常微分方程课件:4_2常系数齐次线性微分方程的解法

合集下载

常系数齐次线性微分方程解法

常系数齐次线性微分方程解法

第六节 二阶常系数齐次线性微分方程教学目的:使学生掌握二阶常系数齐次线性微分方程的解法,了解二阶常系数非齐次线性微分方程的解法教学重点:二阶常系数齐次线性微分方程的解法教学过程:一、二阶常系数齐次线性微分方程二阶常系数齐次线性微分方程: 方程y ′′+py ′+qy =0称为二阶常系数齐次线性微分方程, 其中p 、q 均为常数.如果y 1、y 2是二阶常系数齐次线性微分方程的两个线性无关解, 那么y =C 1y 1+C 2y 2就是它的通解.我们看看, 能否适当选取r , 使y =e rx 满足二阶常系数齐次线性微分方程, 为此将y =e rx 代入方程y ′′+py ′+qy =0得(r 2+pr +q )e rx =0.由此可见, 只要r 满足代数方程r 2+pr +q =0, 函数y =e rx 就是微分方程的解.特征方程: 方程r 2+pr +q =0叫做微分方程y ′′+py ′+qy =0的特征方程. 特征方程的两个根r 1、r 2可用公式2422,1q p p r −±+−= 求出.特征方程的根与通解的关系:(1)特征方程有两个不相等的实根r 1、r 2时, 函数、是方程的两个线性无关的解.x r e y 11=x r e y 22= 这是因为,函数、是方程的解, 又x r e y 11=x r e y 22=x r r x r x r e ee y y )(212121−==不是常数. 因此方程的通解为.x r x r e C e C y 2121+= (2)特征方程有两个相等的实根r 1=r 2时, 函数、是二阶常系数齐次线性微分x r e y 11=x r xe y 12=方程的两个线性无关的解.这是因为, 是方程的解, 又x r e y 11=x r x r x r x r x r x r qxe e xr p e xr r xe q xe p xe 111111)1()2()()()(1211++++=+′+′′ ,0)()2(121111=++++=q pr r xe p r e x r x r 所以也是方程的解, 且xr xe y 12=x e xe y y x r x r ==1112不是常数. 因此方程的通解为.x r x r xe C e C y 1121+= (3)特征方程有一对共轭复根r 1, 2=α±i β时, 函数y =e (α+i β)x 、y =e (α−i β)x 是微分方程的两个线性无关的复数形式的解. 函数y =e αx cos βx 、y =e αx sin βx 是微分方程的两个线性无关的实数形式的解. 函数y 1=e (α+i β)x 和y 2=e (α−i β)x 都是方程的解, 而由欧拉公式, 得y 1=e (α+i β)x =e αx (cos βx +i sin βx ),y 2=e (α−i β)x =e αx (cos βx −i sin βx ),y 1+y 2=2e αx cos βx , )(21cos 21y y x e x +=βα, y 1−y 2=2ie αx sin βx , )(21sin 21y y ix e x −=βα. 故e αx cos βx 、y 2=e αx sin βx 也是方程解.可以验证, y 1=e αx cos βx 、y 2=e αx sin βx 是方程的线性无关解.因此方程的通解为y =e αx (C 1cos βx +C 2sin βx ).求二阶常系数齐次线性微分方程y ′′+py ′+qy =0的通解的步骤为:第一步 写出微分方程的特征方程r 2+pr +q =0第二步 求出特征方程的两个根r 1、r 2.第三步 根据特征方程的两个根的不同情况, 写出微分方程的通解.例1 求微分方程y ′′−2y ′−3y =0的通解.解 所给微分方程的特征方程为r 2−2r −3=0, 即(r +1)(r −3)=0.其根r 1=−1, r 2=3是两个不相等的实根, 因此所求通解为y =C 1e −x +C 2e 3x .例2 求方程y ′′+2y ′+y =0满足初始条件y |x =0=4、y ′| x =0=−2的特解.解所给方程的特征方程为r2+2r+1=0,即(r+1)2=0.其根r1=r2=−1是两个相等的实根,因此所给微分方程的通解为y=(C1+C2x)e−x.将条件y|x=0=4代入通解,得C1=4,从而y=(4+C2x)e−x.将上式对x求导,得y′=(C2−4−C2x)e−x.再把条件y′|x=0=−2代入上式,得C2=2.于是所求特解为x=(4+2x)e−x.例 3 求微分方程y′′−2y′+5y= 0的通解.解所给方程的特征方程为r2−2r+5=0.特征方程的根为r1=1+2i,r2=1−2i,是一对共轭复根,因此所求通解为y=e x(C1cos2x+C2sin2x).n阶常系数齐次线性微分方程:方程y(n) +p1y(n−1)+p2 y(n−2) +⋅⋅⋅+p n−1y′+p n y=0,称为n阶常系数齐次线性微分方程,其中p1,p2 ,⋅⋅⋅,p n−1,p n都是常数.二阶常系数齐次线性微分方程所用的方法以及方程的通解形式,可推广到n阶常系数齐次线性微分方程上去.引入微分算子D,及微分算子的n次多项式:L(D)=D n+p1D n−1+p2 D n−2 +⋅⋅⋅+p n−1D+p n,则n阶常系数齐次线性微分方程可记作(D n+p1D n−1+p2 D n−2 +⋅⋅⋅+p n−1D+p n)y=0或L(D)y=0.注: D叫做微分算子D0y=y, D y=y′, D2y=y′′, D3y=y′′′,⋅⋅⋅,D n y=y(n).分析:令y=e rx,则L(D)y=L(D)e rx=(r n+p1r n−1+p2 r n−2 +⋅⋅⋅+p n−1r+p n)e rx=L(r)e rx.因此如果r是多项式L(r)的根,则y=e rx是微分方程L(D)y=0的解.n阶常系数齐次线性微分方程的特征方程:L(r)=r n+p1r n−1+p2 r n−2 +⋅⋅⋅+p n−1r+p n=0称为微分方程L(D)y=0的特征方程.特征方程的根与通解中项的对应:单实根r对应于一项:Ce rx;一对单复根r 1, 2=α ±i β 对应于两项: e αx (C 1cos βx +C 2sin βx );k 重实根r 对应于k 项: e rx (C 1+C 2x + ⋅ ⋅ ⋅ +C k x k −1);一对k 重复根r 1, 2=α ±i β 对应于2k 项:e αx [(C 1+C 2x + ⋅ ⋅ ⋅ +C k x k −1)cos βx +( D 1+D 2x + ⋅ ⋅ ⋅ +D k x k −1)sin βx ].例4 求方程y (4)−2y ′′′+5y ′′=0 的通解.解 这里的特征方程为r 4−2r 3+5r 2=0, 即r 2(r 2−2r +5)=0,它的根是r 1=r 2=0和r 3, 4=1±2i .因此所给微分方程的通解为y =C 1+C 2x +e x (C 3cos2x +C 4sin2x ).例5 求方程y (4)+β 4y =0的通解, 其中β>0.解 这里的特征方程为r 4+β 4=0. 它的根为)1(22,1i r ±=β, )1(24,3i r ±−=β. 因此所给微分方程的通解为)2sin 2cos (212x C x C e y x βββ+=)2sin 2cos (432 x C x C e x βββ++−.二、二阶常系数非齐次线性微分方程简介二阶常系数非齐次线性微分方程: 方程y ′′+py ′+qy =f (x )称为二阶常系数非齐次线性微分方程, 其中p 、q 是常数.二阶常系数非齐次线性微分方程的通解是对应的齐次方程的通解y =Y (x )与非齐次方程本身的一个特解y =y *(x )之和:y =Y (x )+ y *(x ).当f (x )为两种特殊形式时, 方程的特解的求法:一、 f (x )=P m (x )e λx 型当f (x )=P m (x )e λx 时, 可以猜想, 方程的特解也应具有这种形式. 因此, 设特解形式为y *=Q (x )e λx , 将其代入方程, 得等式Q ′′(x )+(2λ+p )Q ′(x )+(λ2+p λ+q )Q (x )=P m (x ).(1)如果λ不是特征方程r 2+pr +q =0 的根, 则λ2+p λ+q ≠0. 要使上式成立, Q (x )应设为m 次多项式:Q m (x )=b 0x m +b 1x m −1+ ⋅ ⋅ ⋅ +b m −1x +b m ,通过比较等式两边同次项系数, 可确定b 0, b 1, ⋅ ⋅ ⋅ , b m , 并得所求特解y *=Q m (x )e λx .(2)如果λ是特征方程 r 2+pr +q =0 的单根, 则λ2+p λ+q =0, 但2λ+p ≠0, 要使等式 Q ′′(x )+(2λ+p )Q ′(x )+(λ2+p λ+q )Q (x )=P m (x ).成立, Q (x )应设为m +1 次多项式:Q (x )=xQ m (x ),Q m (x )=b 0x m +b 1x m −1+ ⋅ ⋅ ⋅ +b m −1x +b m ,通过比较等式两边同次项系数, 可确定b 0, b 1, ⋅ ⋅ ⋅ , b m , 并得所求特解 y *=xQ m (x )e λx .(3)如果λ是特征方程 r 2+pr +q =0的二重根, 则λ2+p λ+q =0, 2λ+p =0, 要使等式 Q ′′(x )+(2λ+p )Q ′(x )+(λ2+p λ+q )Q (x )=P m (x ).成立, Q (x )应设为m +2次多项式:Q (x )=x 2Q m (x ),Q m (x )=b 0x m +b 1x m −1+ ⋅ ⋅ ⋅ +b m −1x +b m ,通过比较等式两边同次项系数, 可确定b 0, b 1, ⋅ ⋅ ⋅ , b m , 并得所求特解y *=x 2Q m (x )e λx .综上所述, 我们有如下结论: 如果f (x )=P m (x )e λx , 则二阶常系数非齐次线性微分方程y ′′+py ′+qy =f (x )有形如y *=x k Q m (x )e λx的特解, 其中Q m (x )是与P m (x )同次的多项式, 而k 按λ不是特征方程的根、是特征方程的单根或是特征方程的的重根依次取为0、1或2.例1 求微分方程y ′′−2y ′−3y =3x +1的一个特解.解 这是二阶常系数非齐次线性微分方程, 且函数f (x )是P m (x )e λx 型(其中P m (x )=3x +1, λ=0). 与所给方程对应的齐次方程为y ′′−2y ′−3y =0,它的特征方程为r 2−2r −3=0.由于这里λ=0不是特征方程的根, 所以应设特解为y *=b 0x +b 1.把它代入所给方程, 得−3b 0x −2b 0−3b 1=3x +1,比较两端x 同次幂的系数, 得, −3b ⎩⎨⎧=−−=−13233100b b b 0=3, −2b 0−3b 1=1.由此求得b 0=−1, 311=b . 于是求得所给方程的一个特解为 31*+−=x y .例2 求微分方程y ′′−5y ′+6y =xe 2x 的通解.解 所给方程是二阶常系数非齐次线性微分方程, 且f (x )是P m (x )e λx 型(其中P m (x )=x , λ=2). 与所给方程对应的齐次方程为y ′′−5y ′+6y =0,它的特征方程为r 2−5r +6=0.特征方程有两个实根r 1=2, r 2=3. 于是所给方程对应的齐次方程的通解为 Y =C 1e 2x +C 2e 3x .由于λ=2是特征方程的单根, 所以应设方程的特解为 y *=x (b 0x +b 1)e 2x .把它代入所给方程, 得−2b 0x +2b 0−b 1=x .比较两端x 同次幂的系数, 得, −2b ⎩⎨⎧=−=−0212100b b b 0=1, 2b 0−b 1=0. 由此求得210−=b , b 1=−1. 于是求得所给方程的一个特解为 x e x x y 2)121(*−−=. 从而所给方程的通解为 x x x e x x e C e C y 223221)2(21+−+=.提示:y *=x (b 0x +b 1)e 2x =(b 0x 2+b 1x )e 2x ,[(b 0x 2+b 1x )e 2x ]′=[(2b 0x +b 1)+(b 0x 2+b 1x )⋅2]e 2x ,[(b 0x 2+b 1x )e 2x ]′′=[2b 0+2(2b 0x +b 1)⋅2+(b 0x 2+b 1x )⋅22]e 2x .y *′′−5y *′+6y *=[(b 0x 2+b 1x )e 2x ]′′−5[(b 0x 2+b 1x )e 2x ]′+6[(b 0x 2+b 1x )e 2x ] =[2b 0+2(2b 0x +b 1)⋅2+(b 0x 2+b 1x )⋅22]e 2x −5[(2b 0x +b 1)+(b 0x 2+b 1x )⋅2]e 2x +6(b 0x 2+b 1x )e 2x =[2b 0+4(2b 0x +b 1)−5(2b 0x +b 1)]e 2x =[−2b 0x +2b 0−b 1]e 2x .方程y ′′+py ′+qy =e λx [P l (x )cos ωx +P n (x )sin ωx ]的特解形式应用欧拉公式可得e λx [P l (x )cos ωx +P n (x )sin ωx ]]2)(2)([ ie e x P e e x P e x i x i n x i x i l x ωωωωλ−−−++= x i n lx i n l e x iP x P e x iP x P )()()]()(21)]()([21ωλωλ−+++−= x i x i e x P e x P )()()()(ωλωλ−++=, 其中)(21)(i P P x P n l −=, )(21)(i P P x P n l +=. 而m =max{l , n }. 设方程y ′′+py ′+qy =P (x )e (λ+i ω)x 的特解为y 1*=x k Q m (x )e (λ+i ω)x , 则)(1)(*ωλi m k e x Q x y −=必是方程)()(ωλi e x P qy y p y −=+′+′′的特解, 其中k 按λ±i ω不是特征方程的根或是特征方程的根依次取0或1. 于是方程y ′′+py ′+qy =e λx [P l (x )cos ωx +P n (x )sin ωx ]的特解为 x i m k x i m k e x Q x e x Q x y )()()()(*ωλωλ−++= )sin )(cos ()sin )(cos ([x i x x Q x i x x Q e x m m x k ωωωωλ−++= =x k e λx [R (1)m (x )cos ωx +R (2)m (x )sin ωx ].综上所述, 我们有如下结论:如果f (x )=e λx [P l (x )cos ωx +P n (x )sin ωx ], 则二阶常系数非齐次线性微分方程 y ′′+py ′+qy =f (x )的特解可设为y *=x k e λx [R (1)m (x )cos ωx +R (2)m (x )sin ωx ],其中R (1)m (x )、R (2)m (x )是m 次多项式, m =max{l , n }, 而k 按λ+i ω (或λ−i ω)不是特征方程的根或是特征方程的单根依次取0或1.例3 求微分方程y ′′+y =x cos2x 的一个特解.解 所给方程是二阶常系数非齐次线性微分方程, 且f (x )属于e λx [P l (x )cos ωx +P n (x )sin ωx ]型(其中λ=0, ω=2, P l (x )=x , P n (x )=0). 与所给方程对应的齐次方程为y ′′+y =0,它的特征方程为r 2+1=0.由于这里λ+i ω=2i 不是特征方程的根, 所以应设特解为 y *=(ax +b )cos2x +(cx +d )sin2x .把它代入所给方程, 得(−3ax −3b +4c )cos2x −(3cx +3d +4a )sin2x =x cos2x . 比较两端同类项的系数, 得 31−=a , b =0, c =0, 94=d . 于是求得一个特解为 x x x y 2sin 942cos 31*+−=. 提示:y *=(ax +b )cos2x +(cx +d )sin2x .y *′=a cos2x −2(ax +b )sin2x +c sin2x +2(cx +d )cos2x ,=(2cx +a +2d )cos2x +(−2ax −2b +c )sin2x ,y *′′=2c cos2x −2(2cx +a +2d )sin2x −2a sin2x +2(−2ax −2b +c )cos2x =(−4ax −4b +4c )cos2x +(−4cx −4a −4d )sin2x .y *′′+ y *=(−3ax −3b +4c )cos2x +(−3cx −4a −3d )sin2x .由, 得⎪⎩⎪⎨⎧=−−=−=+−=−0340304313d a c c b a 31−=a , b =0, c =0, 94=d .。

常微分方程(王素云)-第4章

常微分方程(王素云)-第4章
其中 pi1 (t) 仍是一多项式,且其次数与 pi (t ) 的次数相同.接 着再以 er 1t 乘(4.7)两端,微商 nr 1 次,然后用 er1t 乘,进
而得
p12 (t)e1t p(r2)2 (t)er2t 0
第4章 常系数线性方程
其中 pi2 (t) 是次数与 pi1 (t) 的次数、从而也与 pi (t) 的次数相同的多 项式.如此继续下去,经r 1步便得到
Байду номын сангаасx et
(4.2)
其中,λ是待定常数.把它代入方程(4.1),反复利用公式
det et
dt
P()et 0
这表明:式(4.2)是方程(4.1)的解,当且仅当λ满足:
P() 0
(4.3)
由此可见,在求解方程(4.1)时,多项式P(λ)很重要,我
们称它为方程(4.1)的特征多项式,而称式(4.3)为方程(4.1)的

ert , tert ,, t nr 1ert ,
其中每一行中的解彼此是线性无关的. 下面证明:这n个解线性无关.假若不然,则有不全为零的
n个常数α1,…,αn, 使得
(1 2t n1t n11)e1t (nnr 1 nt nr 1)ert 0
或简记为
p1 (t)e1t pr (t)ert 0
P() ( 1 )n1 ( 2 )n2 ( r )nr 其中, n1 nr n , i j (i j) ,则函数组
e1t , te1t ,, t n11e1t
ert , tert ,, t nr 1ert ,
是方程(4.1)的一个基本解组.

第4章 常系数线性方程 例4.2 解方程
(D 1 )n1 (D 2 )n2 (D r )nr x 0

第四章 高阶微分方程 常微分方程课件 高教社 王高雄教材配套ppt

第四章 高阶微分方程 常微分方程课件 高教社 王高雄教材配套ppt

5/8/2021
第四章
10
x1
t 2 , 0,
1 t 0 0t 1
注 仅对函数而言 线性相关时W(t)≡0的
逆定理一般不成立。
例 函数

x1
t 2 , 0,
x2
0,
t
2
,
1 t 0 0t 1
1 t 0 0t 1
在区间-1≤t≤1上有W[x1(t),x2(t)]≡0 ,但却线性无 关。
证 5/8/2021 用反证法证。
第四章
12
(续)定理4 齐次线性微分方程的线性 无关解的伏朗斯基行列式恒不为零
dn x dtn
a1(t)
dn1 x d t n1
an1 (t )
d d
x t
an
(t ) x
0
证 用反证法证。设有t0 (a≤t0≤b) 使得W(t0)=0,则t = t0时 的 (6)、(7)组成的n个齐次线性代数方程组有非零解 c1 ,c2 ,…,cn。 根椐叠加原理,函数 x(t)=c1x1(t)+ c2x2(t)+…+ cnxn(t) 是方程(2)的解,
第四章
13
定理5 齐次线性方程(2)的基本 解组必存在且其伏朗斯基行列式 恒不为零。
证 根据定理1,线性 方程(2)的满足初值 条件:
的解x1(t),x2(t),…,xn(t)必 存在,且有
x1
(t0
)
1,
x1'
(t0
)
0,
x2
(t0
)
0,
x2'
(t0
)
1,
xn
(t0
)
0,
xn'

4.2常系数线性微分方程的解法

4.2常系数线性微分方程的解法

(3) 求方程(4.19)通解的步骤
第一步: 求(4.19)特征方程的特征根 1, 2,, k ,
第二步: 计算方程(4.19)相应的解
(a) 对每一个实单根 k , 方程有解 ekt ; (b) 对每一个 m 1重实根k ,方程有m个解;
ekt , tekt , t 2ekt ,, t m1ekt ;
(
A(2) 0
A1(2)t
A t )e (2) k2 1 2t k2 1
(
A(m) 0
A1(m)t
A t )e (m) km 1 mt km 1
0
P1(t)e1t P2 (t)e2t Pm (t)emt 0
(4.27)
假定多项式 Pm (t) 至少有一个系数不为零,则 Pm (t)
不恒为零,
dnx
d n1x
d k1 x
dt n a1 dt n1 ank1 dt k1 0
显然 1, t, t 2 ,, t k11 是方程的 k1 个线性无关的解,
方程(4.19)有 k1 重零特征根
方程恰有 k1 个线性无关的解 1, t, t 2 ,, t k11
II. 设 1 0 是 k1 重特征根
L[e(1)t ] L[e te1t ]
e1t L1[e t ] e(1)tG( )
F( 1) G()
F ( j) (1) 0, j 1,2,, k1 1 F (k1) (1) 0,
dF
j ( d
j
1 )
dG j () d j
,
j 1,2,, k1
(4.19)的 k1重特征根 1
k1, k2 ,, km 重数 k1 k2 km n, ki 1
I. 设 1 0 是 k1 重特征根

4.2.1常微分方程-线性齐次常系数方程解读

4.2.1常微分方程-线性齐次常系数方程解读

1 , 2 ,L, n
均为实根
方程 ( ) 的通解可表示为
x c1e 1t c2 e 2t cn e nt
②若特征方程有复根 因方程的系数是实常数。复根将成对共轭出现 设
1 a ib 是方程的一个特征根
2 a ib 也是一个特征根 则方程 ( ) 有两个复值解
e e
(a i b ) t (a i b ) t
e (cos bt i sin bt )
ea t (cos bt i sin bt )
at
对应两个实值解
e cos bt , e sin bt
at
at
例1 解
求方程 x 2 x 3x 0
第一步:求特征根
的通解。
性质1
e e
t
t
性质2
性质3 性质4
det et dt
e
( 1 2 ) t
e e
1t 2t
d n et n t e n dt
3、复值解 定义 如果定义在 [a, b] 上的实变量的复值函数
x z (t ) 满足方程
dnx d n 1 x a1 (t ) n 1 n dt dt dx an 1 (t ) an (t ) x f (t ) dt ()
三、变系数齐次线性方程
欧拉(Euler) 方程
n n 1 d x d x dx n n 1 t a1t an1t an x f (t ) n n 1 dt dt dt
其中 a1 , a2 ,..., an 为常数。
引入自变量代换
t eu , u ln t
类似方法进行下去,可得

二阶线性常系数齐次微分方程的解

二阶线性常系数齐次微分方程的解
有一对共轭复根 r1, 2i
y C1er1x C2er2x y C1er1x C2xer1x yex(C1cosxC2sinx)
例 3 求微分方程y2y5y 0的通解
解 微分方程的特征方பைடு நூலகம்为
r22r50
特征方程的根为r112i r212i 是一对共轭复根 因此微分方程的通解为yex(C1cos2xC2sin2x)
y C1er1x C2er2x y C1er1x C2xer1x yex(C1cosxC2sinx)
•第一步 写出微分方程的特征方程
r2prq0 •第二步 求出特征方程的两个根r1、r2 •第三步 根据特征方程的两个根的不同情况 写出微分方程的 通解
首页
上页
返回
下页
结束

❖特征方程的根与通解的关系
首页
上页
返回
下页
结束

❖特征方程的根与通解的关系
方程r2prq0的根的情况 方程ypyqy0的通解
有两个不相等的实根 r1、r2 有两个相等的实根 r1r2
有一对共轭复根 r1, 2i
y C1er1x C2er2x y C1er1x C2xer1x yex(C1cosxC2sinx)
例2 求方程y2yy0的通解
中p、q均为常数 ❖特征方程及其根
方程r2prq0叫做微分方程ypyqy0的特征方程 特征方程的求根公式为
r1, 2
p
p2 4q 2
首页
上页
返回
下页
结束

❖特征方程的根与通解的关系
方程r2prq0的根的情况 有两个不相等的实根 r1、r2 有两个相等的实根 r1r2
有一对共轭复根 r1, 2i

完美版课件常微分方程

完美版课件常微分方程


思2 一阶微分方程
8.2.3 一阶线性微分方程
形如 y′+p(x)y=Q(x) (8-3) 的方程称为一阶线性微分方程,其中p(x)和Q(x)是已知连续函数.
注意:所谓线性是指其中对未知函数y和y′都是一次的.
当Q(x)≡0时,有y′+p(x)y=0(8-4)
注意:在求解非齐次方程时,可以用常数变易法求解, 也可以直接由式(8-7)求解.
8.2 一阶微分方程
例 例8-9】求解方程(dy)/(dx)-ycotx=xsinx.
解 方法一 常数变易法.首先对齐次线性方程 (dy)/(dx)-ycotx=0 分离变量,得(dy)/y=cotxdx 积分,得ln|y|=ln|sinx|+C1, 因此,齐次方程的通解为y=Csinx(C=±eC1) 将上式中的C变易为C(x),再把y=C(x)sinx代 入原方程,得C′(x)sinx+C(x)cosx-C(x) sinxcotx=xsinx,即C′(x)=x 因此C(x)=(1/2)x2+C 于是原方程的通解为 y=C(x)sinx=((1/2)x2+C)sinx
8.2 一阶微分方程
微分方程研究的主要问题就是如何求解,但并不是所有的微分方程都能用初等积分的方 法求出.因此,我们不能奢求能够解出所有的微分方程,但是对于某些特殊类型的方程, 是可以用初等积分的方法求解的.
8.2.1 可分离变量的微分方程 在一阶方程中,如果可以将含有未知函数y的式子及dy与含有自变量x的式子及dx分开至 方程两边,然后就可以分别对y和x积分求解. 形如 (dy)/(dx)=f(x)g(y)[g(y)≠0] (8-1) 的方程称为可分离变量的微分方程. 对式(8-1),可以将关于y和x的式子分开,得(dy)/g(y)=f(x)dx 然后两边积分得∫(dy)/g(y)=∫f(x)dx+C

常微分方程4.2n阶常系数线性齐次方程解法

常微分方程4.2n阶常系数线性齐次方程解法

Y
C1e1xT1
C2e2xT2





Cne
n
Tx 3n
§ 4.2 Solving Method of Constant Coefficients Linear Homogenous ODE
高阶线性方程
y(n) a1(x) y(n1) an1(x) y an (x) y f x (4.5)

c2 e 2 x


c enx n 11
§ 4.2 Solving Method of Constant Coefficients Linear Homogenous ODE
例1 求方程 y 8y 7 y 0 的通解。
解 第一步:特征方程及特征根
P() 2 8 7 0 1 1, 2 7
P() 0 满足
特征根
特征方程
结论: y e x 是方程的解的充要条件 满足 P() 0
9
§ 4.2 Solving Method of Constant Coefficients Linear Homogenous ODE
下面根据特征根的不同情况分别进行讨论。
P() n a1n1 an1 an 0
复习内 容
一阶常系数线性齐次方程组的解法 高阶线性方程
高阶线性方程的通解结构
2
§ 4.2 Solving Method of Constant Coefficients Linear Homogenous ODE
一阶常系数线性齐次方程组的解法
dY AY dx
第一步:写出方程组的系数矩阵A
y e x

常微分方程PPT

常微分方程PPT
解 设降落伞下落速度为v(t) 时伞所受空气阻力为
− kv( 负号 表示 阻力与运动方向相反 k 为常数) 另外, , 为常数) 另外, .
受重力P = mg作用 故由牛顿 作用, 伞在下降过程中还 , 第二定律 dv v 初始条件: 于是, 初始条件: |t=0 = 0于是, 得m = mg − kv且有 所给问题归 dt 结为求解初值问题 dv m = mg − kv, dt v |t=0 = 0,
(2)
两边积分得 ln y = ln x + lnC
所以,齐次方程( 所以,齐次方程(2) 的通解为
,即 ,即
y = Cx
ln y = lnCx
(3)
C 将通解中的任意常数C 换成待定函数 (x) ,即令 y = C(x)x 为方程(1)的通解,将其代入方程(1)得 为方程( 的通解,将其代入方程(1) (1)得 xC '(x) = ln x.于是
所以
1 ′(x) = ln x, C x ln x 1 C(x) = ∫ dx = ∫ ln xdln x = (ln x)2 + C, x 2
求 (3), 原 程 通 为 将所 的C(x)的 入 (3),得 方 的 解 代 式
x y = (ln x)2 + Cx. 2
二、可降阶的高阶微分方程
1. y(n) = f (x)型的微分方程
所以, 是所给微分方程的解. 所以,函数y = C1ex +C2e2x 是所给微分方程的解.又因 , 个 中 两 独 的 意 数, 为 这 解 有 个 立 任 常 , 方 的 数 数 与 程 阶 相 所以它是所给微分方程的通解. 同,所以它是所给微分方程的通解 .
始 件 由初 条 y(0) = 0, 们 C1 +C2 = 0 , 初始 件 我 得 由 条

常系数线性齐次微分方程组的矩阵解法

常系数线性齐次微分方程组的矩阵解法

常系数线性齐次微分方程组的矩阵
解法
常系数线性齐次微分方程组(LCCDE)是一类与定常差分方程组(LDE)类似的微分方程组,区别在于其中的系数是常数。

例如,LCCDE可以被表述为:
dy/dx + p_1(x)y + p_2(x)y' + ... + p_n(x)y^(n-1)=0
其中p_1(x),p_2(x),...,p_n(x)是常数。

矩阵解法是根据LCCDE来计算特解的一种解法,它基于Cramer规则对LCCDE给出解析解。

更具体地说,矩阵解法将LCCDE转换为一组线性方程组,采用矩阵乘法来求解此方程组,并将答案代入原微分方程组中,从而求得特解。

例如,考虑以下LCCDE:
dy/dx + 4y + 5y' + 6y''=0
我们可以将其转换为一组线性方程组:
a_0y+a_1y'+a_2y''=0 a_3y+a_4y'+a_5y''=0
a_6y+a_7y'+a_8y''=0
其中a_i (i=0,1,...,8)是常数,可以根据上面的LCCDE逐步求得。

然后,我们可以将上面的方程组转换为形如Ax=b的矩阵相乘方程,其中A是系数矩阵,x是未知向量,b是右端项向量。

矩阵相乘方程可以用Cramer规则计算得到解析解,然后将解代入原LCCDE,就可以求得特解。

第四讲 常系数线性齐次微分方程

第四讲 常系数线性齐次微分方程

考虑方程
L[ y]
dny dxn
a1
d n1 y dxn1
L
an y 0
(4.19)
其中a1, a2 , , an为常数, 称(4.19)为n阶常系数齐线性方程.
我们知道,一阶常系数齐线性方程
dy ax 0 dx
有解 y ceax ,
受此启发,对(4.19)尝试求指数函数形式的解
y ex , (4.20)
dy 1 dy , dx x dt
把上式入原方程得
d 2 y 1 d 2 y dy
dx2
x2 ( dt2
), dt
d 2 y dy
dt 2
2 dt
y0
上述方程的通解为: y(t) (c1 c2t)et ;
故原方程的通解为:
y(x) (c1 c2 ln x )x; 这里c1, c2为任常数;
2
en x
n en x
L
e n1 nx n
1 1 1
e (1 2 L n ) x 1
2 n
n1 1
n1
2
n1 n
e(12 L n ) x
(i j ) 0
1 jin
故解组(4.22)线性无关.
若i (i 1,2, , n)均为实数,
则(4.22)是方程(4.19)的基本解组 ,从而(4.19)的通解为
把方程 (4.19 )的2k个复值解 , 换成2k个实值解.
et cos t, tet cos t, , t k1et cos t; et sin t, tet sin t, , t k1et sin t.
(3) 求方程(4.19)通解的步骤
第一步: 求(4.19)特征方程的特征根 1, 2, , k ,

常系数线性齐次微分方程的解法

常系数线性齐次微分方程的解法

常系数线性齐次微分方程的解法齐次线性微分方程是一类重要的常微分方程,广泛应用于物理学、数学和工程学中。

它的定义如下:设$F(x,y,y',y'',\cdots,y^{(n)})=F$是连续的关于$x,y,y',y'',\cdots,y^{(n)}$的n阶齐次线性微分方程,其形式为$$a_{n}(x)y^{(n)}+a_{n-1}(x)y^{(n-1)}+\cdots+a_{1}(x)y'+a_{0}(x)y=F(x,y,y',\cdots,y^{(n)}).$$其中$a_{0}(x),a_{1}(x),\cdots,a_{n}(x)$都是任意连续函数。

当$a_{n}(x)\neq 0$时,$y^{(n)}$以下各项可以通过一定的函数关系表示,可以把n阶线性微分方程简化为一阶的线性微分方程,从而实现其几何解的求解。

那么,如何才能求解n阶常系数线性齐次微分方程的解呢?常数系数线性齐次微分方程的解法对应有两种,即特征值分解法和非特征值分解法。

首先,我们来介绍一下特征值分解法。

给定n阶常系数线性齐次微分方程,先配合朗普斯特矩阵$\lambda I-A$,$A$为常系数矩阵,$I$为单位矩阵。

求特征值和特征向量,然后可以由下式求出解class解:$$y(x)=e^{\lambdax}\left(C_{1}\vec{v_{1}}+C_{2}\vec{v_{2}}+\cdots+C_{n}\vec{v_{n}}\right)$$其中$\vec{v_{i}}$是特征值$\lambda_{i}$对应的特征向量,$C_{i}$为任意常数。

其次,我们介绍一下非特征值分解法。

首先,先把常系数线性微分方程化为一阶线性微分方程,然后再用比较成熟的求解方法,比如Euler方法、Runge-Kutta方法。

根据已知条件,对积分引力的结果进行求解,求得特定的通解问题,即$y(x)$。

常系数线性微分方程的解法

常系数线性微分方程的解法

常系数线性微分方程的简介
常系数线性微分方程是微分方程的一种形式,其特点是方程中的未知函数和其导数都是一次的,且系 数是常数。
这种类型的微分方程在解决实际问题中非常有用,因为它们能够描述许多自然现象和系统的动态行为 。
解法的历史背景和发展
早期解法
在17世纪,数学家开始研究常系数线性微分方程的解法,如牛顿 和莱布尼茨等。
经济学问题
根据经济学原理和经济数据,建立微分方程 描述经济系统的变化趋势。
几何问题
通过几何图形和空间关系,建立微分方程描 述物体的运动轨迹。
生物学问题
根据生物学原理和实验数据,建立微分方程 描述生物种群的增长规律。
常系数线性微分方程的一般形式
y'' + p*y' + q*y = f(x)
其中,y''表示y的二阶导数,p和q是常数,f(x)是x的函数。
变量代换法
总结词
通过引入新的变量代换,将微分方程转化为 更容易求解的形式。
详细描述
首先,选择一个新的变量代换,将微分方程 中的未知函数表示为这个新变量的函数。然 后,将这个新变量的函数代入微分方程,得 到一个更容易求解的方程。最后,对方程进 行求解,得到未知函数的通解。
积分因子法
总结词
通过寻找一个积分因子,将微分方程转化为 一个更简单的方程,从而求解。
数值解法
对于难以解析求解的方程,可以采 用数值方法进行近似求解,如欧拉
法、龙格-库塔法等。
A
B
C
D
人工智能算法
结合人工智能技术,如神经网络、遗传算 法等,可以提供新的求解思路和方法。
自适应算法
根据问题的具体情况,采用自适应算法可 以更好地控制求解精度和计算量。

42常系数线性微分方程的解法

42常系数线性微分方程的解法
et cost, et sin t
为什么?
内江师范学院数学与信息科学学院 吴开腾 制作
例2 求方程 y(4) 6y(3) 15y 18y 10y 0 的通解
解:(复单根)特征方程为:
4 63 152 18 10 0
特征根 对应的基本解组
1 1 i,2 1 i,3 2 i,4 2 i
, t k1 e 1 1 t , t k2 1e2t
, t km e 1 mt
内江师范学院数学与信息科学学院 吴开腾 制作
对于特征方程有复重根的情况,结合前面的两种情况就可以讨论了。
要(4.20)是方程(4.2)的解的充要条件为:
F () n a1 n1 an1 an 0 (4.21)
称(4.21)是方程(4.19)的特征方程,它的根称为特征根。
内江师范学院数学与信息科学学院 吴开腾 制作
于是有
求解常系数线性微分方程问题
L[ x]

dnx dt n

z2
(t)]

dz1(t) dt
ห้องสมุดไป่ตู้
dz2 (t) dt
dz dt
[c

z1
(t
)]

c
dz1(t dt
)
乘积性
dz dt [z1(t) z2 (t)]
dz1(t dt
)

z2
(t
)

z1
(t
)

dz2 (t dt
)
注意:同实值函数的微分运算法则一样。
内江师范学院数学与信息科学学院 吴开腾 制作
假如有下面形式(4.20)是方程(4.19)的解
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

█ 常系数齐次线性微分方程
本节先讨论aj(t)= aj(1≤ j ≤n)时的方程 L[x]=0 … … (1)
下面介绍求它的基本解组的一个经典方法-Euler待定指数函数法(特征根法).
试求形如x=eλt的解,λ∈C为待定常数.将 x=eλt代入L[x]=0得 L[eλt]=(λn+a1λn-1+…+an-1λ+an)eλt=0. 显然,x=eλt是(1)的解等价于F(λ)≡ λn+a1λn-1+…+an-1λ+an=0.
]
(dn y dtn
b1
dn1 y d t n1
b n1
dy dt
bn y)e1t
L1[ y]e1t .
因此方程(1)可化为 L1[y]=0 … … (2) bj仍为常数,而相应的特征方程是
G(μ)≡ μ n+b1 μ n-1+…+bn-1 μ +bn=0.
的复值解. 性质
定理1 设a1(t),…,an(t)均为实函数,z(t)=
φ(t)+iψ(t)是(4.2)的复值解,那么Re{z(t)}=
φ(t),Im{z(t)}=ψ(t)及 z(t)=φ(t)-iψ(t)都
是(4.2)的解.
定理2 设x=z(t)=φ(t)+iψ(t)是 L[x]=u(t)+iv(t)的复值解,u(t),v(t), aj(t) (j=1,2,…n)均为实函数,那么 x=Re{z(t)}=φ(t) 是L[x]=u(t)的解, x=Im{z(t)}=ψ(t)是L[x]=v(t)的解.
ekt≡e αt(cos β t+isin βt).
(或者用 ekt (kt)n 来定义)
n0 n!
复指数函数ekt有下述性质:
① e(k1k2 )t ek1t ek2t ;
② (ekt ) kekt ;
证③明d:nd(①tenkt记) k1k=neαkt1;+iβ1,
④ ekt ekt . k2= α2+iβ2则
lim z(t) lim(t) i lim (t).
t t0
t t0
t t0
●复值函数的连续性及可微性定义
类似于实函数的连续性、可微性的定义,
lim
t t0
z(t)
z(t0 )
z(t)
在t=t0连续.
lim
t t0
z (t ) t
z(t0 )存在
t0
称z(t)
在t=t0可微
d z(t0 ) d (t0 ) i d (t0 ) .
对应的(1)是
dn x dtn
a1
dn1 x d t n1
a nk
dk x dtk
0,
显然1,t,…,tk-1是它的k个线性无关的解.
② λ1≠0时,作变量替换
x(m) ( ye1t )(m)
x ye1t ,因
e1t [ y(m)
m1 y(m1)
m(m 1) 2!
12
y(m2)
1m
y],

L[ ye1t
█ 复值函数与复值解
因讨论常系数线性方程的解法时,需涉及实 变量的复值函数及复指数函数的问题,故在 介绍解法前先给出有关概念及性质. ●复值函数(实自变量)z(t) 定义于[a,b]上的两实值函数φ(t),ψ(t)就 给出了[a,b]上的一个实自变量的复值函数
Z(t)≡ φ(t)+iψ(t). ●复值函数的极限
是方程(1)的两个实值解,这是对应于特征
根λ= α±iβ的一对实值解.
▲特征根是重根
设存在k重根λ=λ1,则
F (1) F (1) F (k1) (1) 0, F (k ) (1) 0.
① λ1=0时,则特征方程有因子 k,即an= an-
1 =…=an-k+1=0,此时特征方程是 F(λ)≡ λn+a1λn-1+…+an-kλn-k=0.
e e (k1k2 )t
(1 2 )t i(1 2 )t
e(12 )t[cos(1 2 )t i sin(1 2 )t] e(12 )t[cos 1t cos 2t sin 1t sin 2t
i( sin 1t cos 2t cos 1t sin 2t)] e(12 )t (cos 1t i sin 1t) (cos 2t i sin 2t)
ek1t ek2t .
●复值解
d
n (z(t dtn
))
a
1(t
)
d
n1 ( z (t d t n1
))
a n1(t)
d(z(t)) dt
a n(t)z(t)
f
(t),t [a,b]
称x=z(t)是方程(4.1)
dn x
dn1 x
dx
L[x] d tn a1(t) d tn1 a n1(t) d t a n (t)x f (t),
1i jn
n1 n
所以 e1t , e2t , , ent 在任何区间[a,b]
内线性无关.
①当λj(1≤
通解是
j ≤n)均为实数时,方程(1)的
n
x
c jejt .
j 1
②如果F(λ)=0存在复根λ1=α+iβ,那么 1 =α-iβ也是 F(λ)=0的根.根据定理1,
et cos t, et sin t
dt
dt
dt
且有类似于实函数的求导运算性质,如
(z1(t) z2 (t)) z1(t) z2(t), (cz(t)) cz1(t),
(z1(t)z2 (t)) z1(t)z2(t) z1(t)z2(t).
●复指数函数ekt,(t∈R,k ∈ C)
在讨论常系数线性方程时, ekt起着重要作 用.这是由于,此类方程的形式是某函数的 各阶导数的线性组合为0,而ekt的各阶导数 是它自身的常数倍. 下面用Euler公式给出k=α+iβ, α,β ∈R 时的ekt的定义
§4.2 常系数齐次线性微分方程的解法
上节已经解决了线性方程的通解的结构问 题, 但未给出求通解的方法.事实上,对 一般的方程是没有普遍适用的方法.本节 介绍求解问题能彻底解决的一类方程— 常系数线性方程及可化为此类方程的方 程.
对常系数线性方程,只需解一个代数方程 (特征方程);而对某些特殊的非线性方程 也可通过代数运算求得通解.
定义 称F(λ)=0为(1)的特征方程,它的根称
为(1)的特征根.
▲特征根为单根
设λ1,… λn是F(λ)=0的单根,则(1)有个解
e1t , e2t , , ent ,
其Wronski行列式
11
1
e W (t) 1t2t nt 1
2
n
n1
n1
ห้องสมุดไป่ตู้
1
2
n
t j
e j1
( j i ) 0
相关文档
最新文档