初中数学人教版 中位数、众数人教版
人教版数学八年级下册中位数和众数(第2课时)教学课件
22 17 16 19 32 30 16 14 15 26 15 32 23 17 15 15 28 28 16 19
第九页,共三十七页。
探究新知
(1)月销售额在哪个值的人数最多?中间的月销售额是多少 (duōshǎo)?平均的月销售额是多少(duōshǎo)?
超产有奖”的措施.如果你是管理者,从平均数、中位数、众数的角度
进行分析,你将如何确定这个“定额”?9×1+10×1+11×6+12×4+13×2+15×2+16×2
+19×1+20×1)÷20=13(个); 答:这一天20名工人生产零件的平均(píngjūn)个数为13个; (2)中位数为 12 12 (12个),众数为11个,当定额为13个时,有8人达标
乙
7
中位数 (环)
众数(环)
7
7
b
8
(1)写出表格(biǎogé)中a,b的值; 解:a=7,b=7.5.
第十九页,共三十七页。
探究新知
(2)分别运用表中的三个统计量,简要分析(fēnxī)这两名队员的 射击成绩,若选派其中一名参赛,你认为应选哪名队员?
解:从平均成绩看甲、乙二人的成绩相等均为7环,从中位数看甲射中 7环以上的次数小于乙,从众数看甲射中7环的次数最多而乙射中8环的 次数最多.综合以上各因素,若选派一名学生参赛的话,可选择乙
人教版 数学(shùxué) 八年级
下册
20.1 数据的集中趋势(qūshì) 20.1.2 中位数和众数 (第2课时)
第一页,共三十七页。
导入新知
八年级某班的教室里,三位同学(tóng xué)正在为谁的数学成 绩好而争论,他们的五次数学成绩分别是:
八年级数学下册(人教版)20.1.3中位数和众数(第一课时)优秀教学案例
(二)问题导向
1.引导学生提出问题,培养学生的提问能力。
2.设计具有启发性的问题,引导学生独立思考,培养学生解决问题的能力。
3.注重问题之间的逻辑关系,引导学生发现知识之间的联系。
4.鼓励学生主动参与课堂讨论,培养学生的表达能力和思维能力。
3.使学生了解中位数和众数在生活中的应用,感受数学与生活的紧密联系。
4.培养学生运用列表、画图等方法展示数据,提高学生数据分析的能力。
(二)过程与方法
1.通过生活情境的创设,引导学生发现并提出问题,培养学生提出问题的能力。
2.利用小组合作、讨论交流的方式,让学生在探究中掌握中位数和众数的求解方法,培养团队协作能力和沟通能力。
3.引导学生从实际问题中总结规律,培养学生的归纳总结能力。
4.注重启发式教学,引导学生运用数学思维分析问题,提高学生的数学思维能力。
(三)情感态度与价值观
1.让学生在探究中体验到数学的乐趣,激发学生学习数学的兴趣。
2.培养学生积极思考、主动探究的学习态度,养成良好的学习习惯。
3.使学生认识到数学与生活的紧密联系,增强学生运用数学解决实际问题的意识。
4.培养学生尊重数据、实事求是的态度,树立正确的价值观。
三、教学策略
(一)情景创设
1.结合生活实际,创设有趣、富有挑战性的问题情境,激发学生的学习兴趣。
2.通过展示现实生活中的大量数据,让学生感受到中位数和众数在生活中的重要性。
3.设计不同难度的问题,满足不同层次学生的需求,使学生在解决问题中感受到成功的喜悦。
2.教师对学生的学习过程进行评价,关注学生的进步和发展。
3.注重评价的激励作用,让学生在评价中感受到成功的喜悦,增强自信心。
人教初中数学八下 30.1.2 中位数众数课件 【经典初中数学课件汇编】
所以样本数据的中位数是147
例4.在一次男子马拉松长跑比赛中,抽得12名选手的成绩 如下(单位:分)
136 140 129 180 124 154
146 145 158 175 165 148 (1)样本数据(12名选手的成绩)的中位数是多少? (2)一名选手的成绩是142分,他的成绩如何? 解:根据(1)得到的数据可知,有一半选手的成绩快于 147分,有一半选手的成绩慢于147分。
(2)所有员工工资的中位数是 450 元; (3)用平均数还是用中位数描述该餐厅员工工资的一
般水平比较恰当?答: 中位数 。
(4)去掉经理的工资后,其他员工的平均工资
是 44元5,是否也能反映该餐厅员工工资的一般水平?
答:
能。
2.在一组数据1、0、4、5、8中插入一个数据
x,使该组数据的中位数为3,则x=_______
问题1 你见过这个图案吗? 它由哪些基本图形组成?
创设情境 引入课题
问题2 三个正方形A,B,C 的面积有什么关系?
追问 由这三个正方形 A,B,C的边长构成的等腰 直角三角形三条边长度之间 有怎样的特殊关系?
B
A
C
探究勾股定理
问题3 在网格中的一般的直角三角形,以它的三 边为边长的三个正方形A、B、C 是否也有类似的面积 关系?
中位数
职员 E
1100
职员 F
1100
杂工 G
500
一、中位数:将一组数据按照由小到大(或由 大到小)的顺序排列,如果数据的个数是奇数 则处于中间位置的数就是这组数据的中位数;
如果数据的个数是偶数,则中间两个数据的平 均数就是这组数据的中位数。
1.求中位数要将一组数据按大小顺序,顾名思义,中位数就是位置
人教版八年级数学下册3中位数和众数
合作探究
一家鞋店在一段时间内销售了某种女鞋30双,各种尺码鞋的销售量如 表所示. 你能根据表中的数据为这家鞋店提供进货建议吗?
尺码/cm 22 22.5 23 23.5 24 24.5 25
销售量/双 1
2
5
11
7
3
1
分析:一般来讲,鞋店比较关心哪种尺码的鞋销售量最大,也就是关 心卖出的鞋的尺码组成的一组数据的众数. 一段时间内卖出的30双女鞋的 尺码组成一个样本数据,通过分析样本数据可以找出样本数据的众数. 进 而可以估计这家鞋店销售哪种尺码的鞋最多.
万元 (平均数).因为从样本数据看,在平均数、中位数和众数中,平
均数最大. 可以估计,月销售额定为每月20万元是一个较高目标,
大约会有
1 3
的营业员获得奖励.
合作探究
(3)如果想让一半左右的营业员能够达到销售目标,月销售额可以 定为每月18万元(中位数). 因为从样本情况看,月销售额在18万元以 上(含18万元)的有16人,占总人数的一半左右. 可以估计,如果 月销售额定为18万元,将有一半左右的营业员获得奖励.
(3)如果想让一半左右的营业员都能达到销售目标,你认为月销售 额定为多少合适?说明理由.
合作探究
分析:商场服装部统计的每位营业员在某月的销售额组成一个 样本,通过分析样本数据的平均数、中位数、众数来估计总体的 情况,从而解决问题.
确定一个适当的月销售目标是一个关键问题,如果目标定得太 高,多数营业员完不完成任务,会使营业员失去信心;如果目标 定得太低,不能发挥营业员的潜力.
中位数和众数
第2课时
学习目标
1.理解众数的概念,掌握众数的作用,会用众数分析实际问题. 2.进一步认识平均数、中位数、众数都可以反映一组数据的集中趋势. 3.了解平均数、中位数、众数各自的特点,能选择适当的量反映数据 的集中趋势.
20.1.2 中位数和众数 课件2024-2025学年人教版数学八年级下册
平均成绩
众数
得分
77
81
a
80
82
80
b
求被遮盖的两个数据a和b.
【自主解答】见全解全析
12
【举一反三】
1.(2023·金华中考)上周双休日,某班8名同学课外阅读的时间如下(单位:时):
1,4,2,4,3,3,4,5,这组数据的众数是
A.1时
B.2时
( D)
C.3时
D.4时
2.已知一组数据:7,a,6,5,5,7的众数为7,求这组数据的中位数.
【解析】∵一组数据:7,a,6,5,5,7的众数为7,
∴a=7,∴这组数据按从小到大的顺序排列为5,5,6,7,7,7,
∴这组数据的中位数是(6+7)÷2=6.5.
13
【技法点拨】
众数的特征
(1)一组数据的众数一定出现在这组数据中.
(2)一组数据的众数可能不止一个.如1,1,2,3,3,5中众数是1和3.
(2)监督人员从余下的问卷中又随机抽取了1份,与之前的20份合在一起,重新计算后,发现客户
所评分数的平均数大于3.55分,求监督人员抽取的问卷所评分数为几分?与(1)相比,中位数是否
发生变化?
6
8
【举一反三】
1.(奇数位求法)已知两组数据3,2a,5,b与a,4,2b的平均数都是6,若将这两组数据
5
合并为一组数据,则这组新数据的中位数是_______.
2.(偶数位求法)一组数据:1,0,4,5,x,8.若它们的中位数是3,求x的值.
【解析】除x外5个数由小到大排列为0,1,4,5,8,
∵原数据有6个数,且这组数据的中位数是3;
所以,只有x+4=2×3时才成立,即x=2.
人教版八年级数学下册20.1.2中位数与众数课件
增加小清后,工资的中位数是多少? 取平均数
先按大小排列:
600,600,1100,1100,1100,1200,1800,2100,5000,9000
工资的中位数是1150元.
中位数误区二: 奇数取中间, 偶数取中间两数平均数.
创设情境
探求新知
当堂训练
小结归纳
工资
/元
1100 1100 1100 1200 2000 2300 5000 9000
600
中位数:
中位数
一组数据按大小顺序排列,位于最中间的一个 数据叫做这组数据的中位数。
创设情境
探求新知
当堂训练
小结归纳
布置作业
中位数理解误区一
根据个人能力表现,上个月老板对员工工资作出了调整.
工种 见习 工资
/元
服务 服务 服务 前台 前台 前台 经理 总监 生1 生2 生3 1 2 3 2300 2000 2300 1200 5000 9000 1100 1100 1100 1200
义务教育课程标准试验教科书
数学
人教版 八年级 下册
20.1.2
中位数和众数
徐闻县和安中学 林朝清
本课目标:
(1)理解中位数和众数的定义. (2)会求一组数据的中位数和众数.
创设情境
探求新知
当堂训练
小结提升
布置作业
创设情境
探求新知
当堂训练
小结提升
布置作业
新同事见面会
见习明强 服务生小丽 前台美玉
(元)
600
1100 1100 1100 1200 2000 2300 5000 9000
请大家帮小清算算该酒店员工月平均工资 是多少?
人教版八年级数学下册:平均数、中位数和众数的应用【精品课件】
(2)甲的平均成绩:
7050% 50 30% 80 20%=6( 6 分)
乙的平均成绩:
9050% 7530% 4520%=76.( 5 分)
丙的平均成绩:
5050% 60 30% 85 20%=6( 0 分)
故录取乙.
6.某地某个月中午12时的气温(单位:℃)如下:
22 31 25 13 18 23 13 28 30 22
质量/kg 1.0
1.2
1.5
1.8
2
频数 112
226
323
241
98
质量/kg 1.0
1.2
1.5
1.8
2
频数 112
226
323
241
98
(1)出售时这些鸡的平均质量是多少(结果保留小 数点后一位)? 1.5kg
(2)质量在哪个值的鸡最多? 1.5kg (3)中间的质量是多少? 1.5kg
8.下图是交警在一个路口统计的某个时段来往 车辆的车速情况.
22.35mm
4.在一次青年歌手演唱比赛中,评分办法采 用10位评委现场打分,每位选手的最后得 分为去掉最低、最高分后的平均数.已知 10位评委给某位歌手的打分是: 9.5 9.5 9.3 9.8 9.4 8.8 9.6 9.5 9.2 9.6 求这位歌手的最后得分.
9.45分
5.某商场招聘员工一名,现有甲、乙、丙三人 竞聘.通过计算机、语言和商品知识三项测 试,他们各自成绩(百分制)如下表所示.
知识成绩分别占50%,30%,20%计算三名应试者
的平均成绩.从成绩看,应该录取谁?
解: (1)甲的平均成绩:70 2 50 3 80 5 =6(9 分)
235
人教版八年级下册第二十章数据的分析第26讲_中位数和众数 讲义
初中八年级数学下册第26讲:中位数和众数一:知识点讲解知识点一:中位数➢定义:将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数➢意义:中位数是刻画一组数据“中等水平”的一个代表,反映了一组数据的集中趋势,一组数据的中位数是唯一的➢求法:1.把数据由小到大(或由大到小)排列2.确定这组数据的个数3.当数据是奇数个时,取最中间的一个数作为中位数;当数据是偶数个时,取最中间两个数的平均数作为中位数例1:求数据2、3、14、16、7、8、10、11、13的中位数例2:10名工人某天生产同一种零件的个数是15、17、14、10、15、19、17、16、14、12。
求这一天10名工人生产零件的中位数。
知识点二:众数➢定义:一组数据中出现次数最多的数据称为这组数据的众数➢意义:众数是刻画一组数据“大多数水平”的重要代表,在我们日常生活中,经常用众数来解决一些实际问题➢求法:众数是出现次数最多的数据,而不是出现次数,若一组数据中有两个或两个以上数据出现的次数并列最多,则这些数据都是众数,故众数可能不止一个。
例3:一组数据2、3、x、5、7的平均数是4,则这组数据的众数是。
知识点三:平均数、中位数和众数的综合➢平均数✧优点:平均数能充分利用各数据提供的信息,在实际生活中常用样本的平均数估计总体的平均数。
✧缺点:在计算平均数时,所有的数据都参与运算,所以它易受极端值的影响。
➢中位数✧优点:中位数不受个别偏大或偏小数据的影响,当一组数据中的个别数据变动较大时,一般用中位数来描述数据的集中趋势。
✧缺点:不能充分地利用各数据的信息。
➢众数✧优点:众数考察的是各数据所出现的频数,其大小只与部分数据相关,当一组数据中某些数据多次重复出现时,众数往往更能反映问题。
✧缺点:当各数据重复出现的次数大致相等时,它往往就没有什么特别意义。
人教版数学八年级上册《数据的集中趋势中位数和众数》说课稿
《数据的集中趋势中位数和众数》说课稿尊敬的各位评委、老师:我今天说课的题目是《数据的集中趋势中位数和众数》。
本节课选人教版版八年级下册第二十章第一节的内容。
接下来我将从教材分析、学情分析、教学目标、教学重点、教学方法、教学过程六个方面向大家做相关的解说。
一、教材分析《数据的集中趋势中位数和众数》是人教版八年级下册第二十章第一节的内容。
数据分析是统计的重要环节,中位数和众数是第三学段统计部分新学习的内容,它们都是刻画数据集中趋势的统计量。
中位数是一个反映数据集中趋势的位置代表值,能够表明一组数据排序最中间的统计量。
二、学情分析对于学情的合理把握是上好一堂课的基础。
八年级的学生由于生活经验的局限,同时受到认知水平的影响,学生对权的意义和作用的理解可能会有困难,需要老师在讲解时多加以引导。
三、教学目标新课标指出,教学目标应包括知识与技能、过程与方法、情感态度与价值观,这三维目标又应是紧密联系的一个有机整体,这要求我们在教学中应以知识与技能为主线,渗透情感态度价值观,并把这两者充分体现在过程与方法中。
知识与技能:会知道中位数和众数是刻画数据集中趋势的量,会求数据的中位数和众数。
过程与方法:在数据分析的过程中,理解数字的特征,体会引入中位数和众数的必要性。
情感态度与价值观:体会中位数、众数与实际生活的紧密联系。
四、教学重难点基于以上对教材、学情的分析以及教学目标的设立,我将本节课的教学重难点设置为:重点:会用中位数、众数刻画数据的集中趋势。
难点:对中位数和众数意义的理解。
五、教学方法结合教材内容以及学生的实际情况,本节课我采用的教学方法有讲授法、讨论法、练习法。
在教学过程中,我将秉承着以学生为主体,让学生始终处于主动的学习状态,在结合教师对于知识讲解的同时,保证学生有充分自主思考探讨的机会。
六、教学过程为更好的实现教学目标,突出教学重难点,我将本节课的教学过程设置为以下4个环节,分别为创设情境,提出问题——抽象概括,形成概念——比较辨别,理解新知——深化拓展,灵活运用——总结收获,留置作业。
人教八年级数学下册- 中位数和众数(附习题)
2. 某校男子足球队的年龄分布如下面条形图 所示.请找出这些队员年龄的平均数、众数、中位 数,并解释它们的意义.
解:由图知13岁2人,14岁6人,15岁8人,16岁 3人,17岁2人,18岁1人,一共22人.
所以足球队员年龄的平均数为:15岁;众 数为:15岁;中位数为:15岁.
它们的含义分别是:校男子足球队员的平 均年龄为15岁;校男子足球队员中年龄为15岁 的队员最多;校男子足球队员的年龄不足15岁 和超过15岁的人数相当.
根据例4中的样本数据,你还有其 他方法评价(2)中这名选手在这次比 赛中的表现吗?
练习
下面的条形图描述了某车间工人日加工 零件数的情况.
请找出这些 工人日加工零件 数的中位数,并 说明这个中位数 的意义.
解:由条形图知这组数据中从小到大排列为:4个3, 5个4,8个5,9个6,6个7,4个8共36个数,则这组数 据的中位数为处在中间两个数6,6的平均数,因此这 些工人日加工零件的中位数为6.
它的意义是:23.5cm的鞋销量最大.因此可以 建议鞋店多进23.5cm的鞋.
练习
1. 下面的扇形图描述了某种运动服的S号,M 号,L号,XL号,XXL号在一家商场的销售情况. 请你为这家商场提出进货建议. 解:由扇形图可以看出,在某种运 动服大小型号组成的一组数据当中, M号最多为30%.因此可以建议这家 商场多进M号的运动服.
2.在一次女子体操比赛中,八名运动员的年
龄(单位:岁)分别为:12、14、12、15、14、14、 16、15,这组数据的众数是( B )
A.12
B.14
C.15
D.16
综合应用
如图是连续十周测试甲、乙两名运动员体能 训练成绩的折线统计图,教练组规定:体能测试 成绩70分以上(包括70分)为合格.
人教版八年级数学课件《中位数和众数》
平均数、中位数、众数的特征:平 均数是最常用的指标,它表示“一 般水平”,中位数表示“中等水平”, 众数表示“多数水平”.
人教版数学八年级下册
THE END!
祝各位同学们学业进步、天天向上!
达标检测
人教版数学八年级下册
5.某校男子足球队的年龄分布如下面的条形图所示.请找出这些 队员年龄的平均数、众数、中位数,并解释它们的意义.
【分析】总的年龄除以总的人数就是平均数,
人数
出现次数最多的那个数,称为这组数据的众 10
数;中位数一定要先排好顺序,然后再根据
8 6
奇数和偶数个来确定中位数,如果数据有奇
1 3 6 1 11 1
(1)计算这个公司员工月收入的平均数; 6276
(2)如果用(1) 算得的平均数反映公司全体员工月收入水 平,你认为合适吗?
平均数远远大于绝大多数人(22人)的实际月工资,绝 大多数人“被平均”.
知识精讲
人教版数学八年级下册
问题2 该公司员工的中等收入水平大概是多少元?你是怎样确定的?
(1)样本数据(12名选手的成绩)的中位数是多少?
解:(1)先将样本数据按照由小到大的顺序排列: 1_2_4_____1_2_9____1_3_6_____1_4_0____1_4_5_____1_46 1_4_8_____1_5_4____1_5_8_____1_6_5____1_7_5_____1_80
解:由上表看出,在鞋的尺码组成的数据中,__2_3_._5__是这组 数据的众数,它的意义是:__2_3_._5__厘米的鞋销量最大.因此可 以建议鞋店多进__2_3_._5__厘米的鞋.
思考:你还能为鞋店进货提出哪些建议?
针对练习
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
________.
突出重点,落实目标1,2
巩固内化 议一议: 1)某射击运动员在10次射击中的 成绩如下表:(单位:环)8 9 7 8 10 8 7 10 10 8试求这组数据的平均数、众数和中位 数.这位射手的射击水平怎么样? 2)若鞋店在上周内销售了某种运动鞋115双, 其中各种尺码的鞋的销售量如下表所示:
尺码 37 38 39 40 41 42
双数 5 10 23 40 31 6
你会如何进货?说说你的理由.
巩固内化
议一议: 3)某工厂的厂长,为了改变车间管理松散的 状况,准备采取每天任务定额、超产有奖的措 施,提高工作效率。下面是该车间15名工人过 去一天中各自装配机器的数量(单位:台) 6,7,7,8,8,8,8,9,10,10,11,13, 15,15,16 厂长应确定每人标准日常量为多少台?
5 教学重点和难点
教学重点: 掌握中位数与众数的概念,及这两个概念的 简单运用.
教学难点: 能在具体情境中选择恰当的数据代表对数据 作出判断.
教学方法:
启发式 自主探究 合作交流
教学手段:
计算器、多媒体课件
教学过程设计
构建新知 明确概念
情景导入 激发兴趣
启发式 讲授
巩固内化 突出重点
归纳小结 布置作业
拓展延伸 突破难点
情境导入
某次数学考试,小明得了83分。他所在的小组的成绩 分别为:36 90 94 84 88 87 50 90 83.小明计 算过本组的平均成绩后,告诉妈妈说,自己这次成绩在 组内处于“中上水平”。 大家想一想,小明说法合理吗?
【设计意图】
作为概念课的教学,“概念产生背景的合理性和应用性 ”是激发学生自主学习新概念的突破口.因此我在这一阶段 主要解决两个问题:
的预赛成绩各不相同,现取其中前4名参加决赛,七 (3)班同学在知道自己成绩的情况下,要判断自己 能否进入决赛,还需要知道这8个班成绩的( )
A.众数 B.中位数 C.平均数
2、我校七年级(2)班每位同学都向“希望 工程”捐献图书,捐书情况如下表:
册数 4 5 6 7 8 90 人数 6 8 15 6 3 2
巩固内化
教学安排
做一做:
1)数据1,2,8,5,3,9,5,4,5,4中位 数 与众数分别为__________.
2)一组数据3,4,x,6,8的平均数是5,则这组 数据的中位数是____,众数是 _____.
3)一组数据2,1,x,7,3,5,3,2的众数是2, 则这组数据的中位数为_____.
(1) 创设“小明汇报成绩”这样一个合理的情景,抓住 学生的注意力;
(2) 通过设计“平均数为什么不能真实情况”这个问题 ,制造学生的思维冲突,激发学生学习新概念的欲望.
构建新知
【设计意图】
结合具体数学问题,让学生探究出描述数据集中趋势 的量———中位数、众数,同时体验知识的形成过程和发 现的快乐,培养学生构建概念的意识.
这9个数的众数 是 90 ;
(2)若小亮也加入了他们这个学习小组,他的考 试成绩是88分,则这10个数的众数是 90和80 .
36 50 83 84 87 88 88 90 90 94
一般地,一组数据中出现次数最 多的那个数据叫做这组数据的众数。
1、在某次测验中,小方的四门功课得分如下: 80,75,80,95,那么在这次测验中,小方得分的 众数是 80 ; 2、一组数据50,40,80,40,90,30,50,50,40,20 的众数是 50和4.0
2、教材分析
统计
数据的收集
数据的整理 三图
数据的描述 三数
平均数 中位数
众数
中位数 众数
集中趋势
地位和作用
•
数据能够帮助我们认识世界,作出决策
和预测.本章是统计的核心知识“数据的处
理”的重要章节.
•
本节课主要让学生认识数据统计中的另
外两个基本量—中位数、众数,是一堂概念
课,也是学生学会分析数据,做出决策的基
如何才能放得下?唐代禅宗高僧青原行思曾提出参禅的三境界,那正是路径所在。 第一重境界是“看山是山,看水是水”。人之最初,比如年少之时,心思是简单的,看到什么就是什么,别人说什么就相信什么。这样看待世界当然是简单而粗糙的,所看到的往往只是表面。但同时,正是因为简单而不放在心上,于是不受其困扰,这就是放下的心境。只是还太脆弱,容易被现实击碎。 第二重境界是“看山不是山,看水不是水”。人随着年龄渐长,经历的世事渐多,就发现这个世界的问题越来越多、越来越复杂,经常是黑白颠倒、是非混淆,无理走遍天下、有理寸步难行,好人无好报、恶人活千年。这时人是激愤的,不平的,忧虑的,怀疑的,警惕的,复杂的。于是人不愿意再轻易地相信什么,容易变得争强好胜、与人比较、绞尽脑汁、机关算尽,永无满足的一天。大多数人都困在这一阶段,虽然纠结、挣扎、痛苦,这却恰恰是顿悟的契机。因为看到了,才能出来;经历了,才能明白。 第三重境界是“看山还是山,看水还是水”。那些保持住本心、做得到忍耐的人,等他看得够了,经得多了,悟得深了,终于有一天豁然顿悟,明白了万般只是自然,存在就有存在的合理性,生会走向灭,繁华会变成寂寞,那些以前认为好的坏的对的错的,都会在规律里走向其应有的结局,人间只是无常,没有一定。这个时候他就不会再与人计较,只是做自己,活在当下之中。任你红尘滚滚,我自清风朗月;面对世俗芜杂,我只一笑了之。这个时候,就是放下了。
自从那一天,我衣着脚,挑着行李,沿着崎岖曲折的田埂,离开故乡,走向了城市;从此,我便漂泊在喧嚣和浮躁的钢筋水泥丛林中,穿行于 中国文化三大支柱的儒释道,其内容相当丰富。以浩如海洋来比喻,都不之为过! 近日,我在“儒风大家”上,看到一篇文章,仅用---三句话、九个字。说出了儒释道,其实并不高高在上,而是与我们的人生和日常生活密切相关!
请你计算出捐书册数的平均数、中位数和众 数,并判断其中哪些统计量不能按应该班同 学捐书册数的一般状况,说明理由。
归纳总结
本节课—— 我学会了…… 到目前为止,对数据分析,可以从哪些方面 进行? 我最大的收获…… 我的困惑是……
小结
1. 知识小结:这节课我们学习了众数、 中位数的概念,了解了它们在描述一组数 据集中趋势时的不同角度和适用范围。
2.方法小结:①众数由所给数据可直接求 出(一组数据中的众数可能不止一个)
②求中位数时,首先要先排序(从小到 大或从大到小),然后计算中位数的序号, 分数据为奇数个与偶数个两种来求.
小结:
3、知识网络:平均数、众数及中位数都是描述
一组数据的集中趋势的特征数,但描述的角度 和适用范围有所不同。
作业布置
第二重境界是“衣带渐宽终不悔,为伊消得人憔悴”。事情是需要去做才能成的,成越大的事业,需要越大的努力和付出,甚至要经受越大的磨难和困苦。这个世间,从来都是“艰难困苦,玉汝于成”;所以无论如何,都要“天行健,君子”。这说的是历经磨难而逐渐成熟、成长,最终豁然贯通、水到渠成。这其中蕴含一个重要道理,就是苏东坡所说的“厚积而薄发”。只有厚积才能薄发,人要做的,就是不断厚积,等待薄发。这就是拿得起的完整路径,也是事业成功的完整过程。 跟佛家学放得下 。佛家是追求出世、讲究清净的,要求能看到《金刚经》所言的“一切有为法,如梦幻泡影”,做到《心经》所言的“照见五蕴皆空”。概括为三个字,就是“放得下”。 什么是“放得下”?且看这个“佛”字——左边一个“人”,右边一个“弗”,弗的意思是“不”,合起来就是“不人”和“人不”。不人就是无人,也就是放下自我,摆脱私心的困缚;人不就是懂得拒绝,也就是放下欲望,超脱对外物的追逐。这两点能做到,就是放得下。
怎样才能拿得起?王国维《人间词话》中曾提出,古今之成大事业者,须经过三重境界。这三重境界体现的正是儒家精神,所以正是路径所在。 第一重境界是“昨夜西风凋碧树,独上高楼,望尽天涯路”。登上高楼,远眺天际,正是踌(chóu)躇(chú)满志,志存高远,高瞻远瞩,一腔抱负。人生,志向决定方向,格局决定高度;小溪只能入湖,大河则能入海。所以做事,要先立心中志向;成事,要先拓胸中格局。
.
36 50 83 84 87 88 88 90 90 94
中位数:
87+88 = 87.5
2
将一组数据按从小到大的顺序排 列,把处在中间位置的一个数(或中间 两数的平均数)叫这组数据的中位数.
如何求一组数据的中位数?
如 什何 么求 为中“位众数”
在案例中,(1)小明所在小组9人的考试成绩 36 90 94 84 88 87 50 90 83.
突破难点,落实目标3,4,5
拓展延伸
【设计意图】
从学生实际生活出发,既活跃了课堂气 氛,又让学生学会站在不同的角度,如何选 择数据代表,再一次突破本节课的难点。
并且鼓励学生用数学的眼光分析实际问 题,增强用数学意识。
再一次突破难点,加强应用意识
拓展延伸
1、我年级共8个班参加校艺术节的歌咏比赛,他们
《北京市义务教育课程改革实验教材》 七年级下册第9章第6节
丰台八中 孔卫红
中位数、众数
背景 分析
教学 方法
教学 过程
教学 评价
1、 课标分析
在本学段中,进一步学习描述数据的方法
根据具体问题,能选择合适的统计量表示数据的集 中程度
根据统计结果作出合理判断和预测
在与日常生活、自然、社会和科学技术领域的联系 中,使学生体会统计对制定决策的重要作用
板书概念及解法,初步落实目 标1,突出重点
如何求中位数
在案例中,(1)小明所在小组9人的考试成绩
36 90 94 84 88 87 50 90 83. 这9个数的中位数是 ;
36 50 83 84 87 88 90 90 94
(2)若小亮也加入了他们这个学习小组,他的考