斜拉桥结构组成及设计

合集下载

为什么有些桥梁需要斜拉桥设计?

为什么有些桥梁需要斜拉桥设计?

为什么有些桥梁需要斜拉桥设计?一、斜拉桥结构简介斜拉桥是一种采用斜拉索支撑主梁的桥梁结构,其设计独特,具有一系列独特的优势。

斜拉桥通常由塔楼、拉索和主梁三部分组成。

塔楼作为桥梁的支撑点,将拉索与主梁连接起来。

拉索根据需要的张力,通过塔楼连接到主梁,使得主梁得以支撑。

二、延长主梁跨度的设计需求1. 跨越宽度需求:有些地区的桥梁需要跨越非常宽的河流或峡谷,传统的梁桥结构无法满足跨度的需求。

斜拉桥能够通过拉索的支撑,实现更大的跨度,解决了跨越宽度限制的问题。

2. 减少桥梁应力:梁桥结构在跨越较大距离时,会受到较大的应力。

而斜拉桥通过将主梁的荷载分散到斜拉索上,减少了主梁的受力情况,从而降低了主梁的应力,提高了桥梁的承载能力。

3. 美学设计需求:斜拉桥的设计不仅考虑到桥梁的功能,还注重桥梁的美学价值。

斜拉桥的斜拉索在桥梁上呈现出独特的形态,赋予了桥梁优雅、流线型的外观,成为了城市地标之一。

三、斜拉桥的优势与局限1. 结构稳定性:斜拉桥采用了三角支撑结构,使得整个桥梁结构更加稳定。

斜拉桥的主梁在受到荷载时,通过拉索将荷载传递到塔楼上,从而实现了力的平衡,增强了整个桥梁结构的稳定性。

2. 经济性:斜拉桥相比于其他桥梁结构,具有较低的建造成本和维护成本。

斜拉桥的斜拉索可以吸收桥梁的荷载,减少了主梁的材料使用量,降低了桥梁的建设成本。

同时,斜拉桥的维护也相对简单,更易于进行定期检查和维修。

3. 局限性:斜拉桥的设计需要考虑多方面的因素,如地震、风速等,以确保结构的稳定性。

斜拉桥对地基设施的要求也较高,需要保证塔楼的稳定性和承载能力,从而带来更多的施工和维护难度。

四、斜拉桥在世界各地的应用案例1. 若尔盖大桥(中国):作为世界上跨度最大的斜拉桥之一,若尔盖大桥成功跨越了若尔盖河谷,成为了中国西部地区的标志性建筑。

2. 米尔顿马德斯桥(加拿大):该桥位于加拿大多伦多市,是一座斜拉桥,不仅具有跨越能力,还有着独特的设计风格,成为多伦多的地标之一。

斜拉桥和悬索桥的总体布置和结构体系

斜拉桥和悬索桥的总体布置和结构体系

主跨跨径
索 塔 高 度
索面形式(辐射式、竖琴式或扇式) 双塔:H/l2=0.18~0.25
拉索的索距
单塔:H/l2=0.30~0.45
拉索的水平倾角
6
拉索布置
斜拉索横向布置
空间布置形式
单索面
竖直双索面 双索面
倾斜双索面
7
拉索在平面内的布置型式
辐射式 竖琴式 扇式

拉索间距
早期:稀索
混凝土达 15m~30m 钢斜拉桥达 30m~50m
31
1)斜拉桥施工的理论计算
斜拉桥施工的理论计算方法主要有以下几种:1、倒拆法;2)正算法
倒拆法从斜拉桥成桥状态出发(即理想的恒载状态出发)用与实际施工 步骤相反的顺序,进行逐步倒退计算来获得各施工节段的控制参数,根据 这些参数对施工进行控制与调整,并按正装顺序施工。
正算法是按斜拉桥的施工顺序,依次计算出各施工节段架设时的内力和 位移。并依据一定的计算原则,选定相应的计算参数作为未知变量,通过 求解方程得到相应的控制参数。
1)主梁的边跨和主跨比 2) 主梁端部处理 3) 主梁高度沿跨长的变化
混凝土主梁横截面形式
1)实体双主梁截面;2)板式边主梁截面;3)分 离双箱截面;4)整体箱形截面;5)板式梁截面
双索面钢主梁横截面形式
双主梁、单箱单室钢梁、两个单箱单室钢梁、 多室钢梁和钢桁梁
21
3、主梁构造特点(续)
主要尺寸拟定
混凝土斜拉桥的拉索一般为柔性索,高强钢丝外包的索套仅作为保护材 料,不参加索的受力,在索的自重作用下有垂度,垂度对索的受拉性能有影 响,同时索力大小对垂度也有影响。 为了简化计算,在实际计算中索一般采 用一直杆表示,以索的弦长作为杆长。关健 问题是考虑索垂度效应对索的伸长与轴力的 关系影响,这种影响采用修正弹性模量来考 虑。

斜拉桥的组成

斜拉桥的组成

斜拉桥的组成斜拉桥是一种采用斜拉索进行支撑的桥梁结构,其主要组成部分包括桥塔、斜拉索、主梁和桥面板等。

1. 桥塔桥塔是斜拉桥的主要支撑结构,通常位于桥梁两端或者跨度较大的中间位置。

其形状多为单塔或双塔,也有复合式、Y型、H型等多种形式。

桥塔的高度决定了斜拉索的长度和张力大小,因此设计时需要充分考虑地基承载能力和风荷载等因素。

2. 斜拉索斜拉索是连接桥塔和主梁的重要部件,其作用是将荷载传递到桥塔上,并通过张力维持整个结构的稳定性。

通常采用高强度钢丝绳或钢缆制成,具有轻量化、高强度和耐腐蚀等优点。

在设计时需要考虑到索条数目、直径、张力大小以及受力状态等因素。

3. 主梁主梁是连接两个桥塔之间的重要部件,其作用是承担车辆荷载并将荷载传递到斜拉索上。

主梁的形状多为箱形或梁板式,也有其他形式。

在设计时需要考虑到梁高、截面形状、材料选取等因素。

4. 桥面板桥面板是供车辆行驶的平面部分,其作用是承载车辆荷载并将荷载传递到主梁上。

通常采用钢板、混凝土或者钢混凝土组合结构制成。

在设计时需要考虑到荷载大小、防滑性能和耐久性等因素。

除了以上四个主要组成部分外,斜拉桥还包括锚固装置、振动控制装置、护栏和灯光等附属设施。

锚固装置用于固定斜拉索和主梁之间的连接点;振动控制装置用于减小桥梁受风时的振动幅度;护栏和灯光则用于保障行车安全和夜间通行。

总之,斜拉桥是一种高效稳定的桥梁结构,其主要组成部分包括桥塔、斜拉索、主梁和桥面板等。

在设计时需要充分考虑各种因素,并采取合理的措施保障其安全性和稳定性。

斜拉桥设计概念及结构分析

斜拉桥设计概念及结构分析
中铁大桥勘测设计院有限公司
总工办
一、斜拉桥概述 2.1 稀索体系的斜拉桥
2 斜拉桥技术演变
Knie桥纤细的桥塔和主梁(钢结构)
中铁大桥勘测设计院有限公司
总工办
一、斜拉桥概述 2.1 稀索体系的斜拉桥
2 斜拉桥技术演变
技术特色: 1)非对成的单塔斜拉桥 2)A型桥塔 3)扇形缆索体系
德国科隆 Severins桥
希腊Evripos 桥 1993 , 矩形板厚度 45 cm
中铁大桥勘测设计院有限公司
总工办
一、斜拉桥概述 主梁柔、薄化
2 斜拉桥技术演变
法国的Bourgogne 桥
中铁大桥勘测设计院有限公司
总工办
一、斜拉桥概述
2 斜拉桥技术演变
技术特色: 1)目前最大跨度的PC斜拉桥 2)三角形单箱双室箱梁,景观、结构特
中铁大桥勘测设计院有限公司
总工办
一、斜拉桥概述
斜拉桥和斜腿刚构力学对比
中铁大桥勘测设计院有限公司
总工办
一、斜拉桥概述
斜拉桥和悬索力学对比
中铁大桥勘测设计院有限公司
总工办
一、斜拉桥概述
2 斜拉桥技术演变
2 斜拉桥技术演变
斜拉桥的技术演变大致可以分为四个阶段:
1)稀索体系的斜拉桥
1956年开始,主梁大部分采用钢主梁,斜拉索较少,但拉索的直径较大,钢箱 梁索距大约30-60米,混凝土梁的索距大约15-30米。
中铁大桥勘测设计院有限公司
总工办
一、斜拉桥概述
2 斜拉桥技术演变
德国桥梁工程师Hellmut Homberg 则提出了密索体系的斜拉桥和单索面斜拉桥。
技术特色:第一座密索体系的钢斜拉桥,单索面

斜拉桥模型制作设计图

斜拉桥模型制作设计图

斜拉桥模型制作设计图一、模型概况斜拉桥主桥结构形式为双塔双索面漂浮体系结构,主梁采用肋板式结构,拉索采用平行钢丝体系。

斜拉桥模型包括桥塔、主梁、斜拉索、桥墩以及基础。

模型全长18.2米,高米,桥面宽米,索96根。

斜拉桥模型三维图见图1、2。

图1 斜拉桥模型全桥三维图图2 斜拉桥模型桥塔三维图二、材料全桥模型材料主要采用有机玻璃制作,主梁、主塔采用有机玻璃制作,斜拉索采用Ф4钢筋,桥墩以及基础为钢筋混凝土结构。

有机玻璃主要材料性能初步假设为:弹性模量 E=×103 N/mm2。

斜拉索采用Ф4钢筋=235N/mm2,弹性模量 E=×105N/mm2。

(Q235),强度标准值 fyk三、模型结构图1、斜拉桥模型立面布置斜拉桥模型包括桥塔、主梁、斜拉索以及桥墩。

该桥为对称结构,以主梁跨中点为中心左右对称。

6号桥塔斜拉索混凝土桥墩边墩主梁边墩37号桥塔图3 斜拉桥模型布置图(单位:㎜)注:以后图表中尺寸均采用毫米为单位。

2、主梁主梁全长米,横截面见图4。

主梁截面图(单位:mm)图4 主梁横截面图3、塔塔高3. 16米,详细尺寸见图5~7。

塔与梁不直接连接,依靠拉索连接。

梁底距离塔横梁20毫米。

塔墩高米,地面以上米,地面以下开挖米。

为了塔与墩连接牢固,墩上预留洞口,塔柱延伸至墩底部,然后浇注环氧砂浆填补洞口。

塔与墩连接处还要加钢板锚固。

塔与墩连接的详细构造见图15~17。

索塔立面图索塔侧面剖面图图5 塔立面、剖面图 图6 塔侧面剖面图159515150100157015150图7 塔结构详图4、拉索斜拉索为双索面,共96根,采用Ф4钢筋。

根据位置不同,斜拉索采用不同的标号。

比如,“S1”表示边跨的拉索,“M1”表示中跨的拉索,具体标号见图8。

S1S3S5S7S9S11S13S15S17S19S21S23M1M3M5M7M9M11M13M15M17M19M21M23M25M27M29M31M33M35M37M39M41M43M45M47S25S27S29S31S33S35S37S39S41S43S45S47边跨中跨边跨图8 拉索位置标号(1) 拉索锚固方式拉索在塔内壁锚固,在梁肋底部设螺栓来调节索力。

斜拉桥孔跨布局索塔拉索布置及结构体系

斜拉桥孔跨布局索塔拉索布置及结构体系
板式截面斜拉桥
(1)在实体塔上交错锚固 在塔柱中埋置钢管,再将斜拉 索穿入和用锚头锚固在钢管上 端的锚垫板上。
(2)在空心塔上作非交错锚固 构造与实体塔锚固相同,但
需在箱形桥塔的壁内配置环向 预应力筋,以抵抗拉索在箱壁 内产生的拉力
• 将钢锚固梁搁置在混凝土塔柱内侧的牛腿上,斜索通 过埋设在塔壁中的钢管锚固在钢锚固梁两端的锚块上。 塔两侧相等
• 梁、塔、墩互为固结,形成跨度内具有多点弹性支承 的刚构。
优点: (1)既免除了大型支座又能满足悬臂施工的稳定要求; (2)结构的整体刚度比较好;主梁挠度小。 缺点:
(1)刚度的增大是由梁、塔、墩固结处能抵抗很大的负 弯矩换取来的,因此这种体系的固结处附近区段内主 梁的截面必须加大。 (2)为消除温度应力,需要墩身具有一定柔性,故常 用于高墩。
(1)塔较矮; (2)梁的无索区较长,没有端锚索; (3)边主跨之比较大; (4)梁高较大; (5)受力以梁为主,索为辅; (6)活载作用下斜拉索的应力变幅较小。
1 主梁构造
主梁的主要作用: (1)将作用分散传给拉索。 (2)主梁承受的力主要是拉索的水平分力所形成的轴压
力。 (3)抵抗横向风载和地震荷载,并把这些力传给下部结
有着很大的关系。
l主孔跨径一般比双塔三跨式跨径小,适用于跨越中小河 流和城市河道。
l边主跨之比为(0.5~0.8),但大多数为0.66。边跨大, 考虑拉索应力疲劳,中间设桥墩改善。
很少采用。因为中间塔没有端锚索来有效限制它的变 位。采用增加主梁刚度和索塔刚度增加了工程量。
活载作用时,往往边 跨梁段附近区域产生 很大的正弯矩,并导 致梁体转动。解决这 个问题,常用:
(3)密索体系主梁各截面的变形和内力变化较平缓,受 力较均匀;

斜拉桥的组成

斜拉桥的组成

斜拉桥的组成1. 引言斜拉桥是一种以斜拉索作为主要承载构件的桥梁形式,具有结构简洁、美观大方、抗风性能好等优点。

在现代桥梁工程中,斜拉桥已经成为一种常见的设计选择。

本文将介绍斜拉桥的组成,包括主要构件、设计原理和施工过程等。

2. 主要构件2.1 主塔斜拉桥的主塔是承载斜拉索的重要支撑结构,通常由钢筋混凝土或钢结构制成。

主塔一般呈塔形或倒V形状,其高度直接影响着整个桥梁的视觉效果和力学性能。

主塔上部设有索鞍或索槽,用于固定和调整斜拉索的张力。

2.2 斜拉索斜拉桥的特点之一就是采用了大量的斜拉索作为承载构件。

这些斜拉索通常由高强度钢丝绳制成,通过连接器件与主塔和桥面连接起来。

斜拉索根据受力状态可以分为主张力索和辅助张力索。

主张力索负责承担桥面的荷载,辅助张力索则用于调整主张力索的张力。

2.3 桥面斜拉桥的桥面是供车辆和行人通行的部分,一般由钢箱梁或钢混凝土梁构成。

桥面在设计时需要考虑到荷载分布、风荷载和振动等因素,以确保其具有足够的强度和刚度。

2.4 紧固系统紧固系统是斜拉桥中起到连接作用的重要部分。

它包括连接器、锚固装置和调节装置等。

连接器用于将斜拉索与主塔和桥面连接起来,锚固装置则用于固定斜拉索的末端,而调节装置则可用于调整斜拉索的长度和张力。

3. 设计原理3.1 受力分析在设计斜拉桥时,需要进行详细的受力分析。

首先要确定主塔受到的竖向荷载和水平荷载,并根据这些荷载计算出主塔所需的抗倾覆稳定性能。

然后要确定斜拉索所承受的水平张力和垂直张力,并根据这些张力计算出斜拉索的截面积和材料强度。

3.2 模型设计在确定了受力分析结果后,需要进行桥梁的模型设计。

模型设计包括主塔形状的确定、斜拉索布置的确定以及桥面结构的设计等。

在模型设计中,需要考虑到桥梁的美观性、结构性能和施工可行性等因素。

3.3 斜拉索调整斜拉桥在施工过程中需要进行斜拉索的调整和张力控制。

调整斜拉索可以通过改变连接器件的位置或采用调节装置来实现。

斜拉桥三部分

斜拉桥三部分

斜拉桥三部分
斜拉桥是由桥塔、桥索和桥面三个部分组成的。

它们分别是:
1. 桥塔:桥塔是斜拉桥的支撑结构,通常呈塔形或倒塔形状。

桥塔承担着桥面荷载的压力,通过锚固系统将桥面的重力传递到地基。

桥塔通常由混凝土或钢结构构成,具有一定的高度和稳定性。

2. 桥索:桥索是斜拉桥的主要构件,起到承担桥面荷载和保持桥面形状的作用。

桥索通常由高强度钢丝绳或钢缆组成,通过连接桥塔和桥面的索槽或索孔固定。

桥索以拉力的形式传递荷载,使得桥面呈现出悬浮在空中的状态,从而实现了长跨度无支撑墩的设计。

3. 桥面:桥面是斜拉桥上供车辆通行的平台,也是人行道的支撑结构。

桥面通常由钢箱梁、预应力混凝土梁或钢桁梁等构件组成,固定在桥索上。

桥面的形状和尺寸根据实际需要进行设计,以适应不同的交通需求和特殊环境条件。

这三部分相互作用,共同构成了斜拉桥的整体结构,使得斜拉桥能够承载车辆和行人的重量,同时保持稳定和安全。

斜拉桥由于其独特的结构和美观的外观,在桥梁工程中被广泛应用。

斜拉桥总体布置与构造

斜拉桥总体布置与构造

10.2 斜拉桥总体布置与构造10.2.1 孔跨布置斜拉桥孔跨布置主要可分为双塔三跨式、独塔双跨式和多塔多跨式等三种形式。

在特殊情况下,斜拉桥也可以布置成独塔单跨式或者混合式。

双塔三跨式(图10.1)是一种最常见的斜拉桥孔跨布置方式。

双塔三跨式斜拉桥通常布置成两个边跨跨度相等的对称形式,也可以布置成两个边跨跨度不等的非对称形式。

边跨跨度与主跨跨度的比例关系通常取0.4左右。

根据已建斜拉桥统计,一般跨度比/=0.35~0.5。

另外,还可根据需要在边跨内设置辅助墩,以提高结构体系的刚度。

辅助墩数量不宜过多,一般1~2个,过多,效果不显著。

由于双塔三跨式斜拉桥的主孔跨度较大,一般可适用于跨越较大的河流、河口和海峡。

1L 2L 1L 2L图10.1 双塔三跨式斜拉桥图10.2 重庆石门嘉陵江大桥独塔双跨式斜拉桥也是一种常见的孔跨布置方式,如图10.2所示重庆石门嘉陵江大桥即为独塔双跨式斜拉桥。

独塔双跨式斜拉桥可以布置成两跨不对称的形式,即分为主跨与边跨;也可以布置成两跨对称,即等跨形式。

其中以两跨不对称的形式较多,也较合理。

独塔双跨式斜拉桥的边跨跨度与主跨跨度的比例通常介于0.6~0.7之间。

由于它的主孔跨径一般比双塔三跨式的主孔跨径小,故特别适用于跨越中小河流、谷地及交通道路;当然也可用于跨越较大河流的主航道部分。

1L 2L 在跨越宽阔水面时,由于通航孔要求,必要时也可采用三塔斜拉桥,如湖北宜昌夷陵长江大桥(主跨2×348m,主梁为混凝土箱型梁,悬臂拼装施工)。

多塔多跨式的斜拉桥应用较少,这是由于多塔多跨式斜拉桥的中间塔顶没有端锚索来有效地限制它的变位,结构的刚度较低。

增加主梁的刚度可以在一定程度上提高多塔斜拉桥的整体刚度,但这样做必然会增加桥梁的自重。

在必须采用多塔多跨式斜拉桥时,可将中间塔做成刚性索塔,此时索塔和基础的工程程量将会增加很多,或用斜拉索对中间塔顶加劲,但这种长索柔度较大,且影响桥梁的美观。

斜拉桥结构优化设计研究

斜拉桥结构优化设计研究

斜拉桥结构优化设计研究一、引言斜拉桥是一种结构简洁、美观大方的桥梁形式,因此在现代桥梁中得到了广泛的应用。

然而,除了大量的工程实践之外,如何对斜拉桥的结构进行优化设计仍然是一个十分重要的问题。

因此,本文将对斜拉桥结构的优化设计进行系统研究和总结,以期为今后的工程实践提供参考。

二、斜拉桥的结构原理斜拉桥是由主梁、斜拉索、塔柱等组成的。

其中主梁负责承载车辆和行人的荷载,斜拉索则在保证主梁强度的同时,通过向两侧吊挂的方式传递荷载,从而达到支撑主梁的作用。

而塔柱则是将主梁和斜拉索耦合在一起的桥梁部件,其作用是将来自斜拉索的拉力均匀传递到地基上。

三、斜拉桥结构的优化设计1. 塔柱的优化设计塔柱的设计直接影响到斜拉桥的结构安全、稳定和耐久性。

首先,塔柱的高度应该根据桥梁跨度而定,以确保斜拉索在桥梁中的角度不至于过小或过大,并使得桥梁的结构能够充分发挥出其刚度和强度。

其次,为了减小斜拉索的振动,塔柱的截面应该尽可能地大,以增加其刚度。

最后,为了保证塔柱的稳定性,其结构设计应该优先考虑选择材料的强度和耐久性。

2. 斜拉索的优化设计对斜拉索结构的优化设计,主要包括选择合适的材料、确定合理的张力、控制两个交叉斜拉索的张力大小和相互作用等。

在材料的选择上,可以采用高强度、高模量的钢材或者碳纤维等材料来提高斜拉索的强度和刚度。

在确定张力的大小和相互作用方面,需要保证斜拉索的跨中弯矩均匀,避免振动和变形过大等问题。

3. 主梁的优化设计主梁的优化设计是斜拉桥结构设计中最关键的一步。

在材料的选择上,宜采用高强度、高耐久的钢材或高强度混凝土等材料来确保完成设计要求的同时,还要考虑材料的使用寿命。

在减小主梁的自重和提高整个桥梁的刚度方面,可以采用空心梁、桁架梁或箱形梁等结构形式,提高主梁的强度和刚度。

四、结论斜拉桥结构的优化设计涉及到桥梁结构设计中的多个方面,如塔柱、斜拉索和主梁等。

在实际设计中,需要充分考虑多个因素的相互影响,以确保斜拉桥结构的安全、稳定和耐久性。

斜拉桥简介

斜拉桥简介
斜拉桥简介
代东辉
一、斜拉桥的结构特点
边跨 主跨 索塔 端锚索 边跨
边墩 或桥台
1.斜拉索将梁多点吊起,恒载及活载通过斜拉索传 至塔柱,在通过塔柱基础传至地基。 2.高次内部超静定结构,可通过斜拉索的张拉调整 主梁和主塔塔的恒载受力状态。
3.在不对称荷载作用下,斜拉索对主梁的弹性支撑 作用受塔柱顺桥向弯曲的影响。 4.不对称荷载作用下,斜拉索对主梁的弹性支撑作 用受塔柱顺桥向弯曲的影响,端锚索对主梁座外,其 余位置均有拉索支 撑,成为在纵向可 自由漂移的多点弹 性支撑连续梁,次 内力较小,受力均 匀。具有很好的抗 震消能作用。塔梁 之间要设横向约束。
滑动支座 塔柱 主梁
杨浦大桥
2.将0号索换成塔 柱横梁上的竖向支 撑,主梁刚度更大, 对限制主梁纵向位 移更有利,同时省 去换锁的复杂工艺。 但次内力较大,支 撑处主梁截面需要 加强。我国福州的 青州闽江桥就是采 用的半漂浮体系, 主梁为连续体系, 塔梁交接处通过盆 式橡胶支座。
索塔 单端锚索 桥塔
塔后斜索
边墩 或桥台 自锚体系斜拉桥
边墩 或桥台 地锚式斜拉桥方案
以上是根据斜拉索的锚固方式分成的不同体系, 此外,还有一种是为了景观效果而设计的独特 的无端锚索的斜拉桥,下图是美国著名桥梁专 家林同炎所设计的Ruck-A-Chuck桥方案。
(二)主梁的连续与非连续体系
大部分斜拉桥主梁采用连续体系,当主梁与塔墩固 结时,形成连续钢构体系。也可以将主梁设置成单 悬臂梁或T型钢构。
边跨 主跨 索塔 端锚索 边跨
二、斜拉桥的结构体系
(一)斜拉索的不同锚固体系
1.自锚式斜拉桥 拉索全部锚固在主梁与塔柱之间,竖向荷载通过塔柱递到桥墩 及基础中,拉索的水平分立由主梁的轴来力平衡。 2.地锚式斜拉桥 拉索一端锚固在主梁上,另一端锚固在山岩上。 3.部分地锚式斜拉桥 边跨部分锚索锚固在主梁上,部分拉索布置成地锚式。

斜拉桥的结构形式、原理及发展

斜拉桥的结构形式、原理及发展

斜拉桥的结构形式、原理及发展斜拉桥又称斜张桥,是将主梁用许多拉索直接拉在桥塔上的一种桥梁,是由承压的塔、受拉的索和承弯的梁体组合起来的一种结构体系。

其可看作是拉索代替支墩的多跨弹性支承连续梁。

其可使梁体内弯矩减小,降低建筑高度,减轻了结构重量,节省了材料。

斜拉桥由索塔、主梁、斜拉索组成。

一、结构斜拉桥(cable stayed bridge)作为一种拉索体系,比梁式桥的跨越能力更大,是大跨度桥梁的最主要桥型。

斜拉桥是由许多直接连接到塔上的钢缆吊起桥面,斜拉桥由索塔、主梁、斜拉索组成。

索塔型式有A型、倒Y型、H型、独柱,材料有钢和混凝土的。

斜拉索布置有单索面、平行双索面、斜索面等。

第一座现代斜拉桥是1955年德国DEMAG公司在瑞典修建的主跨为182.6米的斯特伦松德(Stromsund)桥。

目前世界上建成的最大跨径的斜拉桥为俄罗斯的俄罗斯岛大桥,主跨径为1104米,于2012年7月完工。

斜拉桥是将梁用若干根斜拉索拉在塔柱上的桥。

它由梁、斜拉索和塔柱三部分组成。

斜拉桥是一种自锚式体系,斜拉索的水平力由梁承受。

梁除支承在墩台上外,还支承在由塔柱引出的斜拉索上。

按梁所用的材料不同可分为钢斜拉桥、结合梁斜拉桥和混凝土梁斜拉桥。

2013年已建成的斜拉桥有独塔、双塔和三塔式。

以钢筋混凝土塔为主。

塔型有H形、倒Y形、A形、钻石形等。

斜拉索仍以传统的平行镀锌钢丝、冷铸锚头为主。

钢绞线斜拉索在汕头石大桥采用。

钢绞线用于斜拉索,无疑使施工操作简单化,但外包PE的工艺还有待研究。

斜拉桥的钢索一般采用自锚体系。

开始出现自锚和部分地锚相结合的斜拉桥,如西班牙的鲁纳(Luna)桥,主桥440m;我国湖北郧县桥,主跨414m。

地锚体系把悬索桥的地锚特点融于斜拉桥中,可以使斜拉桥的跨径布置更能结合地形条件,灵活多样,节省费用。

斜拉桥的施工方法:混凝土斜拉桥主要采用悬臂浇筑和预制拼装;钢箱和混合梁斜位桥的钢箱采用正交异性板,工厂焊接成段,现场吊装架设。

斜拉桥结构的设计与优化

斜拉桥结构的设计与优化

斜拉桥结构的设计与优化目前,斜拉桥已成为现代桥梁工程中的一种重要结构形式。

它以其独特的设计和美观的外观受到世界各地工程师和建筑师的广泛关注。

本文将探讨斜拉桥结构的设计原理和优化方法。

一、斜拉桥的设计原理斜拉桥是一种通过悬挂在主塔和桥墩之间的钢索来支撑桥面的桥梁结构。

其设计原理主要包括以下几个方面:1. 主塔设计:主塔是斜拉桥的支撑结构,承受桥面重载荷的作用。

在设计主塔时,工程师需要考虑桥面跨度、荷载条件和风荷载等因素,并采用适当的形状和材料来保证塔结构的稳定和安全。

2. 钢索布置:钢索是斜拉桥最重要的组成部分之一。

工程师需要根据桥面的形状和荷载条件来决定钢索的数量、布置和张力。

合理的钢索布置可以使桥面受力均匀,增强结构的稳定性。

3. 桥面设计:桥面是斜拉桥供车辆通行的部分。

在设计桥面时,工程师需要考虑桥面的水平线形、纵横坡和抗震性能等因素。

合理的桥面设计可以提高斜拉桥的使用效能和安全性。

4. 锚固设计:锚固是斜拉桥钢索的固定手段,用于将钢索牢固地固定在主塔或桥墩上。

工程师需要选择适当的锚固形式,并考虑锚固点的强度和稳定性。

二、斜拉桥优化设计方法斜拉桥的优化设计是为了使其在满足结构安全和稳定性的前提下,达到最佳造价和美观效果。

以下是一些常用的斜拉桥优化设计方法:1. 材料优化:选择合适的材料是斜拉桥优化设计的关键之一。

工程师可以通过比较不同材料的强度、重量和成本等指标,选择最优材料来减少结构的自重和材料的使用量。

2. 几何参数优化:斜拉桥的几何参数,如主塔高度、桥面倾角和钢索张力等,对结构的性能和外观有着重要影响。

通过对这些参数进行优化调整,可以达到最佳的力学性能和视觉效果。

3. 拓扑优化:斜拉桥的拓扑形式也对其结构性能有一定影响。

工程师可以通过拓扑优化算法,寻找最佳的桥梁结构形式,使其在满足强度和刚度要求的前提下,减少材料的使用量。

4. 多目标优化:斜拉桥的设计目标通常不仅仅是单一的结构性能,还包括社会、环境和经济等方面的考虑。

10月斜拉桥与悬索桥的构造设计及结构计算课件

10月斜拉桥与悬索桥的构造设计及结构计算课件
31
主要尺寸拟定 主梁高度h:h=1/50~1/200, 主梁宽度B:主梁宽与主跨的比值宜大于1/30,与
主梁高的比宜大于8, 主梁各细部尺寸:主要根据轴力来确定, 截面调试。 钢筋布置 普通钢筋的配置 纵向预应力筋:分段布置,一般在主跨跨中和边
跨端部 横向预应力筋
32
一、实体梁式和板式主梁
实体梁式和板式截面的主梁一般仅适用于双索面斜拉桥, 因为这种截面具有构造简单和施工方便的优点,特别 是斜索在实体的边主梁中锚固时,锚固构造非常简单, 而且在索面内具有一定的抗弯刚度,在锚固点处可以 避免产生大的横向力流。
由力学知识可知:在截面相同的情况下,塔的抗水平位移 刚度与塔高的三次方成反比,因而塔高降低则塔身刚度迅 速提高,但塔高降低后拉索的水平倾角也将减小,拉索对 主梁的支撑作用减弱,而水平压力增大,这相当于拉索对 主梁施加了一个较大的体外预应力。矮塔部分斜拉桥由于 拉索不能提供足够的支撑刚度,故要求主梁的刚度较大。
V形凸纹或圆形凹点的非光滑表面。 2、阻尼减振法 作用机理就是通过安装阻尼装置,提高拉索的阻尼比从
而抑制拉索的振动。 3、改变拉索动力特性法 采用联结器(索夹)或辅助索将若干根索相互联结起来,
辅助索可以采用直径比主要索小的多的索,作用机理: 通过联结将长索转换成为相对较短的短索,使拉索的 振动基频提高,从而抑制索的振动。
具有以下特点(1)塔较矮,(2)梁的无索区较长,没有端 锚索,(3)边跨与主跨的比值较大,一般大于0.5,(4) 梁高较大,高跨比为1/30~1/40,甚至做成高度梁,(5) 拉索对竖向恒活载的分担率小于30%,受力以梁为主,索 为辅,(6)由于梁的刚度大,活载作用下斜拉索的应力 变幅较小,可按体外预应力索设计。
25
五、T构体系 T构体系斜拉桥与刚构体系的区别主要是主梁跨

斜拉桥

斜拉桥

斜拉桥的变形
(a)三塔四跨式斜拉桥的变形
(b) 双塔三跨式斜拉桥的变形
44
第一章 总体布置
第二节
孔跨布局
四、辅助墩和边引跨
图4-1-6
边引跨和辅助墩
a) 设引跨 b) 设辅助墩 活载往往在边跨梁端附近区域产生很大的正弯矩,并导致 梁体转动,伸缩缝易受损,在此情况下,可以通过加长边梁以 形成引跨或设置辅助墩的方法予以解决,同时,设辅助墩可以 减小拉索应力变幅,提高主跨刚度,又能缓和端支点负反力, 是大跨度斜拉桥中常用的方法。 另外,设置辅助墩也便于斜拉桥的悬臂施工,即双悬臂施 工到辅助墩处的时候就相当于单悬臂施工,其摆动小,较安全。
27
第一章 总体布置
第一节
概述
重庆石门桥:位于重庆市沙坪坝,跨越嘉陵江,全长716m。 主桥为200+230(m)单索面独塔预应力混凝土斜拉桥
28
第一章 总体布置
第一节
概述
鹿特丹的超现代伊拉斯缪斯大桥
29
第一章 总体布置
第一节
概述
长沙洪山庙大桥
30
第一章 总体布置
第一节
概述
海参崴俄罗斯岛跨海大桥,中跨跨度长度— —1104米,为世界纪录,牵索长——580米。 距水平面高度 ——70米。桥墩高度——324 米。主跨1104米的俄罗斯岛大桥(Russky Island Bridge)于2012年7月2日在海参崴通 车投入使用,成为全世界第三座跨度超过千 米的斜拉桥,也超越国内主跨1088米的苏通 大桥(Sutong Bridge)和香港主跨1018米的 昂船洲大桥(Stonecutters Bridge)成为全球 主跨最长的斜拉桥。
6
第一章 总体布置
第一节

斜拉桥结构组成及设计

斜拉桥结构组成及设计

或2层涤纶带;9-热挤PE塑料护套;10-PVE缠包精带选可编辑ppt
28
第二章 斜拉桥的构造
平行钢丝索的锚固采用冷铸墩头锚。 千斤顶通过与锚杯内缘螺纹连接进行张拉,张拉后拧紧锚杯外缘螺母即可
传力。
精选可编辑ppt
29
平行钢丝拉索采用的冷铸锚头
精选可编辑ppt
30
第二章 斜拉桥的构造
2. 平行钢绞线拉索 将平行钢丝索中的钢丝换成钢绞线即成为平行钢绞线索。
索塔通过拉索对主梁起弹性支承作用。 索塔设计应满足强度、刚度和稳定性要求。 索塔是以受压为主的压弯构件,索塔趋向于混凝土材料。
精选可编辑ppt
18
第二章 斜拉桥的构造
城市中的斜拉桥,还从造型、景观及与环境协调等要求来确 定索塔的结构型式。
精选可编辑ppt
19
第二章 斜拉桥的构造
一、索塔组成
精选可编辑ppt
5
拱桥
石拱桥 h=βk L1/3 β=4.5-6.0 随矢跨比减小而增大 k=1.0~1.2(汽-10 ~汽-20)
钢筋混凝土板拱: h/L=1/60-1/70 工字型肋拱:肋高 h/L=1/25-1/35 箱肋:肋高 h/L=1/50-1/70 箱拱:h/L=1/55-1/75
拱桥宽度>1/25•L
精选可编辑ppt
49
拉索阻精尼选可器编辑ppt
50
第二章 斜拉桥的构造
(3)改变拉索动力特性法 采用索夹将若干根索相互联结起来,将长索转换成为短索,拉索的振动 基频提高,抑制索的振动。 图示这种方式示意图,每半个扇面采用4道制振缆绳,此外还兼用了阻 尼减振器。
精选可编辑ppt
39
总结—斜拉索与混凝土梁的锚固方法:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

斜拉桥混凝土主梁的断面形式分类
第二章 斜拉桥的构造
双索面与单索面的三室箱 梁有所不同。
双索面将两个中间竖腹板 尽量拉大,使中室大于边 室,以取得较大的截面横 向惯性矩;
单索面,则将其尽量靠拢, 以便将斜索锚固于较小的 中室内。
第二章 斜拉桥的构造
挪威Skarnsunddet桥采用三角形 箱形截面,主跨530m,三角形 箱梁截面不仅抗弯、抗扭刚度大, 并且抗风,适用于双索面与单索 面体系。
第一篇 混凝土斜拉桥

第二章 斜拉桥的构造
第一节 主梁构造
第二节 索塔构造
第三节 拉索构造
第二章 斜拉桥的构造
第一节 主梁构造
主梁作用体现三个方面: 1)将结构重力和可变作用传给拉索; 2)承受拉索的轴向压力,需有足够的刚度防止压屈; 3)抵抗横向风荷载和地震作用。
第二章 斜拉桥的构造
二、拉索的锚固 1. 斜拉索与混凝土梁的锚固
1)顶板设置锚固块 适用于单索面有加劲斜杆的箱梁。 拉索锚固在顶板与斜拉杆交叉点处的
锚固块上。 拉索水平分力通过锚固块传给顶板后
再到箱梁全截面,垂直分力由一对加 劲斜杆承受。
第二章 斜拉桥的构造
2)箱梁内设横隔板锚固

但需在桥塔壁板内配置
环向预应力钢筋,抵抗

拉索在箱壁内产生的拉
力。
锚窝 (a) 平面图
锚窝 索
塔 (b) 侧面图
第二章 斜拉桥的构造
3)采用钢锚固梁来锚固 钢锚固梁搁置在塔柱内侧牛腿上,斜 索锚固在钢锚固梁的锚块上。 钢锚固梁实现拉索在空心塔上的对称 锚固,使塔柱在锚固区段受力明确, 内力减少。
平行钢丝索截面示例
半平行钢丝索实例
第二章 斜拉桥的构造
平行钢丝拉索的结构分为三个部分。 ①锚固部分:分张拉端锚固与固定端锚固;张拉端由锚筒、锚圈、锚垫板、防护
罩等组件组成;固定端由锚饼、锚垫板、防护罩组成。 ②过渡部分:由钢导管、锚筒过渡延伸钢管、减振器、防水罩等组成; ③中间部分:由高强钢丝、玻璃丝带,PE防护、缠包带等组成。 圆钢丝直径常用5mm、7mm两种,钢丝抗拉标准强度不少于1570MPa。
第二章 斜拉桥的构造
实体板式主梁:纯板式和矮 梁式截面。
矮梁式指主梁位于两边,梁 高相对桥宽很小,主梁间有 横梁和桥面板相连。
边主梁截面带有风嘴尖角, 适应抗风要求。
拉索直接锚固在边主梁下面。
图a)为希腊Evripos桥,主跨215m, 高垮比=1/478,板高45cm
第二章 斜拉桥的构造
凹点的非光滑表面。 气流经过拉索时在表面边界层形成湍流,从而防止涡激共振的产生; 拉索表面的凹凸纹还能阻碍下雨时拉索上、下缘迎风面水线的形成,从而
防止雨振的发生。
第二章 斜拉桥的构造
(2)阻尼减振法 通过安装阻尼装置,提高拉索阻尼比,抑制拉索的振动。 阻尼装置可分为安放在套筒内的内置式阻尼器和附着于拉索之上的外置 式阻尼器。
斜拉桥主梁材料类型分类
第二章 斜拉桥的构造
除少数在索塔附近梁高变化外,通常采用等高度梁。
高跨比h/L :双索面1/100~1/150;

单索面1/50~1/100。
宽高比B/h ≥8 提高主梁横向抗风稳定性。
后面将介绍砼主梁常用的截面形式。
梁桥
混凝土T梁:
h/L=1/8-1/16
预应力混凝土结构:T型截面:h/L=1/12-1/15
箱型截面:h/L=1/15-1/18
变截面连续梁:支点位置, H1/L=1/16-1/18
跨中H2/H1=1/1.5-1/2.5
连续刚构(箱梁):支点位置, H1/L=1/16-1/20
跨中H2/H1=1/2.5-1/3.5
拱桥
石拱桥 h=βk L1/3 β=4.5-6.0 随矢跨比减小而增大 k=1.0~1.2(汽-10 ~汽-20)
二、箱形截面: 抗弯和抗扭刚度大,能适应各种斜索布置; 可形成单箱式或分离式的双箱式截面,适应不同桥宽需要。
单箱式截面
第二章 斜拉桥的构造
跨越塞纳河的法国普鲁东纳桥,跨 径143+320+143m,第一座单索面砼 斜拉桥。
一个中央索面与预制构件做成的箱 形加劲梁相连结。
法国普鲁东纳桥
空心截面需在每一层拉索锚头处增设水平隔板,作用有二: 1、有利于将索力传递到塔柱全截面上; 2、在施工阶段和养护时可作为工作平台。
第三节 拉索构造
拉索须具备抗疲劳性、耐久性和抗腐蚀性。 拉索包括钢索和两端锚具两部分,钢索承受拉力,锚具传递索力。
一、拉索构造 拉索由高强度钢丝或钢绞线制作。 组成钢索的钢丝、钢绞线要排列整齐、规则; 钢索断面应紧密并易于成型,受力均匀; 钢索的型式便于穿过预埋管道,易于锚固; 钢索易于防护和施工安装等。
1-张拉端锚筒;2-锚圈;3-锚垫板;4-过渡钢管;5-拉索;6-平行钢丝;7-固定端锚饼;8-2层玻璃丝带 或2层涤纶带;9-热挤PE塑料护套;10-PVE缠包带
第二章 斜拉桥的构造
平行钢丝索的锚固采用冷铸墩头锚。 千斤顶通过与锚杯内缘螺纹连接进行张拉,张拉后拧紧锚杯外缘螺母即可
传力。
平行钢丝拉索采用的冷铸锚头
用于分离式双箱的混凝土主梁,也适用于单索面多室箱梁。 锚固构造位于箱梁顶板下两个腹板之间,与顶板、腹板固结在一起。 拉索的水平分力由锚固块传递给顶板再扩散到主梁全截面,垂直分力 则由锚固块传给左右腹板。
斜拉索的锚头示例
第二章 斜拉桥的构造
3)在箱梁内设斜隔板锚固
在箱梁内设斜向隔板,其斜度与拉索一致。拉索锚固于箱梁底板。 拉索的水平分力通过隔板四周的顶板、腹板和底板传给主梁,垂直分力
式中:E索的弹性模量,r 索的容重,l 索的水平投影长度。
第二章 斜拉桥的构造
公式表明,选用高强度材料,提高拉索工作应力,采用轻而有效的拉 索防护手段,减少容重,有利于提高拉索刚度,降低非线性影响。 控制斜索的最小应力是十分必要的。 拉索应具有足够抗疲劳能力,拉索抗疲劳能力与钢材和锚具有关,目 前成品拉索应力变幅为220~250MPa。
第二章 斜拉桥的构造
4)利用钢锚箱锚固 钢锚箱由各层的钢锚箱上下焊接而成,然 后将锚箱用焊钉与混凝土塔身连结。
第二章 斜拉桥的构造
三、拉索的应力
拉索的应力控制考虑三个因素:设计弹性模量、破断强度和抗疲劳。 斜索的设计弹性模量(换算弹性模量)可按恩斯特公E
2l2E 12 3
拉索锚固部位的构造与拉索的布置、根数和形状、塔形和构造及拉索的牵 引和张拉等多种因素有关。 1)在实体塔上交错锚固 塔柱中埋设钢管,两侧拉索 交叉穿过预埋钢管后锚固在钢 管上端的钢板上。 利用塔壁上的锯齿形凹槽或 凸形牛腿来锚固拉索。
第二章 斜拉桥的构造
2)空心塔上非交错锚固
构造与上述的相同,
第二章 斜拉桥的构造
城市中的斜拉桥,还从造型、景观及与环境协调等要求来确 定索塔的结构型式。
第二章 斜拉桥的构造 一、索塔组成
组成索塔的主要构件:塔柱,塔柱间的横梁。
第二章 斜拉桥的构造
横梁可分为承重横梁与非承重横梁。 承重横梁:为设置主梁支座处、塔柱 转折处的横梁; 非承重横梁:为塔顶横梁和塔柱无转 折的中间横梁。 所有的塔柱、横梁共同参与风力、地 震及汽车荷载作用。
第二章 斜拉桥的构造
主要采用两种拉索:平行钢丝和平行钢绞线。 1、平行钢丝拉索与冷铸锚 平行钢丝索经涂脂处理后按正六边形平行、捆扎成束后,加缠高强度聚 脂包带和热挤高密度聚乙烯塑料(HDPE)护套或染色PE护套,两端安装 钢套管和锚具。
将若干根钢丝平行集拢、同轴同 向加以适当扭绞,由此而使各根 钢丝相互间形成一种特殊的平行 状态,称为半平行钢丝索。
第二章 斜拉桥的构造
2. 平行钢绞线拉索 将平行钢丝索中的钢丝换成钢绞线即成为平行钢绞线索。
钢绞线由7根Ф5mm或7mm的钢丝绞制成单股钢束(Ф 15mm),各单股钢 束平行排列,形成钢绞线。 单根钢丝标准抗拉强度>1860MPa,国外钢绞线(美国、日本)>2000MPa。
平行钢绞线斜拉索采用 的夹片式群锚
拉索阻尼器
第二章 斜拉桥的构造
(3)改变拉索动力特性法 采用索夹将若干根索相互联结起来,将长索转换成为短索,拉索的振 动基频提高,抑制索的振动。 图示这种方式示意图,每半个扇面采用4道制振缆绳,此外还兼用了阻 尼减振器。
第二章 斜拉桥的构造
第二章 斜拉桥的构造
二、混凝土塔构造
塔柱截面分成两类: 矩形 非矩形截面。
第二章 斜拉桥的构造
采用实心矩形截面时,拉索穿过塔柱交错锚固于塔轴线两侧。也可把塔柱 截面变成H形。
采用空心矩形截面时,拉索锚固箱室中,箱室内壁增设锚固用的锯齿形凸 块,或在箱内设置钢横梁来锚固。
非矩形截面塔柱包括五角形、六角形、八角形等,可采用实心,也可采用 空心截面。
5)在梁底设置锚固块
适用于截面较小的实体双主梁或板式梁。 梁中设置与拉索倾角相同的管道,拉索穿过管道后锚固于梁底。
总结—斜拉索与混凝土梁的锚固方法:
1)顶板设置锚固块 2)箱梁内设横隔板锚固 3)在箱梁内设斜隔板锚固 4)在梁体两侧设锚固块 5)在梁底设置锚固块
第二章 斜拉桥的构造
2. 拉索在索塔上的锚固
钢筋混凝土板拱: h/L=1/60-1/70 工字型肋拱:肋高 h/L=1/25-1/35 箱肋:肋高 h/L=1/50-1/70 箱拱:h/L=1/55-1/75
拱桥宽度>1/25•L
第二章 斜拉桥的构造
一、实体梁式和实体 板式主梁
实体梁式主梁: 两个分离主梁间由混
相关文档
最新文档