改进遗传算法
遗传算法的研究与进展
遗传算法的研究与进展一、综述随着科学技术的不断发展和计算能力的持续提高,遗传算法作为一种高效的优化方法,在许多领域中得到了广泛的应用。
本文将对遗传算法的研究进展进行综述,包括基本原理、改进策略、应用领域及最新研究成果等方面的内容。
自1975年Brendo和Wolfe首次提出遗传算法以来,该算法已经发展成为一种广泛应用于求解最优化问题的通用方法。
遗传算法主要基于自然选择的生物进化机制,通过模拟生物基因的自然选择、交叉和变异过程来寻找最优解。
在过去的几十年里,众多研究者和开发者针对遗传算法的性能瓶颈和改进方向进行了深入探讨,提出了许多重要的改进策略。
本文将对这些策略进行综述,并介绍相关的理论依据、实现方法以及在具体问题中的应用。
遗传算法的核心思想是基于种群搜索策略,在一组可行解(称为种群)中通过选择、交叉和变异等遗传操作产生新的候选解,进而根据适应度函数在种群中选择优良的候选解,重复上述过程,最终收敛于最优解。
遗传算法的关键要素包括:染色体表示、适应度函数设计、遗传操作方法等。
为进一步提高遗传算法的性能,研究者们提出了一系列改进策略。
这些策略可以从以下几个方面对遗传算法进行改进:多目标优化策略:针对单点遗传算法在求解多目标优化问题时容易出现陷入局部最优解的问题,可以通过引入多目标遗传算法来求解多目标问题。
精英保留策略:为了避免遗传算法在进化过程中可能出现未成熟个体过早死亡的现象,可以采用精英保留策略来保持种群的优良特性。
基于随机邻域搜索策略:这种策略通过对当前解的随机邻域进行搜索,可以在一定程度上避免陷入局部最优解,并提高算法的全局收敛性。
遗传算法作为一种常用的优化方法,在许多领域都有广泛应用,如组合优化、约束满足问题、机器学习参数优化、路径规划等。
随着技术的发展,遗传算法在深度学习、强化学习和智能交通系统等领域取得了显著成果。
研究者们在遗传算法的设计和应用方面取得了一系列创新成果。
基于神经网络的遗传算法被用于解决非线性优化问题;基于模型的遗传算法通过建立优化问题模型来提高算法的精度和效率;一些研究还关注了遗传算法的鲁棒性和稳定性问题,提出了相应的改进措施。
一种改进的遗传算法
法 ; 制 繁殖 6 0代 , 验 1 次 , 6 限 0 实 O 0 有 0次 , 到 全 局 最 优 值 11 1 。 找 . 2 5
还 得 到 了 I19 l14 .2 0, |1 1等 峰 值 。 3算 法 改进 与 分 析 . 在遗传算法 中。 随机产 生 N个初始群体, M= /, N个体随机 令 Np把 6 总结 .
wh lysr n te e . o: n tcag rtm ; ih ru c u l iheg o p y wo d Ge ei o h nc eg o p; o pe nc u l i r
1。 入 引
⑦ 满足条件结束 运算 , 否则 , 继续迭代。
体 上 得 到 了的提 高 关键 词 : 传 算 法 ; 生境 : 生境 对 遗 小 小
Ab ta t.h ih e ei lo i m a e n u e n temu i d lf n t n . n tep p r h sltdn c eg n t loih i n e t a— sr c . e nc eg n tcag r h h sb e sd i h h mo a u ci s I h a e。teioae ih e ei ag rtm si v si t T t o c g e n sa l rtdi o s e t. ec n e to ftec u l c eg o p i u owad f sl,b c h eain b t e n tenc eg o p da di mei ae ns meap cs T o c pino o penih ru sp tfr r rty ywhih te rlto ew e h ih ru s o h h i i n a c d Th n 1s昂 o h h o isa d te rs l o e er h s so ta hec n e g。 eo i ndefce to h mpo e g rhm r se h n e . ea ay i fte te re n h eut frs ac e h w h tt o v re tv lct a f in fte i rv d a o t a e n y i l i
改进遗传算法解决TSP问题
改进遗传算法解决TSP问题陈林;潘大志【摘要】针对基本遗传算法收敛速度慢,易早熟等问题,提出一种改进的遗传算法。
新算法利用贪婪思想产生初始种群来加快寻优速度,用贪婪思想来引导交叉操作,在交叉操作之前,把当前较差的一半种群替换成随机种群,最后用改进的变异算子和进化逆转操作进行寻优,利用新的遗传算法求解基本的旅行商问题。
仿真结果表明,改进的遗传算法具有全局搜索能力强、收敛速度快的特点,优化质量和寻优效率都较好。
%Aiming at the problem of slow convergence and easy premature convergence, an improved genetic algorithm is proposed. New algorithm uses greedy idea to generate the initial population for speeding up the searching speed and greedy idea to guide the crossover operation, before the crossover operation, selects the random population to replace the half of the poor population, finally with the help of the improved mutation operator and evolutionary reversal operation to realize optimization, constructs a new genetic algorithm for solving the traveling salesman problem. The simulation results show that the improved genetic algorithm has the characteristics of strong global search ability and fast convergence speed.【期刊名称】《智能计算机与应用》【年(卷),期】2016(006)005【总页数】4页(P17-19,23)【关键词】遗传算法;贪婪思想;进化逆转;旅行商问题【作者】陈林;潘大志【作者单位】西华师范大学数学与信息学院,四川南充637009;西华师范大学数学与信息学院,四川南充637009【正文语种】中文【中图分类】TP18遗传算法(GA)是一种进化算法,其基本原理是仿效生物界中的“物竞天择、适者生存”的演化法则。
遗传算法基本原理及改进
遗传算法基本原理及改进编码方法:1、二进制编码方法2、格雷码编码方法3、浮点数编码方法。
个体长度等于决策变量长度4、多参数级联编码。
一般常见的优化问题中往往含有多个决策变量,对这种还有多个变量的个体进行编码的方法就成为多参数编码方法。
多参数编码的一种最常用和最基本的方法是:将各个参数分别以某种方式进行编码,然后再将它们的编码按照一定顺序连接在一起就组成了标识全部参数的个体编码。
5、多参数交叉编码:思想是将各个参数中起主要作用的码位集中在一起,这样他们就不易于被遗传算子破坏掉。
在进行多参数交叉编码时,可先对各个参数进行编码;然后去各个参数编码串的最高位连接在一起,以他们作为个体编码串前N位编码,同上依次排列之。
改进遗传算法的方法:(1)改进遗传算法的组成成分或实用技术,如选用优化控制参数、适合问题的编码技术等。
(2)采用动态自适应技术,在进化过程中调整算法控制参数和编码精度。
(3)采用混合遗传算法(4)采用并行算法(5)采用非标准的遗传操作算子改进的遗传算法:(1)分层遗传算法(2)CHC算法(3)messy遗传算法;(4)自实用遗传算法(Adaptive Genetic Algorithm)(5)基于小生境技术的遗传算法(Niched Genetic Algorithm,简称NGA)。
(6)并行遗传算法(Parallel Genetic Algorithm)(7)混合遗传算法:遗传算法与最速下降法相结合的混合遗传算法;遗传算法与模拟退火算法相结合的混合遗传算法。
解决标准遗传算法早熟收敛和后期搜索迟钝的方案(1)变异和交叉算子的改进和协调采用将进化过程划分为渐进和突变两个不同阶段采用动态变异运用正交设计或均匀设计方法设计新的交叉和变异算子(2)采用局部搜索算法解决局部搜索能力差的问题(3)采用有条件的替代父代的方法,解决单一的群体更新方式难以兼顾多样性和收敛性的问题(4)收敛速度慢的解决方法;产生好的初始群体利用小生境技术使用移民技术采用自适应算子采用与局部搜索算法相结合的混合遗传算法对算法的参数编码采用动态模糊控制进行未成熟收敛判断。
一种改进的遗传算法
生的个体 , 而是取 其 中的一部 分 ,另一部 分来 自于 父本代群体 ,这 两部 分一起构 成下一代群体 。本 文提 出 了一种改进 的 遗传 算法 ,实验结果 表 明, 改进 的遗传 算 法比标准 的遗传 算法效果 要好很 多。 关键词: 遗传算 法: 杂交算子:变异算子: 群体
中图 分 类 号 :T 3 1 P0 文 献 标识 码 :A 文章 编 号 : 1 7 — 7 2 (0 64 0 3 — 3 6 1 4 9一2 0)— 0 5 0
为 10 0 ,初始基因值设 定是随机 的。 1 3适应值 函数 的设计 .
Ab t c : n o d r t m r v h a a i i y o e r h n t n a d g n t c al o i h s,W c o s t e n x - s r t I r e o i p o e t e c p b l t f s a c i s a d r e e i g r t m a e h o e h et
p ul op ati n ot nl i t ne -p ul i th wa c me nt b ng n o of r s er o n o Y n he w op at on at s o i o ei i p ol c os ov whe e he pe at of r t o r or c os ov r an e op r or f mu ati as us d o p du in t n nd vi al, b t als n h o d op ati n. r s e d th e at o t on w e t ro c g he ew i i du u o i t e l -p ul o
理论上讲 , 初始群体 中每个个体的染色体可以任意设 定, 但 是如果初始群体 中个体染色体的基因种类过于简单, 将增加 遗传算法演化 的代数 。在群体规模的大小方面 ,规模太小, 群体携带 的基 因种类不够 丰鬣 规模太大,会 占用较多的存 储空间, 另外增加计算量 。 在本 文的实验 中, 群体规模大小
基于改进的遗传算法函数优化
作者: 金建刚
作者机构: 华北水利水电学院信息工程系,郑州河南,450011
出版物刊名: 科技资讯
页码: 35-36页
主题词: 遗传算法 种群 个体 算子
摘要:遗传算法是一个用来求解高度复杂问题有效方法,由于其初始值的随机性和较大的搜索空间以及其工作机制,保证了该算法能够在全局范围内得到最优解.但是遗传算法在进行编码串交叉时的随机性,却使得计算量增加.针对此提出了人工控制交叉的方法,它保证了交叉是按照最优化方向进行的,从而提高了收敛速度,减少了计算量.并对两种方法进行了仿真实验比较.结果证明这种方法是可行的.。
基于改进遗传算法的生产线平衡优化研究
- 20 -高 新 技 术随着经济快速发展,社会对企业生产质量的要求不断提高。
但是部分企业的生产效能低且其运营管理不精细,严重影响了企业的生产质量,难以实现企业经济效益、社会效益最大化的的目标[1]。
该文从实际角度出发,分析现阶段H 公司生产线的工艺流程、工序以及生产过程中存在的问题,将遗传算法应用到H 公司生产线平衡优化中,可以为同类企业平衡和优化生产线提供科学依据和发展思路。
1 H 公司生产线现状H 公司是一家中小型家用电器生产公司,生产范围十分广泛,产品销售范围遍及全国。
其产品生产线为单一产品生产线,主要生产壁挂式变频空调。
该产品适用于绝大数家庭,通常悬挂于室内墙壁上,无氟环保,能耗比较高,因此有较大的销售市场。
其产品生产线位于18 000 m 2的恒温生产车间内,是一条生产大批量单一品种的生产线,生产线的工艺流程大致分为装配、焊接、检查以及包装4个模块。
整个装配过程分为46个具体的操作单元,可以划分为13个工作站,分别为底板组装、冷凝器的安装、装配系统部件、总装手工焊接、电路系统固定、电机组件安装固定、系统检漏、电控整理、后端装配、贴标签、外壳装配、外观清洁及总检和包装打包。
H 公司的工作内容主要是对产品需要装配部件进行装配,例如底板、系统部件、标签以及外壳材料等,主要采用粘接法、充注法以及螺纹连接法等方法。
因为产品的功能很复杂、部件体积差异大且总量很多,所以装配方式也多种多样。
在产品组装过程中,需要粘接的部件较多,占整产品配件量的30%左右。
对较小的零部件来说,通过采用粘接的方式直接粘贴到产品相关位置即可。
对较大的零部件来说,除部分零件拼装要涂粘接剂外,在部件的粘接面也要涂沫粘接剂,保证连接效果。
2 H 公司产线平衡问题数学描述H 公司是一家传统的制造企业,其产线作业方案制定主要是按照工艺方式和作业顺序。
就现场问题来看,工位安排和产线布局粗糙,同工作站之间作业时间相差较大,不同作业单元的工人劳动强度悬殊,由此导致工人工作人员情绪低落,难以保障工人安全、产品质量。
遗传算法的改进
Pm
k3 ( fmax
fmax
f) ,
favg
k4 ,
f favg f favg
其中, fmax 群体中最大的适应度值 fmax 每代群体的平均适应度值 f 要交叉的两个个体重较大的适应度值
f 要变异个体的适应度值
从上式可以看出,当适应度度值越接近最大适应 度值时,交叉率和变异率就越小,当等于最大适 应度值时,交叉率和变异率为零,这种调整方法 对于群体处于进化后期比较合适,但对于进化初 期不利,因为进化初期群体中的较优个体几乎不 发生变化,容易使进化走向局部最优解的可能性 增大。为此,可以作进一步的改进,使群体中最 大适应度值的个体的交叉率和变异率分别为 Pc2 和 Pm2 。为了保证每一代的最优个体不被破坏, 采用精英选择策略,使他们直接复制到下一代中。
在生物学中, 小生境是指特定环境下的一种生存环境, 相同的生物 生活在同一个小生境中。借鉴此概念, 遗传算法将每一代个体划分为 若干类, 每个类中选出若干适应度较大的个体作为一个类的优秀代表 组成一个种群, 再在种群中以及不同种群之间通过杂交、变异产生新 一代个体群, 同时采用预选择机制或者排挤机制或共享机制完成选择 操作。这样可以更好的保持群体的多样性, 使其具有很高的全局寻优 能力和收敛速度。
1
Pk (i
j)
exp(
f
(i) t
f
(
j))
f (i) f ( j) f (i) f ( j)
背包问题 (knapsack problem)
这是一个典型的最优化问题。
基本背包问题:设n件物体的重量分别为s1 sn
使用价值分别为 p1
p
,一个背包能承受的总重量
n
为c, 如何装包使总价值最大。
改进的遗传算法求解TSP问题_3旅行商问题_24_34
3 旅行商问题3.1 旅行商问题概述3.1.1 旅行商问题的定义和数学模型① 定义旅行商问题(Traveling Salesman Problem ,简记TSP)是组合数学中一个古老而又困难的问题,它易于描述但至今尚未彻底解决,现己归入所谓的NP 完全问题类,经典提法为:有一货物推销员要去若干个城市推销货物,从城市1出发,经其余各城市一次,然后回到城市1,问选择怎样的行走路线,才能使总行程最短(各城市间距离为己知)。
该问题在图论的意义下就是所谓的最小Hamilton 圈问题,由于在许多领域中都有着广泛的应用,因而寻找其实际而有效的算法就显得颇为重要了。
遗憾的是,计算复杂性理论给予我们的结论却是,这种可能性尚属未知。
若设城市数目为n 时,那么组合路径数则为(n-1)!。
很显然,当城市数目不多时要找到最短距离的路线并不难,但随着城市数目的不断增大,组合路线数将呈指数级数规律急剧增长,以至达到无法计算的地步,这就是所谓的“组合爆炸问题”。
假设现在城市的数目增为20个,组合路径数则为(20-1)! ,如此庞大的组合数目,若计算机以每秒检索1000万条路线的速度计算,也需要花上386年的时间。
尽管现在计算机的计算速度大大提高,而且已有一些指数级的算法可精确地求解旅行商问题,但随着它们在大规模问题上的组合爆炸,人们退而求其次,转向寻找近似算法或启发式算法,经过几十年的努力,取得了一定的进展。
② 数学模型设(,)G V E =为赋权图,{1,2,}V n ="为顶点集,E 为边集,各顶点间距离为ij c ,已知(0,,,)ij ij c c i j V >=+∞∈,并设则旅行商问题的数学模型可写成如下的线性规划形式:ij ij i jMinZ c x ≠=∑1,(,)0,ij i j x ⎧=⎨⎩边在最优路线上其它,1,1,.1,{0,1},ij j i ij i jij i j S ij x i V x j V s t x K K V x i j V ≠≠∈⎧=∈⎪⎪=∈⎪⎨⎪≤−⊂⎪⎪∈∈⎩∑∑∑这里,K 为V 的所有非空子集,K 为集合K 中所含图G 的顶点个数。
遗传算法的优缺点及改进方法
遗传算法的优缺点及改进方法
遗传算法是一种基于生物遗传学原理的优化算法,具有自适应性和全局搜索能力。
但是,遗传算法在处理高维问题时存在收敛速度慢、局部最优解等缺点。
针对这些问题,可以通过改进遗传算法的种群初始化、交叉、变异等操作来提升其性能。
同时,也可以结合其他算法如粒子群算法、模拟退火算法等进行协同优化。
此外,选择适当的适应度函数和参数设置也对遗传算法的效果有重要影响。
综上所述,遗传算法在解决实际问题时需要综合考虑其优缺点和改进方法,以达到更好的优化效果。
- 1 -。
一种改进的遗传算法及其性能研究
An i p o e e e i l o ih n t e f r a c t y m r v d g n tc a g rt m a d i p r o m n e sud s
Wu X n ,QiH n ,C e h n ig o g h n C o g
( olg fEe tc n ier g ad A tmain u hu U iest,F zo 5 0 2,Chn ) C l eo lc ia E gn ei n uo t ,F z o nvri e rl n o y uh u3 0 0 ia
Ab ta t sr c :To o ec me h r w c s o lw o v re c n p o tblt o e ei ag rtm , n v ro te d a ba k f so c n e g n e a d o r sa ii y fgn t c lo h i a i rv d g n tcag rtm sp p s d b s d o h tn a d g n t lo t mp o e e ei lo h i r o e ae n t e sa d r e ei ag r hm y su yn h s e c f i o c i b t d ig t ee s n e o
t n o e ao y i to u ig te p e e v to ft e o t li d vd a ag rt m h ta s rs te c n e— i p rtrb n rd cn h r s rain o h pi n iiu l lo h t a s u e h o v r o ma i g nc s t n y a c t rs od t a l ws t e i d vd as o ih ra a tb l y t ne h rsi g e e,et g a d n mi h h l h tal h n ii u l f h【 e d p a i t o e trte co sn i e o g i p o o e h n e h v rg d p a i t f te p p lto d o a s r h dv riy o h p p lt n. o lt n a c te a ea e a a t l y o h o uain a t ue t e iest ft e o u ai b i n s o h o g h i lt x i ns,h ro e o h s o t f e o v r e c n et t l y. T ru h t esmu ain e p rme t t ep p s d ag rt m h wsi a trc n e g n e a d b t rsa ii o e o l i ss e b t K e wo d y r s:g n tc ag rtm ;S h ma T e r m ;fs o v re c e ei o h l i ce h oe a tc n eg n e;sa i t t ly b i
改进的遗传算法辨识综合负荷模型
a g rt m' a p ia i n i o d mo ei g i s u id l o ih s p l t n l a d l s t d e .To o e c me t e s o t o n so a i e e i ag rt m n c o n v r o h h rc mig fb sc g n t l o i c h i
的 影 响 。针 对 基 本 遗 传 算 法 的 不 足 , 计 了 比 例 选 择 策 略 和 线 性 自适 应 变 异 策 略 , 遗 传 算 法 的 选 择 算 子 和 设 对
变 异 算 子 进 行 改 进 , 得 遗传 算 法 能 够 根 据 个 体 自身 的 适 应 度 值 进 行 选 择 和 自适 应 地 调 整 变 异 概 率 , 现 方 使 实
第 2 3卷 第 3期
21 0 1年 6月
电 力 系 统 及 其 自 动 化 学 报
Pr e di heCSU — oc e ngsoft EPSA
Vo1 3 .2 NO. 3
J n 2 1 u. 01
改 进 的 遗 传 算 法 辨 识 综 合 负 荷 模 型
韩 民 晓 ,马 杰 。 姚 蜀 军 , ,王 坤 。
ElcrcP we i e st e ti o rUnv r i y,B in 0 2 6,Chn ; ej g 1 2 0 i i a
2 Subsato . t i n Ope a i n D e r m e tofZhe z oபைடு நூலகம் Po e p y Co pa y, r to pa t n ng h w rSu pl m n
s lc i nd m u a in,pr or ina e e to nd lne r s l- d ptve m ut ton t a e e r e i d O m ee ton a t to op to ls l c in a i a e fa a i a i s r t gis a e d sgne t i
对传统遗传算法的两处改进
关键词: 遗传 算法; 收敛速度; 寻优效率; 生物界进化
中图 分 类 号 : P3 1 T 0 文献标识码: A
借 鉴 自然 界 生 物 的 遗 传 进 化 规 律 , 美 国 Mi i n大 学 的 H ln . .于 17 cg ha ol dJ H a 95年 创 立 了遗 传 算 法
样化 的 同时并 没有保 证 基 因 的稳 定性 , 得交 叉 (rs vr在 某种 意 义上 退 化 为变 异 ( t i ) 通 常 导致 使 Cos e) o Muao , tn 优秀 基 因在变 异 中迅速 退化 .为此 , 我们 提 出对 传 统遗 传算 法 的两 处改 进 .
2 改进 思 想
算 子的概 率 ( 文 仿真 算例 中取值 为 00 ) 本 .8 .
收 稿 日期 : 0 6 0 — 8 2 0 — 9 0
作者简介: 张立君 (9 9 ) 1 5一 ,女, 河南 商 人 , 高级讲师 , 究方 向: 研 计算机 工程 与教育 ;
范建 华 (9 6 ) 15 一 ,男 , 南 商 丘 人 ,高 级 讲 师 ,研 究 方 向 : 河 计算 机 工 程 与 教 育 ; 张云 龙 (96 ) 16 一 ,男 , 南 宁 陵 人 ,副 教授 , 士 , 究方 向 : 制 理 论 与控 制 工 程 . 河 博 研 控
求解作业车间调度问题的改进遗传算法
求解作业车间调度问题的改进遗传算法①陈金广, 马玲叶, 马丽丽(西安工程大学 计算机科学学院, 西安 710048)通讯作者: 陈金广摘 要: 使用遗传算法求解作业车间调度问题时, 为了获得最优解, 提高算法的收敛速度, 提出了改进遗传算法. 算法以最小化最大完工时间为优化目标, 初始化时将种群规模扩大为原来的两倍以增加种群多样性; 迭代时使用新的适应度函数让染色体间更易区分; 通过轮盘赌法完成染色体选择; 用POX (Precedence Operation Crossover)交叉算子完成交叉操作; 用互换法完成变异操作; 通过具有自我调节能力的交叉和变异概率不断地调整概率值来提高算法寻优能力和收敛速度. 仿真结果表明, 改进后的遗传算法收敛速度快, 寻优能力强, 获得的最优解优于标准遗传算法, 更适用于作业车间的加工生产.关键词: 遗传算法; 作业车间调度; 改进; 轮盘赌; 自适应概率引用格式: 陈金广,马玲叶,马丽丽.求解作业车间调度问题的改进遗传算法.计算机系统应用,2021,30(5):190–195. /1003-3254/7921.htmlImproved Genetic Algorithm for Job Shop Scheduling ProblemCHEN Jin-Guang, MA Ling-Ye, MA Li-Li(School of Computer Science, Xi’an Polytechnic University, Xi’an 710048, China)Abstract : When a genetic algorithm is used to solve job shop scheduling, in order to obtain the optimal solution and increase the convergence speed of the algorithm, we propose an improved genetic algorithm in this study. The goal of the algorithm is to minimize the maximum completion time. First, the population size is doubled during the initialization to increase the diversity of the population and a new fitness function is adopted to make chromosome distinguishing easier in the iteration. Then, chromosomes are selected via roulette. Furthermore, crossover is completed by Precedence Operation Crossover (POX) and mutation by Reciprocal Exchange Mutation (REM). Finally, the optimization ability and convergence speed of the proposed algorithm are improved by adjusting the crossover and mutation probability with self-regulation. The simulation results show that the improved genetic algorithm has faster convergence, stronger optimization ability, and better optimal solution than the traditional one and thus it is more suitable for the processing and production in job shops.Key words : genetic algorithm; job shop scheduling; optimization; roulette; adaptive probability1 引言作业车间调度问题的求解目标是得到一个科学、合理的调度方案. 一个科学、合理的调度方案能够有效提高生产效率、降低加工成本. 调度方案主要是确定各工件的加工次序和加工机器, 这是典型的NP-hard 问题[1]. 现代企业间的竞争日趋激烈, 合理安排作业车间调度至关重要. 此外, 工业工程中车间生产规模逐渐扩大, 作业车间调度越来越复杂, 作业车间调度的计算机系统应用 ISSN 1003-3254, CODEN CSAOBNE-mail: Computer Systems & Applications,2021,30(5):190−195 [doi: 10.15888/ki.csa.007921] ©中国科学院软件研究所版权所有.Tel: +86-10-62661041① 基金项目: 陕西省教育厅科研计划(18JK0349)Foundation item: Scientific Research Program of Education Bureau, Shaanxi Province (18JK0349)收稿时间: 2020-09-13; 修改时间: 2020-10-09, 2020-10-28; 采用时间: 2020-10-30; csa 在线出版时间: 2021-04-28190组合改进问题已成为当今工业工程领域发展研究的热点问题之一[2]. 作业车间调度(JSP)都是凭借着工人的工作经验来安排工件的加工顺序, 然而这种方法不仅对工人要求较高, 且会出现安排不合理的情况. 启发式研究方法可以很好的解决这类问题, 常用的主流求解方法有粒子群优化算法、遗传算法、神经网络算法、禁忌搜索算法等[3–8]. 其中遗传算法(Genetic Algorithm, GA)作为一种群智能算法, 具有隐式并行性和全局搜索特性, 是求解作业车间调度问题的有力工具, 因此遗传算法被很多学者用来解决作业车间调度问题, 其在柔性作业车间(FJSP)的应用最为广泛. 根据FJSP的特点, 刘琼等[9]提出了一种改进的交叉变异方法并设计了一种初始解产生机制. 张国辉等[10]采用一种随机和优化相结合的初始化种群方法. 赵诗奎等[11]运用均匀设计原对遗传算法中的初始种群及适应度函数进行设计并将其应用到FJSP中. 对于上述3篇文献, 交叉和变异概率均是通过多次试验和前人经验给定, 没有采用自适应的方法确定. Kacem等[12]和Zhang等[13]分别提出了基于时间表和机器时间数组的机器指派法,取得了较好的成效, 然而, 这两种方法都是基于单步优化指派机器, 最终的指派结果没有定量的全局性衡量指标, 不能保证最终机器指派结果的质量. 不同类型的作业车间所需的调度方法不同, 对于JSP, 何斌等研究了自适应交叉与变异概率提高了算法的寻优能力和收敛速度, 但其染色体总数仅根据初始种群数决定, 染色体多样性低[14]. 李春廷等通过改变遗传算法编码研究以及遗传算子的设计证明其算法的有效性, 但其实验时交叉、变异概率难以确定[15].综上所述, 对于作业车间调度问题存在着染色体多样性低, 收敛速度慢, 遗传参数难以确定的问题. 对此本文提出了一种改进后的遗传算法来解决作业车间调度问题. 改进后的遗传算法在初始化时能够适当扩大种群, 在迭代过程中运用更易区分染色体的适应度函数计算染色体的适应度值, 并且运用能够自适应改变交叉和变异概率的算子调整概率值. 实验结果表明改进后的遗传算法更适用于作业车间调度.2 车间调度问题描述在作业车间中有一批待加工工件, 这批待加工工件中有n个不同的工件, 每个工件均包含m道工序, 需要在m台机器上加工. 加工这批工件需要同时满足以下几点约束条件:1) 所有工件的工序之间都有顺序约束, 即同一工件的各工序间有先后顺序, 需按照工序顺序进行加工;2) 不同工件的加工工序之间没有顺序约束;3) 每道工序只能在一台机器上加工;4) 各工件工序的加工时间由对应的加工机器确定;5) 在同一时刻车间中的同一机器只能加工一道工序;6) 一道工序同一时刻只能在一台机器上加工, 且不能中途中断;7) 不同工件之间优先级是相同的;8) 不考虑机器故障等随机性因素.本文求解目标为确定每台机器上工序的加工顺序和每个工序的开工时间, 使得最大完工时间 最小. 优化目标函数如式(1)所示:C max C ik式中, 表示最大完成时间, 表示工件i在机器k上的完工时间.3 改进算法设计3.1 染色体编码遗传算法的基因编码方式有很多种, 如浮点数编码、二进制编码、整数编码、符号编码、矩阵编码等[16].基因编码在算法中起着至关重要的作用, 编码的方式直接影响遗传算法的运行速度以及能否找到全局最优解[17]. 对于作业车间问题, 本文采用基于工序的实数编码来表示染色体[18], 一个编码后的染色体代表一个车间调度问题的调度方案.对于n个不同工件在m台机器上加工的作业车间调度问题, 采用基于工序的编码方式编码后, 每条染色体均含有n×m个基因, 染色体的基因顺序对应所有工件工序的加工顺序, 即一条染色体代表一个车间调度问题的调度方案. 每条染色体的基因表示如下: 每个工件号在染色体中只能出现m次; 从染色体的第一个基因位到最后一个基因位依次遍历, 若同一工件号出现第k次则表示为此工件的第k道工序, 如染色体[3 3 2 1 2 1], 其中第一个3代表3号工件的第一道工序, 第二个3代表3号工件的第二道工序, 以此类推.3.2 种群初始化首先给定种群的初始值p; 然后根据作业车间一道工序只在一台机器上加工的特点, 生成一个有n×m个2021 年 第 30 卷 第 5 期计算机系统应用191基因的染色体; 最后调用randperm函数处理生成的染色体, 使其循环p次, 得到一个初始种群.3.3 染色体适应度值本文的优化目标是最小化最大完成时间, 因此最大完成时间越小的染色体越优良. 染色体的适应度值是用来区分染色体间的优劣程度, 染色体越优良适应度值越大, 被选中的概率越大, 染色体越差适应度值越低, 被选中的概率越低. 为了更好的体现遗传算法优胜劣汰的准则, 本文采用新的计算染色体适应度值的方法, 使染色体间的区分度更加明显, 优良染色体被选中的概率大.假设现有4个工件, 其加工完成时间分别为[20, 21, 22, 23], 利用取最大完成时间倒数方法得到的适应度值分别为[0.05, 0.0476, 0.0454, 0.0425], 改进后的算法得到的适应度值分别为[1,0.6308, 0.2923, 0]. 从这两组适应度值可看出, 这样设定适应度值可以让最大完成时间小的染色体被多次选择, 最大完成时间最大的染色体被少选择或者不被选择, 拉开了染色体间差距,保障了对优良染色体的选择, 比前者获得优良染色体的概率更大.适应度函数如式(2)所示, 最大完工时间的倒数如式(3)所示:式(2)、式(3)中, i为初始种群中的任意一条染色体, Max表示h(i)的最大值, Min表示h(i)的最小值.在确定好各染色体的适应度值后在采用轮盘赌[19]的方法选择初始种群中的染色体.3.4 交叉与变异交叉操作可以增加种群的多样性, 提高算法的搜索能力, 有利于产生优秀的染色体, 即有利于产生优秀的作业车间调度方案. 鉴于优先工序交叉法POX (Precedence Operation Crossover)能够很好地继承父代优良特征并且子代总是可行的这一特点, 本文选择POX进行交叉操作[20], 具体步骤如下所述:步骤1. 按顺序依次选择种群中的一条染色体作为父代1即Parent1, 随机选择种群中的一条染色体作为父代2即Parent2;步骤2. 将工件集{1, 2, 3, …, n}随机划分为两个非空子集j1, j2;j1={2}j1={2}步骤3. 将Parent1和Parent2中包含工件号分别按其在染色体中的位置复制到子代1即Children1和子代2即Children2中, 将Parent1和Parent2中包含工件号分别按其在染色体中的顺序复制到Children2和Children1中; Children1和Children2这两条染色体即为交叉后的染色体. 如Parent1={3, 2, 2, 3, 1, 1}, Parent2={1, 1, 3, 2, 2, 3}, 对工件集{1, 2, 3}随机划分生成j1={2}, j2={3,1}, 经过POX交叉后得到Children1={1, 2, 2, 1, 3, 3}, Children2={3, 3, 1, 2, 2, 1}.变异操作是小概率发生的, 它能够对染色体产生较小的扰动来增加种群的多样性, 从而产生更能满足目标函数要求的调度方案. 交叉后的染色体在进行小概率的变异操作, 可得到新的染色体, 保持种群多样性.为了保证新得到的染色体编码是可调度的, 避免将不可行调度转换成可行调度, 减少代码运行时间, 本文采用互换法(Reciprocal Exchange Mutation, REM)进行变异操作[21]. 对一个染色体随机选择两个基因号, 将两个基因号上对应的工件号进行互换, 循环i次后可得到变异后的染色体.3.5 交叉与变异概率交叉和变异概率影响着交叉操作和变异操作的发生, 当交叉和变异概率大于由rand函数在(0, 1)之间随机产生的值时, 染色体发生交叉、变异.标准遗传算法的交叉和变异概率通常都是固定不变的值, 一般根据前人经验给定或者根据实验结果给定, 当给定的值较小时会使搜索范围变小, 不利于寻找更优解; 而当给定值较大时则可能导致已有的优良染色体在交叉和变异操作后变差; 在实验中容易出现早熟问题, 即未成熟收敛. 本文确定交叉和变异概率值时采用文献[22]提出的自适应改变交叉和变异概率的方法, 该算法能够在种群进化初期提高进化能力, 降低陷入局部最优的风险, 避免早熟问题的出现, 解决了参数难以确定的问题. 自适应交叉概率函数如式(4)所示,自适应变异概率函数如式(5)所示:计算机系统应用2021 年 第 30 卷 第 5 期192g max g avg 式(4)、式(5)中, 表示当前种群中所有染色体的最大适应度值; 表示当前种群中所有染色体的平均适应度值; 为两个交叉染色体中适应度值较大的值;g 表示选中的变异染色体的适应度值. 算法中k 1, k 2, k 3,k 4的值在(0, 1)范围中选择即可.4 仿真实验程序运行平台为MacOS10. 13.6操作系统上的Matlab_R2018a 软件, 用标准遗传算法和改进算法分别对测试用例库中的FT06和LA01这两个用例进行实验. FT06是一个6×6的测试用例, 即共有6个工件, 每个工件都有6个加工工序, FT06的工件工序集J =[3, 1,2, 4, 6, 5; 2, 3, 5, 6, 1, 4; 3, 4, 6, 1, 2, 5; 2, 1, 3, 4, 5, 6; 3,2, 5, 6, 1, 4; 2, 4, 6, 1, 5, 3]; 加工FT06各个工序所需时间集T =[1, 3, 6, 7, 3, 6; 8, 5, 10, 10, 10, 4; 5, 4, 8, 9, 1, 7;5, 5, 5, 3, 8, 9; 9, 3, 5, 4, 3, 1; 3, 3, 9, 10, 4, 1]; LA01是一个10×5的测试用例, 即共有10个工件, 每个工件都有5个加工工序, LA01的工件工序集J =[2, 1, 5, 4, 3; 1,4, 5, 3, 2; 4, 5, 2, 3, 1; 2, 1, 5, 3, 4; 1, 4, 3, 2, 5; 2, 3, 5, 1,4; 4, 5, 2, 3, 1; 3, 1, 2, 4, 5; 4, 2, 5, 1, 3; 5, 4, 3, 2, 1]; 加工LA01各个工序所需时间集T =[21, 53, 95, 55, 34;21, 52, 16, 26, 71; 39, 98, 42, 31, 12; 77, 55, 79, 66, 77;83, 34, 64, 19, 37; 54, 43, 79, 92, 62; 69, 77, 87, 87, 93;38, 60, 41, 24, 83; 17, 49, 25, 44, 98; 77, 79, 43, 75, 96].此次实验涉及到标准遗传算法和对标准遗传算法的种群初始化, 适应度函数, 交叉、变异概率的确定进行优化后得到的遗传算法. 根据多次实验以及前人实验结果, 标准遗传算法的参数设置为: 迭代次数为200,种群总大小为100, 交叉概率为0.9, 变异概率为0.05;改进后的遗传算法参数设置为: 迭代次数为200, 种群总大小为100, 在初始化时将种群总大小扩大为原来的2倍, 以增加染色体的多样性, 并且由于改进算法中交叉和变异概率是自适应调节的, 无需直接指定, 由式(4)和式(5)确定, 优化后的遗传算法参数设置为迭代次数为200, 种群总大小为100, k 1=k 2=0.9, k 3=k 4=0.1. 运行20次后, 图1和图2分别为使用标准遗传算法与改进后的遗传算法求解FT06和LA01得到的最优解值.从图1和图2中可知, 在20次实验中, 改进后的遗传算法得到的最优解都优于标准遗传算法得到的最优解, 证明改进后的遗传算法的寻优能力强于标准遗传算法. 分析总结图1、图2中的数据, 结合每次实验得到的迭代过程图, 得到结果对比表如表1所示.图1 FT06基准案例最优解2468101214161820LA01 实验次数传统遗传算法优化后遗传算法图2 LA01基准案例最优解表1 基准案例(FT06, LA01)结果对比表项目FT06LA01标准算法本文算法标准算法本文算法最优解5955740666最优解个数212114最优解均值61.556.2774.35671.3最优迭代次数310418平均迭代次数11.638.058.476.6从表1可看出, 用FT06基准案例验证时, 标准算法求得的最优解为59, 20次实验中有2次求得59, 所得解均值是61.5, 当求得最优解为59时, 最优迭代次数为3, 平均迭代次数为11.6; 改进算法求得的最优解为55, 20次实验中有12次求得55, 所得解均值为56.2, 当求得最优解为55时, 最优迭代次数为10, 平均迭代次数为38.05; 用LA01基准案例验证时, 标准算法求得的最优解为740, 20次实验中有1次求得740,所得解均值为774.35, 当求得最优解为740时, 最优迭代次数为4, 平均迭代次数为8.4; 改进算法求得的最优解为666, 20次实验中有14次求得最优解, 最优解平均值为671.3, 当求得最优解为666时, 最优迭代次数2021 年 第 30 卷 第 5 期计算机系统应用193为18, 平均迭代次数为76.6.由此可以看出, 改进后的遗传算法得到的最优解优于标准遗传算法, 解决了标准算法的早熟问题; 同时在进行20次实验后, 改进后的算法得到最优解的次数分别为12和14次大于标准算法得到最优解的次数,解决了标准算法的解的稳定性差问题.运用标准遗传算法对不同基准案例进行验证时,可能需要不同的交叉和变异参数来提高算法的收敛速度和搜索能力. 而交叉和变异概率难以确定, 一般由实验经验或者参考前人的参数设计给出, 给定后的值固定不变. 对于标准遗传算法只改进适应度函数后进行实验验证, 给定交叉概率为0. 9, 变异概率为0. 05, 实验结果如表2所示.表2 改进适应度函数后的实验结果表项目基准案例FT06LA01最优解55666最优迭代次数30130对比表1, 表2可知, 表2中迭代次数均大于表1中本文算法对应的迭代次数. 由此可知, 改进算法中的自适应交叉和变异概率提高算法的收敛速度.由参考文献[23]可知, FT06的最优解为55, LA01的最优解为666. 结合结果分析可知, 不论是FT06基准案例还是LA01基准案例, 改进算法均能得到与基准案例最优解相同的解, 并且在20次实验中, 改进算法得到最优解的次数分别为12和14次, 均高于标准算法; 改进算法在得到最优解时, 其迭代次数分别为10和18, 相比于只改进寻优能力后得到的最优解时的迭代次数, 改进算法可以提高收敛速度.用FT06和LA01验证改进后的遗传算法, 生成的遗传代数图和甘特图分别如图3~图6所示. 由图4可知每台机器上的工序顺序, 以及加工完所有工件花费的最少加工时间55, 由图3可知得到此调度方案只迭代了10次; 由图6可知每台机器上的工序顺序, 以及加工完所有工件花费的最少加工时间666, 由图5可知得到此调度方案只迭代了18次. 仿真结果表明改进后的遗传算法比标准遗传算法收敛速度快, 所得解更稳定, 遗传参数较易确定. 相较于文献[14,15], 优化后的遗传算法的收敛速度更优, 交叉和变异概率采用自适应交叉、变异函数确定, 解决了参数难以确定的问题,证实了改进后遗传算法的有效性和可靠性.图3 FT06遗传代数图图4 FT06甘特图图5 LA01遗传代数图图6 LA01甘特图计算机系统应用2021 年 第 30 卷 第 5 期1945 结束语以最小化最大完成时间为优化目标, 对标准遗传算法进行改进, 以求解目标问题的最优解. 在初始化时扩大种群数量以增加种群多样性, 采用的适应度函数可以增加染色体区分度, 使用POX算法完成交叉操作,产生的子代可以很好地继承父代优良特征并且子代总是可行, 交叉和变异概率采用自适应交叉和变异概率,概率可根据染色体适应度值自动调整. 通过对FT06和LA01进行仿真实验, 所得的实验结果表明改进后的遗传算法解决了标准遗传算法中参数难以确定, 早熟收敛, 所得解不稳定的问题, 提高算法的寻优能力和收敛速度, 比标准遗传算法更适用于作业车间生产. 对于柔性作业车间调度问题, 其每道工序可以在多台机床上加工, 并且在不同的机床上加工所需时间不同, 因此本文算法不适用于柔性作业车间的调度问题, 下一步将研究能够处理柔性作业车间的调度问题.参考文献徐华, 程冰. 混合遗传蝙蝠算法求解单目标柔性作业车间调度问题. 小型微型计算机系统, 2018, 39(5): 1010–1015.[doi: 10.3969/j.issn.1000-1220.2018.05.026]1曹磊, 叶春明, 黄霞. 变邻域杂草算法在多目标柔性作业车间调度中的应用. 计算机应用研究, 2018, 35(1): 150–154, 165. [doi: 10.3969/j.issn.1001-3695.2018.01.031]2Ariyasingha IDID, Fernando TGI. A performance study for the multi-objective ant colony optimization algorithms on the job shop scheduling problem. International Journal of Computer Applications, 2015, 132(14): 1–8. [doi: 10.5120/ ijca2015907638]3Florez E, Gomez W, Lola B. An ant colony optimization algorithm for job shop scheduling problems. International Journal of Artificial Intelligence & Applications, 2013, 4(4): 53–66.4Peng B, Lu ZP, Cheng TCE. A tabu search/path relinking algorithm to solve the job shop scheduling problem.Computers & Operations Research, 2015, 53: 154–164.5Spanos AC, Ponis ST, Tatsiopoulos IP, et al. A new hybrid parallel genetic algorithm for the job-shop scheduling problem. International Transactions in Operational Research, 2014, 21(3): 479–499. [doi: 10.1111/itor.12056]6Nasiri MM. A modified ABC algorithm for the stage shop scheduling problem. Applied Soft Computing, 2015, 28: 81–89. [doi: 10.1016/j.asoc.2014.12.001]7Karimi-Nasab M, Modarres M, Seyedhoseini SM. A self-8adaptive PSO for joint lot sizing and job shop scheduling with compressible process times. Applied Soft Computing, 2015, 27: 137–147. [doi: 10.1016/j.asoc.2014.10.015]刘琼, 张超勇, 饶运清, 等. 改进遗传算法解决柔性作业车间调度问题. 工业工程与管理, 2009, 14(2): 59–66. [doi:10.3969/j.issn.1007-5429.2009.02.011]9张国辉, 高亮, 李培根, 等. 改进遗传算法求解柔性作业车间调度问题. 机械工程学报, 2009, 45(7): 145–151.10赵诗奎, 方水良, 顾新建. 柔性车间调度的新型初始机制遗传算法. 浙江大学学报(工学版), 2013, 47(6): 1022–1030. 11Kacem I, Hammadi S, Borne P. Approach by localization and multiobjective evolutionary optimization for flexible job-shop scheduling problems. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 2002, 32(1): 1–13. [doi: 10.1109/TSMCC.2002.1009117]12Zhang GH, Gao L, Shi Y. An effective genetic algorithm for the flexible job-shop scheduling problem. Expert Systems with Applications, 2011, 38(4): 3563–3573. [doi: 10.1016/ j.eswa.2010.08.145]13何斌, 张接信, 张富强. 一种求解作业车间调度问题的改进遗传算法. 制造业自动化, 2018, 40(8): 113–117. [doi: 10.3969/ j.issn.1009-0134.2018.08.029]14李春廷. 基于遗传算法的作业车间调度问题研究[硕士学位论文]. 秦皇岛: 燕山大学, 2007.15张国辉, 吴立辉. 求解柔性作业车间调度的GATOC混合方法. 计算机工程与应用, 2015, 51(23): 266–270. [doi: 10.3778/j.issn.1002-8331.1502-0171]16王雷, 蔡劲草, 李明. 基于正交试验的遗传算法参数优化.工程技术版, 2016, 16(2): 81–85.17玄登影, 王福林, 高敏慧, 等. 一种改进适应度函数的遗传算法. 数学的实践与认识, 2015, 45(16): 232–238.18李兢尧, 黄媛, 王军强, 等. 求解扩展双资源约束作业车间调度的分支种群遗传算法. 西北工业大学学报, 2016, 34(4): 634–640. [doi: 10.3969/j.issn.1000-2758.2016.04.013]19张雪艳, 梁工谦, 董仲慧. 基于改进自适应遗传算法的柔性作业车间调度问题研究. 机械制造, 2016, 54(6): 1–4, 33.[doi: 10.3969/j.issn.1000-4998.2016.06.001]20黄俊生, 广晓平. 关于生产车间作业优化调度效率仿真研究. 制造业自动化, 2017, 39(10): 95–99. [doi: 10.3969/j.issn.1009-0134.2017.10.022]21郑先鹏, 王雷. 面向作业车间调度问题的遗传算法改进. 河北科技大学学报, 2019, 40(6): 496–502. [doi: 10.7535/hbkd.2019yx06006]22王明. 基于改进遗传算法的作业车间调度问题研究[硕士学位论文]. 芜湖: 安徽工程大学, 2019.232021 年 第 30 卷 第 5 期计算机系统应用195。
遗传算法的改进与实现
1 改 进 遗 传 算 法 的基 本 原 理
改进遗传算法的基本思想是将每个可能的问题解表示为“ 染色体” 从而得到一个 由染色 ,
体组 成 的“ 群体 ” 这 个 群体 被 限制 在 问题 特 定 的环 境 里 , 据 预 定 的 目标 函数 对 每 个 个 体进 , 根
行评价, 给出了一个适合 度值。它既可以强迫算法 收敛 , 而又可能使算法过早终止到非最优 解。这种现象称为遗传算法 的早熟现象。针对某一 问题 , 改进 的标准遗传算法的基本步骤可
Ab t a t I n rd c n h e e c ag r h b sc p i s p y h s p p rh d h mp o e n f te c n sr c n i t u i g t e g n t lo i m a i h l o h ,t i a e a ma e t e i r v me t o o — o i t o s h c ee o e a n rc s d s v st e mo e n r c s h o c ee p o r mmi g me h d r t p r t g po e s a i e v me tp o e s t e c n r t rg a i n h n to . Ke wo d Ge e i g r h y rs n t a o t ms cl i Po a rg mmi g r n I r v me tmeh mp o e n t o d
Tpdfn C R M S M [ asi ]/ yee i H O O O E m xtn ; t r g 二进制 串( 染色体)% /
s u tn ii a { l t c idv u l/,个体 的数 据结构 , r d c l c /
改进遗传算法
k
,则
适值函数为
F
f
fk max
k
其中, k 也是一个较小的数,其意义和最大化问题设置相
同。
③ k 对于调节选择压力的作用 k 的引入能够调节选择压力,即好坏个体选择概率的差,
使广域搜索范围宽,保持种群的多样性,而局部搜索细致, 保持收敛性。
在算法开始运行的时候,希望选择压力较小,所以 k
取值较大,使不同个体间的选择概率相差不大,到种群进化
染色体为实数编码。实数编码具有精度高、便于大空间搜 索、运算简单的特点,特别适合于实优化问题,但是反应 不出基因的特征。
• 3.整数编码
对于染色体X=(x1,x2,…,xi,…,xn),1≤i≤ni, ni 为第i位基因 的最大取值,则称染色体为整数编码。显然不同位置上的 基因取值可以不同。整数编码可以适应于新产品投入、时 间优化和伙伴挑选等问题。
5.停止准则
在基本的遗传算法中,一般采用最大迭代次数作为算法的 停止准则,此方法不太准确,因为可能在在最大的迭代次数 之前算法已经收敛,也可能在最大迭代次数时还没收敛,因 此采用另外一种停止准则,即根据种群的收敛程度,种群适 应值得一致性来判断是否算法停止。在算法的执行过程中保 留历史上最好的个体,观察指标
遗传算法改进方法
基于以上介绍可知,遗传算法通常需要解决以下问题: 确定编码方案,适应度函数标定,选择遗传操作方式和相 关控制参数,停止准则确定等,相应地,为改进简单遗传 算法的实际计算性能,很多的改进工作也是从参数编码、 初始种群设定、适应度函数标定、遗传操作算子、控制参 数的选择以及遗传算法的结构等方面提出的。基于不同的 问题,遗传算法可以有不同的改进和变形,这也是遗传算 法内容丰富和作用强大的原因。
遗传算法的一些改进及其应用共3篇
遗传算法的一些改进及其应用共3篇遗传算法的一些改进及其应用1遗传算法 (Genetic Algorithm) 是一种优化算法,它通过模拟生物进化过程来寻找最优解。
遗传算法最初由 J. Holland 在 1975 年提出,是模仿自然界生物的进化过程,利用选择、交叉和变异等基本遗传操作,搜索解空间中的最优解。
遗传算法优点在于能够处理复杂的非线性、多模优化问题,但在实际应用过程中存在一些问题,为了解决这些问题,对遗传算法进行了许多改进,下面介绍其中几种改进方法和应用。
改进一:精英选择策略在传统的遗传算法中,每次进行选择操作时都是随机选择个体进行交配,这导致一些较优秀的个体有可能被淘汰,因此提出了精英选择策略,即在每次进化过程中一定比例地选择适应度最好的个体,避免较好的个体被淘汰。
改进二:基因突变概率自适应策略在遗传算法中,变异操作可以增加个体的多样性,但是变异概率设置不当,可能会导致算法早熟收敛或者长时间停留在局部最优解。
为了避免这种情况,提出基因突变概率自适应策略,即根据当前代的适应度情况自适应计算变异概率,使变异概率既不过大,也不过小。
改进三:群体多样性保持策略为了保证遗传算法群体多样性,提出了数种策略:保持多样性的染色体种群操作,通过引进外来个体以增加多样性,以及通过避免重复染色体来保持多样性等方法。
应用一:函数优化函数优化是运用遗传算法的主要应用之一,它的目标是通过最小化目标函数,寻求函数的最小值或最大值。
应用遗传算法的一个优势在于它能够优化非凸性函数,而其他传统优化算法在优化过程中会陷入局部最优解。
应用二:机器学习机器学习需要寻找一个最佳的模型,而遗传算法可以用于选择合适的特征和参数,从而构建最佳的模型。
此外,遗传算法还可以用于优化神经网络的结构和权重,以提高神经网络的分类和预测性能。
应用三:工程优化遗传算法在工程中也有广泛的应用,如在电子电路设计中,可以通过遗传算法来寻找尽可能优秀的元器件匹配,从而达到最佳的电路性能。
一种改进的遗传算法的实现及性能研究
Ab ta tBa e n Viu l sr c : s do s a C+ + ,a m p o e e ei lo ih (GA) u i g C ln u g sp o o e n i r v d g n t ag rt m I c sn a g a e i r p s d
・
研 究 与 设 计
・
一
种 改 进 的遗 传 算 法 的 实现 及 性 能 研 究
郝 亚微 ,李 斌
605) 10 4 ( 电子 科 技 大 学 物 理 电子 学 院 , 四川 成 都
Pe f r a e a d I pl m e t o n I pr v d Ge tc Al o ih r o m nc n m e n fa m o e ne i g r t m
HAO — i LIBi Ya we , n ( h o f ysc lElcr nc ,Un v riy o Elcr n cS in ea d Teh o o y o ia, Sc o l Ph ia eto is o ie st f eto i ce c n c n lg f Ch n
i hi p r I h s i n t spa e . n t i mpr ve l ort m ,r a — v l d c d hg a d s me i p ov d ge e i e ha s sa e o d a g ih el a ue o i n o m r e n tcm c nim r ao e d pt d,a s h lts t a e y i n r uc d Thr gh t s i lo t e eiit s r t g s i t od e . ou e tng GA u to t a g i nso lt f nc i ns wih lr e d me i na iy, t x rm e a e u t h he e pe i nt lr s ls s ow ha h sne a g ihm oto y i p o e he gl ba ptmia i n pe f r — t tt i w l ort n nl m r v s t o lo i z to r o m a c n i k ns t o e ge e s e d,bu l o o ans r bus e u t t o ua iy,whih i i n e a d qu c e he c nv r nc p e t a s bt i o t r s ls wih go d q lt c nd —
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
➢ 部分映射交叉 ➢ 顺序交叉 ➢ 循环交叉 ➢ 变异修复策略 ➢ 换位变异 ➢ 移位变异
➢ 交叉修复策略之部分映射交叉
部分映射交叉主要用于解决双切点交叉引起的非法性。 可以解决子代的基因重复和部分基因的丢失问题,保证基 因的多样性。 其主要步骤为: ① 选则切点X,Y ② 交换中间部分 ③ 确定映射关系 ④ 将未交换部分按映射关系恢复合法性
遗传算法改进方法
基于以上介绍可知,遗传算法通常需要解决以下问题: 确定编码方案,适应度函数标定,选择遗传操作方式和相 关控制参数,停止准则确定等,相应地,为改进简单遗传 算法的实际计算性能,很多的改进工作也是从参数编码、 初始种群设定、适应度函数标定、遗传操作算子、控制参 数的选择以及遗传算法的结构等方面提出的。基于不同的 问题,遗传算法可以有不同的改进和变形,这也是遗传算 法内容丰富和作用强大的原因。
来染色体的基因顺序,直到列完 ④ 划掉各自交换部分的基因 ⑤ 按划掉后的相对顺序从Y后开始补齐原来的染色体的
基因
➢ 交叉修复策略之循环交叉
循环交叉的基本思想是子串位置上的值必须与父母相同 位置上的值相一致。简单来说,就是父母代在进行交叉运 算时按某种方式交换某些相同位置的基因,其余位置的基 因不变,组成子代。这种交叉方式适合于解决指派问题。 在满足特定指派要求条件下,使指派方案总体效果最佳。 其修复策略较麻烦,需要时可以查找文献,大家需要记住
顺序编码:
X=(2 3 1 5 4 7 6)
对于有7个城市的旅行商问题,城市序号为{1,2,…….,7},
则上述编码可以表示一个行走的路线。该编码方法具有广泛的
适应范围,如指派问题、旅行商问题和单机调度等问题。
• 2.实数编码
对于染色体X=(x1,x2,…,xi,…,xn),1≤i≤nx,i R ,则称该
则可以产生的两个后代是: C1=aP1+(1-a)P2 C2=(1-a)P1+aP2
这里,a要保证大于0且小于1. 这样做的不好处是导致种群的基因向中间汇聚,导致基
因的分散性不好,逐步丢失很多基因。这是与基因的多样 性相违背。
4.实数编码的合法性修复之变异
不同于二进制编码,实数编码的变异可以是任意的,通常 有如下两种变异方法: ➢ 位值变异 ➢ 向梯度方向变异 位值变异是随机选取染色体上某一位基因,在其上加上一 个变异补补偿D,通常便已步长是按一定规律产生的呈一定 分布规律的随机数
染色体为实数编码。实数编码具有精度高、便于大空间搜 索、运算简单的特点,特别适合于实优化问题,但是反应 不出基因的特征。
• 3.整数编码
对于染色体X=(x1,x2,…,xi,…,xn),1≤i≤ni, ni 为第i位基因 的最大取值,则称染色体为整数编码。显然不同位置上的 基因取值可以不同。整数编码可以适应于新产品投入、时 间优化和伙伴挑选等问题。
的是:循环交叉是用来解决指派这一类的问题的
2.变异修复策略
简单的二进制变异时候只需要把0变成1,1变成0, 而顺序编码的变异策略不能这样进行,一般由下面两种策略: ➢ 换位变异
➢ 换位变异是随机在染色体上选则两个基因,交换它们 的基因值
➢ 移位变异 ➢ 移位变异是任意选则一个基因,将其移到最前面。
遗传算法的改进
遗传算法存在的问题
1. 适应度函数标定方式多种多样,没有一个简洁通用的方法 2. 遗传算法的早熟现象(即很快收敛到局部最优解而不是全 局最优解)是迄今为止最难处理的关键问题。 3. 快要接近最优解时在最优解附近左右摆动,收敛较慢。开 始时进化速度很快,甚至以指数级进化速度朝着最优解方向 前进,但不久以后,进化速度就会变慢,临近全局最优解时 则可能是几百代、上千代才向目标逼近一小步,有时甚至停 滞不前,出现早熟收敛。
3.适值函数的标定
1.标定的目的
① 将目标函数映射为适值函数,从而能够直接将适值函 数与群体中的个体优劣相联系。 ② 对目标函数进来标定,来调节选择压力。 2.选择压力的概念
2.不合法编码的修复
对于普通的二进制编码,通常的交叉和变异不会改变 编码的合法性,但是对于顺序编码、实数编码,会造成编码 的不合法或者超出可行域,因此必须对不合法的编码进行处 理,通常的处理手段为拒绝或者修复。下面介绍修复的方法。
➢ 顺序编码的合法性修复 ➢ 实数编码的合法性修复
பைடு நூலகம்
1. 顺序编码的修复
3.实数编码的合法性修复之凸组合交叉
实数编码的交叉操作(单切点交叉、双切点交叉)通常不 会改变其合法性问题。但是,有时会导致解码后的值超出可 行域。针对这样的问题,产生了凸组合交叉。简单来说,就 是直接引用凸集理论,将父母两个染色体对应的看成两个点, 其子代只能位于这两个点的连线上。 如:有双亲
P1=(x1,x2,x3,···,xn) P2=(y1,y2,x3,···,yn)
➢ 交叉修复策略之顺序交叉
• 顺序交叉是部分映射交叉的变形,相当于使用了不同的 映射关系。其可以较好的保留相邻关系、先后关系,但 是不能保留位值特征,可以用来解决旅行商之类的拓扑 问题。
旅行商问题 • 在寻求单一旅行者由起点出发,通过所有给定的需 求点之后,最后再回到原点的最小路径成本
顺序交叉的步骤如下: ① 选则切点X,Y ② 交换中间部分 ③ 从第二个切点Y后的第一个基因开始分别列出两个原
向梯度方向的变异较好的考虑了问题本身的性质,效率比 较高 简单来说,就是把某个染色体看成一个具有n个分量的点, 然后求目标函数在这个点处的梯度 ➢ 对于最大化问题,就是染色体本身加上这个点处的梯度
乘以一个随机数(0到1之间) ➢ 对于最小化问题,就是染色体本身加上这个点处的负梯
度乘以一个随机数(0到1之间)
改进的遗传算法
➢ 编码方法的选择 ➢ 编码的修复 ➢ 适值函数的标定 ➢ 选择策略 ➢ 停止准则的改进
人工智能及其应用
4
1.编码方法
这里来介绍除了0-1编码以为的其他三种重要的编码方法
• 1.顺序编码
顺序编码是用1到n的自然数来编码,此种编码不允许重
复,又称为自然数编码,例如下面是一个染色体长度为n=7的