≤<-≤<-<≤2、满足-1<x≤2的数在数轴上表示为().3、不等式45111x-<的正整数解为( ).A.1个B.3个C.4个D.5个4、已知不等式组2113xx m-⎧>⎪⎨⎪>⎩的解集为2x>,则m满足条件为( )..2.2.2.2 A m B m C m D m><=≤5、(1)不等式组21xx>-⎧⎨>⎩的解集是(2)不等式组12xx<⎧⎨>-⎩的解集是;6、解下列不等式组:(1)()4321213x xxx-<-⎧⎪⎨++>⎪⎩(2)()2 1.55261x xx x≤+⎧⎪⎨->-⎪⎩不等式⑸7、在一次“人与自然”知识竞赛中,竞赛试题共有25道题,每道题都给出4个答案,其中只有一个正确,要求学生把正确答案选出,每道题选对的4分,不选或错选倒扣2分,如果一个学生在本次竞赛中的得分不低于60分,那么他至少选对多少道题?8、某商店要选购甲、乙两种零件,若购进甲种零件10件,乙种12件,共需要2100元,若购进甲种零件5件,乙种零件8件,共需要1250元.(1)求甲、乙两种零件每件分别为多少元?(2)若每件甲种零件的销售价格为108元,每件乙种销售价格为140元,根据市场需求,商店决定,购进甲种零件的数量比购进乙种的数量3倍多2件,这样零件的全部售出后,要是总获利超过976元,至少应购进乙种零件多少件?1、用不等式表示图中的解集,其中正确的是 ( )A. x≥-2B. x >-2C. x <-2D. x≤-22、不等式2-x>1的解集是____________3、方程2x +3y =10中,当3x -6=0时,y =_________4、若方程组⎩⎨⎧-=-=+323a y x y x 的解x 、y 都是正数,求a 的取值范围.5、某商店欲购进A,B 两种商品,已知购进A 种商品5件和B 种商品4件共需300元,若购进A 种商品6件和B 种商品8件共需440元;(1)求A,B 两种商品每件的进价分别为多少元?(2)若该商品每销售1件A 种商品可获利8元,每销售1件B 种商品可获利6元,且商店将购进A,B 共50件的商品全部售出后,要获得的利润超过348元,问A 种商品至少购进多少件?1、下列方程中的二元一次方程组的是()A.32141x yy z-=⎧⎨=+⎩B.3232ab a=⎧⎨-=⎩C.13124yxxy⎧+=⎪⎪⎨⎪+=⎪⎩D.13mnm n=-⎧⎨+=⎩2、不等式4(x-2)>2(3x + 5)的非负整数解的个数为( )A.0个B.1个C.2个D.3个3、庐城出租车的收费标准:起步价4元(即行使距离不超过3千米都须付4元车费),超过3千米以后,每增加1千米,加收2元(不足1千米按1千米计).某人乘出租车从甲地到乙地共付车费18元,那么甲地到乙地路程是( )A.9.5千米B.10千米C.至多10千米D.至少9千米4、阳阳从家到学校的路程为2400米,他早晨8点离开家,要在8点30分到8点40分之间到学校,如果用x表示他的速度(单位:米/分),则x的取值范围为.5、某校为了鼓励在数学竞赛中获奖的学生,准备买若干本课外读物送给他们,如果每人送3本,则还剩8本;如果每人送5本,则最后一人得到的课外读物不足3本,求该校的获奖人数及所买的课外读物的本数?6、小颖家每月水费都不少于15元,自来水公司的收费标准如下:若每户每月用水不超过5立方米,则每立方米收费1. 8元;若每户每月用水超过5立方米,则超出部分每立方米收费2元,小颖家每月用水量至少是多少?。

二元一次不等式组题目,很好

二元一次不等式组题目,很好

高二数学必修5《二元一次不等式(组)与简单的线性规划问题》练习卷知识点:1、二元一次不等式:含有两个未知数,并且未知数的次数是1的不等式.2、二元一次不等式组:由几个二元一次不等式组成的不等式组.3、二元一次不等式(组)的解集:满足二元一次不等式组的x 和y 的取值构成有序数对(),x y ,所有这样的有序数对(),x y 构成的集合.4、在平面直角坐标系中,已知直线0x y C A +B +=,坐标平面内的点()00,x y P . ①若0B >,000x y C A +B +>,则点()00,x y P 在直线0x y C A +B +=的上方. ②若0B >,000x y C A +B +<,则点()00,x y P 在直线0x y C A +B +=的下方.5、在平面直角坐标系中,已知直线0x y C A +B +=.①若0B >,则0x y C A +B +>表示直线0x y C A +B +=上方的区域;0x y C A +B +<表示直线0x y C A +B +=下方的区域.②若0B <,则0x y C A +B +>表示直线0x y C A +B +=下方的区域;0x y C A +B +<表示直线0x y C A +B +=上方的区域.6、线性约束条件:由x ,y 的不等式(或方程)组成的不等式组,是x ,y 的线性约束条件.目标函数:欲达到最大值或最小值所涉及的变量x ,y 的解析式. 线性目标函数:目标函数为x ,y 的一次解析式.线性规划问题:求线性目标函数在线性约束条件下的最大值或最小值问题. 可行解:满足线性约束条件的解(),x y . 可行域:所有可行解组成的集合.最优解:使目标函数取得最大值或最小值的可行解.同步练习:1、不等式260x y -->表示的平面区域在直线260x y --=的( ) A .上方且包含坐标原点 B .上方且不含坐标原点 C .下方且包含坐标原点 D .下方且不含坐标原点2、不在326x y +<表示的平面区域内的点是( )A .()0,0B .()1,1C .()0,2D .()2,0 3、不等式490x y +-≥表示直线490x y +-=( ) A .上方的平面区域B .下方的平面区域C .上方的平面区域(包括直线本身)D .下方的平面区域(包括直线本身)4、原点和点()1,1在直线0x y a +-=两侧,则a 的取值范围是( ) A .0a <或2a >B .2a =或0a =C .02a <<D .02a ≤≤5、不等式组13y x x y y <⎧⎪+≤⎨⎪≥⎩,表示的区域为D ,已知点()10,2P -,点()20,0P ,则( )A .1D P ∉,2D P ∉B .1D P ∉,2D P ∈C .1D P ∈,2D P ∉ D .1D P ∈,2D P ∈6、431210x y x y y +<⎧⎪->-⎨⎪≥⎩表示的平面区域内整点的个数是( )A .2个B .4个C .5个D .8个7、不等式组43035251x y x y x -+≤⎧⎪+≤⎨⎪≥⎩,所表示的平面区域图形是( )A .四边形B .第二象限内的三角形C .第一象限内的三角形D .不能确定8、已知点()3,1--和()4,6-在直线320x y a --=的两侧,则a 的取值范围是( ) A .()24,7- B .()7,24- C .()(),724,-∞-+∞ D .()(),247,-∞-+∞9、不等式260x y +-<表示的区域在直线260x y +-=的( ) A .右上方B .左上方C .右下方D .左下方10、不等式组260302x y x y y +-≥⎧⎪+-≤⎨⎪≤⎩表示的平面区域的面积是( )A .4B .1C .5D .无穷大11、不等式组5003x y x y x -+≥⎧⎪+>⎨⎪<⎩表示的平面区域是( )A .B .C .D .12、不等式组36020x y x y -+≥⎧⎨-+<⎩表示的平面区域是( )A .B .C .D .13、不等式组()()5003x y x y x -++≥⎧⎪⎨≤≤⎪⎩表示的平面区域是一个( )A .三角形B .直角三角形C .梯形D .矩形 14、在直角坐标系中,满足不等式220x y -≥的点(),x y 的集合(用阴影部分来表示)的是( )A .B .C .D .15、已知点()00,x y P 和点()1,2A 在直线:3280l x y +-=的异侧,则( )A .00320x y +>B .00320x y +<C .00328x y +<D .00328x y +>16、已知x 、y 满足约束条件5003x y x y x -+≥⎧⎪+≥⎨⎪≤⎩,则24z x y =+的最小值是( )A .5B .6-C .10D .10- 17、某电脑用户计划使用不超过500元的资金购买单价为60元、70元的样片软件和盒装磁盘,根据需要软件至少买3片,磁盘至少买2盒,则不同的选购方式共有( )A .5种B .6种C .7种D .8种 18、设R 为平面上以()4,1A ,()1,6B --,()3,2C -为顶点的三角形区域(包括边界),则43z x y =-的最大值与最小值分别是( )A .最大值14,最小值18-B .最大值14-,最小值18-C .最大值18,最小值14D .最大值18,最小值14- 19、目标函数32z x y =-,将其看成直线方程时,z 的意义是( ) A .该直线的横截距B .该直线的纵截距C .该直线纵截距的一半的相反数D .该直线纵截距的两倍的相反数20、某公司招收男职员x 名,女职员y 名,x 和y 须满足约束条件51122239211x y x y x -≥-⎧⎪+≥⎨⎪≤⎩,则1010z x y =+的最大值是( )A .80B .85C .90D .9521、在平面直角坐标系中,不等式组20202x y x y x +-≥⎧⎪-+≥⎨⎪≤⎩,表示的平面区域的面积是( )A. B .4 C. D .2 22、点()2,t -在直线2360x y -+=的上方,则t 的取值范围是( ) A .23t >B .23t <C .23t >-D .23t <- 23、若01x ≤≤,02y ≤≤,且21y x -≥,则224z y x =-+的最小值是( ) A .2 B .3 C .4 D .524、已知非负实数x ,y 满足2380x y +-≤且3270x y +-≤,则x y +的最大值是( ) A .73 B .83C .2D .3 25、若x 、y 满足约束条件222x y x y ≤⎧⎪≤⎨⎪+≥⎩,则2z x y =+的取值范围是( )A .[]2,6B .[]2,5C .[]3,6D .()3,526、已知6枝玫瑰与3枝康乃馨的价格之和大于24元,4枝玫瑰与5枝康乃馨的价格之和小于22元,那么2枝玫瑰的价格与3枝康乃馨的价格比较的结果是( )A .2枝玫瑰价格高B .3枝康乃馨价格高C .价格相同D .不确定27、已知点()3,1和点()4,6-在直线320x y m -+=的两侧,则m 的取值范围是_____________________.28、原点在直线210x y -+=的①左侧,②右侧,③上方,④下方,其中正确判断的序号是____________________.29、若01x ≤≤,12y -≤≤,则4z x y =+的最小值是__________________.30、若0x ≥,0y ≥,23100x y +≤,260x y +≤,则64z x y =+的最大值是________. 31、已知12a ≤≤,13b -≤≤,则2a b +的取值范围是__________________.32、求2z x y =+的最大值和最小值,使式中x 、y 满足约束条件*20204,x y x y x x y -≥⎧⎪+-≥⎪⎨≤⎪⎪∈N⎩,则z 的最大值是__________,最小值是____________.33、设x ,y 满足约束条件10x y y x y +≤⎧⎪≤⎨⎪≥⎩,则2z x y =+的最大值是_______________.34、设2z x y =+式中变量x ,y 满足4335251x y x y x -≤-⎧⎪+≤⎨⎪≥⎩,则z 的最大值是_______________.35、某厂使用两种零件A ,B 装配两种产品X ,Y .该厂月生产能力X 最多为2500个,Y 最多为1200个.A 最多为14000个,B 最多为12000个.组装X 需要4个A ,2个B ,组装Y 需要6个A ,8个B .列出满足生产条件的数学关系式,并画出相应的平面区域.36、已知x、y满足约束条件4335251x yx yx-≤-⎧⎪+≤⎨⎪≥⎩,分别确定x、y的值,使2z x y=+取得最大值和最小值.37、某运输公司接受了向抗洪抢险地区每天至少运送180吨支援物资的任务,该公司有8辆载重为6吨的A型卡车和4辆载重为10吨的B型卡车,有10名驾驶员,每辆卡车每天往返的次数为A型卡车4次,B型卡车3次,每辆卡车每天往返的成本费A型卡车为320元,B 型卡车为504元,请你给该公司调配车辆,使公司所花的成本费最低.。

初中数学二元一次方程组、不等式、数据搜集练习题(含答案)

初中数学二元一次方程组、不等式、数据搜集练习题(含答案)

二元一次方程组练习题 1.二元一次方程9x +5 y= 21 〔 〕A .有且只有一解B .有无数解C .无解D .有且只有两解2.假设02)23(422=+++-x y x ,那么x+3y 的值是〔 〕A .-1B .-2C .0D .323.方程2x+3y -4=0,用含x 的代数式表示y 为_______;用含y 的代数式表示x 为:____. 4.│x -1│+〔2y+1〕2=0,且2x -ky=4,那么k=_____. 5.2316x mx y y x ny =-=⎧⎧⎨⎨=--=⎩⎩是方程组的解,那么m=_______,n=______. 6.二元一次方程组437(1)3x y kx k y +=⎧⎨+-=⎩的解x ,y 的值相等,求k .7.x ,y 是有理数,且〔│x │-1〕2+〔2y+1〕2=0,那么x -y 的值是多少?8.将假设干只鸡放入假设干笼中,假设每一个笼中放4只,那么有一鸡无笼可放;•假设每一个笼里放5只,那么有一笼无鸡可放,问有多少只鸡,多少个笼?9.〔开放题〕是不是存在整数m ,使关于x 的方程2x+9=2-〔m -2〕x 在整数范围内有解,你能找到几个m 的值?你能求出相应的x 的解吗10.为知足市民对优质教育的需求,某中学决定改变办学条件,方案撤除一局部旧校舍,建造新校舍,撤除旧校舍每平方米需80元,建新校舍每平方米需700元. 方案在年内撤除旧校舍与建造新校舍共7200平方米,在实施331213(1)8x x x x -⎧++⎪⎨⎪--<-⎩,,≥中为扩大绿地面积,新建校舍只完成了方案的80%,而撤除旧校舍那么超过了方案的10%,结果恰好完成了原方案的拆、建总面积. 〔1〕求:原方案拆、建面积各是多少平方米? 〔2〕假设绿化1平方米需200元,那么在实际完成的拆、建工程中节余的资金用来绿化大约是多少平方米?11.如图,在3×3的方格内,填入一些代数式与数,假设各行、各列及对角线上的三个数字之和都相等,请你求出x ,y 的值.12.一批货物要运往某地,货主预备租用汽运公司的甲、乙两种货车,过去租用这两种汽车运货的情形如左表所示,现租用该公司5辆甲种货车和6辆乙种货车,一次恰好运完这批货物,问这批货物有多少吨?不等式与不等式组 1、不等式x 27->1的正整数解是 .2、假设方程m x x -=+33的解是正数,那么m 的取值范围是_____________.3、关于x 的不等式组010x a x ->⎧⎨->⎩,的整数解共有3个,那么a 的取值范围是 _.4、解不等式组:⎩⎨⎧≤++≤+423521x x x ,并把它的解集在数轴上表示出来.五、解不等式组 并写出该不等式组的整数解.2x 3 2y -34y2046810127.556.98.19.39.810.9月7654321增长率(%)6、关于y x ,的方程组⎩⎨⎧-=-+=+131m y x m y x 的解知足x >y ,求m 的最小整数值.7、五一节期间,电器市场火爆.某商店需要购进一批电视机和洗衣机,依照市场调查,决定电视机进货量很多类 别 电视机 洗衣机 进价〔元/台〕 1800 1500 售价〔元/台〕20001600161 800元.〔1〕请你帮忙商店算一算有多少种进货方案?〔不考虑除进价之外的其它费用〕〔2〕哪一种进货方案待商店销售购进的电视机与洗衣机完毕后取得利润最多?并求出最多利润.〔利润=售价-进价〕数据搜集练习题1. 以下统计中,能用“全面调查〞的是〔 〕A 、某厂生产的电灯利用寿命B 、全国初中生的视力情形C 、某校七年级学生的身高情形D 、“娃哈哈〞产品的合格率2.某校发布了该校反映各年级学生体育达标情形的两张统计图,该校七、八、九三个年级共有学生800人。

二元一次不等式组的解综合练习题

二元一次不等式组的解综合练习题

二元一次不等式组的解综合练习题已知不等式系统:\[\begin{cases}a_1x+b_1y>c_1 \\a_2x+b_2y<c_2 \\a_3x+b_3y>d_3 \\\end{cases}\]其中,$a_1, b_1, c_1, a_2, b_2, c_2, a_3, b_3, d_3$为已知常数,且$a_1, a_2, a_3, b_1, b_2, b_3$不全为零。

我们需要求解出满足该不等式系统的$x$和$y$的取值范围。

解题步骤如下:1. 将不等式系统转化为标准形式。

将不等式系统重新排列,得到:\[\begin{cases}a_1x+b_1y-c_1>0 \\a_2x+b_2y-c_2<0 \\a_3x+b_3y-d_3>0 \\\end{cases}\]2. 解决与$x$相关的不等式。

首先,我们解决第一个不等式$a_1x+b_1y-c_1>0$:当$a_1>0$时,不等式$a_1x+b_1y-c_1>0$表示某一直线位于$x$轴上方,我们需要找到直线上方的解。

如果$a_1<0$,则不等式$a_1x+b_1y-c_1>0$表示直线位于$x$轴下方,我们需要找到直线下方的解。

如果$a_1=0$,则不等式$a_1x+b_1y-c_1>0$表示无直线,我们需要找到满足$b_1y-c_1>0$的解。

3. 解决与$y$相关的不等式。

接下来,我们解决第二个不等式$a_2x+b_2y-c_2<0$:当$b_2>0$时,不等式$a_2x+b_2y-c_2<0$表示某一直线位于$y$轴上方,我们需要找到直线上方的解。

如果$b_2<0$,则不等式$a_2x+b_2y-c_2<0$表示直线位于$y$轴下方,我们需要找到直线下方的解。

如果$b_2=0$,则不等式$a_2x+b_2y-c_2<0$表示无直线,我们需要找到满足$a_2x-c_2<0$的解。

二元一次不等式组练习

二元一次不等式组练习

解:(1)设A、B两种奖品单价分别 为x元,y元,由题意,得
x 10 y 15 答:A、B两种奖品单价分ቤተ መጻሕፍቲ ባይዱ为10元 、15元.
解得:
3 x 2 y 60 5 x 3 y 95
W 10m 15(100 m)
1500 5m 1150 m 3(100 m)
解:(1)每辆A型车和B型车的售价分 别是x万元、y万元.则
解得
答:每辆A型车的售价为18万元,每辆 B型车的售价为26万元;
(2)设购买A型车a辆,则购买B型车 (6﹣a)辆,则依题意得
解得 2≤a≤3.
∵a是正整数,∴a=2或a=3. ∴共有两种方案: 方案一:购买2辆A型车和4辆B型车; 方案二:购买3辆A型车和3辆B型车.
解:(1)设该企业2013年处理的餐厨垃圾x 吨,建筑垃圾y吨,根据题意,得
解得
答:该企业2013年处理的餐厨垃圾80吨, 建筑垃圾200吨;
(2)该企业计划2014年将上 述两种垃圾处理总量减少到 240吨,且建筑垃圾处理量不 超过餐厨垃圾处理量的3倍, 则2014年该企业最少需要支 付这两种垃圾处理费共多少 元?
某汽车专卖店销售A,B两种型号的 新能源汽车.上周售出1辆A型车和 3辆B型车,销售额为96万元;本周 已售出2辆A型车和1辆B型车,销售 额为62万元.(1)求每辆A型车和 B型车的售价各为多少万元.(2) 甲公司拟向该店购买A,B两种型号 的新能源汽车共6辆,购车费不少于 130万元,且不超过140万元.则有 哪几种购车方案?
某校运动会需购买A、B两种奖品.若购 买A种奖品3件和B种奖品2件,共需60元; 若购买A种奖品5件和B种奖品3件,共需 95元.(1)求A、B两种奖品单价各是多少 元?(2)学校计划购买A、B两种奖品共 100件,购买费用不超过1150元,且A种 奖品的数量不大于B种奖品数量的3倍.设 购买A种奖品m件,购买费用为W元,写 出W(元)与m(件)之间的函数关系 式,求出自变量m的取值范围,并确定 最少费用W的值.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

9题图二元一次方程组及不等式组
一 、填空题
1、若方程 2x 1-m + y m n +2 =
2
1
是二元一次方程,则mn= 。

2、二元一次方程组⎩⎨⎧=+=-822
37y x y x 的解是 3、已知方程3x-y=8,用含x 的代数式表示y ,得 ;用含y 的代数式表示x ,得 。

4、方程组⎩⎨⎧=+=-71ay bx by ax 的解是⎩⎨⎧==2
1
y x ,则a= b= 5、二元一次方程4x+y=20 的正整数解是______________________。

6、已知1+x +(x-y+3)2
=0,则(x+y )=
7.不等式
732
122
x x --+<
的负整数解有__________个. 8.不等式3x -4≥4+2(x -2)的最小整数解是________.
9.不等式17-3x>2的正整数解的个数有__________个.
10.关于x 的方程3(x+2)=k+2的解是正数,则k 的取值范围是_______. 11.已知点M (-35-P,3+P )是第三象限的点,则P 的取值范围是 。

二、选择题。

1、在方程组⎩⎨⎧+==-1312z y y x 、⎩⎨⎧=-=132x y x 、⎩⎨⎧=-=+530y x y x 、⎩⎨⎧=+=321y x xy 、 ⎪⎩⎪⎨⎧=+=+11
11y x y x 、⎩⎨⎧==11y x 中,是二元一次方程组的有( )
A 、2个
B 、3个
C 、4个
D 、5个
2、二元一次方程组⎩
⎨⎧=+=+426
34y x y x 的解是( )
A .
B .
C .
D .
3、当2=x 时,代数式13
++bx ax 的值为6,那么当2-=x 时13
++bx ax 的值为( )
A 、6
B 、-4
C 、5
D 、1
4、下列各组数中①⎩⎨
⎧==22y x ②⎩⎨⎧==12y x ③⎩⎨⎧-==22y x ④⎩⎨⎧==6
1
y x 是方程104=+y x 的
解的有( )
A.1个
B.2个
C.3个
D.4个
5、若实数满足(x +y +2)(x +y -1)=0,则x +y 的值为( )
A 、 1
B 、-2
C 、 2或-1
D 、-2或1
6.由x<y,得ax ≥ay 的条件是( ).
A .a ≥0 B. a ≤0 C. a>0 D. a<0
7. 如果关于x 的不等式(2a -1)x<2(2a -1)的解集是x>2,则a 的取值范围是( )
A .a<0 B. a<12 C. a<-12 D. a>-1
2
8. 若a>b,则下列不等式中,不成立的是( )
A .a -3>b -3 B. -3a>-3b C.
33
a b
D. -a<-b 9.若a <b <0,则下列答案中,正确的是( )
A、a <b B B 、a >b C、2
a <2
b D 、a 3>b 2
10.已知关于x 的不等式x>a,如图表示在数轴上,则a 的值为( ).
A .1 B. 2 C. -1 D.-2
11、已知,关于x 的不等式23x a -≥-的解集如图所示,则a 的值等于( )
A 、 0
B 、1
C 、-1
D 、2
12.若不等式组841,x x x m +<-⎧⎨
≥⎩的解集是x>3,则m 的取值范围是( ). A .m ≥3 B. m ≤3 C. m=3 D. m<3
三、解方程组 1、⎩⎨⎧-=+=-154653y x y x 2、⎩
⎨⎧=-=-10835
72y x y x
⎩⎨⎧=-=23y x ⎩⎨⎧-==12
y x ⎩⎨
⎧-==23y x ⎩
⎨⎧=-=12
y x
3、⎩⎨⎧+=-+=-)5(3)1(55)1(3x y y x
4、 ⎪⎩
⎪⎨⎧=+=+-=+7
32
x z z y y x
5、1123
3210
x y x y +⎧-=⎪⎨⎪+=⎩ 6、 82
.06.071
.03.02.08.0=-=+b a b
a 四 1.当y 为何值时,22y -的值不大于33
y -的值?
2.如果代数式4x+2的值不小于3x+12
,求x 的取值范围.
3.解下列不等式(组),并分别把它们的解集在数轴上表示出来. ②341221x x +≤--③⎪⎩⎪⎨⎧--≤--x x x x 14214
)23( ④⎪⎩⎪
⎨⎧-≥--+356634)1(513x
x x x
3.已知方程组256,217x y m
x y +=+⎧⎨-=-⎩的解x ,y 都是正数,求m 的取值范围. 4.关于y x ,的方程组⎩⎨⎧-=-+=+131
m y x m y x 的解满足x >y ,求m 的最小整数值 五、列方程组解应用题 1、运输360吨化肥,装载了6节火车皮和15辆汽车;运输440吨化肥,装载了8节火车皮和10辆汽车。

每节火车皮与每辆汽车平均各装多少吨化肥? 2、A 市至B 市的航线长1200千米,一架飞机从A 市顺风飞往B 市需2小时30分,从B 市逆风飞往A 市需3小时20分。

求飞机的平均速度与风速。

3、救灾小组A 地段现有28人,B 地段现有15人,现在又调来29人分配在A 、B 两个地段,要求调配后
A 地段人数是
B 地段人数的2倍,问这29人应怎样调配?
4、王大伯承包了25亩土地,今年春季改种茄子和西红柿两种大棚蔬菜,用去了44000元,其中种茄子每亩用去了1700元,获纯利2600元;种西红柿每亩用去了1800元,获纯利2600元,问王大伯一共获
纯利多少元?
5、有车间有28名工人,若生产螺栓,平均每人每天生产12个;若生产螺母,平均每人每天生产8个。

问如何分配生产螺栓螺母的人数,使生产出来的螺栓和螺母刚好配套(一个螺栓配两个螺母)?
6.某次数学测验,共16个选择题,评分标准为:;对一题给6分,错一题扣2分,不答不给分。

某个学生有1题未答,他想自己的分数不低于70分,他至少要对多少题?
7.工程队原计划6天内完成300土方工程,第一天完成60土方,现比原计划提前两天超额完成,问后几天每天平均至少要完成多少土方?
8.一对玩具分给若干个小朋友,若每人分2件,则剩余3件;若前面每人分3件,则最后一个人分到玩具,但分到的玩具数不足2件。

求小朋友人数与玩具数。

相关文档
最新文档