圆的知识点归纳总结大全

合集下载

圆的知识总结

圆的知识总结

圆的知识总结圆是数学中的一个基本概念,它是平面几何中最简单的几何图形之一。

在日常生活和科学研究中,圆的概念经常出现。

下面是对圆的知识的总结。

一、圆的定义与性质1. 定义:圆是平面上所有与定点距离相等的点的集合。

2. 性质:(1) 圆上任意两点距离相等。

(2) 圆心到圆上任意一点的距离是半径,圆上任意两点的连线与半径垂直。

(3) 圆上的弧是圆上的两点之间的线段,弧长是弧所对的圆心角的度数与圆的半径的乘积。

(4) 圆上的弦是圆上两点之间的线段,且圆心角两边的弦相等时,这条弦就是弦的长度,且与弦夹角的一条弧长相等。

(5) 圆的直径是通过圆心并且两端点在圆上的线段,直径等于圆的半径的两倍。

二、圆的相关概念1. 直径、半径和弧长:直径是通过圆心并且两端点在圆上的线段,半径是圆心到圆上任意一点的线段,弧长是弧所对的圆心角的度数与圆的半径的乘积。

2. 切线和切点:切线是与圆相切的直线,切点是切线与圆的交点。

3. 弦和弦长:弦是圆上的两点之间的线段,弦长是弦的长度。

4. 弧和弧度:弧是圆上的两点之间的线段,弧度是表示弧所对的圆心角的度量单位。

5. 扇形和扇面积:扇形是由圆心、圆上两点和两条弧边所围成的图形,扇面积是扇形所围的部分的面积。

6. 弧段和弧度:弧段是圆上的两点之间的部分,弧度是表示弧段的长度与圆的半径之比。

三、圆的重要公式1. 圆的周长公式:C=2πr,其中C表示圆的周长,r表示圆的半径。

2. 圆的面积公式:A=πr²,其中A表示圆的面积,r表示圆的半径。

3. 圆的弧长公式:L=2πrθ/360°,其中L表示弧长,r表示圆的半径,θ表示圆心角的度数。

4. 扇形的面积公式:A=(πr²θ)/360°,其中A表示扇形的面积,r表示圆的半径,θ表示圆心角的度数。

四、圆的应用1. 圆在建筑设计中常用于设计圆柱形结构物,如圆形塔楼和圆形拱门。

2. 圆在通信工程中的应用,如无线电波的传播范围可以用圆来表示。

圆知识的整理归纳

圆知识的整理归纳

圆知识的整理归纳圆是一种经典的几何图形,具有无限长的形状和符号,在平面几何和立体几何中,都具有重要意义。

一、定义圆是所有点距离一个固定点间距相等的曲线,这个固定点被称为圆心,距离圆心相等的点的距离称为半径。

二、性质1. 中心角定理:一个圆的中心角为p度,它的扇形所占的面积就是1/2半径的平方;2. 直径线:圆的直径是经过圆心的直线,直径与半径之间的关系是两者相等;3. 弦分线:圆的弦是一条经过圆上两个不同点的线段,这两个点组成的角称为弧角,穿过圆的中点的分线称为弦分线;4. 内接圆:每一个正三角形有一个外接圆,它恰好穿过正三角形的三个顶点,而内接圆则是内切的;5. 周长公式:圆的周长是圆的外周,圆的周长是2πR,R为半径;6. 面积公式:圆的面积是圆的整体,圆的面积是πR²,R为半径;7. 坐标公式:以圆心为原点,以x轴为横轴,以y轴为纵轴,则(x, y)就是圆外每一点的坐标,并且满足x² + y² = R²。

三、分类1. 内切圆——它是由圆内接四边形最小正外切圆,穿过正外切四边形四个定点而成;2. 外接圆——它是由圆外接四边形最大正内切圆,穿过正内切四边形四个定点而成;3. 光心圆——它是由光心四边形最小正外切圆,穿过光心四边形四个定点而成;4. 平分圆——它是在平分三角形的一条边上的一个内切圆,它的圆心与三角形的奇点重合。

四、应用1. 建筑学:拱形墙壁、圆顶、圆顶门廊、圆形马路both、圆形地窖等;2. 装饰艺术:圆形雕刻、圆形画作、圆形幕、织布物品等;3. 工业设计:机械工程中的轴销、轴套、圆键、圆柱、转子等;4. 数学:面积与周长的计算、解圆的方程、空间几何的绘制分析等;5. 音乐:弹琴、鼓筒等乐器的结构;6. 光学:眼镜、玻璃杯等设备;7. 餐饮:烹饪与烘焙器具;8. 民俗:古代圆舞、圆舞曲等。

总结【圆】是一种经典的几何图形,它是把所有点距离一个固定点间距相等,所具有的曲线;它具有中心角定理、直径、弦、弦分线、内接圆、外接圆、光心圆等性质,可以分为内切圆、外接圆、光心圆以及平分圆等类型;有着广泛的应用,在建筑学、装饰艺术、工业设计、数学、音乐、光学、餐饮以及民俗等方面都有着重要的作用。

圆的章节知识点总结

圆的章节知识点总结

圆的章节知识点总结第一章:圆的定义和性质1.1 圆的定义圆是平面上到定点的距离等于定长的点的集合。

1.2 圆的要素圆包括圆心、半径和圆周。

1.3 圆的性质(1)圆的半径相等(2)圆的直径是两倍半径(3)直径垂直于半径(4)同一圆周上的弧所对的圆心角相等(5)圆周角相等的弧相等(6)圆内切角等于所对的弧的一半(7)弧长与圆心角的关系1.4 圆的常见定理(1)切线与半径垂直(2)切线的长度相等(3)弦长与半径的关系(4)在同一圆中,小弦所对的圆心角小于大弦所对的圆心角第二章:圆的相关公式2.1 圆的周长和面积圆的周长=2πr圆的面积=πr²2.2 弧长和扇形面积弧长=S=rθ扇形面积=0.5r²θ2.3 圆内接四边形面积圆内接四边形面积=1/2×d×R其中,d为对角线,R为半径第三章:圆的相关问题3.1 圆的位置关系(1)内切圆与外接圆(2)相切圆与内切圆(3)相切圆与外切圆3.2 圆和直线的交点问题(1)相离(2)相切(3)相交3.3 圆和三角形的关系(1)圆内接三角形(2)圆外接三角形(3)圆似圆三角形3.4 圆锥雏形问题通过顶点与圆周点的关系判断棱柱、棱锥和圆锥第四章:圆的应用4.1 圆的建模在建模中,圆的应用非常广泛。

例如,轮子、钟表、饼干等都是圆形的。

4.2 圆的测量圆的周长和面积在日常生活中用得非常多,测量圆的周长和面积可以帮助我们计算物体的大小、量取圆形面积等。

4.3 圆的运动圆的运动在机械学、物理学等学科中有着重要的应用,例如圆周运动、匀速圆周运动等。

4.4 圆的工程应用在工程中,圆也有很多应用,例如圆形水箱、圆形路口等。

总结圆是数学中的一个基本概念,它在日常生活和学科中都有着重要的应用。

通过学习圆的定义、性质、公式和相关问题,我们可以更好地理解和运用圆的知识,为我们的生活和学习带来便利。

希望通过本章知识点的总结,能够帮助大家更好地理解和掌握圆的相关知识,为未来的学习和工作打下坚实的基础。

圆的知识点

圆的知识点

圆一、圆的有关概念1.与圆有关的概念和性质1)圆:平面上到定点的距离等于定长的所有点组成的图形.2)弦与直径:连接圆上任意两点的线段叫做弦,过圆心的弦叫做直径,直径是圆内最长的弦.3)弧:圆上任意两点间的部分叫做弧,小于半圆的弧叫做劣弧,大于半圆的弧叫做优弧.4)圆心角:顶点在圆心的角叫做圆心角.5)圆周角:顶点在圆上,并且两边都与圆还有一个交点的角叫做圆周角.6)弦心距:圆心到弦的距离.2.注意1)经过圆心的直线是该圆的对称轴,故圆的对称轴有无数条;2)3点确定一个圆,经过1点或2点的圆有无数个.3)任意三角形的三个顶点确定一个圆,即该三角形的外接圆.二、垂径定理及其推论1.垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.关于垂径定理的计算常与勾股定理相结合,解题时往往需要添加辅助线,一般过圆心作弦的垂线,构造直角三角形.2.推论1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧.三、圆心角、弧、弦的关系1.定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等.圆心角、弧和弦之间的等量关系必须在同圆等式中才成立.2.推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.四、圆周角定理及其推论1.定理:一条弧所对的圆周角等于它所对的圆心角的一半.2.推论:1)在同圆或等圆中,同弧或等弧所对的圆周角相等.2)直径所对的圆周角是直角.圆内接四边形的对角互补.在圆中求角度时,通常需要通过一些圆的性质进行转化.比如圆心角与圆周角间的转化;同弧或等弧的圆周角间的转化;连直径,得到直角三角形,通过两锐角互余进行转化等.五、与圆有关的位置关系1.点与圆的位置关系设点到圆心的距离为d.(1)d<r⇔点在⊙O内;(2)d=r⇔点在⊙O上;(3)d>r⇔点在⊙O外.判断点与圆之间的位置关系,将该点的圆心距与半径作比较即可.2.直线和圆的位置关系由于圆是轴对称和中心对称图形,所以关于圆的位置或计算题中常常出现分类讨论多解的情况.六、切线的性质与判定1.切线的性质1)切线与圆只有一个公共点.2)切线到圆心的距离等于圆的半径.3)切线垂直于经过切点的半径.利用切线的性质解决问题时,通常连过切点的半径,利用直角三角形的性质来解决问题.2.切线的判定1)与圆只有一个公共点的直线是圆的切线(定义法).2)到圆心的距离等于半径的直线是圆的切线.3)经过半径外端点并且垂直于这条半径的直线是圆的切线.切线判定常用的证明方法:①知道直线和圆有公共点时,连半径,证垂直;②不知道直线与圆有没有公共点时,作垂直,证垂线段等于半径.七、三角形与圆1.三角形的外接圆相关概念经过三角形各顶点的圆叫做三角形的外接圆,外接圆的圆心叫做三角形的外心,这个三角形叫做圆的内接三角形.外心是三角形三条垂直平分线的交点,它到三角形的三个顶点的距离相等.2.三角形的内切圆与三角形各边都相切的圆叫做三角形的内切圆,内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.内心是三角形三条角平分线的交点,它到三角形的三条边的距离相等.八、正多边形的有关概念正多边形中心:正多边形的外接圆的圆心叫做这个正多边形的中心.正多边形半径:正多边形外接圆的半径叫做正多边形半径.正多边形中心角:正多边形每一边所对的圆心角叫做正多边形中心角.正多边形边心距:正多边形中心到正多边形的一边的距离叫做正多边形的边心距.九、与圆有关的计算公式1.弧长和扇形面积的计算:扇形的弧长l=π180n r;扇形的面积S=2π360n r=12lr.2.圆锥与侧面展开图1)圆锥侧面展开图是一个扇形,扇形的半径等于圆锥的母线,扇形的弧长等于圆锥的底面周长.2)若圆锥的底面半径为r,母线长为l,则这个扇形的半径为l,扇形的弧长为2πr,圆锥的侧面积为S圆锥侧=12ππ2l r rl⋅=.圆锥的表面积:S圆锥表=S圆锥侧+S圆锥底=πrl+πr2=πr·(l+r).在求不规则图形的面积时,注意利用割补法与等积变化方法归为规则图形,再利用规则图形的公式求解.。

圆的知识点的总结

圆的知识点的总结

圆的知识点的总结一、圆的基本概念圆是一个平面上所有到一个固定点距离相等的点的集合。

这个固定点称为圆心,而到圆心距离的长度称为半径。

圆的直径是通过圆心的两个端点,圆心到圆上任一点的距离都等于半径。

圆的周长是圆上的所有点到圆心的距离之和,我们通常用π(pi)来表示圆周率,它的近似值是3.14159。

而圆的面积是圆内部的所有点组成的部分的总面积,可以通过公式S=πr²来计算,其中r为圆的半径。

二、圆的基本性质1. 圆的周长和面积由圆的定义可知,圆的周长是其半径的2π倍,即C=2πr。

而圆的面积等于π乘以半径的平方,即S=πr²。

这两个公式是数学中最基本的圆相关公式,也是计算圆的周长和面积的常用公式。

2. 圆的面积公式推导圆的面积公式S=πr²可以通过细心推导得到。

我们知道,圆的面积可以通过将圆内部的面积分解成无数个小的扇形,然后将这些扇形拼接成一个矩形,再计算矩形的面积。

通过这种分解与拼接的方法,可以得到S=πr²的结果。

3. 圆的内切与外切圆可以与其他几何图形相互作用,其中一个重要的概念是圆的内切与外切。

一个多边形或者矩形可以内切圆,即这个多边形或者矩形的所有边都刚好和圆的周线相切。

同理,圆也可以外切一个多边形或者矩形,即圆的周线刚好和多边形或者矩形的所有边相切。

4. 圆的相似如果两个圆的半径之比相等,那么这两个圆就是相似的。

并且,相似的圆的周长和面积的比值等于它们的半径之比的平方,即(K1/K2)²=L1/L2= S1/S2。

5. 圆的旋转如果一个固定的点随着时间不断绕着另一个固定点旋转,那么得到的图形叫做旋转曲线。

圆是一种特殊的旋转曲线,其特点是始终保持半径不变。

圆的旋转曲线具有规律的变化,例如正弦曲线和余弦曲线等。

6. 圆的放缩当一个圆的半径等比例地放大或者缩小时,得到的图形仍然是圆,并且圆的周长和面积分别按照放大/缩小的比例进行放缩。

这个性质在数学中被称为圆的放缩性质,是数学中非常重要的一个概念。

圆知识点总结

圆知识点总结

圆知识点总结一.圆的定义1.在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A所形成的图形叫圆.这个固定的端点O叫做圆心,线段OA叫做半径.以O点为圆心的圆记作⊙O,读作圆O.2.圆是在一个平面内,所有到一个定点的距离等于定长的点组成的图形.3.确定圆的条件:⑴圆心;⑵半径,其中圆心确定圆的位置,半径长确定圆的大小.二.同圆、同心圆、等圆1.圆心相同且半径相等的圆叫做同圆;2.圆心相同,半径不相等的两个圆叫做同心圆;3.半径相等的圆叫做等圆.三.弦和弧1.连结圆上任意两点的线段叫做弦.经过圆心的弦叫做直径,并且直径是同一圆中最长的弦,直径等于半径的2倍.2.圆上任意两点间的部分叫做圆弧,简称弧.以A B、为端点的弧记作»AB,读作弧AB.在同圆或等圆中,能够重合的弧叫做等弧.3.圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆.在一个圆中大于半圆的弧叫做优弧,小于半圆的弧叫做劣弧.4.从圆心到弦的距离叫做弦心距.5.由弦及其所对的弧组成的图形叫做弓形.四.与圆有关的角及相关定理1.顶点在圆心的角叫做圆心角.将整个圆分为360等份,每一份的弧对应1︒的圆心角,我们也称这样的弧为1︒的弧.圆心角的度数和它所对的弧的度数相等.2.顶点在圆上,并且两边都和圆相交的角叫做圆周角.圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论1:在同圆或等圆中,如果两个圆周角相等,它们所对的弧一定相等.推论2:半圆(或直径)所对的圆周角是直角,90︒的圆周角所对的弦是直径.(在同圆中,半弧所对的圆心角等于全弧所对的圆周角)3.顶点在圆内,两边与圆相交的角叫圆内角.圆内角定理:圆内角的度数等于圆内角所对的两条弧的度数和的一半.4.顶点在圆外,两边与圆相交的角叫圆外角.圆外角定理:圆外角的度数等于圆外角所对的长弧的度数与短弧的度数的差的一半.5.圆内接四边形的对角互补,一个外角等于其内对角.6.如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.7.圆心角、弧、弦、弦心距之间的关系定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等.推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量分别相等.五.垂径定理1.垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;2.其它正确结论:⑴弦的垂直平分线经过圆心,并且平分弦所对的两条弧;⑵平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.⑶圆的两条平行弦所夹的弧相等.3.知二推三:⑴直径或半径;⑵垂直弦;⑶平分弦;⑷平分劣弧;⑸平分优弧.以上五个条件知二推三.注意:在由⑴⑶推⑵⑷⑸时,要注意平分的弦非直径.4.常见辅助线做法:⑴过圆心,作垂线,连半径,造RT△,用勾股,求长度;⑵有弧中点,连中点和圆心,得垂直平分.六.点与圆的位置关系1.点与圆的位置有三种:⑴点在圆外⇔d r<.=;⑶点在圆内⇔d r>;⑵点在圆上⇔d r2.过已知点作圆⑴经过点A的圆:以点A以外的任意一点O为圆心,以OA的长为半径,即可作出过点A的圆,这样的圆有无数个.⑵经过两点A B、的圆:以线段AB中垂线上任意一点O作为圆心,以OA的长为半径,即可作出过点A B、的圆,这样的圆也有无数个.⑶过三点的圆:若这三点A B C、、共线时,过三点的圆不存在;若A B C、、三点不共线时,圆心是线段AB与BC的中垂线的交点,而这个交点O是唯一存在的,这样的圆有唯一一个.⑷过n ()4n ≥个点的圆:只可以作0个或1个,当只可作一个时,其圆心是其中不共线三点确定的圆的圆心.3.定理:不在同一直线上的三点确定一个圆.注意:⑴“不在同一直线上”这个条件不可忽视,换句话说,在同一直线上的三点不能作圆;⑵“确定”一词的含义是“有且只有”,即“唯一存在”.4.三角形的外接圆⑴经过三角形三个顶点的圆叫做三角形的外接圆,外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心,这个三角形叫做这个圆的内接三角形.⑵三角形外心的性质:①三角形的外心是指外接圆的圆心,它是三角形三边垂直平分线的交点,它到三角形各顶点的距离相等;②三角形的外接圆有且只有一个,即对于给定的三角形,其外心是唯一的,但一个圆的内接三角形却有无数个,这些三角形的外心重合.⑶锐角三角形外接圆的圆心在它的内部(如图1);直角三角形外接圆的圆心在斜边中点处(即直角三角形外接圆半径等于斜边的一半,如图2);钝角三角形外接圆的圆心在它的外部(如图3).图3图2图1CBCC七.直线和圆的位置关系的定义、性质及判定设O ⊙的半径为r ,圆心O 到直线l 的距离为d ,则直线和圆的位置关系如下从另一个角度,直线和圆的位置关系还可以如下表示:八.切线的性质及判定1. 切线的性质:定理:圆的切线垂直于过切点的半径.推论1:经过圆心且垂直于切线的直线必经过切点.推论2:经过切点且垂直于切线的直线必经过圆心.2. 切线的判定定义法:和圆只有一个公共点的直线是圆的切线;距离法:和圆心距离等于半径的直线是圆的切线;定理:经过半径的外端并且垂直于这条半径的直线是圆的切线.3. 切线长和切线长定理:⑴在经过圆外一点的圆的切线上,这点和切点之间的线段的长,叫做这点到圆的切线长.⑵从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角.九.三角形内切圆1. 定义:和三角形各边都相切的圆叫做三角形的内切圆,内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.2. 多边形内切圆:和多边形的各边都相切的圆叫做多边形的内切圆,该多边形叫做圆的外切多边形.十.圆和圆的位置关系的定义、性质及判定 设12O O 、⊙⊙的半径分别为R r 、(其中R r >),两圆圆心距为d ,则两圆位置关说明:圆和圆的位置关系,又可分为三大类:相离、相切、相交,其中相离两圆没有公共点,它包括外离与内含两种情况;相切两圆只有一个公共点,它包括内切与外切两种情况.十一.正多边形与圆1. 正多边形的定义:各条边相等,并且各个内角也都相等的多边形叫做正多边形.2. 正多边形的相关概念:⑴ 正多边形的中心:正多边形的外接圆的圆心叫做这个正多边形的中心. ⑵ 正多边形的半径:正多边形外接圆的半径叫做正多边形的半径. ⑶ 正多边形的中心角:正多边形每一边所对的圆心角叫做正多边形的中心角. ⑷ 正多边形的边心距:中心到正多边形的一边的距离叫做正多边形的边心距. 3. 正多边形的性质:⑴正n 边形的半径和边心距把正n 边形分成2n 个全等的直角三角形;⑵正多边形都是轴对称图形,正n 边形共有n 条通过正n 边形中心的对称轴; ⑶偶数条边的正多边形既是轴对称图形,也是中心对称图形,其中心就是对称中心.十二、圆中计算的相关公式设O ⊙的半径为R ,n ︒圆心角所对弧长为l , 1. 弧长公式:π180n Rl =2. 扇形面积公式:21π3602n S R lR ==扇形 3. 圆柱体表面积公式:22π2πS R Rh =+4. 圆锥体表面积公式:2ππS R Rl =+(l 为母线)常见组合图形的周长、面积的几种常见方法:① 公式法;② 割补法;③ 拼凑法;④ 等积变换法。

初中数学圆的知识点总结

初中数学圆的知识点总结

初中数学圆的知识点总结初中数学圆的知识点总结【一】一、圆1、圆的有关性质在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫圆,固定的端点O 叫圆心,线段OA叫半径。

由圆的意义可知:圆上各点到定点〔圆心O〕的间隔等于定长的点都在圆上。

就是说:圆是到定点的间隔等于定长的点的集合,圆的内部可以看作是到圆。

心的间隔小于半径的点的集合。

圆的外部可以看作是到圆心的间隔大于半径的点的集合。

连结圆上任意两点的线段叫做弦,经过圆心的弦叫直径。

圆上任意两点间的局部叫圆弧,简称弧。

圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫半圆,大于半圆的弧叫优弧;小于半圆的弧叫劣弧。

由弦及其所对的弧组成的圆形叫弓形。

圆心一样,半径不相等的两个圆叫同心圆。

可以重合的两个圆叫等圆。

同圆或等圆的半径相等。

在同圆或等圆中,可以互相重合的弧叫等弧。

二、过三点的圆l、过三点的圆过三点的圆的作法:利用中垂线找圆心定理不在同一直线上的三个点确定一个圆。

经过三角形各顶点的圆叫三角形的外接圆,外接圆的圆心叫外心,这个三角形叫圆的内接三角形。

2、反证法反证法的三个步骤:①假设命题的结论不成立;②从这个假设出发,经过推理论证,得出矛盾;③由矛盾得出假设不正确,从而肯定命题的结论正确。

例如:求证三角形中最多只有一个角是钝角。

证明:设有两个以上是钝角那么两个钝角之和》180°与三角形内角和等于180°矛盾。

不可能有二个以上是钝角。

即最多只能有一个是钝角。

三、垂直于弦的直径圆是轴对称图形,经过圆心的每一条直线都是它的对称轴。

垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。

推理1:平分弦〔不是直径〕的直径垂直于弦,并且平分弦所对两条弧。

弦的垂直平分线经过圆心,并且平分弦所对的两条弧。

平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一个条弧。

推理2:圆两条平行弦所夹的弧相等。

四、圆心角、弧、弦、弦心距之间的关系圆是以圆心为对称中心的中心对称图形。

圆的知识点总结

圆的知识点总结

圆的相关知识点1、圆心:圆中心一点叫做圆心。

用字母“O"来表示。

半径:连接圆心和圆上任意一点的线段叫做半径,用字母“r"来表示.画圆时,圆规两脚间的距离就是半径.直径:通过圆心并且两端都在圆上的线段叫做直径,用字母“d”表示。

直径是圆中最长的线段。

2.圆心确定圆的位置,半径确定圆的大小。

圆是轴对称图形,直径所在的直线是圆的对称轴。

3.在同一个圆内,所有的半径都相等,所有的直径都相等。

在同一个圆内,有无数条半径,有无数条直径。

在同一个圆内,直径的长度是半径的2倍,半径的长度是直径的一半。

用字母表示为:d=2r r =d÷24、正方形中画最大的圆:先画正方形的两条对角线,交点就是圆心,再以边长的一半作半径画圆.边长也就是圆的直径。

5、圆中画最大的正方形:先画两条互相垂直的直径,直径和圆相交的四个点连接起来就成了一个圆。

在长方形中画最大的圆,宽就是圆的直径。

6、扇形:由两条半径和一段弧围成的图形就是扇形.顶点在圆心的角是圆心角。

圆上两点间的一段叫弧。

7、在同一个圆中,扇形的大小与圆心角的大小有关.在不同的圆中,扇形的大小与圆心角的大小和半径的长短有关。

8.圆的周长:围成圆的曲线的长度叫做圆的周长。

圆的周长总是直径的3倍多一些,这个比值是一个固定的数.我们把圆的周长和直径的比值叫做圆周率,用字母π表示。

圆周率是一个无限不循环小数.在计算时,π取3。

14。

世界上第一个把圆周率算出来的人是我国的数学家祖冲之.周长是直径的π倍,是半径的2π倍。

6.圆的周长公式:C=πd 或C=2πr 周长等于直径乘π,等于半径乘2π。

直径等于周长除以π,或等于半径乘2,半径等于周长除以π再除以2,或等于直径除以2。

圆的直径、半径扩大或缩小几倍,周长也扩大或缩小相同的倍数,周长、直径、半径间的变化相同。

两个圆的直径、半径和周长之间的倍数关系完全相同。

7、圆的面积:圆所占平面的大小叫圆的面积.8.把一个圆割拼成一个近似的长方形,割拼成的长方形的长相当于圆周长的一半,宽相当于圆的半径,因为长方形面积=长×宽,所以圆的面积= πr×r=πr²,要求圆的面积必须知道圆的半径(或知道半径的平方)。

圆的知识点归纳

圆的知识点归纳

圆的知识点归纳一、圆的认识(一)——半径、直径1.圆心用字母O表示,半径用字母r表示,直径用字母d表示.2.半径是连接圆心和圆上任意一点的线段。

3.直径是通过圆心,并且两端都在圆上的线段。

4.圆规的“针尖”相当于圆心,圆规张开的两脚之间的距离是圆的半径。

5.圆心确定圆的位置,半径或直径决定圆的大小。

6.同圆或等圆中,有无数条半径,长度都相等;有无数条直径,长度都相等;直径是半径的2倍;半径是直径的二分之一。

7.直径是园内最长的线段。

8.圆的运动轨迹是一条直线。

9.直径=2×半径,用字母表示d=r+r=2r;(2r表示两个r相加)半径=直径÷2,r=d÷2。

二、圆的认识(二)——对称轴1、圆对折2次就能找到圆心。

2、圆是轴对称图形,有无数条对称轴,对称轴是直径所在的直线。

3、正方形有4条对称轴;长方形有2条对称轴;平行四边形有0条对称轴;等腰三角形有1条对称轴;等边三角形有3条对称轴;等腰梯形有1条对称轴;圆有无数条对称轴;半圆有1条对称轴;圆环有无数条对称轴。

4、平行四边形不是轴对称图形。

5、三角形不是轴对称图形。

6、梯形不是轴对称图形。

7、正多边形有及边数相同条的对称轴。

8、对称轴是一条直线,也是一条虚线。

三、欣赏及设计1、利用图形通过平移、旋转、对称的方法可以设计出美丽的图案。

四、圆的周长1、周长用字母C表示,圆周率用字母π表示。

2、圆的周长除以直径的商是一个固定的数,把它叫作圆周率,用字母π表示,计算时通常取3.14;3、圆的周长总是直径的3倍多一些,π的近似值是3.14。

4、半径、直径、周长三者之间的关系周长=直径×圆周率=2×半径×圆周率,用字母C=πd=2πr直径=周长÷圆周率,用字母d=C÷π半径=周长÷圆周率÷2,用字母r=C÷π÷25、圆周长的一半=圆的周长÷2=πr6、半圆=圆周长的一半+直径=πr+d7、半径扩大n倍,直径也扩大n倍,周长也扩大n倍;(半径扩大3倍,直径也扩大3倍,周长也扩大3倍;)8、半径缩小n倍,直径也缩小n倍,周长也缩小n倍;(半径缩小2倍,直径也缩小2倍,周长也缩小2倍;)9、求图形的周长,先看清图形封闭一周的所有实线(虚线的长度不算),再把所有的实线相加。

圆的知识点总结

圆的知识点总结

圆的知识点总结(一)圆的有关性质[知识归纳]1.圆的有关概念:圆、圆心、半径、圆的内部、圆的外部、同心圆、等圆;弦、直径、弦心距、弧、半圆、优弧、劣弧、等弧、弓形、弓形的高;圆的内接三角形、三角形的外接圆、三角形的外心、圆内接多边形、多边形的外接圆; 圆心角、圆周角、圆内接四边形的外角。

2.圆的对称性圆是轴对称图形,经过圆心的每一条直线都長它的对称轴,圆有无数条对称轴;圆是以圆心为对称中心的中心对称图形;圆具有族转不变性。

3.圆的确定不在同一条直线上的三点确定一个圆。

4.垂直于弦的直径垂径定理垂直于弦的直径平分这条弦,并且平分弦所对的两条弧;推论1(1)平分弦(不長直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径垂直平分弦,并且平分弦所对的另一条弧。

垂径定理及推论1可理解为一个圆和一条直线具备下面五个条件中的任意两个,就可推出另外三个:①过圆心;②垂直于弦;③平分弦(不長直径);④平分弦所对的优弧;⑤平分弦所对的劣弧。

推论2圆的两条平行弦所夹的弧相等。

5.圆心角、弧、弦.弦心距之间的关系定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等;所对的弦的弦心距相等。

推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等。

此定理和推论可以理解成:在同圆或等圆中,满足下面四个条件中的任何一个就能推出另外三个:①两个圆心角相等;②两个圆心角所对的弧相等;③两个圆心角或两条弧所对的弦相等;④两条弦的弦心距相等。

圆心角的度数等于它所对的弧的度数。

6.圆周角定理一条弧所对的圆周角等于它所对的圆心角的一半;推论1同弧或等弧所对的圆周角相等;在同圆或等圆中,相等的圆周角所对的弧也相等;推论2半圆(或直径)所对的圆周角是直角;90。

的圆周角所对的弦是直径;推论3如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。

圆的知识点总结(史上最全的)

圆的知识点总结(史上最全的)

圆的总结集合:圆:圆可以看作是到定点的距离等于定长的点的集合;圆的外部:可以看作是到定点的距离大于定长的点的集合;圆的内部:可以看作是到定点的距离小于定长的点的集合轨迹:1、到定点的距离等于定长的点的轨迹是:以定点为圆心,定长为半径的圆;2、到线段两端点距离相等的点的轨迹是:线段的中垂线;3、到角两边距离相等的点的轨迹是:角的平分线;4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线点与圆的位置关系:点在圆内d<r 点C 在圆内Ad点在圆上d=r 点B 在圆上r点在此圆外d>r 点A 在圆外OB直线与圆的位置关系:d直线与圆相离d>r 无交点C直线与圆相切d=r 有一个交点d=r 直线与圆相交d<r 有两个交点r drd圆与圆的位置关系:外离(图1)无交点d>R+r 外切(图2)有一个交点d=R+r dRr drR相交(图3)有两个交点R-r<d<R+r内切(图4)有一个交点d=R-r内含(图5)无交点d<R-r图 4图 5d ddr rR RR r 图 1 图 2图 3垂径定理:垂径定理:垂直于弦的直径平分弦且平分弦所对的弧推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧以上共 4 个定理,简称 2 推3 定理:此定理中共 5 个结论中,只要知道其中 2 个即可推出其它 3 个结论,即:①AB 是直径②AB ⊥CD ③CE=DE ④⑤BC BD AC AD推论2:圆的两条平行弦所夹的弧相等。

即:在⊙O 中,∵AB ∥CDAC DO OA BCED圆心角定理E B圆心角定理:同圆或等圆中,相等的圆心角所对F O 的弦相等,所对的弧相等,弦心距相等D 此定理也称 1 推3 定理,即上述四个结论中,只要知道其中的 1 个相等,则可以推出其它的 3 个AC结论也即:①∠AOB= ∠DOE ②AB=DEB③OC=OF ④BA ED C圆周角定理圆周角定理:同一条弧所对的圆周角等于它所对的圆心的角的一半B O即:∵∠AOB 和∠ACB 是所对的圆心角和圆周角∴∠AOB=2 ∠ACBA圆周角定理的推论:推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧是等弧D C 即:在⊙O 中,∵∠C、∠D 都是所对的圆周角∴∠C=∠DOBA 推论2:半圆或直径所对的圆周角是直角;圆周角是直角所对的弧是半圆,所对的弦是直径即:在⊙O 中,∵AB 是直径或∵∠C=90°C ∴∠C=90°∴AB 是直径推论3:三角形一边上的中线等于这边的一半,那么这个三角形是直角三角 C B AO形即:在△ABC 中,∵OC=OA=OB∴△ABC 是直角三角形或∠C=90°B AO注:此推论实是初二年级几何中矩形的推论:在直角三角形中斜边上的中线C 等于斜边的一半的逆定理。

圆知识点总结归纳

圆知识点总结归纳

圆知识点总结归纳一、圆的定义圆是由平面内到达与一点距离相等的所有点的集合。

这个点称为圆心,到达这个点的距离称为半径。

圆由所有到达圆心距离相等的点组成,因此圆是一个闭合曲线。

二、圆的基本性质1. 圆的直径是圆的边界上任意两点间的最长距离,其长度为圆周长的两倍。

2. 圆的直径平分圆,即将圆沿直径切割成两个相等的半圆。

3. 圆的周长是圆周上的点到圆心的距离之和,通常用字母C表示。

4. 圆的面积是圆内部的所有点到圆心的距离的平方和乘以π(π≈3.14),通常用字母A表示。

5. 圆上任意两点之间的弧长是圆的周长乘以这两点所对的圆心角的比值。

三、圆的相关公式1. 圆的周长公式:C=2πr,其中r为圆的半径,π为圆周率(π≈3.14)。

2. 圆的面积公式:A=πr²,其中r为圆的半径,π为圆周率(π≈3.14)。

3. 圆的弧长公式:L=2πr,其中r为圆的半径,π为圆周率(π≈3.14),L为圆上长为弧的长度。

四、圆的相关定理和性质1. 圆的切线定理:一个圆的切线与通过切点的圆心连线垂直。

2. 圆的相交定理:两个圆相交于两点时,连接这两个点与两个圆心的连线互相垂直。

3. 圆心角定理:同一个圆的圆心角(或其所对的弧)相等。

4. 圆的弦长定理:在同一个圆上,相等的弧对应到的弦相等。

5. 圆的切线长度定理:一个点A到圆上的切线的切点距离等于该点到圆心的距离。

五、圆的应用1. 圆在几何图形的构图和测量中有着广泛的应用,例如制图、建筑设计、土地规划等。

2. 在物理学中,圆的运动学和动力学有着重要的应用,例如圆周运动、转矩等。

3. 圆在工程学中也有着广泛的应用,例如电机、轮胎、齿轮等的设计和制造。

4. 圆在数学学科中也有着重要的应用,例如微积分、微分方程等的解题和求解。

总之,圆作为一个重要的几何图形,在数学和现实生活中都有着重要的应用。

通过深入学习圆的定义、性质、公式和应用,可以更全面地理解圆,并且将其知识运用到实际问题的解决中。

圆的知识点

圆的知识点

圆的知识点一、圆的定义和基本性质圆是由平面上到定点距离相等的所有点所组成的图形,这个定点称为圆心,到定点距离称为半径。

符号表示为O(r),O表示圆心,r表示半径。

圆有如下的基本性质:1. 圆的任何直径都是圆的最长的一条线段,它的长度等于半径的两倍。

2. 圆的任何弦都小于或等于圆的直径。

3. 圆的内部所有点到圆心的距离相等。

4. 圆的外部所有点到圆心的距离都大于圆的半径。

5. 圆的周长是圆周的长度,用C表示,公式为C=2πr,其中π≈3.14159。

6. 圆的面积为圆内所有点到圆心的距离之和,用S表示,公式为S=πr²。

二、圆的分类1. 根据周长分类根据周长的长短,圆可以分为:大圆、小圆、等圆。

大圆是半径最长的圆,周长最长;小圆是半径最短,周长最短;等圆是半径相等的圆,周长相等。

2. 根据圆心排列分类根据圆心排列的位置,圆可以分为:内切圆、外切圆、相切圆。

内切圆是与多边形的内部相切的圆;外切圆是与多边形的边缘相切的圆;相切圆是与两个或多个圆相切的圆。

3. 根据位置关系分类根据位置关系的不同,圆可以分为:相离的圆、相交的圆、包含的圆和重叠的圆。

相离的圆是没有交集的圆;相交的圆是有交集但不包含的圆;包含的圆是其中一个圆包含另一个圆的情况;重叠的圆是圆的一部分或全部在另一个圆内部的情况。

三、圆的相关定理1. 相交圆上切线定理对于两个相交的圆,从圆外一点引各自的切线,切点连线和两圆心连线的夹角相等。

2. 相切圆定理对于两个相切的圆,它们的切点连接这两个圆的圆心得到的直线垂直于切点连线。

3. 相似圆定理对于两个相似的圆,它们的半径比例等于它们的周长比例,也等于它们的面积比例。

4. 切线长定理对于一个半径为r的圆和一个以圆心为顶点的角,它的两条边分别相交圆于A和B两点,则切线长等于AB的长度,也就是r的平方除以从顶点到AB中点的距离。

5. 垂线定理对于两个相交的圆,它们的切线构成的角的平分线和两圆心之间的连线的中垂线相交于点O,连接O点和两个切点构成的线段互相垂直。

圆的单元知识点总结

圆的单元知识点总结

圆的单元知识点总结一、圆的基本概念1. 圆的定义:平面上距离给定点一定距离的点的集合称为圆,给定点称为圆心,给定距离称为半径。

2. 直径:圆的直径是通过圆心的两个点之间的线段,且与圆的两个点相切。

3. 弧长和弧度:圆的周长称为圆周,圆周上任意两点之间的弧长称为圆弧。

角度的单位通常使用弧度来表示,弧度的大小等于半径长的圆弧所对的圆心角的大小。

4. 圆心角:以圆心为顶点的角称为圆心角,其对应的圆弧称为圆心角所对应的圆弧。

5. 圆扇形和圆面积:以圆心为顶点的两条射线和圆上的弧所围成的图形称为圆扇形,其面积的计算公式为:S = 1/2r²θ(其中r为半径,θ为圆心角的弧度)。

二、圆的性质1. 圆的对称性:圆具有无数个对称轴,其中最重要的是与直径有关的对称性2. 圆的切线和切点:圆上的每一点都有且只有一条切线与之相切,这条切线始终垂直于半径,并且切点处的切线为水平。

3. 圆的不等式:对于任意两条不同的弦,它们所对应的圆心角的大小是不同的4. 圆的相交特性:两个圆相交于两个互异的点,这两个点称为交点。

三、圆的基本定理1. 圆的三要素:圆由圆心、半径和圆周组成。

2. 圆的唯一性:通过圆上任意两点可以唯一确定一个圆。

3. 圆的定位:圆可以在平面内任意一个点作为圆心,任意一段正数作为半径。

四、圆的相关公式和定理1. 圆的面积:圆的面积公式为:S=πr²,其中π≈3.14,r为半径长度。

2. 圆的周长:圆的周长公式为:C=2πr,其中C为周长,r为半径长度。

3. 圆的三角函数关系:三角函数与单位圆的关系,圆的三角函数包括正弦函数、余弦函数和正切函数。

4. 圆的角度关系:圆心角、圆周角和相交弦的角度关系,圆的角度关系在解决实际问题时具有重要的应用价值。

五、圆的相关实际应用1. 圆的测量与绘制:在实际应用中,圆的测量和绘制是非常重要的,例如在建筑、制图和工程设计中经常会用到圆的测量和绘制技术。

2. 圆的运动学问题:在物理学和工程学中,圆的运动学问题是研究物体在圆周运动和旋转运动中的相关规律和特点。

数学圆知识点总结7篇

数学圆知识点总结7篇

数学圆知识点总结数学圆知识点总结7篇数学圆知识点总结11.圆中心的一点叫圆心,用O表示。

一端在圆心,另一端在圆上的线段叫半径,用r表示。

两端都在圆上,并过圆心的线段叫直径,用d表示。

2.圆有无数条半径,有无数条直径。

3.圆心决定圆的位置,半径决定圆的大小。

4.把圆对折,再对折就能找到圆心。

5.圆是轴对称图形,直径所在的直线是圆的对称轴。

圆有无数条对称轴。

6.在同一个圆里,直径的长度是半径的2倍,可以表示为d=2r或r=d/2.圆的周长8.圆的周长除以直径的商是一个固定的数,叫做圆周率,用字母表示,计算时通常取3.14.9.C=d或C=r. 半圆的周长10. 1=3.14 2=6.28 3=9.42 4=12.56 5=15.7 6=18.847=21.98 8=25.12 9=28.26 10=31.4圆的面积11.用S表示圆的面积, r表示圆的半径,那么S=r^2 S环=(R^2-r^2)12. 11^2=121 12^2=144 13^2=169 14^2=196 15^2=225 16^2=25617^2=289 18^2=324 19^2=361 20^2=40013.周长相等时,圆的面积最大。

面积相等时,圆的周长最小。

面积相同时,长方形的周长最长,正方形居中,圆周长最短。

周长相同时,圆面积最大,正方形居中,长方形面积最小。

周长相同时,圆面积最大,利用这一特点,篮子、盘子做成圆形。

第四单元:比的认识15.两个数相除,又叫做这两个数的比。

比的后项不能为0.16.比的前项和后项同时乘上或除以一个相同的数(0除外)。

比值不变,这叫做比的基本性质。

由于在平面直角坐标系中,先画X轴,而X轴上的坐标表示列。

先用小括号将两个数括起来,再用逗号将两个数隔开。

括号里面的数由左至右为列数和行数。

列数与行数必须是具体的数,而不能用字母如(X,5)表示,它表述一条横线,(5,Y)它表示一条竖线,都不能确定一个点。

圆的知识点总结文库

圆的知识点总结文库

圆的知识点总结文库一、圆的定义圆是由一个平面上到一个确定点的距离恒定的所有点的集合。

我们把到一个点的距离叫做半径,把圆心叫做圆的中心。

二、圆的性质1. 圆的半径相等,圆心到圆上任意点的距离相等。

2. 在同一个圆中,更长一弦的圆弧更大。

相反,更大的圆弧所对的弦更长。

3. 圆周角等于圆心角的一半。

即圆周角等于它所对的圆心角的一半。

4. 圆的圆心角等于它所对的圆周角的一倍。

即圆心角等于它所对的圆周角的一倍。

5. 在同一个圆中,圆心角相等的两条弦所对的弧相等。

6. 跨圆弧等长。

7. 垂直于直径的弦平分弧。

8. 相交弦的交点到圆心的距离相等。

9. 直角三角形的两个直角边分别是弦和直径的两分之一。

10. 等腰三角形的底边等于弦。

11. 弧和圆心角是一一对应的。

12. 弦的中点与圆心连线垂直。

13. 对角互补。

14. 垂径定理:“直径垂直于弦,则直径平分弦。

”。

15. 在同一个圆中,直径比充分大的弧所对的圆心角比较小。

16. 横亘圆直径的角为直角。

17. 弦积定理:“两条相交弦(各自不是直径)的积等于这两条弦各自所扫的圆心角(分别以竖线分割弧)的积。

”18. 弧长定理:“等圆上的两个弧等圆周角,那么这两个弧相等,这两个弧所在的圆心角也相等。

”19. 垂径定理:“直径垂直于弦,则直径平分弦。

”20. 正多边形的内角和是;外角和是。

21. 圆锥曲线:圆。

22. 切线定理:“直线是圆的切线当且仅当直线与圆的平面所在的直线垂直,并且直线到圆心的距离等于半径长。

”。

23. 圆心角的角度值可以用弧度制来衡量。

24. 两圆外切:圆的外切条件:“两实心圆外切于一点,则此点到两圆圆心的距离相等。

”。

25. 两圆内切:圆的内切条件:“两实心圆内切于一点,则此点到两圆圆心的距离相等。

”。

26. 两圆相切:“两实心圆相切于某一点时,这一点到两圆圆心的连线互相垂直。

”。

27. 定比分。

以上是圆的一部分性质和定理,圆的知识非常广泛深入,同时也与许多其他数学领域有紧密的联系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆的知识点归纳总结大全
一、圆的定义。

1、以定点为圆心,定长为半径的点组成的图形。

2、在同一平面内,到一个定点的距离都相等的点组成的图形。

二、圆的各元素。

1、半径:圆上一点与圆心的连线段。

2、直径:连接圆上两点有经过圆心的线段。

3、弦:连接圆上两点线段(直径也是弦)。

4、弧:圆上两点之间的曲线部分。

半圆周也是弧。

(1)劣弧:小于半圆周的弧。

(2)优弧:大于半圆周的弧。

5、圆心角:以圆心为顶点,半径为角的边。

6、圆周角:顶点在圆周上,圆周角的两边是弦。

7、弦心距:圆心到弦的垂线段的长。

三、圆的基本性质。

1、圆的对称性。

(1)圆是轴对称图形,它的对称轴是直径所在的直线。

(2)圆是中心对称图形,它的对称中心是圆心。

(3)圆是旋转对称图形。

v1.0 可编辑可修改2、垂径定理。

(1)垂直于弦的直径平分这条弦,且平分这条弦所对的两条弧。

(2)推论:
平分弦(非直径)的直径,垂直于弦且平分弦所对的两条弧。

平分弧的直径,垂直平分弧所对的弦。

3、圆心角的度数等于它所对弧的度数。

圆周角的度数等于它所对弧度数的一半。

(1)同弧所对的圆周角相等。

(2)直径所对的圆周角是直角;圆周角为直角,它所对的弦是直径。

4、在同圆或等圆中,两条弦、两条弧、两个圆周角、两个圆心角、两条弦心距
五对量中只要有一对量相等,其余四对量也分别相等。

5、夹在平行线间的两条弧相等。

6、设⊙O的半径为r,OP=d。

d< r(r > d)点P在⊙O内
d= r 点P在⊙O上
d > r(r <)点P在⊙O外
7、(1)过两点的圆的圆心一定在两点间连线段的中垂线上。

(2)不在同一直线上的三点确定一个圆,圆心是三边中垂线的交点,它到三个点的距离相等。

(直角三角形的外心就是斜边的中点。


8、直线与圆的位置关系。

d表示圆心到直线的距离,r表示圆的半径。

直线与圆有两个交点,直线与圆相交;直线与圆只有一个交点,直线与圆相切; 直线与圆没有交点,直线与圆相离。

2
9、平面直角坐标系中,A (x 1,y 1)、B (x 2,y 2)。

则AB=221221)()(y y x x -+- 10、圆的切线判定。

(1)d=r 时,直线是圆的切线。

切点不明确:画垂直,证半径。

(2)经过半径的外端且与半径垂直的直线是圆的切线。

切点明确:连半径,证垂直。

11、圆的切线的性质(补充)。

(1)经过切点的直径一定垂直于切线。

(2)经过切点并且垂直于这条切线的直线一定经过圆心。

12、切线长定理。

(1)切线长:从圆外一点引圆的两条切线,切点与这点之间连线段的长叫这个
(2)切线长定理。

d =直线与圆相切。

d <
r (r >直线与圆相交。

d > r (r <直线与圆相离。

P
B
5-x B C E 56 7-x
∵ PA 、PB 切⊙O 于点 A 、B ∴ PA=PB ,∠1=∠2。

13、内切圆及有关计算。

(1)三角形内切圆的圆心是三个内角平分线的交点,它到三边的距离相等。

(2)如图,△ABC 中,AB=5,BC=6,AC=7,⊙O 切△ABC 三边于点D 、E 、F 。

求:AD 、BE 、CF 的长。

分析:设AD=x ,则AD=AF=x ,BD=BE=5-x ,CE=CF=7-x. 可得方程:5-x +7-x=6,解得x=3 (3)△ABC 中,∠C=90°,AC=b ,BC=a ,AB=c 。

求内切圆的半径r 。

分析:先证得正方形ODCE ,
得CD=CE=r
AD=AF=b -r ,BE=BF=a -r b -r +a -r=c 得r=2
c
b a -+ 14、(补充)
(1)弦切角:角的顶点在圆周上,角的一边是圆的切线,另一边是圆的弦。

如图,BC 切⊙O 于点B ,AB 为弦,∠ABC 叫弦切角,∠ABC=∠D 。

a-r
A B
C D E
(2)相交弦定理。

圆的两条弦AB与CD相交于点P,则PA·PB=PC·PD。

(3)切割线定理。

如图,PA切⊙O于点A,PBC是⊙O的割线,则PA2=PB·PC。

(4)推论:如图,PAB、PCD是⊙O的割线,则PA·PB=PC·PD。

15、圆与圆的位置关系。

(1)外离:d>r
1+r
2
,交点有0个;
外切:d=r
1
+r
2
,交点有1个;
相交:r
1
-r
2
<d<r1+r2,交点有2个;
内切:d=r
1
-r
2
,交点有1个;
内含:0≤d<r
1
-r
2
,交点有0个。

(2)性质。

相交两圆的连心线垂直平分公共弦。

B C
(1)图
C
(2)图(3)图
C
(4)图
D
B
相相离
v1.0 可编辑可修改
相切两圆的连心线必经过切点。

16、圆中有关量的计算。

(1)弧长有L 表示,圆心角用n 表示,圆的半径用R 表示。

L=
=
⨯R n π2360180
R
n π (2)扇形的面积用S 表示。

S=36036022
R n R n ππ=⨯ S=lR R R n 2
12180=⨯π (3)圆锥的侧面展开图是扇形。

r 为底面圆的半径,a 为母线长。

扇形的圆心角α=0360⨯a
r
S 侧=πar S 全=πar +πr 2。

相关文档
最新文档