高三数学模拟试题及答案

合集下载

高三数学模拟试题及答案

高三数学模拟试题及答案

高三数学模拟试题及答案一、选择题(本题共10小题,每小题3分,共30分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

)1. 已知函数f(x) = 2x^2 - 4x + 3,求f(2)的值。

A. 1B. 3C. 5D. 7答案:C2. 求下列数列的通项公式:数列:1, 1/2, 1/3, 1/4, ...A. a_n = nB. a_n = 1/nC. a_n = n^2D. a_n = 1/(n+1)答案:B3. 已知圆x^2 + y^2 = 9,点P(1, 2),求点P到圆心的距离。

A. 2B. 3C. 4D. 5答案:C4. 已知向量a = (3, -4),向量b = (-2, 3),求向量a与向量b的夹角θ。

A. 30°B. 45°C. 60°D. 90°答案:B5. 已知函数y = x^3 - 3x^2 + 4x,求导数y'。

A. 3x^2 - 6x + 4B. 3x^2 - 6x + 5C. 3x^2 - 6x + 3D. 3x^2 - 6x + 2答案:A6. 已知等差数列的第5项为15,第8项为25,求公差d。

A. 2B. 3C. 4D. 5答案:B7. 已知三角形ABC的三边长分别为a = 3,b = 4,c = 5,求三角形ABC的面积。

A. 6B. 9C. 12D. 15答案:A8. 已知函数f(x) = sin(x) + cos(x),求f(π/4)的值。

A. √2B. √3C. 2D. 1答案:A9. 已知复数z = 1 + i,求z的共轭复数。

A. 1 - iB. 1 + iC. -1 + iD. -1 - i答案:A10. 已知函数y = x^2 - 6x + 9,求函数的最小值。

A. 0B. 3C. 6D. 9答案:A二、填空题(本题共5小题,每小题4分,共20分。

)11. 已知函数f(x) = x^3 - 3x + 1,求f''(x)的值。

2023-2024学年北京高三三模数学模拟试题(含解析)

2023-2024学年北京高三三模数学模拟试题(含解析)

2023-2024学年北京市高三三模数学模拟试题一、单选题1.如图,集合A B 、均为U 的子集,()U A B ⋂ð表示的区域为()A .IB .IIC .IIID .IV【正确答案】D【分析】由补集和交集的概念求解即可.【详解】由补集的概念,U A ð表示的区域如下图所示阴影区域,∴()U A B ⋂ð表示的区域为下图所示阴影区域,即为图中的区域Ⅳ.故选:D.2.在下列四个函数中,在定义域内单调递增的有()A .()tan =f x xB .()f x x =C .()2xf x =D .()2f x x=【正确答案】C【分析】A.利用正切函数的性质判断;B.利用绝对值函数的性质判断;C.利用指数函数的性质判断;D.利用二次函数的性质判断.【详解】解:A.()tan =f x x 的增区间为πππ,π,Z 22k k k ⎛⎫-+∈ ⎪⎝⎭,在整个定义域上不单调,故错误;B.()f x x =的增区间是[0,)+∞,在整个定义域上不单调,故错误;C.()2xf x =在R 上递增,故正确;D.()2f x x =的增区间是[0,)+∞,在整个定义域上不单调,故错误;故选:C3.设0.80.70.713,,log 0.83a b c -⎛⎫=== ⎪⎝⎭,则,,a b c 的大小关系为()A .a b c <<B .b a c<<C .b<c<aD .c<a<b【正确答案】D【分析】利用指数函数与对数函数的性质,即可得出,,a b c 的大小关系.【详解】因为0.731a =>,0.80.80.71333b a -⎛⎫==>= ⎪⎝⎭,0.70.7log 0.8log 0.71c =<=,所以1c a b <<<.故选:D.本题考查的是有关指数幂和对数值的比较大小问题,在解题的过程中,注意应用指数函数和对数函数的单调性,确定其对应值的范围.比较指对幂形式的数的大小关系,常用方法:(1)利用指数函数的单调性:x y a =,当1a >时,函数递增;当01a <<时,函数递减;(2)利用对数函数的单调性:log a y x =,当1a >时,函数递增;当01a <<时,函数递减;(3)借助于中间值,例如:0或1等.4.已知tan 2x =,则tan 4x π⎛⎫+ ⎪⎝⎭的值为()A .3B .-3C .13D .34-【正确答案】B【分析】利用两角和的正切公式求解.【详解】解:因为tan 2x =,所以πtan tanπ214tan 3π41211tan tan 4x x x ++⎛⎫+===- ⎪-⋅⎝⎭-⋅,故选:B5.某辆汽车每次加油都把油箱加满,下表记录了该车相邻两次加油时的情况.加油时间加油量(升)加油时的累计里程(千米)2023年5月1日12350002023年5月15日6035500注:“累计里程”指汽车从出厂开始累计行驶的路程在这段时间内,该车每100千米平均耗油量为()A .6升B .8升C .10升D .12升【正确答案】D【分析】分析表中数据,得出行驶路径和耗油量,可计算结果.【详解】由表中的数据可知,行驶路径500千米耗油量为60升,则该车每100千米平均耗油量为60125=升.故选:D6.已知||1,||0OA OB OA OB =⋅=,点C 在AOB ∠内,且30AOC ∠=︒.设()OC mOA nOB m n =+∈R、,则mn等于()A .13B .3CD 【正确答案】B【分析】由题意可得OA OB ⊥,建立坐标系,由已知条件可得()OC m =,进而可得tan 30︒==,即可得答案.【详解】解:因为||1,||0OA OB OA OB =⋅=,所以OA OB ⊥ ,又因为点C 在AOB ∠内,且30AOC ∠=︒,建立如图所示的坐标系:则(1,0)OA = ,OB =,又因为()OC mOA nOB m n =+∈R、,所以()OC m =,所以tan 303m ︒==,所以3mn=.故选:B.7.设m R ∈,过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+=交于点(,)P x y ,则PA PB +的取值范围是A .B .C .D .【正确答案】B【详解】试题分析:易得(0,0),(1,3)A B .设(,)P x y ,则消去m 得:2230x y x y +--=,所以点P 在以AB 为直径的圆上,PA PB ⊥,所以222||||10PA PB AB +==,令,PA PB θθ==,则)4PA PB πθθθ+==+.因为0,0PA PB ≥≥,所以02πθ≤≤.所以sin()14πθ≤+≤PA PB ≤+≤选B.法二、因为两直线的斜率互为负倒数,所以PA PB ⊥,点P 的轨迹是以AB 为直径的圆.以下同法一.【考点定位】1、直线与圆;2、三角代换.8.已知{}n a 为无穷等差数列,则“存在*,i j ∈N 且i j ≠,使得0+=i j a a ”是“存在2k ≥且*k ∈N ,使得0k a =”的()A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【正确答案】B【分析】根据等差数列性质结合充分、必要条件分析判断.【详解】“存在*,i j ∈N 且i j ≠,使得0+=i j a a ”,不能推出“存在2k ≥且*k ∈N ,使得0k a =”,例如32n a n =-,则121,1a a ==-,即1,2i j ==,满足120i j a a a a +=+=,但令320k a k =-=,则*32k =∉N ,故不存在存在2k ≥且*k ∈N ,使得0k a =,故“存在*,i j ∈N 且i j ≠,使得0+=i j a a ”是“存在2k ≥且*k ∈N ,使得0k a =”的不充分条件;若“存在2k ≥且*k ∈N ,使得0k a =”,则取11,1i k j k =-≥=+,则1120i j k k k a a a a a -++=+==,故“存在*,i j ∈N 且i j ≠,使得0+=i j a a ”是“存在2k ≥且*k ∈N ,使得0k a =”的必要条件;综上所述:“存在*,i j ∈N 且i j ≠,使得0+=i j a a ”是“存在2k ≥且*k ∈N ,使得0k a =”的必要不充分条件.故选:B.9.十八世纪,瑞士数学家欧拉研究调和级数时,得到了以下结果:当n 很大时,1111ln 23n nγ++++=+ (其中γ为常数,其近似值为0.577)据此,可以估计111200012000230000+++ 的值为()A .4ln10B .ln6C .ln2D .3ln2【正确答案】D【分析】根据已知结论得两个等式相减即可得解.【详解】由题意得1111ln300002330000γ++++=+ ,1111ln200002320000γ++++=+ ,两式相减得,111300003ln 30000ln 20000ln ln 200012000230000200002+++=-== .故选:D .10.如图,平面中两条直线1l 和2l 相交于点O ,对于平面上任意一点M ,若,p q 分别是M 到直线1l 和2l 的距离,则称有序非负实数对(,)p q 是点M 的“距离坐标”.已知常数0,0p q ≥≥,给出下列命题:①若0p q ==,则“距离坐标”为(0,0)的点有且仅有1个;②若0pq =,且0p q +≠,则“距离坐标”为(,)p q 的点有且仅有2个;③若0pq ≠,则“距离坐标”为(,)p q 的点有且仅有4个.上述命题中,正确命题的个数是()A .0B .1C .2D .3【正确答案】D【分析】根据“距离坐标”的定义,依次分析各命题即可得答案.【详解】解:①,若0p q ==,则“距离坐标”为()0,0的点是两条直线的交点O ,因此有且仅有1个,故正确.②,若0pq =,且0p q +≠,则“距离坐标”为()0,q 或(),0p 的点有且仅有2个,故正确.③若0pq ≠,则0,0p q ≠≠,“距离坐标”为(),p q 的点有且仅有4个,为123,,,M M M M ,如图,故正确.故正确的命题个数为3个.故选:D二、填空题11.若5(1a =+,a b 为有理数),则a b +=_______________.【正确答案】120【分析】利用二项式定理展开5(1并计算,再利用有理项、无理项求解作答.【详解】由二项式定理得:1234555555513C 9C 97644(1=+++++=+依题意,76a +=+,a b 为有理数,因此76,44a b ==,所以120a b +=.故12012.银行储蓄卡的密码由6位数字组成,某人在银行自助取款机上取钱时,忘记了密码的最后1位数字,但记得密码的最后1位是偶数,则在第一次没有按对的条件下第2次按对的概率是_________.【正确答案】14/0.25【分析】根据条件概率公式直接计算即可.【详解】记事件A :第一次没有按对密码;事件B :第二次按对密码;()45P A =,()411545P AB =⨯=,()()()14P AB P B A P A ∴==.故答案为.14三、双空题13.在ABC 中,内角,,A B C 所对的边分别是,,a b c ,已知14b c a -=,2sin 3sin B C =,则bc=_______,cos A 的值为________.【正确答案】3214-【分析】利用正弦定理边角互化即可求得b c,利用余弦定理即可求得cos A .【详解】因为ABC 中,2sin 3sin B C =,所以由正弦定理可得23b c =,即32b c =.又因为14b c a -=,所以2a c =,所以由余弦定理可得()2222223212cos 32422c c c b c a A bc c c ⎛⎫+- ⎪+-⎝⎭===-⨯⨯,故32;14-14.已知n S 是数列{}n a 的前n 项和,且对任意的正整数n ,都满足:11122n nn a a +-=+,若112a =,则3a =________,2023S =______________.【正确答案】11220232024【分析】直接利用条件可递推出第三项,利用累加法可得数列通项再用裂项相消法求和即可.【详解】由11122n n n a a +-=+和112a =可得:21232311111146,612,a a a a a a -=⇒=∴-=⇒=即3a =112;由11122n n n a a +-=+可得:()112211111112,21,...,4n n n n n n a a a a a a ----=-=--=,累加得()()()124111111211n n n n a a a n n n n +--=⇒==-++,所以20231111112023 (1223202320242024)S ⎛⎫⎛⎫⎛⎫=-+-++-=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.故112,20232024四、填空题15.已知曲线:44C x x y y -=.①若00(,)P x y 为曲线C 上一点,则0020x y ->;②曲线C 在()0,1-处的切线斜率为0;③R,20m x y m ∃∈-+=与曲线C 有四个交点;④直线20x y m -+=与曲线C无公共点当且仅当((),0,m ∈-∞⋃+∞.其中所有正确结论的序号是_____________.【正确答案】①②【分析】分x 、y 的符号情况化简曲线C 的方程,从而可画出曲线C 的图象,结合图象逐一分析即可.【详解】当0x ≥,0y ≥时,曲线C 的方程为2244x y -=,即2214x y -=,曲线C 是双曲线的一部分;当0x ≥,0y <时,曲线C 的方程为2244x y +=,即2214x y +=,曲线C 是椭圆的一部分;当0x <,0y ≥时,曲线C 的方程为2244x y --=,曲线C 不存在;当0x <,0y <时,曲线C 的方程为2244x y -+=,即2214x y -=,曲线C 是双曲线的一部分;双曲线2214x y -=和2214y x -=有一条共同的渐近线20x y -=,综上,可作出曲线C的图象,如图:由图象可知曲线C 的图象上的点都在直线20x y -=的下方,所以当00(,)P x y 在曲线C 上时,有0020x y ->,故①正确;设过点()0,1-的直线l 的方程是1y kx =-,若直线l 与椭圆2214x y +=相切,则由22114y kx x y =-⎧⎪⎨+=⎪⎩得221408()k x kx -+=,2640k ∆==,得0k =;若直线l 与双曲线2214x y -=相切,则由22114y kx x y =-⎧⎪⎨-=⎪⎩得22(41)80k x kx --=,则2410k -≠且2640k ∆==,得0k =,此时直线l 的方程是1y =-,与曲线C 相切,故②正确;直线20x y m -+=是表示与直线20x y -=平行或重合的直线,由曲线C 的图象可知,直线20x y m -+=与曲线C 不可能有四个交点,故③错误;设直线20x y n -+=与椭圆2214x y +=相切,则由222014x y n x y -+=⎧⎪⎨+=⎪⎩得228440y ny n -+-=,所以221632(4)0n n ∆=--=,解得n =±C的图象,取n =-,即直线20x y --=与曲线C 相切,所以若直线20x y m -+=与曲线C 无公共点,结合曲线C 的图象,0m ≥或m <-.故①②.方法点睛:1.曲线方程中带有绝对值,一般是分绝对值里的式子的符号讨论去绝对值;2.直线与曲线的交点问题常采用数形结合的方法.五、解答题16.在ABC 中,76cos a b B =.(1)若3sin 7A =,求B ∠;(2)若8c =,从条件①、条件②这两个条件中选择一个作为已知,使ABC 存在.求ABC 的面积条件①:sin 47A =;条件②:sin B =【正确答案】(1)4π;(2)【分析】(1)直接由正弦定理边化角,结合倍角公式即可求解;(2)若选①:由正弦定理及倍角公式得4sin 23B =,ABC 不存在;若选②:先判断cos 0B >,再由sin 2B =求出cos B ,由73a b =及余弦定理求得a ,再计算面积即可.【详解】(1)由正弦定理得:7sin 6sin cos 3sin 2A B B B ==,又3sin 7A =,故sin 21B =,又()0,B π∈,故22B π=,4B π=;(2)若选①:由正弦定理得:7sin 6sin cos 3sin 2A B B B ==,又sin 47A =,故4sin 23B =,此时ABC 不存在;若选②:由7cos 06a B b =>,又sin 2B =,则1cos 2B =,73a b =,由余弦定理得2222cos b a c ac B =+-,即2276483a a a ⎛⎫=+- ⎪⎝⎭,解得3a =或245a =-(舍去),故ABC的面积为1sin 2ac B =.17.如图,在四棱锥P ABCD -中,PA ⊥底面,,//ABCD AD AB AB DC ⊥,2,1AD DC AP AB ====,点E 为棱PC的中点.(1)证明:BE DC ⊥;(2)求直线BE 与平面PBD 所成角的正弦值;(3)若F 为棱PC 上一点,满足BF AC ⊥,求二面角F AB P --的余弦值.【正确答案】(1)证明见解析;(2(3.【分析】(1)可以建立空间直角坐标系,利用向量数量积来证明BE DC ⊥,;(2)向量法:先求平面PBD 的法向量A ,然后利用公式1sin cos ,n BE n BE n BEθ⋅==⋅ 求直线BE 与平面PBD 所成角的正弦值;(3)向量法:先求平面ABF 和平面PBA 的法向量12,n n ,再利用公式121212cos ,n n n n n n ⋅=⋅ 来求二面角F AB P --的余弦值.【详解】依题意,以点E 为原点建立空间直角坐标系(如图),可得(1,0,0),(2,2,0)B C ,(0,2,0),(0,0,2)D P ,由点E 为棱PC 的中点,得()1,1,1E .(1)向量()0,1,1BE = ,()2,0,0DC = ,故0BE DC ⋅= .∴BE CD ⊥.(2)向量(1,2,0),(1,0,2)BD PB =-=- ,设()1,,n x y z = 为平面PBD 的法向量,则00n BD n PB ⎧⋅=⎨⋅=⎩,即2020x y x z -+=⎧⎨-=⎩,不妨令1z =,可得()2,1,1n = 为平面PBD 的一个法向量.于是有3cos ,||||62n BE n BE n BE ⨯〈〉==⨯⨯ ,∴直线BE 与平面PBD 所成角的正弦值为33.(3)()2,2,2,(2,2,0),(1,0,0),CP AC AB =--== ,由点F 在棱PC 上,故(12,22,2)BF BC CF BC lCP l l l =+=+=-- ,由BF AC ⊥,得+22(12)(22=0)l l --,解得34l =,即113,,222BF ⎛⎫=- ⎪⎝⎭.设1(,,)n x y z = 为平面ABF 的法向量,则1100n AB n BF ⎧⋅=⎪⎨⋅=⎪⎩ ,即01130222x x y z =⎧⎪⎨-++=⎪⎩,不妨令1z =,可得1(0,3,1)n =- 为平面ABF 的一个法向量.取平面PAB 的法向量2(0,1,0)n = ,则121212310cos ,1010n n n n n n ⋅===-⋅ .易知,二面角F AB P --31010.空间向量解答立体几何问题的一般步骤是:(1)观察图形,建立恰当的空间直角坐标系;(2)写出相应点的坐标,求出相应直线的方向向量;(3)设出相应平面的法向量,利用两直线垂直数量积为零列出方程组求出法向量;(4)将空间位置关系转化为向量关系;(5)根据定理结论求出相应的角和距离.18.诚信是立身之本,道德之基,某校学生会创设了“诚信水站”,既便于学生用水,又推进诚信教育,并用“周实际回收水费周投入成本”表示每周“水站诚信度”,为了便于数据分析,以四周为一周期,下表为该水站连续十二周(共三个周期)的诚信数据统计:第一周第二周第三周第四周第一个周期95%98%92%88%第二个周期94%94%83%80%第三个周期85%92%95%96%(1)计算表中十二周“水站诚信度”的平均数X ;(2)分别从表中每个周期的4个数据中随机抽取1个数据,设随机变量X 表示取出的3个数中“水站诚信度”超过91%的数据的个数,求随机变量X 的分布列和期望;(3)已知学生会分别在第一个周期的第四周末和第二个周期的第四周末各举行了一次“以诚为本”的主题教育活动,根据已有数据,说明两次主题教育活动的宣传效果,并根据已有数据陈述理由.【正确答案】(1)91%(2)见解析(3)两次活动效果均好.详见解析【分析】(1)利用平均数公式能求出表中十二周“水站诚信度”的平均数;(2)随机变量X 的可能取值为0,1,2,3,分别求出相应的概率,由此能求出X 的分布列和数学期望;(3)根据后继一周都有提升可得两次活动效果均好.【详解】(1)表中十二周“水站诚信度”的平均数:959892889494838085929596191%12100x +++++++++++=⨯=.(2)随机变量X 的可能取值为0,1,2,3,()1212044464P X ==⨯⨯=,()3211211444444P X ==⨯⨯+⨯⨯1231444464+⨯⨯=,()3213212444444P X ==⨯⨯+⨯⨯3233044464+⨯⨯=,()32318344464P X ==⨯⨯=,∴X 的分布列为:X 0123P 1327321532932171590123232323232EX =⨯+⨯+⨯+⨯=.(3)两次活动效果均好.理由:活动举办后,“水站诚信度”由88%94%→和80%到85%看出,后继一周都有提升.本题考查平均数的求法,考查离散型随机变量的分布列和数学期望的求法,是中档题,解题时要认真审题,在历年高考中都是必考题型之一.19.已知函数()ln f x ax x x =-.(1)当1a =时,求()f x 的零点;(2)讨论()f x 在[]1,e 上的最大值;(3)是否存在实数a ,使得对任意0x >,都有()f x a ≤?若存在,求a 的取值范围;若不存在,说明理由.【正确答案】(1)ex =(2)答案见解析(3)存在,a 的取值范围是1a =【分析】(1)利用导函数判断()f x 的单调性,进而判断零点的情况即可;(2)利用导函数判断()f x 在区间[]1,e 的单调性,进而求最值即可;(3)由题意只需()max f x a ≤即可,利用(2)中结论即1e 0a a --≤,利用导数求a 的范围即可.【详解】(1)()ln f x ax x x =-的定义域为()0,∞+,当1a =时,()ln f x x x x =-,()ln f x x '=-,所以当()0,1x ∈时,()0f x ¢>,()f x 单调递增,当()1,x ∈+∞时,()0f x '<,()f x 单调递减,又因为当0x →时()0f x >,()11f =,()e 0f =,所以()f x 仅有一个零点,e x =.(2)()1ln f x a x =--',令()0f x '=,解得1e a x -=,在区间()0,∞+内,x ()10,e a -1e a -()1e,a -+∞()f x '+0-()f x 单调递增极大值单调递减当1e 1a -≤(即1a ≤)时,在[]1,e 上()f x 单调递减,()max ()1f x f a ==,当1e e a -≥(即2a ≥)时,在[]1,e 上()f x 单调递增,()max ()e e e f x f a ==-,当11e e a -<<(即12a <<)时,在1e ,e a -⎡⎤⎣⎦上()f x 单调递增,在11,e a -⎡⎤⎣⎦上()f x 单调递减,()()1111max ()e e e 1e a a a a f x f a a ----==--=.综上所述,当1a ≤时,()f x 的最大值为a ,当2a ≥时,()f x 的最大值为e e a -,当12a <<时,()f x 的最大值为1e a -.(3)由(2)知在()0,∞+上,()11max ()ee a af x f --==,构造函数()()11e e a a g a f a a --=-=-,由题意应使()0g a ≤,()1e 1a g a -'=-,令()0g a '=,解得1a =.a (),1-∞1()1,+∞()g a '-0+()g a 单调递减极小值单调递增所以()min ()10g a g ==,所以使()0g a ≤的实数a 只有1a =,即a 的取值范围是1a =.20.已知椭圆C :2233x y +=,过点()D 1,0且不过点()2,1E 的直线与椭圆C 交于A ,B 两点,直线AE 与直线3x =交于点M .(Ⅰ)求椭圆C 的离心率;(Ⅱ)若AB 垂直于x 轴,求直线BM 的斜率;(Ⅲ)试判断直线BM 与直线D E 的位置关系,并说明理由.【正确答案】(Ⅰ(Ⅱ)1;(Ⅲ)平行,理由见解析.【详解】试题分析:本题主要考查椭圆的标准方程及其几何性质、直线的斜率、两直线的位置关系等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力.(Ⅰ)先将椭圆方程化为标准方程,得到a ,b ,c 的值,再利用c e a=计算离心率;(Ⅱ)由直线AB 的特殊位置,设出A ,B 点坐标,设出直线AE 的方程,由于直线AE 与3x =相交于M 点,所以得到M 点坐标,利用点B 、点M 的坐标,求直线BM 的斜率;(Ⅲ)分直线AB 的斜率存在和不存在两种情况进行讨论,第一种情况,直接分析即可得出结论,第二种情况,先设出直线AB 和直线AE 的方程,将椭圆方程与直线AB 的方程联立,消参,得到12x x +和12x x ,代入到1BM k -中,只需计算出等于0即可证明BM DE k k =,即两直线平行.试题解析:(Ⅰ)椭圆C 的标准方程为2213x y +=.所以a =1b =,c所以椭圆C 的离心率c e a ==.(Ⅱ)因为AB 过点(1,0)D 且垂直于x 轴,所以可设1(1,)A y ,1(1,)B y -.直线AE 的方程为11(1)(2)y y x -=--.令3x =,得1(3,2)M y -.所以直线BM 的斜率112131BM y y k -+==-.(Ⅲ)直线BM 与直线D E 平行.证明如下:当直线AB 的斜率不存在时,由(Ⅱ)可知1BM k =.又因为直线D E 的斜率10121DE k -==-,所以//BM DE .当直线AB 的斜率存在时,设其方程为(1)(1)y k x k =-≠.设11(,)A x y ,22(,)B x y ,则直线AE 的方程为1111(2)2y y x x --=--.令3x =,得点1113(3,)2y x M x +--.由2233{(1)x y y k x +==-,得2222(13)6330k x k x k +-+-=.所以2122613k x x k +=+,21223313k x x k -=+.直线BM 的斜率11212323BM y x y x k x +---=-.因为()()()()()()()11212121131232132BM k x x k x x x x k x x -+--------=--121221(1)[2()3)(3)(2)k x x x x x x --++-=--2222213312(1)[3)1313(3)(2)k k k k k x x -+-+-++=--0=,所以1BM DE k k ==.所以//BM DE .综上可知,直线BM 与直线D E 平行.椭圆的标准方程及其几何性质、直线的斜率、两直线的位置关系.21.若项数为()3N N ≥的数列12:,,,N N A a a a 满足:()*11,N 2,3,,i a a i N =∈= ,且存在{}2,3,,1M N ∈- ,使得{}{}11,2,111,2,1n n n M a a M n N +⎧≤≤-⎪-∈⎨--≤≤-⎪⎩,则称数列N A 具有性质P .(1)①若3N =,写出所有具有性质P 的数列3A ;②若44,3N a ==,写出一个具有性质P 的数列4A ;(2)若2024N =,数列2024A 具有性质P ,求2024A 的最大项的最小值;(3)已知数列1212:,,,,:,,,N N N N A a a a B b b b 均具有性质P ,且对任意{},1,2,,i j N ∈ ,当i j ≠时,都有,i j i j a a b b ≠≠.记集合{}112,,,N T a a a = ,{}212,,,N T b b b = ,求12T T ⋂中元素个数的最小值.【正确答案】(1)①3A :1,2,1或1,3,1或1,3,2;②4A :1,2,4,3(或1,3,4,3或1,3,5,3)(2)1013(3)3【分析】(1)直接根据性质P 的概念一一列举即可;(2)根据性质P 及累加法得M a M ≥和2025M a M ≥-,两式相加即可求解;(3)根据性质P 及累加法得23M a N ≤-,23M b N ≤-,求出并集中元素个数的最大值,从而求出交集中的元素个数最小值.【详解】(1)①3A :1,2,1或1,3,1或1,3,2;②4A :1,2,4,3(或1,3,4,3或1,3,5,3)(2)当2024N =时,{}2,3,,2023M ∈ .由12111,1,,1M M a a a a a -=-≥-≥ ,累加得M a M ≥;又由20242023202411,1,,1M M a a a a a +≥-≥-≥ ,累加得2025M a M ≥-;相加得22025M a ≥,又*M a ∈N ,所以1013M a ≥.所以数列2024A 的最大项M a 的最小值为1013,一个满足条件的数列为()()1,2,,101320261014,1015,,2024n n n a n n ⎧=⎪=⎨-=⎪⎩ ;(3)由12111,2,,2M M a a a a a -=-≤-≤ ,累加得21M a M ≤-.又1M N ≤-,所以23M a N ≤-,同理,23M b N ≤-,所以{}()12121,2,,23,card 23T T N T T N ⋃⊆-⋃≤- ,因为()()12card card T T N ==,所以()()()()121212card card card card 3T T T T T T ⋂=+-⋃≥,所以12T T ⋂中元素个数的最小值为3,一组满足条件的数列为()()()()()11211,2,,1222,3,,12425n n n n n N a b n n N N n N N n N ⎧=⎧-=-⎪⎪==-=-⎨⎨-=⎪⎩⎪-=⎩ ,此时{}121,24,25T T N N ⋂=--.思路点睛:此题考查数列与集合结合的新定义问题,属于难题,关于新定义题的思路有:(1)找出新定义有几个要素,找出要素分别代表什么意思;(2)由已知条件,看所求的是什么问题,进行分析,转换成数学语言;(3)将已知条件代入新定义的要素中;(4)结合数学知识进行解答.。

2023-2024学年江苏省盐城中学高三年级模拟考试数学试题+答案解析(附后)

2023-2024学年江苏省盐城中学高三年级模拟考试数学试题+答案解析(附后)

一、单选题:本题共8小题,每小题5分,共40分。

在每小题给出的选项中,只有一项是符合题目要求2023-2024学年江苏省盐城中学高三年级模拟考试数学试题的。

1.若集合,,则( )A. B.C.D.2.若是关于x 的 实系数方程的一个虚数根,则( )A. , B. ,C. ,D. ,3.若,则( )A. B.C.D.4.已知,则“”是“”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件5.若函数在R 上无极值,则实数a 的取值范围( )A. B.C.D. 6.设,是双曲线的两个焦点,O 为坐标原点,P 是C 的左支上一点,且,则的面积为( )A.B.C. 8D.7.数列中,,,使对任意的为正整数恒成立的最大整数k 的值为( )A. 1209B. 1211C. 1213D. 12158.对于一个古典概型的样本空间和事件A ,B ,C ,D ,其中,,,,,,,,则( )A. A 与B 不互斥B. A 与D 互斥但不对立C. C 与D 互斥D. A 与C相互独立二、多选题:本题共4小题,共20分。

在每小题给出的选项中,有多项符合题目要求。

全部选对的得5分,部分选对的得2分,有选错的得0分。

9.已知,则( )A. B.C. D.10.已知函数的一条对称轴为,则( )A. 的最小正周期为B.C. 在上单调递增D.11.平行六面体中,各棱长均为2,设,则( )A. 当时,B. 的取值范围为C. 变大时,平行六面体的体积也越来越大D. 变化时,和BD总垂直12.已知曲线C是平面内到定点和定直线的距离之和等于4的点的轨迹,若在曲线C上,则下列结论正确的是( )A.曲线C关于x轴对称B. 曲线C关于y轴对称 C. D.三、填空题:本题共4小题,每小题5分,共20分。

13.某产品有5件正品和3件次品混在了一起产品外观上看不出有任何区别,现从这8件产品中随机抽取3件,则取出的3件产品中恰有1件是次品的概率为__________.14.已知单位向量,,满足,则的值为__________.15.在数字通信中,信号是由数字“0”和“1”组成的序列,“0,1数列”是每一项均为0或1的数列,设C是一个“0,1数列”,定义数列为数列C中每个0都变为“1,0,1”,每个1都变为“0,1,0”所得到的新数列.例如数列,1,则数列,0,1,0,1,已知数列,1,0,1,0,记数列,,2,3,,则数列的所有项之和为__________;数列的所有项之和为__________.16.在中,,P为内部一动点含边界,在空间中,若到点P的距离不超过1的点的轨迹为L,则几何体L的体积等于__________.四、解答题:本题共6小题,共70分。

海南省海南中学2024届高三第一次模拟数学试题及参考答案

海南省海南中学2024届高三第一次模拟数学试题及参考答案

海南省海南中学2024届高三第一次模拟数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知全集{}1,2,3,4,5,6U =,集合{}{}1,3,5,2,3,4A B ==,则()U B A ⋂=( ) A .{}3B .{}2,4C .{}2,4,6D .{}1,2,4,62.若()2,3a =−,()1,2b =−,则()2a a b ⋅+=( ) A .5− B .3−C .3D .53.复数13ii 1iz +=−−,则z =( )A B C .2D 4.已知实数列1−、x 、y 、z 、2−成等比数列,则xyz =( )A .B .±4C .−D .±5.刍(chú)甍(méng )是中国古代算数中的一种几何体,其结构特征是:底面为长方形,顶棱和底面平行,且长度不等于底面平行的棱长的五面体,是一个对称的楔形体.已知一个刍甍底边长为4,底边宽为3,上棱长为2,高为2,则它的表面积是( )A .27+B .42+C .27+D .42+6.已知函数()f x 为偶函数,其图像在点()()1,1f 处的切线方程为210x y −+=,记()f x 的导函数为()f x ',则()1f '−=( ) A .12−B .12C .2−D .27.设某直角三角形的三个内角的余弦值成等差数列,则最小内角的正弦值为( )A .35B .45C D 8.双曲线C :221124x y −=的右焦点为F ,双曲线C 上有两点A ,B 关于直线l :380x y +−=对称,则FA FB +=( )A .B .C .D .二、多选题9.下列说法中正确的是( )A .一组数据10,11,11,12,13,14,16,18,20,22的第60百分位数为14B .某中学有高中生3500人,初中生1500人,为了解学生学习情况.用分层抽样的方法从该校学生中抽取一个容量为100的样本,则抽取的高中生人数为70C .若样本数据121031,31,,31x x x +++的平均数为10,则数据1210,,,x x x 的平均数为3D .随机变量X 服从二项分布()4,B p ,若方差()34D X =,则()3164P X == 10.某数学兴趣小组的同学经研究发现,反比例函数1y x=的图象是双曲线,设其焦点为,M N ,若P 为其图象上任意一点,则( )A .y x =−是它的一条对称轴 BC .点()2,2是它的一个焦点D .PM PN −=11.已知函数()32f x ax bx cx d =+++存在两个极值点()1212,x x x x <,且()11f x x =−,()22f x x =.设()f x 的零点个数为m ,方程()()2320a f x bf x c ⎡⎤++=⎣⎦的实根个数为n ,则( )A .当0a >时,3n =B .当a<0时,2m n +=C .mn 一定能被3整除D .m n +的取值集合为{}4,5,6,7三、填空题12.若πtan 34θ⎛⎫+= ⎪⎝⎭,则tan θ= .13.设()525012512x a a x a x a x −=+++⋅⋅⋅+,则125a a a ++⋅⋅⋅+= .14.洛卡斯是十九世纪法国数学家,他以研究斐波那契数列而著名.洛卡斯数列就是以他的名字命名,洛卡斯数列{}n L 为:1,3,4,7,11,18,29,47,76,,即1213L L ==,,且()21n n n L L L n *++=+∈N .设数列{}n L 各项依次除以4所得余数形成的数列为{}n a ,则2024a = .四、解答题15.已知质量均匀的正n 面体,n 个面分别标以数字1到n .(1)抛掷一个这样的正n 面体,随机变量X 表示它与地面接触的面上的数字.若2(X 5).3P <=求n ;(2)在(1)的情况下,抛掷两个这样的正n 面体,随机变量Y 表示这两个正n 面体与地面接触的面上的数字和的情况,我们规定:数字和小于7,等于7,大于7,Y 分别取值0,1,2,求Y 的分布列及期望.16.已知函数2()e (21)e x x f x a ax =−−−. (1)讨论()f x 的单调性;(2)若()f x 有两个零点,求a 的取值范围.17.如图,在多面体ABCDEF 中,四边形ABCD 是正方形,,//BF DE BF DE =,M 是AE 的中点.(1)求证://EC 平面BDM ;(2)若DE ⊥平面,4,ABCD AB BM CF =⊥,点P 为线段CE 上一点,且13CP CE =,求直线PM 与平面AEF 所成角的正弦值.18.已知动点P 与定点(),0A m 的距离和P 到定直线2n x m=的距离的比为常数m n .其中0,0m n >>,且m n ≠,记点P 的轨迹为曲线C .(1)求C 的方程,并说明轨迹的形状;(2)设点(),0B m −,若曲线C 上两动点,M N 均在x 轴上方,AM BN ,且AN 与BM 相交于点Q .①当4m n ==时,求证:11AM BN+的值及ABQ 的周长均为定值; ②当m n >时,记ABQ 的面积为S ,其内切圆半径为r ,试探究是否存在常数λ,使得S r λ=恒成立?若存在,求λ(用,m n 表示);若不存在,请说明理由. 19.在计算机科学中,n 维数组(){}12,,,,0,1,N ,2n i X x x x x i n +=∈∈≥是一种基础而重要的数据结构,它在各种编程语言中被广泛使用.对于n 维数组()()1212,,,,,,,n n A a a a B b b b ==,定义A 与B 的差为()1122,,,,n n A B a b a b a b A−=−−−与B 之间的距离为1(,)ni i i d A B a b ==−∑.(1)若n 维数组()0,0,,0C =,证明:()()(),,,d A C d B C d A B +≥;(2)证明:对任意的数组,,A B C ,有()(),,d A C B C d A B −−=; (3)设集合(){}{}12,,,,0,1,N ,2,n n i n S X X x x x x i n P S +==∈∈≥⊆,若集合P 中有()2m m ≥个n 维数组,记P 中所有两元素间的距离的平均值为()d P ,证明:()()21mnd P m ≤−.参考答案:1.B【分析】根据给定条件,利用补集、交集的定义求解即得. 【详解】全集{}1,2,3,4,5,6U =,{}13,5A =,,则{2,4,6}UA =,而{}2,3,4B =,所以(){}2,4U A B ⋂=. 故选:B 2.B【分析】利用向量加法和数量积的坐标表示直接计算求解即可. 【详解】由题意可知()20,1a b +=, 所以()()220313a a b ⋅+=⨯+−⨯=−, 故选:B 3.D【分析】由复数的运算结合模长公式计算即可. 【详解】因为()()()()13i 1i 13ii=i=1i 1i 1i 1i z +++=−−−+−−+,所以z = 故选:D. 4.C【分析】求出y 的值,利用等比中项的性质可求得结果.【详解】设等比数列1−、x 、y 、z 、2−的公比为()0q q ≠,则210y q =−⨯<,由等比中项的性质可得()()2122y =−⨯−=,所以,y =因此,(33xyz y ===−故选:C. 5.A【分析】由题意可得刍甍的左右两个三角形为全等的等腰三角形,前后两个四边形为全等的等腰梯形,利用勾股定理分别求出三角形和梯形的高,从而可求出各个面的面积,即可得出答案.【详解】解:由题意可得刍甍的左右两个三角形为全等的等腰三角形,前后两个四边形为全等的等腰梯形,=,52=,则一个等腰三角形的面积为1322⨯,一个等腰梯形的面积为()52415222+⨯=,所以此刍甍的表面积为1522432722⨯+⨯+⨯=+故选:A.6.A【分析】先推导出偶函数的导数为奇函数,再根据条件得到()1f',再利用奇函数的的性质求()1f'−.【详解】因为()f x为偶函数,所以()()f x f x=−,两边求导,可得()()''f x f x⎡⎤⎡⎤=−⎣⎦⎣⎦⇒()()()'·f x f x x=−−''⇒()()f x f x=−'−'.又()f x在()()1,1f处的切线方程为:210x y−+=,所以()112f'=.所以()()1112f f''−=−=−.故选:A7.C【分析】设出三个角度的大小关系,结合已知条件求得最小角的正切值,再求正弦值即可.【详解】设π2A B C<<=,根据题意可得cos0C=,且cos cos2cosC A B+=,即2cos cosB A=,又π2A B+=,则2cos2sinB A=,2sin cosA A=,解得1tan2A=,又π0,2A⎛⎫∈ ⎪⎝⎭,则sin A.故选:C.8.B【分析】:30AB x y m −+=,()()1122,,,A x y B x y ,AB 的中点为S , 联立直线方程和双曲线方程后结合对称可得S 的坐标,而2FA FB FS +=,故可求FA FB +. 【详解】()4,4,0c F ==,设AB 的中点为S ,连接FS因为l 为线段AB 的垂直平分线,故可设:30AB x y m −+=,()()1122,,,A x y B x y ,由22112430x y x y m ⎧−=⎪⎨⎪−+=⎩可得2266120y my m −+−=(*), 故12y y m +=,故()121232x x y y m m +=+−=, 故AB 的中点为,22m m ⎛⎫⎪⎝⎭,因AB 的中点在直线380x y +−=上,故38022m m⨯+−=, 故4m =,此时22362412240m m ∆=−+⨯>,且()2,2S −,故224FA FB FS +== 故选:B.9.BC【分析】由百分位数求解判断A ,由分层抽样判断B ,由平均值性质判断C ,由二项分布性质判断D.【详解】对A ,1060%6⨯=,故第60百分位数为第6和第7位数的均值1416152+=,故A 错误;对B ,由题抽取的高中生抽取的人数为35001007035001500⨯=+,故B 正确;对C , 设数据1210,,,x x x 的平均数为x ,由平均值性质可知:样本数据121031,31,,31x x x +++的平均数为3110x +=,解得3x =,故C 正确;对D ,由题意可知()3414p p −=,解得14p =或34p =,则()31413271C 4464P X ⎛⎫==⨯⨯= ⎪⎝⎭或()3143131C 4464P X ⎛⎫==⨯⨯= ⎪⎝⎭,故D 错误. 故选:BC 10.ABD【分析】由题意可知反比例函数的图象为等轴双曲线,进一步分别计算出离心率以及,a c 即可逐一判断求解.容易知道y x =是实轴,y x =−是虚轴,坐标原点是对称中心, 联立实轴方程y x =与反比例函数表达式1y x=得实轴顶点()()1,1,1,1−−,所以2a c ==,其中一个焦点坐标应为而不是()2,2,由双曲线定义可知2PM PN a −== 故选:ABD. 11.AB【分析】分0a >和0a <两种情况,利用导数判断原函数单调性和极值,结合图象分析()f x ,()()f f x '的零点分布,进而可得结果,【详解】由题意可知()232f x ax bx c '=++为二次函数,且()1212,x x x x <为()f x '的零点,由()()()()2320f f x a f x bf x c ⎡⎤+⎦'=+=⎣得()1f x x =或()2f x x =, 当0a >时,令()0f x '>,解得1x x <或2x x >;令()0f x '<,解得12x x x <<; 可知:()f x 在()()12,,,x x ∞∞−+内单调递增,在()12,x x 内单调递减, 则1x 为极大值点,2x 为极小值点, 若10x ≥,则120x x −≤<,因为()()12f x f x >,即12x x −>,两者相矛盾,故10x <, 则()2f x x =有2个根,()1f x x =有1个根,可知3n =, 若()220f x x =>,可知1m =,3,4mn m n =+=;若()220f x x ==,可知2m =,6,5mn m n =+=; 若()220f x x =<,可知3m =,9,6mn m n =+=; 故A 正确;当0a <时,令()0f x '>,解得12x x x <<;令()0f x '<,解得1x x <或2x x >; 可知:()f x 在()12,x x 内单调递增,在内()()12,,,x x ∞∞−+单调递减, 则2x 为极大值点,1x 为极小值点, 若20x ≤,则120x x −>≥,因为()()12f x f x <,即12x x −<,两者相矛盾,故20x >,若()110f x x =−>,即10x <,可知1m =,3n =,3,4mn m n =+=; 若()110f x x =−=,即10x =,可知2m =,4n =,8,6mn m n =+=; 若()110f x x =−<,即1>0x ,可知3m =,5n =,15,8mn m n =+=; 此时2m n +=,故B 正确;综上所述:mn 的取值集合为{}3,6,8,9,15,m n +的取值集合为{}4,5,6,8, 故CD 错误; 故选:AB.【点睛】方法点睛:对于函数零点的个数的相关问题,利用导数和数形结合的数学思想来求解.这类问题求解的通法是:(1)构造函数,这是解决此类题的关键点和难点,并求其定义域; (2)求导数,得单调区间和极值点;(3)数形结合,挖掘隐含条件,确定函数图象与x 轴的交点情况进而求解. 12.12/0.5【分析】由两角和的正切公式求解即可.【详解】由πtan 34θ⎛⎫+= ⎪⎝⎭可得:πtan tan43π1tan tan 4θθ+=−⋅, 即tan 131tan θθ+=−,解得:1tan =2θ.故答案为:12 13.2−【分析】分别令0x =,1x =即可得解. 【详解】令0x =,则01a =, 令1x =,则01251a a a a +++⋅⋅⋅+=−, 所以1252a a a ++⋅⋅⋅+=−. 故答案为:2−. 14.3【分析】根据递推关系可得{}n a 的周期性,再根据周期性求解即可. 【详解】{}n L 的各项除以4的余数分别为1,3,0,3,3,2,1,3,0,,故可得{}n a 的周期为6,且前6项分别为1,3,0,3,3,2, 所以20246337223a a a ⨯+===. 故答案为:3. 15.(1)6n =.(2)分布列见解析,(Y)1E =.【分析】(1)直接由题意解出即可.(2)设出事件,按古典概型中等可能事件的概率公式求出随机变量各个取值的概率,列出分布列,求出数学期望即可. 【详解】(1)因为42(X 5)3P n <==,所以6n =. (2)样本空间{(,),{1,2,3,4,5,6}}m t m t Ω=∈∣,共有36个样本点. 记事件A =“数字之和小于7”,事件B =“数字之和等于7", 事件C =“数字之和大于7”.{(1,1),(1,2),(2,1),(1,3),(3,1),(2,2),(1,4),(4,1),(2,3),(3,2)A =,(1,5),(5,1),(2,4),(4,2),(3,3)},共15种,故155(Y 0)()3612P P A ==== {(1,6),(6,1),(2,5),(5,2),(3,4),(4,3)}B =,共6种,故61(Y 1)()366P P B ====; {(2,6),(6,2),(3,5),(5,3),(4,4),(3,6),(6,3),(4,5),(5,4)C =, (4,6),(6,4),(5,5),(5,6),(6,5),(6,6)},共15种,故155(Y 2)()3612P P C ====; 从而Y 的分布列为:故515(Y)012112612E =⨯+⨯+⨯= 16.(1)答案见解析; (2)1a >【分析】(1)求出导函数,根据0a ≤和0a >分类讨论求解即可;(2)根据函数()f x 的单调性易知0a >且min ()(ln )0f x f a =<,根据零点存在性定理结合函数的单调性列不等式求解即可.【详解】(1)()()2()2e (21)e 2e 1e x x x xf x a a a =−−−=+−'.①若0a ≤,()0f x '>,()f x 在(,)−∞+∞为增函数; ②若0a >,令()0f x '=,得ln x a =.当(,ln )x a ∈−∞时,()0,()'<f x f x 为减函数, 当(ln ,)x a ∈+∞时,()0,()'>f x f x 为增函数. 综上所述,当0a ≤时,()f x 在(,)−∞+∞单调递增;当0a >时,()f x 在(,ln )a −∞单调递减,在(ln ,)a +∞单调递增.(2)当0a ≤时,()f x 在(,)−∞+∞单调递增,不可能有两个零点,不符合题意. 当0a >时,()f x 在(,ln )a −∞单调递减,在(ln ,)a +∞单调递增, 因为()f x 有两个零点,必有min ()(ln )(1ln )0f x f a a a a ==−−<, 因为0a >,所以1ln 0a a −−<.令()1ln ,0g a a a a =−−>, 则1()10g a a'=−−<,所以()g a 在(0,)+∞单调递减,而(1)0g =, 所以当1a >时,()0g a <,即min ()0f x <. 又2211112(1)(21)10e e e e e f a a a ⎛⎫−=−−+=++−> ⎪⎝⎭,故()f x 在(1,ln )−a 有1个零点; 当ln 0x a >>时,因为e 1xy x =−−,则e 1xy '=−,由0'>y 得0x >,由0'<y 得0x <,所以函数e 1xy x =−−在()0∞−,单调递减,在()0,∞+单调递增,所以0e 1e 010x x −−≥−−=,即e 1x x >+,故()e 1x ax a −>−−,所以()22()e (21)e e 1e (31)e x x x x xf x a a a a >−−−−=−−+,取ln 3ln x a a =>,有2ln3ln32(ln3)e (31)e 9(31)340a a f a a a a a a a a >−−+=−−+=>, 所以()f x 在(ln ,ln3)a a 有1个零点. 综上所述,当()f x 有两个零点时,1a >. 17.(1)证明见解析;【分析】(1)连接AC 交BD 于N ,连接MN ,通过//MN EC 可证明;(2)建立空间直角坐标系,||DE a =,利用坐标运算通过0BM CF ⋅=求出a ,再利用向量法求线面角.【详解】(1)连接AC 交BD 于N ,连接MN ,因为四边形ABCD 是正方形,故N 为AC 中点,M 是AE 的中点, 所以在ACE △中,有//MN EC , 又EC ⊄平面,BDM MN ⊂平面BDM , 所以//EC 平面BDM ;(2)如图,建立空间直角坐标系,设||,||4DE a AB ==, 则(4,4,0),(0,4,0),(4,4,),(4,0,0),(0,0,)B C F a A E a ,又M 是AE 的中点,故2,0,2a M ⎛⎫ ⎪⎝⎭,2,4,,(4,0,)2a BM CF a ⎛⎫=−−= ⎪⎝⎭,因为BM CF ⊥,所以2802a BM CF ⋅=−+=,解得4a =, 设1(,,),3P x y z CP CE =,即(,4,)CP x y z =−11(0,4,4)33CE ==−,可得840,,33P ⎛⎫⎪⎝⎭,则822,,33PM ⎛⎫=−− ⎪⎝⎭,又(0,4,4),(4,0,4)AF AE ==−,设平面AEF 的一个法向量为()111,,n x y z =,则1111440440n AF y z n AE x z ⎧⋅=+=⎪⎨⋅=−+=⎪⎩,令11z =,则111,1x y ==−,即(1,1,1)n =−, 设直线PM 与平面AEF 所成角为θ,则sin cos ,3n MP n MP n MPθ⋅====⋅所以直线PM 与平面AEF .18.(1)答案见解析(2)① 证明见解析;②存在;2()2m n nλ+=【分析】(1)设(),P x y ,由题意可得222221x y n n m +=−,结合椭圆、双曲线的标准方程即可求解;(2)设点()()()112233,,,,,M x y N x y M x y ',其中120,0y y >>且3232,x x y y =−=−.(ⅰ)由//AM BN 可知,,M A M '三点共且BN AM =',设MM ':x ty =+C 的方程,利用韦达定理表示1313,y y y y +,进而表示出11AM BN+,结合(1)化简计算即可;由椭圆的定义,由//AM BN 得()8AM BNBQ AM BN−⋅=+,()8BN AMAQ AM BN−⋅=+,进而表示出AQ BQ +,化简计算即可;(ii )由(ⅰ)可知,,M A M '三点共线,且BN AM =',设MM ':x sy m =+,联立C 的方程,利用韦达定理表示1313,y y y y +,计算化简可得22112nAM BN m n+=−,结合由内切圆性质计算即可求解. 【详解】(1)设点(),P x ym n =,即222()m x m y x n n ⎛⎫−+=− ⎪⎝⎭,经化简,得C 的方程为222221x y n n m +=−, 当m n <时,曲线C 是焦点在x 轴上的椭圆;当m n >时,曲线C 是焦点在x 轴上的双曲线.(2)设点()()()112233,,,,,M x y N x y M x y ',其中120,0y y >>且3232,x x y y =−=−, (ⅰ)由(1)可知C的方程为()()221,,168x y A B +=−,因为//AM BN===因此,,,M A M '三点共线,且BN AM =',(法一)设直线MM '的方程为x ty =+C 的方程,得()22280t y ++−=,则1313282y y y y t +==−+, 由(1)可知1134,4AM x BN AM x ====',所以1313131344222222112222x x AM BN AM BN AM BN ⎛⎫⎛⎫⎛⎫⎛⎫−+−−+− ⎪ ⎪ ⎪⎪++==⋅⎝⎭⎝⎭⎝⎭⎝⎭()()21321313442221142y y t y y t y y ⎛⎫−⋅− ⎪++===++,所以11AM BN+为定值1; (法二)设MAx θ∠==AM ,,解得AM ='所以11111AM BN AM AM ='+=+=, 所以11AM BN+为定值1; 由椭圆定义8BQ QM MA ++=,得8QM BQ AM =−−,8//,AM QM BQ AMAM BN BN BQ BQ−−∴==,解得()8AM BNBQ AM BN−⋅=+,同理可得()8BN AMAQ AM BN−⋅=+,所以()()()8882BN AM AM BNAM BN AM BNAQ BQ AM BNAM BNAM BN−⋅−⋅+−⋅+=+=+++2882611AM BN=−=−=+.因为AB =ABQ 的周长为定值6+.(ⅱ)当m n >时,曲线C 的方程为222221x y n m n −=−,轨迹为双曲线,根据(ⅰ)的证明,同理可得,,M A M '三点共线,且BN AM =', (法一)设直线MM '的方程为x sy m =+,联立C 的方程,得()()()222222222220m n s n y sm m n y m n ⎡⎤−−+−+−=⎣⎦,()()()()222221313222222222,sm m n m n y y y y mn s nmn s n−−∴+=−=−−−−,(*)因为2113,m n m mAM x x n BN AM x n n m n n⎛⎫=−=−==− ⎝'⎪⎭,所以1111AM AM AM BN AM AM AM AM ''+=+=⋅'+ 2222131322221313sm m n sm m n m m y y x n x n n n n n n n m m sm m n sm m nx n x n y y n n n n n n ⎛⎫⎛⎫−−⎛⎫⎛⎫+++−+− ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭==⎛⎫⎛⎫⎛⎫⎛⎫−−−−++ ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭()()()()()2213222222213132222m n smy y n n m n ms m n m s y y y y n n n −++=−−+++,将(*)代入上式,化简得22112nAM BN m n+=−, (法二)设MAx θ∠=,依条件有2cos AMmn n m AM m θ=⎛⎫−+ ⎪⎝⎭,解得22cos m n AM n m θ−=−,同理由2cos AM mn n m AM m θ=⎛⎫−− ⎪⎝⎭'',解得22cos m n AM n m θ−+'=,所以2222221111cos cos 2n m n m n AM BN AM AM m n m n m n θθ'−++=+=+=−−−. 由双曲线的定义2BQ QM MA n +−=,得2QM n AM BQ =+−,根据AM QM BN BQ =,解得()2n AM BN BQ AM BN+⋅=+, 同理根据AM AQ BN QN =,解得()2n BN AM AQ AM BN+⋅=+,所以()()2222n BN AM n AM BNAM BNAQ BQ n AM BNAM BNAM BN+⋅+⋅⋅+=+=++++222222211m n m n n n n n AM BN−+=+=+=+,由内切圆性质可知,()12S AB AQ BQ r =++⋅, 当S r λ=时,()2221()222m n m n AB AQ BQ m n nλ++=++=+=(常数). 因此,存在常数λ使得S r λ=恒成立,且2()2m n nλ+=.【点睛】方法点睛:求定值问题常见的方法有两种: (1)从特殊入手,求出定值,再证明这个值与变量无关.(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值. 19.(1)证明见解析 (2)证明见解析 (3)证明见解析【分析】(1)根据题意,结合新定义判断证明; (2)根据新定义,因为{0,1},1,2,,i c i n ∈=,分0i c =和1i c =两种情况证明;(3)根据题意结合排列组合的知识表示()d P 的式子,然后结合组合数和基本不等式进行放缩即可证得结论.【详解】(1)设A 与B 中对应项中同时为0的有()0x x n ≤≤个,同时为1的有()0y y n x ≤≤−个,则对应项不同的为n x y −−个,所以(),d A B n x y =−−. 所以()()()(),,2,d A C d B C y n x y n x y d A B +=+−−≥−−=; (2)设()()()121212,,,,,,,,,,,n n n n A a a a B b b b C c c c T ===∈,因为()1122,,,n n A C a c a c a c −=−−−,()1122,,,n n B C b c b c b c −=−−−,所以1(,)ni i i i i d A C B C a c b c =−−=−−−∑,因为{}0,1,1,2,,i c i n ∈=.所以当0i c =时,i i i i i i a c b c a b −−−=−,当1i c =时,()()11i i i i i i i i a c b c a b a b −−−=−−−=−, 所以11(,)(,)nni i i i i i i i d A C B C a c b c a b d A B ==−−=−−−=−=∑∑;(3)记集合P 中所有两个元素间距离的总和为(),1,mi j i j d P P =∑,则()2,11(),C mi j i j m d P d P P ==⋅∑.设集合P 中所有元素的第(1,2,,)k k n =个位置的数字共有k t 个1,k m t −个0,则()(),11,mi j k k k ni j d P P t m t ===−∑∑,因为,0k k t m t −>,所以()2224k k k k t m t m t m t +−⎛⎫⋅−≤= ⎪⎝⎭, 所以()()2,11,4mi j k k i j nk nm d P P t m t ===−≤∑∑,所以()22,112(),C (1)42(1)m i j i j m nm mnd P d P P m m m ==⋅≤⋅=−−∑. 【点睛】思路点睛:关于新定义题的思路有:(1)找出新定义有几个要素,找出要素分别代表什么意思;(2)由已知条件,看所求的是什么问题,进行分析,转换成数学语言; (3)将已知条件代入新定义的要素中; (4)结合数学知识进行解答.。

2023高考数学模拟卷(一)(含答案解析)

2023高考数学模拟卷(一)(含答案解析)
A.1B.2C.3D.4
9.已知抛物线 的焦点为 ,准线为 , 是 上一点,直线 与抛物线交于 两点,若 ,则
A B.8C.16D.
10.已知函数 的图象过点 ,且在 上单调,同时 的图象向左平移 个单位之后与原来的图象重合,当 ,且 时, ,则
A. B.-1C.1D.
11.下图是某四棱锥的三视图,网格纸上小正方形的边长为1,则该四棱锥的外接球的表面积为
20.已知椭圆 的一个焦点为 ,离心率为 .不过原点的直线 与椭圆 相交于 两点,设直线 ,直线 ,直线 的斜率分别为 ,且 成等比数列.
(1)求 的值;
(2)若点 在椭圆 上,满足 直线 是否存在?若存在,求出直线 的方程;若不存在,请说明理由.
21.已程 的两个实数根为 ,求证: ;
设M(x1,y1),N(x2,y2),M,N到准线的距离分别为dM,dN,
由抛物线的定义可知|MF|=dM=x1+1,|NF|=dN=x2+1,于是|MN|=|MF|+|NF|=x1+x2+2.
∵ ,
∴ ,即 ,∴ .
∴ ,∴直线AB的斜率为 ,
∵F(1,0),∴直线PF的方程为y= (x﹣1),
将y= (x﹣1),代入方程y2=4x,得3(x﹣1)2=4x,化简得3x2﹣10x+3=0,
A. B. C. D.
6.已知 展开式中 的系数为0,则正实数
A.1B. C. D.2
7.已知数列 的前 项和 ,若 ,则
A. B.
C. D.
8.如图是正四面体的平面展开图, 分别是 的中点,在这个正四面体中:① 与 平行;② 与 为异面直线;③ 与 成60°角;④ 与 垂直.以上四个命题中,正确命题的个数是()

北京市朝阳区2024届高三下学期质量检测数学模拟试题(含答案)

北京市朝阳区2024届高三下学期质量检测数学模拟试题(含答案)

北京市朝阳区2024届高三下学期质量检测数学模拟试题第一部分(选择题共40分)一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知全集,,则( ){}1,2,3,4U ={}2A x U x =∈<U A =ðA .B .C .D .{}1{}1,2{}3,4{}2,3,42.复数在复平面内对应的点位于( )i3i +A .第一象限B .第二象限C .第三象限D .第四象限3.在△ABC 中,若a=2bsinA,则B 为3A .B .C .或D .或3π6π3π23π6π56π4.已知,则“”是“函数在上单调递增”的( )a ∈R 01a <<()()31f x a x =-R A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件5.已知直线和圆相交于A ,B 两点.若,则360x y -+=()2220x y r r +=>6AB =( )r =A .2B .C .4D .23326.已知等比数列的前项和为,且,,则( ){}n a n n S 121a a +=344a a +=6S =A .9B .16C .21D .257.已知双曲线:的右焦点为F ,过点F 作垂直于x 轴的直线,C ()222210,0x y a b a b -=>>l M ,N 分别是与双曲线C 及其渐近线在第一象限内的交点.若M 是线段的中点,则C 的l FN 渐近线方程为( )A .B .y x=±22y x =±C .D .33y x =±55y x =±H DHA.存在点,使得直线与直线13.已知函数,若实数满足,则 ()1,25,2x x f x x x ⎧-≤=⎨->⎩(),,a b c a b c <<()()()f a f b f c ==a b +=;的取值范围是.a b c ++14.已知函数.若曲线在点处的切线与其在点()1sin 22f x x =()y f x =()()11,A x f x 处的切线相互垂直,则的一个取值为.()()22,B x f x 12x x -15.设A ,B 为两个非空有限集合,定义其中表示集合S 的元素个数.(),1A BJ A B A B=-S某学校甲、乙、丙、丁四名同学从思想政治、历史、地理、物理、化学、生物这6门高中学业水平等级性考试科目中自主选择3门参加考试,设这四名同学的选考科目组成的集合分别为,,,.已知{物理,化学,生物},{地理,物理,化学},{思想政1S 2S 3S 4S 1S =2S =3S =治,历史,地理},给出下列四个结论:①若,则{思想政治,历史,生物};()24,1J S S =4S =②若,则{地理,物理,化学};()()1214,,J S S J S S =4S =③若{思想政治,物理,生物},则;4S =()()()142434,,,J S S J S S J S S <=④若,则{思想政治,地理,化学}.()()()142434,,,J S S J S S J S S >=4S =其中所有正确结论的序号是.三、解答题共6小题,共85分.解答应写出文字说明,演算步骤或证明过程.16.已知函数的最小正周期为.()()πsin 0,0,02f x A x A ωϕωϕ⎛⎫=+>><< ⎪⎝⎭π(1)若,,求的值;1A =()202f =ϕ(2)从条件①、条件②、条件③这三个条件中选择两个作为已知,确定的解析式,并求()f x 函数的单调递增区间.()()2cos 2h x f x x=-条件①:的最大值为2;()f x 条件②:的图象关于点中心对称;()f x 5π,012⎛⎫ ⎪⎝⎭(1)求证:;AC BD ⊥9667771.510648273(1)从这篇论文中随机抽取1篇,求甲、乙两位评委的评分之差的绝对值不超过的概率;105(2)从这篇论文中随机抽取3篇,甲、乙两位评委对同一篇论文的评分之差的绝对值不超过10的篇数记为,求的分布列及数学期望;5X X (3)对于序号为的论文,设评委甲的评分为,评委乙的评分为,分别记甲、()1,2,,10i i =⋅⋅⋅i X i Y 乙两位评委对这10篇论文评分的平均数为,,标准差为,,以X Y s 甲s 乙作为序号为的论文的标准化得分.对这10篇论文按照初评得分与标准化12i i X X Y Y s s ⎛⎫--+ ⎪⎝⎭甲乙i 得分分别从高到低进行排名,判断序号为2的论文的两种排名结果是否相同?(结论不要求证明)19.已知椭圆:的离心率为,A ,B 分别是E 的左、右顶点,P E ()222210x y a b a b +=>>22是E 上异于A ,B 的点,的面积的最大值为.APB △22(1)求E 的方程;(2)设O 为原点,点N 在直线上,N ,P 分别在x 轴的两侧,且与的面积相2x =APB △NBP △等.(i )求证:直线与直线的斜率之积为定值;ON AP (ⅱ)是否存在点P 使得,若存在,求出点P 的坐标,若不存在,说明理由.APB NBP ≌△△20.已知函数.()()()1e R x f x ax a =-∈(1)讨论的单调性;()f x (2)若关于的不等式无整数解,求的取值范围.x ()()1f x a x >-a 21.若有穷自然数数列:满足如下两个性质,则称为数列:A ()12,,,2n a a a n ⋅⋅⋅≥A n B ①,其中,表示{}()112211max ,,,2,3,,k k k k a a a a a a a k n ---++⋅⋅⋅=⋅⋅⋅≥+{}12max ,,,s x x x ⋅⋅⋅,这个数中最大的数;12,,,s x x x ⋅⋅⋅s ②,其中,表示{}()112211min ,,,12,3,,k k k k a a a a a a a k n ---++⋅⋅⋅+=⋅⋅⋅≤+{}12max ,,,s x x x ⋅⋅⋅,这个数中最小的数.12,,,s x x x ⋅⋅⋅s (1)判断:2,4,6,7,10是否为数列,说明理由;A 5B (2)若:是数列,且,,成等比数列,求;A 126,,,a a a ⋅⋅⋅6B 1a 2a 3a 6a (3)证明:对任意数列:,存在实数,使得.(n B A ()12,,,2n a a a n ⋅⋅⋅≥λ[]()1,2,,k a k k n λ==⋅⋅⋅表示不超过的最大整数)[]x x1.D【分析】求出集合A ,再利用补集的定义求解即得.【详解】全集,则,{}1,2,3,4U ={1}A =所以.{}2,3,4U A =ð故选:D 2.A【分析】利用复数的除法运算,化解复数,并结合复数的几何意义,即可求解.【详解】复数,所以复数对应的点为,为第一象限的点.()()()i 3i i 13i3i 3i 3i 10-+==++-13,1010⎛⎫ ⎪⎝⎭故选:A 3.C【详解】, ,则或,选C.3sin 2sin sin A B A =3sin 2B =3B π=23B π=4.A【分析】分,,讨论函数的单调性,进而根据充分性和必要性的概念确1a =1a >1a <()f x 定答案.【详解】对于函数()()31f x a x =-当时,,为常数函数,1a =()0f x =当时,,函数在上单调递减,1a >10a -<()()31f x a x =-R 当时,,函数在上单调递增,1a <10a ->()()31f x a x =-R 所以“”是“函数在上单调递增”的充分而不必要条件.01a <<()()31f x a x=-R 故选:A.5.D【分析】借助点到直线的距离公式与垂径定理计算即可得.【详解】圆的圆心为:,半径为,()2220x y r r +=>()0,0r 则圆心到直线的距离为,360x y -+=6313d ==+8.B又,故,即,()()ln 2ln 42424f f ===4i x ≤e 4i x <≤若,则有,12115n n x x x x -++⋅⋅⋅+≤()1211e154n n x x x x n -++⋅≥⋅-⋅≥+即,由,故.601e n ≤+e 2.72≈60122.06123.07e +≈+=故最大正整数为.n 23故选:D.关键点点睛:本题关键点在于借助函数的性质,结合其单调性得到,从()ln xf x x =2e i y ≤<而得到,则有,即可得解.e 4i x <≤()1211e154n n x x x x n -++⋅≥⋅-⋅≥+11.15【分析】集合二项式展开式的通项公式即可求出结果.【详解】由二项式的展开式的通项公式,得,令,则,()()626611r rrr rr C xC x--=-12r =2r =所以系数为,()226115C -=故15.12.##0.5212【分析】借助抛物线的性质及其定义计算即可得.【详解】由抛物线准线方程为,故,1y =-2p =则,,由在抛物线上,24x y =()0,1F ()00,M x y 故,0012pFM y y =+=+由,可得,OM FM=()2220001x y y =++即,即.0020214x y y ==+012y =故;.21213.2()6,7【分析】结合分段函数与绝对值函数的性质,可得,且时,01245a b c <<<<<<<()0,2x ∈关于对称,即可得解.()f x 1x =【详解】由,故在、上单调递减,()1,25,2x x f x x x ⎧-≤=⎨->⎩()f x (),1-∞()2,+∞在上单调递增,且有,,,,,()1,2()10f =()21f =()01f =()41f =()50f =由,则,()()()f a f b f c==01245a b c <<<<<<<由时,,则关于对称,故,()0,2x ∈()1f x x =-()f x 1x =2a b +=则.()26,7a b c c ++=+∈故;.2()6,714.(答案不唯一)π2【分析】利用导数的几何意义,结合条件可知,,再根据函数的取值,即12cos 2cos 21x x ⋅=-可求解.【详解】,由题意可知,,()cos 2f x x='()()121f x f x '=-'即,所以,得,,,12cos 2cos 21x x ⋅=-12cos 21cos 21x x =⎧⎨=-⎩11πx k =22ππ2x k =+12,Z k k ∈或,得,,,12cos 21cos 21x x =-⎧⎨=⎩13ππ2x k =+24πx k =34,Z k k ∈所以,,,()1212ππ2x x k k -=-+-()1234ππ2x x k k -=+-1234,,,Z k k k k ∈所以的一个取值为.12x x -π2故(答案不唯一)π215.①③【分析】对于①③:直接根据定义计算即可;对于②:通过定义计算得到必为偶数,14S S 讨论和两种情况下的求解即可;对于④:通过举例{物理,地理,历146S S = 144S S = 4S =史}来说明.【详解】对于①:,所以,所以,()242424,11S S J S S S S =-= 240S S = 24S S =∅又{地理,物理,化学},所以{思想政治,历史,生物},①正确;2S =4S =对于②:,即,()()1214,,J S S J S S =121412142142S S S S S S S S ===所以,所以必为偶数,又,14142S S S S = 14S S 1436S S ≤≤ 当时,,不符合,146S S = 140S S =∅= 14142S S S S = 所以,且,此时情况较多,比如{物理,地理,生物},②错误;144S S = 142S S = 4S 4S =对于③:若{思想政治,物理,生物},则4S =,()()()231444211414,1,,1,,1425555J S S J S S J S S =-==-==-=所以,③正确;()()()142434,,,J S S J S S J S S <=对于④:当{物理,地理,历史}时,4S =,()()()231444142121,1,,1,,1554242J S S J S S J S S =-==-==-=满足,但不是{思想政治,地理,化学},④错误.()()()142434,,,J S S J S S J S S >=4S =故选:①③方法点睛:对于新定义题目,一定要深刻理解定义的意义,然后套用定义进行计算即可,很多时候新定义题目难度并不很大,关键是要大胆做,用心做.16.(1)π4ϕ=(2),单调递增区间,,()π2sin 26f x x ⎛⎫=+ ⎪⎝⎭πππ,π63k k ⎡⎤-++⎢⎥⎣⎦Z k ∈【分析】(1)根据条件,代入,即可求解;()202f =(2)根据三角函数的性质,选择条件,代入后,即可求解函数的解析式,利用三角恒等变换,代入函数单调递增区间,即可求解.【详解】(1)因为,,则,且,则;1A =()202f =2sin 2ϕ=π02ϕ<<π4ϕ=(2)因为函数的最小正周期为,则,()f x π2ω=若选①②,则,且,2A =5π5π2sin 0126f ϕ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭且,则,则,则,π02ϕ<<5π5π4π663ϕ<+<5ππ6ϕ+=π6ϕ=所以;()π2sin 26f x x ⎛⎫=+ ⎪⎝⎭若选择①③,则,且,则,2A =ππ2sin 3126f ϕ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭3sin 62πϕ⎛⎫+=⎪⎝⎭,则,则,则,π02ϕ<<ππ2π663ϕ<+<ππ63ϕ+=π6ϕ=所以;()π2sin 26f x x ⎛⎫=+ ⎪⎝⎭若选择②③,由②可知,,π6ϕ=由③可知,,则,πππ3sin 312662f A A ⎛⎫⎛⎫=+=⋅= ⎪ ⎪⎝⎭⎝⎭2A =所以.()π2sin 26f x x ⎛⎫=+ ⎪⎝⎭,()π2sin 22cos 23sin 2cos 26h x x x x x⎛⎫=+-=- ⎪⎝⎭,π2sin 26x ⎛⎫=- ⎪⎝⎭令,,πππ2π22π262k x k -+≤-≤+Z k ∈得,,ππππ63k x k -+≤≤+Z k ∈所以函数的单调递增区间是,,()h x πππ,π63k k ⎡⎤-++⎢⎥⎣⎦Z k ∈17.(1)证明见解析(2)55【分析】(1)借助线面垂直的判定定理与性质定理即可得;(2)建立适当空间直角坐标系,借助空间向量计算即可得.【详解】(1)取中点,连接、,AC M DM BM由,,故、,AD DC =AB BC =AC DM ⊥AC BM ⊥又、平面,,DM BM ⊂DBM DM BM M = 则平面,又平面,故;AC ⊥DBM BD ⊂DBM AC BD ⊥(2)由侧面底面,且,平面,DAC ⊥ABC AC BM ⊥BM ⊂DBM 平面平面,故平面,AC =DAC ⋂ABC BM ⊥DAC 又平面,故,DM ⊂DAC BM DM ⊥即有、、两两垂直,BM DM AC 故可以为原点,建立如图所示空间直角坐标系,M M ABD -由,,,,,5AB =2AC =2AD =AD DC =AB BC =则,,112DM AC ==()22512BM =-=即、、、、,()0,0,0M ()0,0,1D ()0,2,0B ()1,0,0A ()1,0,0C -、、,()0,2,1DB =-()1,0,1AD =-()2,0,0AC =-令,则,()0,2,DF DB λλλ==-()1,2,1AF AD DF λλ=+=--由,故,解得,AF BD ⊥()()22110λλ⨯+-⨯-=15λ=故,241,,55AF ⎛⎫=- ⎪⎝⎭ 令平面的法向量为,FAC (),,m x y z =则有,令,则有,2024055x x y z -=⎧⎪⎨-++=⎪⎩2y =()0,2,1m =- 由轴平面,故平面的法向量可为,z ⊥ABC ABC ()0,0,1n =则,15cos ,5411m n m n m n⋅--===+⋅故二面角的余弦值为.F AC B --55由已知,6780617870818468666471.910X +++++++++==,8286768485838674778281.510Y +++++++++==明显序号为7的论文甲乙两评委评分均最高,故初评得分排名为第,标准化得分排名仍然1为第,1现在就看初评得分排名为第的序号为的论文其标准化得分排名是否会发生变化,36666222261111222231X X Y Y X X Y Y X X Y Y s s s s s s s s ⎛⎫⎛⎫⎛⎫⎛⎫------+-+=+=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭甲乙甲乙甲乙乙甲根据表中数据观察可得评委甲的评分波动大,故,S S >甲乙所以,即,310s s->乙甲662211022X X Y Y X X Y Y s s s s ⎛⎫⎛⎫----+-+>⎪ ⎪⎝⎭⎝⎭甲乙甲乙所以序号为2的论文标准化得分排名为第,2所以序号为2的论文的两种排名结果相同.19.(1)22142x y +=(2)(ⅰ)证明见解析;(ⅱ)不存在点P【分析】(1)利用待定系数法,列方程组,即可求解;(2)(ⅰ)首先利用坐标表示和,利用面积相等,以及点在椭圆上的条件,即可APB S NBP S P 化简斜率乘积的公式,即可证明;(ⅱ)由条件,确定边长和角度的关系,APB NBP ≌△△再结合数形结合,即可判断是否存在点满足条件.P 【详解】(1)当点是短轴端点时,的面积最大,面积的最大值为,P APB △12222a b ⋅⋅=则,得,,2222222c a ab c a b ⎧=⎪⎪⎪=⎨⎪=-⎪⎪⎩222b c ==24a =所以椭圆的方程为;E 22142x y +=(2)(ⅰ)设,,()00,P x y ()2,N t 00ty <(ⅱ)假设存在点,使得P APB 因为,,AB AP >NP NB>则,所以OPB OBP ∠=∠OP =则点与点重合,这与已知矛盾,P A 所以不存在点,使P APB ≌△△(2)不等式转化为,设函数,利用导数求函数的取值范围,再11e x x a x -⎛⎫-< ⎪⎝⎭()1e x x h x x -=-结合不等式,讨论的取值,即可求解.a 【详解】(1),()()1e xf x a ax '=--当,得,()0f x '=1a x a -=当时,时,,单调递增,0a >1,a x a -⎛⎫∈-∞ ⎪⎝⎭()0f x ¢>()f x 时,,单调递减,1,-⎛⎫∈+∞ ⎪⎝⎭a x a ()0f x '<()f x 当时,时,,单调递减,0a <1,a x a -⎛⎫∈-∞ ⎪⎝⎭()0f x '<()f x 时,,单调递增,1,-⎛⎫∈+∞ ⎪⎝⎭a x a ()0f x ¢>()f x 当时,,函数在上单调递增,0a =()e x f x =()f x R 综上可知,时,函数的单调递增区间是,单调递减区间是,0a >()f x 1,a a -⎛⎫-∞ ⎪⎝⎭1,a a -⎛⎫+∞ ⎪⎝⎭时,函数的单调递减区间是,单调递增区间是,0a <()f x 1,a a -⎛⎫-∞ ⎪⎝⎭1,a a -⎛⎫+∞⎪⎝⎭时,函数的增区间是,无减区间.0a =()f x (),-∞+∞(2)不等式,即,()()1e 1xax a x ->-11e x x a x -⎛⎫-< ⎪⎝⎭设,,()1e xx h x x -=-()2e 21e e x x x x x h x -+-'=-=设,,所以单调递增,()e 2x t x x =+-()e 10x t x '=+>()t x 且,,()01t =-()1e 20t =->所以存在,使,即,()00,1x ∈()00t x =()00h x '=当时,,单调递减,当时,,单调递增,()0,x x ∈-∞()0h x '<()h x ()0,x x ∈+∞()0h x '>()h x所以,()()00000e 1e x x x x h x h x -+≥=因为,所以,e 1xx ≥+()()()00002000000011e 110e e e x x x x x x x x x x h x h x +-+-++≥=≥=>当时,,当时,,0x ≤()()01h x h ≥=1x ≥()()11h x h ≥=不等式无整数解,即无整数解,()()1e 1xax a x ->-11e x x a x -⎛⎫-< ⎪⎝⎭若时,不等式恒成立,有无穷多个整数解,不符合题意,0a ≤若时,即,因为函数在上单调递减,在上单调递增,1a ≥11a ≤()h x (],0-∞[)1,+∞所以时,,所以无整数解,符合题意,Z x ∈()()(){}1min 0,11h x h h a ≥=≥()1h x a <当时,因为,显然是的两个整数解,不符合题意,01a <<()()1011h h a ==<0,1()1a h x ⋅<综上可知,.1a ≥关键点点睛:本题第二问的关键1是不等式的变形,第二个关键是确定函数11e x x a x -⎛⎫-< ⎪⎝⎭的单调性,以及确定.()1e x x h x x -=-()()011h h ==21.(1)不是,理由见解析(2)68a =(3)证明见解析【分析】(1)直接根据数列的定义验证;5B (2)根据数列的定义先列式求出,进而可求出;6B 123,,a a a 456,,a a a (3)先说明数列满足结论,然后假设存在自然数,存在数列使得结论不成立,设2B 2t >t B 这样的的最小值为,即存在数列对任意实数,存在,使t 0t 0t B 012:,,,t A a a a λ{}01,2,,k t ∈ 得,通过数列的定义退出矛盾,进而达到证明结论的目的.[]k a k λ≠n B 【详解】(1):2,4,6,7,10不是数列,理由如下:A 5B 因为,13228,8a a a a +=+=所以,{}1322max ,8a a a a ++=但,所以不满足性质①,故不是数列;478a =<A 5B (2)根据:是数列可得:满足:A 126,,,a a a ⋅⋅⋅6B A 126,,,a a a ⋅⋅⋅或,或,211a a a =+2111a a a =++312a a a =+3121a a a =++①若,因为,,成等比数列,所以,211a a a =+1a 2a 3a 223114a a a a ==又,所以,所以,得,10a ≠312a a a ≠+312111314a a a a a =++=+=11a =②若,因为,,成等比数列,所以,2111a a a =++1a 2a 3a ()221231121a a a a a +==当时,,解得,与为自然数矛盾,舍去;312a a a =+()213112131a a a a +=+=1352a -±=1a 当时,,解得,与为自然数矛盾,舍去;3121a a a =++()213112132a a a a +=+=11a =-1a 所以,1231,2,4a a a ===由以及,31225,4a a a a ++=={}{}132241322max ,min ,1a a a a a a a a a ++≤≤+++得,所以,455a ≤≤45a =由以及,4123,66a a a a ++=={}{}142351423max ,min ,1a a a a a a a a a ++≤≤+++得,567a ≤≤由以及15243378,7,8a a a a a a ≤+≤+=+=,{}{}1524336152433max ,,min ,,1a a a a a a a a a a a a a +++≤≤++++可知,所以;688a ≤≤68a =(3)当时,根据数列的定义,可知或,2n =2B 212a a =2121a a =+若,取,则,结论成立,212a a =10.10a λ=+>[][]12,2a a λλ==若,取,则,结论成立,2121a a =+10.50a λ=+>[][]12,2a a λλ==假设存在自然数,存在数列使得结论不成立,设这样的的最小值为,2t >t B t 0t 即存在数列对任意实数,存在,使得,t B 012:,,,t A a a a λ{}01,2,,k t ∈ []k a k λ≠根据假设,数列的前项组成的数列是一个数列,A 01t -0121,,,t a a a - 01t B -从而存在实数,使得,,β[]k a k β=01,2,,1k t =- 即,()()00111,2,,1,1,2,,1k k k k a a a k a k t k t k k ββ+≤<+=-≤<=- 令,则,001122110011max ,,,,min 1,,,2121t t a a a a L a U a t t --+⎧⎫⎧⎫+==+⎨⎬⎨⎬--⎩⎭⎩⎭ L U β≤<令,则,00001max ,,min ,t t a a L L U U t t **+⎧⎫⎧⎫==⎨⎬⎨⎬⎩⎭⎩⎭,L L U U **≤≤①若,根据的定义,存在,使得,0t L t a *=U {}01,2,,1u t ∈- 1u U a u =+又,001t uu a a L U t uu -+≤<=-则且,()()00000111t t u u t u u u a a a a a a L U t t t u uu--*+++++=≤=<=-+0001t t a a L t t *+=<所以,L U **<②若,根据的定义,存在,使得,L L *=L {}01,2,,1l t ∈- lL l a =又,001t ll a U la L t l -+=<≤-则,且,()()000000111l t l l t l t l a a a a a a L L l l t l t l --*+++++==<=≤+-*L L U =<所以,L U **<所以,L L U U **≤<≤令,则,*2L U β*+'=L L U U β**'≤<<≤即,0022110011max ,,,min 1,,,22t t a a a a a a t t β+⎧⎫⎧⎫+<<+⎨⎬⎨⎬⎩⎭⎩⎭'所以,()011,2,,k k a a k t k k β+<<=' 所以,()011,2,,k k a k a k t β<<+=' 即,与假设矛盾,[]k a k β='()01,2,,k t = 综上,结论成立.关键点点睛:本题第三问,假设存在自然数,存在数列使得结论不成立,设这样的2t >t B 的最小值为,即存在数列对任意实数,存在,使得t 0t 0t B 012:,,,t A a a a λ{}01,2,,k t ∈ ,利用反证法达到解决问题的目的.[]k a k λ≠。

高三数学模拟试题及答案

高三数学模拟试题及答案

高三数学模拟试题及答案一、选择题1. 已知集合A={x | x² - 1 = 0},则A的元素个数为()A. 1B. 2C. 3D. 4答案:B2. 若a > 0,b < 0,则a与b的和的符号为()A. 正B. 负C. 零D. 无法确定答案:D3. 设函数f(x) = √(x²-2x+1),则f(3)的值为()A. 0B. 1C. 2D. 3答案:B4. 在△ABC中,角A = 60°,边AC = 5cm,边BC = 4cm,则边AB 的长度为()A. 3.5cmB. 4cmC. 4.5cmD. 5cm答案:C5. 某商店对现金支付的商品提供10%的折扣,小明购买了一件原价500元的商品,他需要支付多少元?()A. 45元B. 50元C. 450元D. 500元答案:C二、计算题1. 已知函数f(x) = |x - 3| + 2,求f(5)的值。

解:当x = 5时,f(x) = |5 - 3| + 2 = 4答案:42. 解方程:3x + 5 = 2(x - 1) + 7解:展开得:3x + 5 = 2x - 2 + 7移项得:3x + 5 = 2x + 5化简得:x = 0答案:03. 已知函数f(x) = x² - 4x + 5,求f(3)的值。

解:当x = 3时,f(x) = 3² - 4 × 3 + 5 = 9 - 12 + 5 = 2答案:24. 某商品在经过两次10%的折扣后,售价为270元,求其原价。

解:设原价为x元,则经过第一次折扣后为0.9x元,经过第二次折扣后为0.9 × 0.9x元。

根据题意,0.9 × 0.9x = 270,解方程得:x = 300答案:300三、应用题1. 一辆自行车上午以每小时20公里的速度向南骑行,下午以每小时15公里的速度向北骑行。

如果来回共耗时8小时,求行程的总长度。

2024年上海市高考高三数学模拟试卷试题及答案详解

2024年上海市高考高三数学模拟试卷试题及答案详解

2024上海高考高三数学模拟试卷(本试卷共10页,满分150分,90分钟完成.答案一律写在答题纸上)命题:侯磊审核:杨逸峰一、填空题.(本题共12小题,前6题每小题4分;后6题每小题5分,共54分.请在横线上方填写最终的、最简的、完整的结果)1.已知集合{}()1,2,3,4,5,2,5A B ==,则A B =.2.已知圆柱底面圆的周长为2π,母线长为4,则该圆柱的体积为.3.101x x ⎛⎫+ ⎪⎝⎭的二项展开式中,2x 项的系数为.4.等比数列{}n a 的各项和为2,则首项1a 的取值范围为.5.已知平面向量()()1,2,,4a b m == ,若a 与b的夹角为锐角,则实数m 的取值范围为.6.已知复数z 满足22z z -==,则3z =.7.已知空间向量()()1,1,0,0,1,1a b == ,则b 在a方向上的投影为.8.已知()ln(4f x ax c x =++(a 、b 、c 为实数),且3(lg log 10)5f =,则(lglg3)f 的值是9.已知A B 、是抛物线24y x =上的两个不同的点,且10AB =,若点M 为线段10AB =的中点,则M 到y 轴的距离的最小值为.10.一个飞碟射击运动员练习射击,每次练习可以开2枪.当他发现飞碟后,开第一枪命中的概率为0.8;若第一枪没有命中,则开第二枪,且第二枪命中的概率为0.6;若2发子弹都没打中,该次练习就失败了.若已知在某次练习中,飞碟被击中的条件下,则飞碟是运动员开第二枪命中的概率为.11.已知ABC 中,,,A B C 为其三个内角,且tan ,tan ,tan A B C 都是整数,则tan tan tan A B C ++=.12.已实数m n 、满足221m n +≤,则2263m n m n +-+--的取值范围是.二、选择题(本题共4小题,前2题每小题4分;后2题每小题5分,共18分.在每小题给出的四个选项中,只有一项是符合题目要求的,请填写符合要求的选项前的代号)13.以下能够成为某个随机变量分布的是()A .0111⎛⎫ ⎪⎝⎭B .101111236-⎛⎫ ⎪⎝⎭C .123111248⎛⎫ ⎪ ⎝⎭D .11.222.40.50.50.30.7⎛⎫⎪-⎝⎭14.某高级中学高一年级、高二年级、高三年级分别有学生1400名、1200名、1000名,为了解学生的健康状况,用分层抽样的方法从该校学生中抽取一个容量为n 的样本,若从高三年级抽取25名学生,则n 为A .75B .85C .90D .10015.设等比数列{}n a 的前n 项和为n S ,设甲:123a a a <<,乙:{}n S 是严格增数列,则甲是乙的()A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分又非必要条件16.椭圆具有如下的声学性质:从一个焦点出发的声波经过椭圆反射后会经过另外一个焦点.有一个具有椭圆形光滑墙壁的建筑,某人站在一个焦点处大喊一声,声音向各个方向传播后经墙壁反射(不考虑能量损失),该人先后三次听到了回音,其中第一、二次的回音较弱,第三次的回音较强;记第一、二次听到回音的时间间隔为x ,第二、三次听到回音的时间间隔为y ,则椭圆的离心率为()A .2xx y+B .2x x y+C .2y x y +D .2y x y+三、解答题.(本大题共5小题,满分78分.请写出必要的证明过程或演算步骤)17.三棱柱111ABC A B C -中,1AA ⊥平面ABC ,且1AB BC ==,12,90,AA ABC D =∠=︒为1CC中点.(1)求四面体1A ABD -的体积:(2)求平面ABD 与1ACB 所成锐二面角的余弦值.18.(1)在用“五点法”作出函数[]1sin ,0,2πy x x =-∈的大致图象的过程中,第一步需要将五个关键点列表,请完成下表:x0sin x -01sin x-1(2)设实数0a >且1a ≠,求证:()ln x x a a a '=;(可以使用公式:()e e x x '=)(3)证明:等式()()()32123x ax bx c x x x x x x +++=---对任意实数x 恒成立的充要条件是123122331123x x x a x x x x x x bx x x c ++=-⎧⎪++=⎨⎪=-⎩19.为帮助乡村脱贫,某勘探队计划了解当地矿脉某金属的分布情况,测得了平均金属含量y (单位:克每立方米)与样本对原点的距离x (单位:米)的数据,并作了初步处理,得到了下面的一些统计量的值.(表中9111,9i i i i u u u x ===∑).xyu921()ii x x =-∑921()i i u u =-∑921()i i y y =-∑91(())i ii x y x y =--∑91()()i ii u u y y =--∑697.900.212400.1414.1226.13 1.40-(1)利用相关系数的知识,判断y a bx =+与dy c x=+哪一个更适宜作为平均金属含量y 关于样本对原点的距离x 的回归方程类型;(2)根据(1)的结果建立y 关于x 的回归方程,并估计样本对原点的距离20x =米时,平均金属含量是多少?20.已知抛物线2:2(0)C y px p =>,过点()(),00M a a ≠与x 轴不垂直的直线l 与C 交于()()1122,,A x y B x y 、两点.(1)求证:OA OB ⋅是定值(O 是坐标原点);(2)AB 的垂直平分线与x 轴交于(),0N n ,求n 的取值范围;(3)设A 关于x 轴的对称点为D ,求证:直线BD 过定点,并求出定点的坐标.21.已知2()ln(1)2x f x a x x =++-,函数()y f x =的导函数为()y f x '=.(1)当1a =时,求()y f x =在2x =处的切线方程;(2)求函数()y f x =的极值点;(3)函数()y f x =的图象上是否存在一个定点(,)(.(0,))m n m n ∈+∞,使得对于定义域内的任意实数00()x x m ≠,都有000()()()2x mf x f x m n +'=-+成立?证明你的结论.1.{3,4}【分析】根据给定条件,利用交集的定义直接求解即可.【详解】集合{}()1,2,3,4,5,2,5A B ==,则{3,4}A B = .故答案为:{3,4}2.4π【分析】根据条件,直接求出1r =,再利用圆柱的体积公式,即可求出结果.【详解】设圆柱的底面半径为r ,所以2π2πr =,得到1r =,又圆柱的母线长为4l =,所以圆柱的体积为2π4πV r l ==,故答案为:4π.3.210【分析】先求出二项式展开式的通项公式,然后令x 的次数为2,求出r ,代入通项公式中可求得结果.【详解】101x x ⎛⎫+ ⎪⎝⎭的二项展开式的通项公式为10102110101C C rr r rr r T x x x --+⎛⎫=⋅⋅=⋅ ⎪⎝⎭,令1022r -=,得4r =,所以2x 项的系数为410C 210=,故答案为:2104.(0,2)(2,4)【分析】根据给定条件,利用等比数列各项和公式,结合公比的取值范围求解即得.【详解】依题意,121a q=-,10q -<<或01q <<,则12(1)a q =-,102a <<或124a <<,所以首项1a 的取值范围为(0,2)(2,4) .故答案为:(0,2)(2,4) 5.(8,2)(2,)-+∞ 【分析】根据给定条件,利用向量夹角公式结合共线向量列出不等式组求解即得.【详解】向量()()1,2,,4a b m == 的夹角为锐角,则0a b ⋅> 且a 与b不共线,因此8024m m +>⎧⎨≠⎩,解得8m >-且2m ≠,所以实数m 的取值范围为(8,2)(2,)-+∞ .故答案为:(8,2)(2,)-+∞ 6.8-【分析】设i z a b =+,根据22z z -==得到方程组,求出1,a b ==答案,从而求出3z .【详解】设i z a b =+,则22i z a b -=-+,所以()2222424a b a b ⎧+=⎪⎨-+=⎪⎩,解得1,a b ==当1,a b =1=z ,故()222113i 22z =+=++=-+,()()322126i 8z =-++=-+=-;当1,a b ==1z =-,故()222113i 22z =-=-=--,()()322126i 8z =--=-+=-故答案为:-87.11(,,0)22【分析】根据给定条件,利用投影向量的定义求解即得.【详解】向量()()1,1,0,0,1,1a b == ,则1,||a b a ⋅==,所以b 在a 方向上的投影为2111(,,0)222||a b a a a ⋅==,故答案为:11(,,0)228.3【分析】令()ln(g x ax c x =+,则()()4f x g x =+,然后判断()g x 的奇偶性,再利用函数的奇偶性求值即可【详解】令()ln(g x ax c x =+,则()()4f x g x =+,函数的定义域为R ,因为()ln(g x ax c x -=---ln ax c ⎛⎫=--(1ln ax c x -=--+(ln ax c x =--+(ln ()ax c x g x ⎡⎤=-++=-⎢⎥⎣⎦,所以()g x 为奇函数,因为3(lg log 10)5f =,所以3(lg log 10)45g +=,所以(lg lg 3)1g -=,所以(lg lg 3)1g =-,所以(lg lg3)(lg lg3)4143f g =+=-+=,故答案为:39.4【分析】求出过抛物线焦点的弦长范围,再利用抛物线定义列式求解即得.【详解】抛物线24y x =的焦点(1,0)F ,准线方程=1x -,令过点F 与抛物线交于两点的直线方程为1x ty =+,由214x ty y x=+⎧⎨=⎩消去x 得,2440y ty --=,设两个交点为1122(,),(,)P x y Q x y ,则124y y t +=,21212()242x x t y y t +=++=+,于是212||11444PQ x x t =+++=+≥,当且仅当0=t 时取等号,令点,,A B M 的横坐标分别为0,,A B x x x ,而||104AB =≥,则0111[(1)(1)]1(||||)1||142222A B A B x x x x x FA FB AB +==+++-=+-≥-=,当且仅当,,A F B 三点共线时取等号,所以M 到y 轴的距离的最小值为4.故答案为:410.323【分析】根据给定条件,利用条件概率公式计算即得.【详解】记事件A 为“运动员开第一枪命中飞碟”,B 为“运动员开第二枪命中飞碟”,C 为“飞碟被击中”,则()0.20.60.12P B =⨯=,()()()()0.80.120.92P C P A B P A P B ==+=+= ,所以飞碟是运动员开第二枪命中的概率为()()0.123(|)()()0.9223P BC P B P B C P C P C ====.故答案为:32311.6【分析】不妨令A B C ≤≤,利用正切函数的单调性,结合已知求出tan A ,再利用和角的正切公式分析求解即得.【详解】在ABC 中,不妨令A B C ≤≤,显然A 为锐角,而tan A 是整数,若πtan 2tan3A =>=,又函数tan y x =在π(0,)2上单调递增,则π3A >,此时3πA B C A ++≥>与πA B C ++=矛盾,因此tan 1A =,π3π,44A B C =+=,tan tan tan()11tan tan B CB C B C++==--,整理得(tan 1)(tan 1)2B C --=,又tan ,tan B C 都是整数,且tan tan B C ≤,因此tan 2,tan 3B C ==,所以tan tan tan 6A B C ++=.故答案为:612.[3,13]【分析】确定动点(,)P m n 的几何意义,利用直线现圆的位置关系分段讨论,结合几何意义求解即得.【详解】显然点(,)P m n 在圆22:1O x y +=及内部,直线1:630l x y --=,直线2:220l x y +-=,1=>,得直线1l与圆O相离,且|63|63m n m n--=--,由222201x yx y+-=⎧⎨+=⎩,解得3545xy⎧=⎪⎪⎨⎪=⎪⎩或1xy=⎧⎨=⎩,即直线2l与圆O交于点34(,),(1,0)55A B,①当220m n+-≥时,即点P在直线2l与圆O所围成的小弓形及内部,|22||63|226324m n m n m n m n m n+-+--=+-+--=-+,目标函数124z x y=-+,即142z x y-=-表示斜率为12,纵截距为142z-的平行直线系,画出直线0:20p x y-=,平移直线p分别到直线12,p p,当1p过点A时,142z-取得最大值,1z最小,当2p过点B时,142z-取得最小值,1z最大,因此1min34()24355z=-⨯+=,1max()12045z=-⨯+=,从而3245m n≤-+≤;②当220m n+-<时,即点P在直线2l与圆O所围成的大弓形及内部(不含直线2l上的点),|22||63|(22)63348m n m n m n m n m n+-+--=-+-+--=--+,目标函数2348z x y=--+,即2834z x y-=+表示斜率为34-,纵截距为282z-的平行直线系,画出直线0:340q x y+=,显直线q OA⊥,平移直线q分别到直线12,q q,直线12,q q与圆O分别相切于点34,(,)55A--,当1q过点A时,282z-取得最大值,2z最小,因此2min34()834355z=-⨯-⨯=,当2q过点34(,)55--时,282z-取得最小值,2z最大,因此2max34()8341355z=+⨯+⨯=,从而383413m n<--≤,所以2263m n m n+-+--的取值范围是[3,13].故答案为:[3,13]【点睛】方法点睛:求解线性规划问题的一般方法:①准确作出不等式组表示的平面区域,作图时一定要分清虚实线、准确确定区域;②根据目标函数的类型及几何意义结合图形判断目标函数在何处取得最值.13.B【分析】分布列中各项概率大于0,且概率之和为1,从而得到正确答案.【详解】由题意得,分布列中各项概率非负,且概率之和为1,显然AC 选项不满足概率之和为1,D 选项不满足各项概率大于0,B 选项满足要求.故选:B 14.C【详解】分析:由题意结合分层抽样的性质得到关于n 的方程,解方程即可求得最终结果.详解:由题意结合分层抽样的定义可得:251000140012001000n =++,解得:90n =.本题选择C 选项.点睛:进行分层抽样的相关计算时,常利用以下关系式巧解:(1)n N =样本容量该层抽取的个体数总体的个数该层的个体数;(2)总体中某两层的个体数之比=样本中这两层抽取的个体数之比.15.D【分析】举出反例得到充分性和必要性均不成立.【详解】不妨设111,2a q =-=,则2311,24a a =-=-,满足123a a a <<,但{}n S 是严格减数列,充分性不成立,当111,2a q ==时,{}n S 是严格增数列,但123a a a >>,必要性不成立,故甲是乙的既非充分又非必要条件.故选:D 16.B【分析】根据给定条件,分析听到的三次回声情况确定几个时刻声音的路程,再列出等式求解即得.【详解】依题意,令声音传播速度为v ,1t 时刻,刚刚呐喊声音传播为0,2t 时刻听到第一次回声,声音的路程为2()-a c ,即从左焦点到左顶点再次回到左焦点,3t 时刻,声音的路程为2()a c +,即从左焦点到右顶点,又从右顶点回到左焦点,4t 时刻,声音的路程为4a ,即从左焦点反射到右焦点,再反射到左焦点,因此32,2()2()x t t a c a c vx =-+--=,43,42()y t t a a c vy =--+=,即4,22c vx a c vy =-=,则2a c y c x -=,即2a c y c x -=,整理得2a y xc x+=,所以椭圆的离心率为2c xa x y=+.故选:B【点睛】关键点点睛:利用椭圆几何性质,确定听到回声的时刻,回声的路程是解题的关键.17.(1)136【分析】(1)利用等体积法11A ABD D A AB V V --=,再根据条件,即可求出结果;(2)建立空间直角坐标系,求出平面ABD 与1ACB 的法向量,再利用面面角的向量法,即可求出结果.【详解】(1)因为1AA ⊥平面ABC ,又BC ⊂面ABC ,所以1AA BC ⊥,又AB BC ⊥,1AA AB A = ,1,AA AB ⊂面11ABB A ,所以CB ⊥面11ABB A ,因为1//CC 面11ABB A ,所以D 到面11ABB A 的距离即BC ,又111112122AA B S AB AA =⋅=⨯⨯= ,1BC =,所以1111133A ABD D A AB A AB V V S CB --=== .(2)如图,建立空间直角坐标系,因为1AB BC ==,12AA =,则1(0,0,0),(0,1,0),(1,0,0),(0,0,2),(1,0,1)B AC BD ,所以1(0,1,0),(1,0,1),(0,1,2),(1,1,0)BA BD AB AC ===-=-设平面ABD 的一个法向量为(,,)n x y z =,由1100BA n BD n ⎧⋅=⎪⎨⋅=⎪⎩ ,得到00y x z =⎧⎨+=⎩,取1x =,得到0,1y z ==-,所以(1,0,1)n =- ,设平面1ACB 的一个法向量为(,,)m a b c =,则由10AC m AB m ⎧⋅=⎪⎨⋅=⎪⎩,得到020a b b c -=⎧⎨-+=⎩,取2a =,则2,1b c ==,所以(2,2,1)m = ,设平面ABD 与1ACB 所成锐二面角为θ,则cos cos ,n mn m n m θ⋅====18.(1)表格见解析;(2)证明见解析;(3)证明见解析.【分析】(1)根据给定条件,结合“五点法”作图完善表格.(2)根据给定条件,利用复合函数求导法则计算即得.(3)根据给定条件,利用恒等式成立的充要条件推理即得.【详解】(1)“五点法”作函数[]sin ,0,2πy x x =∈的图象的5个关键点的横坐标为π3π0,,π,,2π22,所以表格如下:xπ2π3π22πsin x -01-0101sin x-1121(2)实数0a >且1a ≠,则ln ln e e xx a x a a ==,因此ln ln ()(e )e (ln )ln x x a x a x a x a a a '''==⋅=,所以()ln x x a a a '=.(3)212212133)())[()])(((x x x x x x x x x x x x x x =-----++32332121212312()()x x x x x x x x x x x x x x x x =+--+-++32123122331123()()x x x x x x x x x x x x x x x =-+++++-,依题意,3212312233112332()()x x x x x x x x x x x x ax bx x x x x c -+++-+++=++对任意实数x 恒成立,因此123123122331122331123123()a x x x x x x ab x x x x x x x x x x x x bc x x x x x x c=-++++=-⎧⎧⎪⎪=++⇔++=⎨⎨⎪⎪=-=-⎩⎩,所以等式32123()()()x ax bx c x x x x x x +++=---对任意实数x 恒成立的充要条件是123122331123x x x ax x x x x x b x x x c ++=-⎧⎪++=⎨⎪=-⎩.19.(1)dy c x=+更适宜作为回归方程类型;(2)10ˆ100yx=-,399.5g /m .【分析】(1)根据题意,分别求得相关系数的值,结合10.449r ≈和20.996r ≈-,结合12r r <,即可得到结论.(2)(i )根据最小二乘法,求得回归系数,进而求得回归方程;(ii )当20x =时,结合回归方程,即可求得预报值.【详解】(1)因为y a bx =+的线性相关系数91)9()(0.44iix y r x y --==≈∑,dy c x=+的线性相关系数92(0.996iiu u y r y --≈-∑,因为12r r <,所以dy c x=+更适宜作为平均金属含量y 关于样本对原点的距离x 的回归方程类型.(2)依题意,992110ˆ()()1(.4010.14)i ii i iu u y u u yβ==----===-∑∑,则ˆˆ97.9(10)0.21100y u αβ=-=--⨯=,于是10ˆ10010100y u x=-=-,所以y 关于x 的回归方程为10ˆ100yx=-.当20x =时,金属含量的预报值为31010099.5g /m 20ˆy=-=.20.(1)证明见解析;(2))||(,p a ++∞;(3)证明见解析,(),0a -.【分析】(1)联立直线和抛物线方程,再利用韦达定理及数量积的坐标表示计算即得..(2)求出弦AB 的中点坐标及弦AB 的中垂线方程,进而求出n ,再结合判别式求解即得.(3)设出D 点的坐标,求出直线BD 的方程211121()y y y x x y x x +=---,借助(1)的信息,推理判断即得.【详解】(1)显然直线l 不垂直于坐标轴,设过点(),0M a 的直线l 的方程为x my a =+,由22y px x my a ⎧=⎨=+⎩消去x 得:2220y pmy pa --=,22Δ480p m pa =+>,则121222y y pm y y pa +=⎧⎨⋅=-⎩,所以22212121212222y y OA OB x x y y y y a pa p p⋅=+=⋅+=- 为定值.(2)设,A B 两点的中点坐标为()33,Q x y ,则21212322x x my my x a pm a ++==+=+,1232y y y pm +==,则()2,Q pm a pm +,即AB 的垂直平分线为()2y m x pm a pm =---+,令0y =,解得2n pm a p =++,显然22480p m pa ∆=+>,当0a >时,恒有220pm a +>成立,则n p a >+,当a<0时,2pm a a +>-,则n p a >-,所以n 的取值范围为)||(,p a ++∞.(3)由A 关于x 轴的对称点为D ,得()11,D x y -,则直线BD :211121()y y y x x y x x +=---,整理得:2112212121y y x y x yy x x x x x ++=---.又()()()1221211212122x y x y y my a y my a my y a y y +=+++=++422pam pam pam =-+=-.因此直线BD 为:212122pm pam y x x x x x =+--,即()212pmy x a x x =+-过定点(),0a -,所以直线BD 过定点(),0a -.【点睛】方法点睛:求解直线过定点问题常用方法如下:①“特殊探路,一般证明”:即先通过特殊情况确定定点,再转化为有方向、有目的的一般性证明;②“一般推理,特殊求解”:即设出定点坐标,根据题设条件选择参数,建立一个直线系或曲线的方程,再根据参数的任意性得到一个关于定点坐标的方程组,以这个方程组的解为坐标的点即为所求点;③求证直线过定点()00,x y ,常利用直线的点斜式方程()00y y k x x -=-或截距式y kx b =+来证明.21.(1)48ln 333y x =-+;(2)答案见解析;(3)不存在,理由见解析.【分析】(1)利用导数求切线斜率,再求出切点坐标,点斜式写出切线方程即可.(2)利用导数探讨单调性,进而确定函数的极值点.(3)假设存在,利用导数,将等式化简,减少变量,从而可构造适当新函数,研究新函数的性质,即可判断.【详解】(1)当1a =时,2()ln(1),(2)ln 32x f x x x f =++-=,求导得14()1,(2)13f x x f x ''=+-=+,切线方程为4ln 3(2)3y x -=-,所以所求切线方程为48ln 333y x =-+.(2)函数2()ln(1)2x f x a x x =++-的定义域为(1,)-+∞,求导得21()111a x af x x x x -+'=+-=++,令()0f x '=,即210x a -+=,即21x a =-,①当1a ≥时,函数()y f x =在定义域内严格增,无极值点;②当01a <<时,当1x -<<或x >时,()0f x '>,当x <()0f x '<,函数()y f x =在(1,-和)+∞严格增,在(严格减,此时极大值点为③当0a ≤时,当1x -<<时,()0f x '<,当x >时,()0f x '>,函数()y f x =在(-严格减,在)+∞严格增的,所以当1a ≥时,函数()y f x =无极值点;当01a <<时,函数()y f x =极大值点为当0a ≤时,函数()y f x =.(3)假设存在定点(,)m n 满足条件,由000()()()2x mf x f x m n +'=-+得:000)(2()f x n x m f x m -+'=-,又点(,)m n 在曲线()f x 上,则2()ln(1)2mn f m a m m ==++,于是220000001[ln(1)ln(1)])()()(2a x m x m x m f x n x mx m+-++----=--000[ln(1)ln(1)]12a x m x mx m +-++=+--,而()11a f x x x '=+-+,于是000002()1=1222212x m x m x m a af x m x m +++'=+-+-++++,因此000ln(1)ln(1)22x m x m x m +-+=-++,变形得00012(1)11ln 1111x x m x m m +-++=++++,令01(0)1x t t m +=>+,则2(1)ln 1t t t -=+,令函数22()ln ,01t g t t t t -=->+,求导得22214(1)()0(1)(1)t g t t t t t '-=-=≥++,则()g t 在(0,)+∞单调递增,又(1)0g =,于是()0g t =只有唯一解1t =,即0111x m +=+,又0m x ≠,则1t ≠,故不存在定点(,)m n 满足条件.【点睛】结论点睛:函数y =f (x )是区间D 上的可导函数,则曲线y =f (x )在点00(,())x f x 0()x D ∈处的切线方程为:000()()()y f x f x x x '-=-.。

2024届河北省衡水市部分高中高三一模数学试题(解析版)

2024届河北省衡水市部分高中高三一模数学试题(解析版)

2024年普通高等学校招生全国统一考试模拟试题数学(一)(考试时间:120分钟,满分:150分)注意事项:1.答题前,先将自己的姓名、准考证号等填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置.2.选择题的作答:选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.写在试题卷、草稿纸和答题卡上的非答题区域均无效.3.非选择题的作答:用签字笔直接写在答题卡上对应的答题区域内.写在试题卷、草稿纸和答题卡上的非答题区域均无效.4.考试结束后,请将本试题卷和答题卡一并上交.一、单项选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设全集{}0,1,2,3,4,5U =,集合{}1,3,4M =,{}0,3,5N =,则N ()U M = ð()A.{}0,5B.{}1,2,3,4C.{}1,2,3,4,5 D.U【答案】B 【解析】【分析】根据集合并补运算即可求得.【详解】{}0,1,2,3,4,5U =,{}0,3,5N =,所以{}1,2,4U N =ð,所以(){}1,2,3,4U M N = ð,故选:B.2.已知复数z 满足(43i)i z +=-,则z 的虚部为()A.425-B.425 C.4i 25-D.4i 25【答案】A 【解析】【分析】由复数除法运算法则直接计算,结合复数的虚部的概念即可求解.【详解】因为(43i)i z +=-,所以()()()i 43i i 34i 43i 43i 43i 2525z ---===--++-,所以z 的虚部为425-.故选:A.3.将函数()sin 2f x x =的图象向左平移ϕ个单位后得到函数()g x 的图象,若函数()()y f x g x =+的最大值为a ,则a 的值不可能为()A.1B.1C.2D.1【答案】D 【解析】【分析】根据图象的平移变换得到()()sin 22g x x ϕ=+,然后根据和差公式和辅助角公式整理得到()()()2y f x g x x α=+=+,最后根据三角函数的性质求a 的范围即可.【详解】由题意得()()sin 22g x x ϕ=+,则()()()sin 2sin 22y f x g x x x ϕ=+=++sin 2cos 2sin 2sin 2cos 2x x xϕϕ=++()1cos 2sin 2sin 2cos 2x x ϕϕ=++()2x α=+()2x α=+,sin 2tan 1cos 2ϕαϕ=+,因为[]cos 21,1ϕ∈-[]0,2,所以[]0,2a ∈.故选:D.4.在等比数列{}n a 中,若1512a a a ⋅⋅为一确定的常数,记数列{}n a 的前n 项积为n T .则下列各数为常数的是()A.7TB.8T C.10T D.11T 【答案】D 【解析】【分析】根据已知条件判断出6a 为确定常数,再由此确定正确答案.【详解】设等比数列{}n a 的公比为q ,依题意,()3411511111512a a q a a a a q q a =⋅⋅=⋅⋅为确定常数,即6a 为确定常数.7712674T a a a a a == 不符合题意;()48127845T a a a a a a == 不符合题意;()5101291056T a a a a a a == 不符合题意;11111210116T a a a a a == 为确定常数,符合题意.故选:D 5.关于函数4125x y x -=-,N x ∈,N 为自然数集,下列说法正确的是()A.函数只有最大值没有最小值B.函数只有最小值没有最大值C.函数没有最大值也没有最小值D.函数有最小值也有最大值【答案】D 【解析】【分析】先对函数整理化简,根据反比例函数的性质,结合复合函数单调性的“同增异减”,即可求出函数的最小值与最大值.【详解】()22594192252525x x y x x x -+-===+---,52x ¹,由反比例函数的性质得:y 在5,2⎛⎫+∞ ⎪⎝⎭上单调递减,此时2y >,y 在5,2⎛⎫-∞ ⎪⎝⎭上单调递减,此时2y <,又因为N x ∈,N 为自然数集,所以min y 在5,2⎛⎫-∞ ⎪⎝⎭上取到,2x =时,min 7y =-,同理max y 在5,2⎛⎫+∞⎪⎝⎭上取到,3x =时,max 11y =,所以当N x ∈,N 为自然数集时,函数有最小值也有最大值.故选:D .6.已知函数()πcos 12f x x ⎛⎫=-⎪⎝⎭,()πsin 46g x x ⎛⎫=+ ⎪⎝⎭,则“曲线()y f x =关于直线x m =对称”是“曲线()y g x =关于直线x m =对称”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A 【解析】【分析】分别求出两个函数的对称轴的集合,利用两个集合的关系即可判断.【详解】令()11ππ12m k k -=∈Z ,得()11ππ12m k k =+∈Z ,所以曲线()y f x =关于直线()11ππ12x k k =+∈Z 对称.令()22ππ4π62m k k +=+∈Z ,得()22ππ124k m k =+∈Z ,所以曲线()y g x =关于直线()22ππ124k x k =+∈Z 对称.因为()11π{|π}12m m k k =+∈Z ()22ππ{|}124k m m k =+∈Z 所以“曲线()y f x =关于直线x m =对称”是“曲线()y g x =关于直线x m =对称”的充分不必要条件.故选:A.7.O 为坐标原点,F 为抛物线2:8C y x =的焦点,M 为C 上一点,若||6=MF ,则MOF △的面积为()A. B. C. D.8【答案】C 【解析】【分析】首先根据焦半径公式求点M 的坐标,再代入面积公式,即可求解.【详解】设点()00,Mxy ,()2,0F ,所以026MF x =+=,得04x =,0y =±,所以MOF △的面积011222S OF y =⨯=⨯⨯故选:C8.,,a b c 为三个互异的正数,满足2ln 0,31ba cc a a-=>=+,则下列说法正确的是()A.2c a b ->-B.2c b a -≤-C.2c a b +<+D.2c a b+≤+【答案】A 【解析】【分析】对于2ln 0cc a a-=>可构造函数()2ln f x x x =-,利用导函数可求出其单调性,利用数形结合可得02a c <<<,对于31ba =+,可在同一坐标系下画出函数x y =及31x y =+的图象,可得02a b <<<,再由不等式性质可知A 正确.【详解】由2ln0cc a a-=>得2ln 2ln c c a a -=-且c a >,构造函数()2ln f x x x =-,所以()21f x x'=-,易得()f x 在()0,2上单调递减,在()2,+∞上单调递增,其函数图象如下图所示:由图可得02a c <<<,易知函数x y =及31x y =+交于点()2,10,作出函数x y =及31x y =+的图象如下图所示:由图知02a b <<<所以02a b c <<<<,即,2a b c <<,由此可得2a b c +<+,即2c a b ->-.故选:A【点睛】方法点睛:在求解不等式比较大小问题时,经常利用同构函数进行构造后通过函数单调单调性比较出大小,画出函数图象直接由图象观察得出结论.二、多项选择题(本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有两个或两个以上选项符合题目要求,全部选对的得6分,选对但不全的得3分,有选错的得0分)9.已知10个数据的第75百分位数是31,则下列说法正确的是()A.这10个数据中至少有8个数小于或等于31B.把这10个数据从小到大排列后,第8个数据是31C.把这10个数据从小到大排列后,第7个与第8个数据的平均数是31D.把这10个数据从小到大排列后,第6个与第7个数据的平均数是31【答案】AB 【解析】【分析】由百分位数的概念可判断.【详解】因为这10个数据的第75百分位数是31,由100.757.5⨯=,可知把这10个数据从小到大排列后,第8个数为31,可知,选项A ,B 正确,C ,D 错误.故选:AB .10.函数()2,3,x D x x ∈⎧=⎨∉⎩QQ ,则下列结论正确的是()A.()()3.14D D π>B.()D x 的值域为[]2,3C.()()D D x 是偶函数 D.a ∀∈R ,()()D x a D a x +=-【答案】AC 【解析】【分析】根据函数解析式,结合分段函数的性质,逐项判断即可.【详解】()3D π=,()3.142D =,()()3.14D D π>,A 正确;()2,3,x D x x ∈⎧=⎨∉⎩QQ,则()D x 的值域为{}2,3,B 错误;x ∈Q 时,x -∈Q ,()()()22D D x D ==,()()()22D D x D -==,所以()()()()D D x D D x =-,x ∉Q 时,x -∉Q ,()()()32D D x D ==,()()()32D D x D -==,()()()()D D x D D x =-,所以()()D D x 为偶函数,C正确;x =时,取1a =()()12D x a D +==,()(13D a x D -=-=,则()()D x a D a x +≠-,D 错误.故选:AC11.某班级到一工厂参加社会实践劳动,加工出如图所示的圆台12O O ,轴截面ABCD 为等腰梯形,且满足2224cm CD AB AD BC ====.下列说法正确的是()A.该圆台轴截面ABCD 的面积为2B.该圆台的表面积为211πcmC.该圆台的体积为3cmD.【答案】AB 【解析】【分析】求出圆台的高12O O 可判断A ;由圆台的表面积和体积公式可判断B ,C ;由内切圆的性质以及切线长定理易知轴截面ABCD 不存在内切圆可判断D .【详解】对于A ,由2224cm CD AB AD BC ====,可得高12O O ==则圆台轴截面ABCD 的面积为()214m 22⨯+=,故A 正确;对于B ,圆台的侧面积为()()2π1226πcm S =⋅+⨯=侧,又()22ππm1c S =⨯=上,()22π24πcm S=⋅=下,所以()26ππ41cm π1πS =++=表,故B 正确;对于C ,圆台的体积为()()3173π142πcm 33V =++=,故C 错误;对于D ,若圆台存在内切球,则必有轴截面ABCD 存在内切圆,由内切圆的性质以及切线长定理易知轴截面ABCD 不存在内切圆,故D 错误,故选:AB.三、填空题(本题共3小题,每小题5分,共15分)12.已知()12f x x=在点()()1,1f 处的切线为直线20x y t -+=,则=a __________.【答案】12-##-0.5【解析】【分析】结合题目条件,列出方程求解,即可得到本题答案.【详解】因为()12f xx =-,所以21()f x x'=+,因为()f x 在点()()1,1f 处的切线为直线20x y t -+=,所以1(1)12f a '=+=,解得12a =-.故答案为:12-13.已知力123,,F F F ,满足1231N ===F F F ,且123++=F F F 0,则12-=F F ________N.【解析】【分析】将123++=F F F 0变形后平方得到相应结论,然后将12-F F 平方即可计算对应的值.【详解】由123++=F F F 0,可得123+=-F F F ,所以()()22312-=+F F F ,化简可得222312122F =++⋅F F F F ,因为1231===F F F ,所以1221⋅=-F F ,所以12-====F F【点睛】本题考查向量中的力的计算,难度较易.本题除了可以用直接分析计算的方式完成求解,还可以利用图示法去求解.14.已知双曲线C :()222210,0x y a b a b -=>>的左右焦点分别为1F ,2F ,过1F 作x 轴的垂线交C 于点P﹒2OM PF ⊥于点M (其中O 为坐标原点),且有223PF MF =,则C 的离心率为______.【答案】622【解析】【分析】由向量垂直的坐标表示得出关于,,a b c 的齐次式后可得离心率.【详解】如图,易得2(,)b P c a -,2(,0)F c ,22(2,b PF c a=- ,设(,)M x y ,2(,)MF c x y =-- ,由223PF MF = 得2(2,3(,)b c c x y a-=--,223()3c c x b y a =-⎧⎪⎨-=-⎪⎩,解得2133x c b y a ⎧=⎪⎪⎨⎪=⎪⎩,即21(,)33b M c a ,21(,33b OM c a = ,又2OM PF ⊥,∴42222033b OM PF c a⋅=-= ,c e a =,222b c a =-代入得2222(1)0e e --=,因为1e >故解得622e +=,故答案为:2+.四、解答题(本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤)15.在ABC 中,内角,,A B C 所对的边分别是,,a b c ,三角形面积为S ,若D 为AC 边上一点,满足,2AB BD BD ⊥=,且223cos 3a S ab C =-+.(1)求角B ;(2)求21AD CD+的取值范围.【答案】(1)2π3(2)3,12⎛⎤ ⎥⎝⎦【解析】【分析】(1)结合面积公式、正弦定理及两角和的正弦公式化简可得tan B =,进而求解即可;(2)在BCD △中由正弦定理可得1sin DC C=,在Rt △ABD 中,可得2sin AD A =,进而得到21sin sin A C AD CD +=+,结合三角恒等变化公式化简可得21πsin 3C AD CD ⎛⎫+=+ ⎪⎝⎭,进而结合正弦函数的图象及性质求解即可.【小问1详解】2cos 3a S ab C =-+ ,23sin cos 3a ab C ab C ∴=-+,即sin cos 3a b C b C =-+,由正弦定理得,3sin sin sin sin cos 3A B C B C =-+,()3sin sin sin sin cos 3B C B C B C ∴+=-+,cos sin sin sin 3B C B C ∴=-,sin 0C ≠,tan B ∴=由0πB <<,得2π3B =.【小问2详解】由(1)知,2π3B =,因为AB BD ⊥,所以π2ABD ∠=,π6DBC ∠=,在BCD △中,由正弦定理得sin sin DC BDDBC C=∠,即π2sin16sin sin DC C C==,在Rt △ABD 中,2sin sin AD A BD A==,sin sin 21sin si 22n 11A CC CA A D D∴++=+=,2π3ABC ∠=,π3A C ∴+=,21ππππsin sin sin sin sin cos cos sin sin sin 3333A C C C C C C C AD CD ⎛⎫⎛⎫∴+=+=-+=-+=+ ⎪ ⎪⎝⎭⎝⎭,π03C << ,ππ2π,333C ⎛⎫∴+∈ ⎪⎝⎭,πsin ,132C ⎛⎤⎛⎫∴+∈ ⎥ ⎪ ⎝⎭⎝⎦,所以21AD CD +的取值范围为3,12⎛⎤ ⎥ ⎝⎦.16.已知数列{}n a 的前n 项和为,0n n S a >,且2241n n n a a S +=-.(1)求{}n a 的通项公式;(2)设1n n n n S b a a +=的前n 项和为n T ,求n T .【答案】(1)21n a n =-(2)242n n n T n +=+【解析】【分析】(1)先用()1n +替换原式中的n ,然后两式作差,结合n a 与n S 的关系,即可得到{}n a 为等差数列,从而得到其通项.(2)由(1)的结论,求得n S 及1n a +,代入1n n n n S b a a +=化简,得到n T 的式子,裂项相消即可.【小问1详解】2241n n n a a S +=-Q ,2111241n n n a a S ++++=-,两式作差得:()()1120n n n n a a a a +++--=,102n n n a a a +>∴-=Q ,{}n a ∴成等差数列,又当1n =时,()2110a -=,所以11a =即()11221n a n n =+-⨯=-【小问2详解】由(1)知21n a n =-,则()()1212122n n n a a n n S n ++-===,即()()()()21111212142121n n n n S n b a a n n n n +⎡⎤===+⎢⎥-+-+⎢⎥⎣⎦1111482121n n ⎛⎫=+- ⎪-+⎝⎭,故1111111483352121n n T n n ⎛⎫=+-+-++- -+⎝⎭L 2111482148442n n n n n n n n +⎛⎫=+-=+= ⎪+++⎝⎭.17.已知椭圆2222:1(0)x y C a b a b +=>>过31,2⎛⎫ ⎪⎝⎭和62⎫⎪⎪⎭两点.12,F F 分别为椭圆的左、右焦点,P 为椭圆上的点(P 不在x 轴上),过椭圆右焦点2F 的直线l 与椭圆交于A B 、两点.(1)求椭圆的标准方程;(2)求AB 的范围.【答案】(1)22143x y +=(2)[]3,4【解析】【分析】(1)将点3(1,2代入椭圆方程,即可求出椭圆C 的标准方程;(2)分类讨论直线斜率是否为0,从而假设直线方程,与椭圆方程联立,利用韦达定理与弦长公式得到关于m 的关系式,再分析即可得解;【小问1详解】由题意可知,将点3(1,2代入椭圆方程,得222291416241a ba b⎧⎪+=⎪⎪⎨⎪⎪+=⎪⎩,解得224,3a b==,所以椭圆的标准方程为22143x y+=.【小问2详解】由(1)知()11,0F-,()21,0F,当直线l的斜率为0时,24AB a==,当直线l的斜率不为0时,设直线l的方程为1x my=+,()11,A x y,()22,B x y,联立221431x yx my⎧+=⎪⎨⎪=+⎩,消去x,得22(34)690m y my++-=,易得()22Δ636(34)0m m=++>,则12122269,3434my y y ym m--+==++,所以AB==2221212443434mm m+===-++,因为20m≥,所以2344m+≥,所以240134m<≤+,所以34AB≤<,综上,34AB≤≤,即AB的范围是[]3,4.18.《中国制造2025》提出“节能与新能源汽车”作为重点发展领域,明确了“继续支持电动汽车、燃料电池汽车发展,掌握汽车低碳化、信息化、智能化核心技术,提升动力电池、驱动电机、高效内燃机、先进变速器、轻量化材料、智能控制等核心技术的工程化和产业化能力,形成从关键零部件到整车的完成工业体系和创新体系,推动自主品牌节能与新能源汽车与国际先进水平接轨的发展战略,为我国节能与新能源汽车产业发展指明了方向.某新能源汽车制造企业为了提升产品质量,对现有的一条新能源零部件产品生产线进行技术升级改造,为了分析改造的效果,该企业质检人员从该条生产线所生产的新能源零部件产品中随机抽取了1000件,检测产品的某项质量指标值,根据检测数据整理得到频率直方图(如图):(1)从质量指标值在[)55,75的两组检测产品中,采用分层抽样的方法再抽取5件.现从这5件中随机抽取2件作为样品展示,求抽取的2件产品恰好都在同一组的概率.(2)经估计知这组样本的平均数为61x =,方差为2241s =.检验标准中55n x ns a ⎧⎫-=⨯⎨⎬⎩⎭,55n x ns b ⎡⎤+=⨯⎢⎥⎣⎦,N n *∈,其中[]x 表示不大于x 的最大整数,{}x 表示不小于x 的最小整数,s 值四舍五入精确到个位.根据检验标准,技术升级改造后,若质量指标值有65%落在[]11,a b 内,则可以判断技术改造后的产品质量初级稳定,但需要进一步改造技术;若有95%落在[]22,a b 内,则可以判断技术改造后的产品质量稳定,认为生产线技术改造成功.请问:根据样本数据估计,是否可以判定生产线的技术改造成功?【答案】(1)25;(2)详见解析;【解析】【分析】(1)根据分层抽样确定抽取比例,然后运用组合求解即可;(2)根据题中公式,计算出区间并判段数据落在该区间的概率,然后与题中条件比较即可得出结论.【小问1详解】由题意可知[)[)55,6565,750.330.22P P ==,所以抽取的2件产品恰好都在同一组的概率为:223225C C 42C 105P +===;【小问2详解】因为2241s =,知16s ,则11611661165455755 5a b -+⎧⎫⎡⎤=⨯==⨯=⎨⎬⎢⎥⎩⎭⎣⎦,,该抽样数据落在[]45,75内的频率约为0.160.30.266%65%++=>,又22612166121653059055a b -⨯+⨯⎧⎫⎡⎤=⨯==⨯=⎨⎬⎢⎥⎩⎭⎣⎦,,该抽样数据落在[]30,90内的频率约为10.030.040.9393%95%--==<,,所以可以判断技术改造后的产品质量初级稳定,但不能判定生产线技术改造成功.19.如图,//AD BC ,且AD =2BC ,AD ⊥CD ,//EG AD 且EG =AD ,//CD FG 且CD =2FG ,DG ⊥平面ABCD ,DA =DC =DG =2.(1)若M 为CF 的中点,N 为EG 的中点,求证:MN //平面CDE ;(2)求平面EBC 和平面BCF 所夹角的正弦值;【答案】(1)证明见解析(2)1010【解析】【分析】(1)以D 为坐标原点,分别以DA 、DC 、DG 的方向为x 轴、y 轴、z 轴的正方向建立空间直角坐标系,根据空间向量可证MN //平面CDE ;(2)利用平面的法向量可求出结果.【小问1详解】证明:依题意,以D 为坐标原点,分别以DA 、DC 、DG 的方向为x 轴、y 轴、z 轴的正方向建立空间直角坐标系,如图:可得D (0,0,0),A (2,0,0),B (1,2,0),C (0,2,0),E (2,0,2),F (0,1,2),G (0,0,2),3(0,,1)2M ,N (1,0,2).依题意,DC =(0,2,0),DE =(2,0,2).设0n =(x ,y ,z )为平面CDE 的法向量,则0020220n DC y n DE x z ⎧⋅==⎪⎨⋅=+=⎪⎩ ,得0y =,令z =-1,得1x =,则0(1,0,1)n =- ,又3(1,,1)2MN =- ,可得00MN n ⋅= ,直线MN ⊄平面CDE ,所以MN //平面CDE .【小问2详解】依题意,可得(1,0,0)BC =- ,(1,2,2)BE =- ,(0,1,2)CF =- ,设111(,,)n x y z = 为平面BCE 的法向量,则11110220n BC x n BE x y z ⎧⋅=-=⎪⎨⋅=-+=⎪⎩ ,得10x =,令11z =,得11y =,则(0,1,1)n =,设222(,,)m x y z = 为平面BCF 的法向量,则222020m BC x m CF y z ⎧⋅=-=⎪⎨⋅=-+=⎪⎩ ,得20x =,令21z =,得22y =,则(0,2,1)m =,因此有cos ,||||m n m n m n ⋅<>=⋅ 2152=⨯31010=.于是10sin ,10m n <>= .所以平面EBC 和平面BCF 所夹角的正弦值为1010.。

(完整版)高三数学模拟试题及答案

(完整版)高三数学模拟试题及答案

高三数学模拟试卷(满分150 分)一、选择题(每题 5 分,共 40 分)1.已知全集 U={1,2,3,4,5} ,会集 M ={1,2,3} , N = {3,4,5} ,则 M ∩ ( e U N)=()A. {1,2}B.{ 4,5}C.{ 3}D.{ 1,2,3,4,5} 2. 复数 z=i 2(1+i) 的虚部为()A. 1B. iC.- 1D. -i3.正项数列 { a } 成等比, a +a =3, a +a =12,则 a +a 的值是()n1 23445A. - 24B. 21C.24D. 484.一组合体三视图如右,正视图中正方形 边长为 2,俯视图为正三角形及内切圆, 则该组合体体积为()A.2 34B.3C.2 3 4 54 3 4 3+D.2735.双曲线以一正方形两极点为焦点,另两极点在双曲线上,则其离心率为( )A. 2 2B.2 +1C.2D. 1uuur uuur6. 在四边形 ABCD 中,“ AB =2 DC ”是“四边形ABCD 为梯形”的()A. 充足不用要条件B. 必要不充足条件C.充要条件D. 既不充足也不用要条件7.设 P 在 [0,5] 上随机地取值,求方程x 2+px+1=0 有实根的概率为( )A. 0.2B. 0.4C.0.5D.0.6y8. 已知函数 f(x)=Asin( ωx +φ)(x ∈ R, A>0, ω>0, |φ|<)5f(x)的解析式是(2的图象(部分)以下列图,则)A .f(x)=5sin( x+)B. f(x)=5sin(6 x-)O256 66xC. f(x)=5sin(x+)D. f(x)=5sin(3x- )366- 5二、填空题:(每题 5 分,共30 分)9. 直线 y=kx+1 与 A ( 1,0), B ( 1,1)对应线段有公共点,则 k 的取值范围是 _______. 10.记 (2x1)n 的张开式中第 m 项的系数为 b m ,若 b 32b 4 ,则 n =__________.x311 . 设 函 数 f ( x) xx 1x 1、 x 2、 x 3、 x 41 2的 四 个 零 点 分 别 为 , 则f ( x 1 +x 2 +x 3 +x 4 );12、设向量 a(1,2), b (2,3) ,若向量a b 与向量 c (4, 7)共线,则x 111. lim______ .x 1x 23x 414. 对任意实数 x 、 y ,定义运算 x* y=ax+by+cxy ,其中a、 b、c 常数,等号右的运算是平时意的加、乘运算 .已知 2*1=3 , 2*3=4 ,且有一个非零数m,使得任意数x,都有 x* m=2x, m=.三、解答:r r15.(本 10分)已知向量 a =(sin(+x), 3 cosx),b =(sin x,cosx),f(x)=⑴求 f( x)的最小正周期和增区;2⑵若是三角形 ABC 中,足 f(A)=3,求角 A 的.216.(本 10 分)如:直三棱柱(棱⊥底面)ABC — A 1B1C1中,∠ ACB =90°, AA 1=AC=1 , BC= 2,CD ⊥ AB, 垂足 D.C1⑴求: BC∥平面 AB 1C1;A1⑵求点 B 1到面 A 1CD 的距离 .PCA D r r a ·b .B 1B17.(本 10 分)旅游公司 4 个旅游供应 5 条旅游路,每个旅游任其中一条.( 1)求 4 个旅游互不一样样的路共有多少种方法;(2)求恰有 2 条路被中的概率 ;(3)求甲路旅游数的数学希望.18.(本 10 分)数列 { a n} 足 a1+2a2 +22a3+⋯+2n-1a n=4 n.⑴求通a n;⑵求数列 { a n} 的前 n 和S n.19.(本 12 分)已知函数f(x)=alnx+bx,且 f(1)= - 1, f′(1)=0 ,⑴求 f(x);⑵求 f(x)的最大;⑶若 x>0,y>0, 明: ln x+lny≤xy x y 3.220.(本 14 分) F 1, F 2 分 C :x2y 21(a b 0) 的左、右两个焦点,若 Ca 2b 2上的点 A(1,3124.)到 F , F 两点的距离之和等于2⑴写出 C 的方程和焦点坐 ;⑵ 点 P ( 1,1)的直 与 交于两点 D 、 E ,若 DP=PE ,求直 DE 的方程 ;4⑶ 点 Q ( 1,0)的直 与 交于两点 M 、N ,若△ OMN 面 获取最大,求直 MN 的方程 .21. (本 14 分) 任意正 数 a 1、 a 2、 ⋯ 、an ;求1/a 1+2/(a 1 +a 2)+⋯ +n/(a 1+a 2+⋯ +a n )<2 (1/a 1+1/a 2+⋯ +1/a n )9 高三数学模 答案一、 :. ACCD BAD A二、填空 :本 主要考 基 知 和基本运算.每小 4 分,共 16 分 .9.[-1,0] 10.5 11.19 12. 2 13.1 14. 35三、解答 :15.本 考 向量、二倍角和合成的三角函数的公式及三角函数性 ,要修业生能运用所学知 解决 .解:⑴ f(x)= sin xcosx+3 + 3 cos2x = sin(2x+ )+ 3⋯⋯⋯2 23 2 T=π, 2 k π - ≤ 2x+≤ 2 k π +, k ∈ Z,232最小正周期 π, 增区[ k π -5, k π + ], k ∈ Z.⋯⋯⋯⋯⋯⋯⋯⋯1212⑵由 sin(2A+ )=0 , <2A+ <7 ,⋯⋯⋯⋯⋯33 或533∴ 2A+ =π或 2π,∴ A=⋯⋯⋯⋯⋯⋯⋯⋯33616.、本 主要考 空 、 面的地址关系,考 空 距离角的 算,考 空 想象能力和推理、 能力, 同 也可考 学生灵便利用 形, 建立空 直角坐 系, 借助向量工具解决 的能力. ⑴ 明:直三棱柱ABC — A 1B 1C 1 中, BC ∥ B 1C 1,又 BC 平面 A B 1C 1,B 1C 1 平面 A B 1C 1,∴ B 1C 1∥平面 A B 1C 1;⋯⋯⋯⋯⋯⋯⑵(解法一)∵ CD ⊥ AB 且平面 ABB 1A 1⊥平面 AB C,C 11 1 1∴ CD ⊥平面 ABBA ,∴ CD ⊥AD 且 CD ⊥A D ,∴∠ A DA 是二面角 A 1— CD —A 的平面角,1A 1B 1在 Rt △ ABC,AC=1,BC= 2 ,PC∴ AB= 3 , 又 CD ⊥ AB ,∴ AC 2=AD × ABADB∴ AD=3, AA1131=1,∴∠ DA 1B 1=∠ A DA=60 °,∠ A 1 B 1A=30°,∴ A B 1 ⊥A D又 CD ⊥ A 1D ,∴ AB 1⊥平面 A 1CD , A 1D ∩ AB 1=P, ∴ B 1P 所求点 B 1 到面 A 1CD 的距离 . B P=A 1 B 1cos ∠ A 1 B 1A= 33cos30 =° .12即点 B 1 到面 A 1 CD 的距离 3.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯21 × 3 1 z ( 2)(解法二) 由 V B 1- A 1CD =V C - A 1B 1D =C 132×6 = 2,而 cos ∠ A 1 CD= 2 × 6 = 3 ,AB13 6 2 3 31△A 1CD1 ×2 ×6 ×6 =2,B 1 到平面CS=3 332A ByA 1CD 距离 h, 1×22, 得 h= 3所求 .Dx h=33 6 2⑶(解法三)分 以CA 、CB 、CC 1 所在直 x 、y 、z 建立空 直角坐 系(如 )A ( 1,0, 0), A 1( 1, 0, 1),C (0, 0, 0), C 1( 0, 0, 1),B (0,2 , 0), B 1( 0, 2 , 1),uuurr∴ D ( 2 , 2, 0) CB =( 0, 2 , 1), 平面 A 1CD 的法向量 n =( x , y , z ),3 31r uuur3n CD2x2y 0rruuur,取 n=( 1, -2 , - 1)n CA 1 x z 0r uuur点 B 1 到面 A 1CD 的距离d= n CB 13r⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯n217.本 主要考 排列,典型的失散型随机 量的概率 算和失散型随机 量分布列及希望等基 知 和基本运算能力.解:( 1) 4 个旅游 互不一样样的 路共有:A 54=120 种方法; ⋯(2)恰有两条 路被 中的概率 :P 2 C 52 (2 42) 28=54⋯125(3) 甲 路旅游 数ξ, ξ~ B(4, 1)14⋯⋯⋯⋯⋯⋯ 5∴希望 E ξ=np=4×=5 5答 : ( 1) 路共有120 种,(2)恰有两条 路被 中的概率 0.224, ( 3)所求希望 0.8 个数 .⋯⋯⋯⋯⋯⋯⋯⋯⋯18.本 主要考 数列的基 知 ,考 分 的数学思想,考 考生 合 用所学知 造性解决 的能力.解:( 1) a 1+2 a 2+22a 3+⋯ +2n - 1a n =4n ,∴ a 1+2 a 2+22a 3+⋯ +2n a n+1=4n+1,相减得 2n a n+1=3× 4n , ∴ a n+1=3× 2n ,4(n1) 又 n=1 a 1=4,∴ 上 a n =2n 1所求;⋯⋯⋯⋯⋯⋯⋯⋯⋯3(n 2)⑵ n ≥2 , S n=4+3(2 n- 2), 又 n=1 S 1=4 也建立, ∴ S n =3× 2 n - 2⋯⋯⋯⋯⋯⋯ 12 分19.本 主要考 函数、 数的基本知 、函数性 的 理以及不等式的 合 ,同 考 考生用函数放 的方法 明不等式的能力.解:⑴由 b= f(1)= - 1, f ′(1)= a+b=0, ∴ a=1, ∴f(x)=ln x- x 所求; ⋯⋯⋯⋯⋯⑵∵ x>0,f ′(x)=1- 1=1x ,xxx 0<x<1x=1 x>1 f (′x) +0 - f(x)↗极大↘∴ f (x)在 x=1 获取极大 - 1,即所求最大 - 1; ⋯⋯⋯⋯⋯⑶由⑵得 lnx ≤x- 1 恒建立, ∴ln x+ln y=ln xy+ ln x ln y ≤ xy 1 + x 1 y 1 = xy x y 3建立⋯⋯⋯22 22220.本 考 解析几何的基本思想和方法,求曲 方程及曲 性 理的方法要求考生能正确分析 , 找 好的解 方向, 同 兼 考 算理和 推理的能力, 要求 代数式合理演 ,正确解析最 .解:⑴ C 的焦点在 x 上,由 上的点A 到 F 1、F 2 两点的距离之和是 4,得 2a= 4,即 a=2 .;3134 1.得 b 2=1,于是 c 2=3 ;又点 A(1,) 在 上,因此222b 2因此 C 的方程x 2y 2 1,焦点 F 1 ( 3,0), F 2 ( 3,0). ,⋯⋯⋯4⑵∵ P 在 内,∴直DE 与 订交,∴ D( x 1,y 1),E(x 2,y 2),代入 C 的方程得x 12+4y 12- 4=0, x 22+4y 22- 4=0,相减得 2(x 1- x 2 )+4× 2× 1 (y 1- y 2)=0 , ∴斜率 k=-11 4∴ DE 方程 y- 1= - 1(x-), 即 4x+4y=5; ⋯⋯⋯4(Ⅲ )直 MN 不与 y 垂直,∴MN 方程 my=x- 1,代入 C 的方程得( m 2+4) y 2+2my- 3=0,M( x 1,y 1 ),N( x 2 ,y 2), y 1+y 2=-2m 3 ,且△ >0 建立 .m 2 4, y 1y 2=-m 2 4又 S △ OMN = 1|y 1- y 2|= 1 ×4m212(m 24) = 2 m23, t=m 2 3 ≥ 3 ,2 2m 2 4m 24S△OMN =2,(t+1t1tt ) ′=1 - t-2>0t≥ 3 恒建立,∴t=3t+1获取最小, S△OMN最大,t此 m=0, ∴ MN 方程 x=1⋯⋯⋯⋯⋯。

2024年山东潍坊市高三三模数学高考试卷试题(含答案详解)

2024年山东潍坊市高三三模数学高考试卷试题(含答案详解)

潍坊市高考模拟考试(潍坊三模)数学2024.5一、选择题:本题共8小题,每小题5分,共40分.每小题只有一个选项符合题目要求.1.设复数πsin 2i 4z θ⎛⎫=++ ⎪⎝⎭是纯虚数,则θ的值可以为()A .π4B .5π4C .2023π4D .2025π42.已知集合{}{}3,2,1,0,1,2,3,|3,Z A B x x n n =---==∈,则A B ⋂的子集个数是()A .3个B .4个C .8个D .16个3.如图,半径为1的圆M 与x 轴相切于原点O ,切点处有一个标志,该圆沿x 轴向右滚动,当圆M 滚动到与出发位置时的圆相外切时(记此时圆心为N ),标志位于点A 处,圆N 与x 轴相切于点B ,则阴影部分的面积是()A .2B .1C .π3D .π44.某同学在劳动课上做了一个木制陀螺,该陀螺是由两个底面重合的圆锥组成.已知该陀螺上、下两圆锥的体积之比为1:2,上圆锥的高与底面半径相等,则上、下两圆锥的母线长之比为()A B .12C .2D 5.牛顿迭代法是求方程近似解的一种方法.如图,方程()0f x =的根就是函数()f x 的零点r ,取初始值()0,x f x 的图象在点()()00,x f x 处的切线与x 轴的交点的横坐标为()1,x f x 的图象在点()()11,x f x 处的切线与x 轴的交点的横坐标为2x ,一直继续下去,得到12,,,n x x x ,它们越来越接近r .设函数()2f x x bx =+,02x =,用牛顿迭代法得到11619x =,则实数b =()A .1B .12C .23D .346.已知1F ,2F 分别为椭圆C :22162x y+=的左、右焦点,点()00,P x y 在C 上,若12F PF ∠大于π3,则0x 的取值范围是()A .(),-∞+∞B .(C .(),-∞+∞D .(7.已知函数()f x 的导函数为()f x ',且()1e f =,当0x >时,()1e xf x x<'+,则不等式()ln 1e xf x x ->的解集为()A .()0,1B .()0,∞+C .()1,∞+D .()()0,11,∞⋃+8.已知()()()()()()828901289321111x x a a x a x a x a x ++=+++++++++ ,则8a =()A .8B .10C .82D .92二、多项选择题:本大题共3个小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得6分,选对但不全的得部分分,有选错的得0分.9.在棱长为1的正方体1111ABCD A B C D -中,M N ,分别为棱111,C D C C 的中点,则()A .直线BN 与1MB 是异面直线B .直线MN 与AC 所成的角是3πC .直线MN ⊥平面ADND .平面BMN 截正方体所得的截面面积为98.10.下列说法正确的是()A .从装有2个红球和2个黑球的口袋内任取2个球,事件“至少有一个黑球”与事件“至少有一个红球”是互斥事件B .掷一枚质地均匀的骰子两次,“第一次向上的点数是1”与“两次向上的点数之和是7”是相互独立事件C .若123452,,,,,x x x x x 的平均数是7,方差是6,则12345,,,,x x x x x 的方差是65D .某人在10次射击中,设击中目标的次数为X ,且()10,0.8B X ,则8X =的概率最大11.已知12F F ,双曲线()222:104x y C b b-=>的左、右焦点,点P 在C 上,设12PF F △的内切圆圆心为I ,半径为r ,直线PI 交12F F 于Q ,若53PQ PI = ,1215PI PF t PF =+,R t ∈则()A .25t =B .圆心I 的横坐标为1C .5r =D .C 的离心率为2三、填空题:本大题共3个小题,每小题5分,共15分.12.已知向量()()()1,2,4,2,1,a b c λ==-=,若()20c a b ⋅+= ,则实数λ=13.已知关于x 的方程()()2cos 0x k ωϕω+=≠的所有正实根从小到大排列构成等差数列,请写出实数k 的一个取值为14.已知,,a b c 均为正实数,函数()()22ln f x x a b x x =+++.(1)若()f x 的图象过点()1,2,则12a b+的最小值为;(2)若()f x 的图象过点(),ln c ab c +,且()3a b t c +≥恒成立,则实数t 的最小值为.四、解答题:本大题共5小题,共77分.解答应写出文字说明、说明过程或演算步骤.15.如图,在直三棱柱111ABC A B C -中,1,2AB AC AB AC AA ⊥==,E 是棱BC的中点.(1)求证:1//A C 平面1AB E ;(2)求二面角11A B E A --的大小.16.已知正项等差数列{}n a 的公差为2,前n 项和为n S ,且12311S S S ++,,成等比数列.(1)求数列{}n a 的通项公式n a ;(2)若()1,1sin ,2nn n n S b n S n π⎧⎪⎪=⎨-⎪⋅⎪⎩为奇数,为偶数,求数列{}n b 的前4n 项和.17.在平面直角坐标系中,O 为坐标原点,E 为直线:1l y =-上一点,动点F 满足FE l ⊥,OF OE ⊥ .(1)求动点F 的轨迹C 的方程;(2)若过点1,02T ⎛⎫⎪⎝⎭作直线与C 交于不同的两点,M N ,点()1,1P ,过点M 作y 轴的垂线分别与直线,OP ON 交于点,A B .证明:A 为线段BM 的中点.18.某高校为了提升学校餐厅的服务水平,组织4000名师生对学校餐厅满意度进行评分调查,按照分层抽样方法,抽取200位师生的评分(满分100分)作为样本,绘制如图所示的频率分布直方图,并将分数从低到高分为四个等级:满意度评分[0,60)[60,80)[80,90)[]90100,满意度等级不满意基本满意满意非常满意(1)求图中a 的值,并估计满意度评分的25%分位数;(2)若样本中男性师生比为1:4,且男教师评分为80分以上的概率为0.8,男学生评分为80分以上的概率0.55,现从男性师生中随机抽取一人,其评分为80分以上的概率为多少?(3)设在样本中,学生、教师的人数分别为()1200m n n m ≤≤≤,,记所有学生的评分为12,,m x x x ,,其平均数为x ,方差为2x s ,所有教师的评分为12,,n y y y ,,其平均数为y ,方差为2y s ,总样本的平均数为z ,方差为2s ,若245x y x y s s s ==,试求m 的最小值.19.一个完美均匀且灵活的项链的两端被悬挂,并只受重力的影响,这个项链形成的曲线形状被称为悬链线.1691年,莱布尼茨、惠根斯和约翰・伯努利等得到“悬链线”方程e e 2x xccc y -⎛⎫+ ⎪⎝⎭=,其中c 为参数.当1c =时,就是双曲余弦函数()e e ch 2x x x -+=,类似地双曲正弦函数()e e sh 2x xx --=,它们与正、余弦函数有许多类似的性质.(1)类比三角函数的三个性质:①倍角公式sin22sin cos x x x =;②平方关系22sin cos 1x x +=;③求导公式()()''sin cos cos sin x x x x ⎧=⎪⎨=-⎪⎩,写出双曲正弦和双曲余弦函数的一个正确的性质并证明;(2)当0x >时,双曲正弦函数()sh y x =图象总在直线y kx =的上方,求实数k 的取值范围;(3)若1200x x >>,,证明:()()()()()2221112121ch sh 1ch sh sin sin cos .x x x x x x x x x x ⎡⎤⎡⎤+--⋅+>+--⎣⎦⎣⎦1.C【分析】根据题意得到πsin 04θ⎛⎫+= ⎪⎝⎭,将四个选项代入检验,得到答案.【详解】由题意得πsin 04θ⎛⎫+= ⎪⎝⎭,A 选项,当π4θ=时,ππsin 144⎛⎫+= ⎪⎝⎭,不合题意,A 错误;B 选项,当5π4θ=时,5ππsin 144⎛⎫+=- ⎪⎝⎭,不合要求,B 错误;C 选项,当2023π4θ=时,2023ππsin sin 506π044⎛⎫+==⎪⎝⎭,故C 正确;D 选项,当2025π4θ=时,2025ππsin 144⎛⎫+=⎝⎭,D 错误.故选:C 2.C【分析】由交集的定义求得A B ⋂,根据子集个数的计算方法即可求解.【详解】由题意得,{3,0,3}A B ⋂=-,则A B ⋂的子集有328=个,故选:C .3.B【分析】根据给定条件,求出劣弧AB 的长,再利用扇形面积公式计算即得.【详解】由圆M 与圆N 外切,得2MN =,又圆M ,圆N 与x 轴分别相切于原点O 和点B ,则2OB MN ==,所以劣弧AB 长等于2OB =,所以劣弧AB 对应的扇形面积为12112⨯⨯=.故选:B 4.A【分析】由圆锥的体积公式及圆锥高、半径与母线的关系计算即可.【详解】设上、下两圆锥的底面半径为r ,高分别为12,h h ,体积分别为12,V V ,因为上圆锥的高与底面半径相等,所以1h r =,则2111222221π1312π3r h V h r V h h r h ====得,22h r =,=,5=,故选:A .5.D【分析】求得()f x 在()()22f ,的切线方程,代入16,019⎛⎫⎪⎝⎭求解即可.【详解】()2f x x b '=+,(2)4f b '=+,()242f b =+,则()f x 在()()22f ,处的切线方程为()()()4242y b b x -+=+-,由题意得,切线过16,019⎛⎫⎪⎝⎭代入得,()()16424219b b ⎛⎫-+=+- ⎪⎝⎭,解得34b =,故选:D .6.D【分析】由已知可知1PF ,2PF的坐标和模,由向量数量积的定义及坐标运算可得关于0x 的不等关系,即可求解.【详解】因为椭圆C :22162x y +=,所以26a =,22b =,所以2224c a b =-=,所以()12,0F -,()22,0F ,因为点()00,P x y 在C 上,所以2200162x y +=,所以2200123y x =-,0x <<,又()1002,PF x y =--- ,()2002,PF x y =-- ,所以222120002423PF PF x y x ⋅=+-=- ,又)10033PF x ==+=+ ,)2003PF x x ==-=- ,所以121212cos PF PF PF PF F PF ⋅=⋅∠ ,因为12F PF ∠大于π3,所以121212πcos cos 3PF PF F PF PF PF ⋅∠<⋅ ,所以()()2000221233332x x x -<+⋅-⋅,解得0x <<所以0x 的取值范围是(.故选:D .7.A【分析】由不等式化简构造新函数,利用导数求得新函数的单调性,即可求解原不等式.【详解】不等式()ln 1exf x x->等价于()e ln x f x x >+,即()e ln 0x f x x -+>,构造函数()()e ln ,0x g x f x x x =-+>,所以1()()e xg x f x x''=--,因为0x >时,()1e xf x x<'+,所以()0g x '<对(0,)∀∈+∞x 恒成立,所以()g x 在(0,)+∞单调递减,又因为(1)(1)e ln10g f =--=,所以不等式()e ln 0x f x x -+>等价于()(1)g x g >,所以01x <<,即()ln 1exf x x->的解集为()0,1.故选:A.8.B【分析】由()()()()88321211x x x x ⎡⎤⎡⎤++=++++⎣⎦⎣⎦,利用二项式定理求解指定项的系数.【详解】()()()()88321211x x x x ⎡⎤⎡⎤++=++++⎣⎦⎣⎦,其中()811x ⎡⎤++⎣⎦展开式的通项为()()88188C 11C 1rrr r rr T x x --+=+⋅=+,N r ∈且8r ≤,当0r =时,()()8818C 11T x x =+=+,此时只需乘以第一个因式()12x ⎡⎤++⎣⎦中的2,可得()821x +;当1r =时,()()77128C 181T x x =+=+,此时只需乘以第一个因式()12x ⎡⎤++⎣⎦中的()1x +,可得()881x +.所以82810a =+=.故选:B【点睛】关键点点睛:本题的关键点是把()()832x x ++表示成()()81211x x ⎡⎤⎡⎤++++⎣⎦⎣⎦,利用即可二项式定理求解.9.ABD【分析】根据异面直线成角,线面垂直的判定定理,梯形面积公式逐项判断即可.【详解】对于A ,由于BN ⊂平面11BB C C ,1MB 平面1111BB C C B ,B BN =∉,故直线BN 与1MB 是异面直线,故A 正确;对于B ,如图,连接1CD ,因为M N ,分别为棱111C D C C ,的中点,所以1∥MN CD ,所以直线MN 与AC 所成的角即为直线1CD 与AC 所成的角,又因为1ACD △是等边三角形,所以直线1CD 与AC 所成的角为π3,故直线MN 与AC 所成的角是π3,故B 正确;对于C ,如图,假设直线MN ⊥平面ADN ,又因为DN ⊂平面ADN ,所以MN DN ⊥,而222MN DN DM ===,这三边不能构成直角三角形,所以DN 与MN 不垂直,故假设错误,故C 错误;对于D ,如图,连接11,A B A M ,因为111,A B CD CD MN ∥∥,所以1//A B MN ,所以平面BMN 截正方体所得的截面为梯形1A BNM ,且11,2MN A B A M BN ====4,所以截面面积为19(2248⨯+⨯=,故D 正确.故选:ABD.10.BCD【分析】由互斥事件的定义即可判断A ;由独立事件的乘法公式验证即可判断B ;由平均值及方差的公式即可判断C ;由二项分布的概率公式即可判断D .【详解】对于A ,事件“至少有一个黑球”与事件“至少有一个红球”可以同时发生,所以不是互斥事件,故A 错误;对于B ,设A =“第一次向上的点数是1”,B =“两次向上的点数之和是7”,则()16P A =,()61366P B ==,()136P AB =,因为()()()P AB P A P B =⋅,所以事件A 与B 互相独立,故B 正确;对于C ,由123452,,,,,x x x x x 的平均数是7,得12345,,,,x x x x x 的平均数为8,由123452,,,,,x x x x x 方差是6,则()()222222123451234514752536xx x x x x x x x x ++++-+++++⨯+=,所以()()222222123451234516856x x x x x x x x x x ++++-+++++⨯=,所以12345,,,,x x x x x 的方差()()22222212345123451685655xx x x x x x x x x ++++-+++++⨯=,故C 正确;对于D ,由()10,0.8B X 得,当()110,Z x r r r =≤≤∈时,()101041C 55rrr P x r -⎛⎫⎛⎫==⋅ ⎪⎪⎝⎭⎝⎭,当2r ≥时,令()()()101011111041C 411551141C 55r rr r r r P x r r P x r k ----⎛⎫⎛⎫⋅ ⎪ ⎪=-⎝⎭⎝⎭==≥=-⎛⎫⎛⎫⋅ ⎪ ⎝⎭⎝⎭,即445r ≤,令()()()10101911041C 1551141041C 55r rrr r r P x r r P x r k -+-+⎛⎫⎛⎫⋅ ⎪ ⎪=+⎝⎭⎝⎭==≥=+-⎛⎫⎛⎫⋅ ⎪ ⎪⎝⎭⎝⎭,解得395r ≥,即394455r ≤≤,所以当8r =时,()8P X =最大,故D 正确,故选:BCD .11.ACD【分析】由121533PQ PF t PF =+ ,且12,,F Q F 三点共线,得到25t =,可判定A 正确;根据双曲线的定义和122EF EF c +=,求得12,EF a c EF c a =+=-,可判定B 错误;利用角平分线定理得到11222PF QF PF QF ==,结合三角形的面积公式,分别求得,c r 的值,可判定C 正确;结合离心率的定义和求法,可判定D 正确.【详解】对于A 中,因为12515333PQ PI PF t PF ==+,且12,,F Q F 三点共线,所以15133t +=,可得25t =,所以A 正确;对于B 中,设切点分别为,,E F G ,则12122EF EF PF PF a -=-=,又因为122EF EF c +=,所以12,EF a c EF c a =+=-,所以点E 为右顶点,圆心I 的横坐标为2,所以B 错误;对于C 中,因为121233PQ PF PF =+ ,所以122QF QF =,由角平分线定理,得11222PF QF PF QF ==,又因为1224PF PF a -==,所以128,4PF PF ==,由53PQ PI = 可得52P y r =,所以()121152122222PF F S c r c r =+⋅=⨯⨯ ,可得4c =,所以128F F =,则12PF F △为等腰三角形,所以1211(812)422PF F S r =+⋅=⨯⨯ 5r =,所以C 正确;对于D 中,由离心率422c e a ===,所以D 正确.【点睛】方法点拨:对于双曲线的综合问题的求解策略:1、与双曲线的两焦点有关的问题,在“焦点三角形”中,常利用正弦定理、余弦定理,结合122PF PF a -=,运用平方的方法,建立12PF PF ⋅的联系;2、当与直线有关的问题,常常联立直线与双曲线的方程,消元后利用一元二次方程的判别式,根与系数的关系构造相关变量关系式进行求解;3、当与向量有关相结合时,注意运用向量的坐标运算,将向量间的关系转化为点的坐标问题,再根据与系数的关系,将所求问题与条件建立联系求解.12.3-【分析】根据向量线性运算和数量积公式得到方程,求出答案.【详解】()()()22,44,26,2a b +=+-=,()()()21,6,2620c a b λλ⋅+=⋅=+=,解得3λ=-.故答案为:3-13.10,,12(答案不唯一,填写其中一个即可)【分析】根据三角降幂公式化简,再结合图象求得k 的取值即可.【详解】因为()()2cos 0x k ωϕω+=≠,所以cos 2()12x k ωϕ++=,即cos 2()21x k ωϕ+=-,要想方程所有正实根从小到大排列构成等差数列,则需要210k -=或1±,所以10,1,2k =.故答案为:10,,12(答案不唯一,填写其中一个即可).14.9113【分析】(1)由()f x 的图象过点()1,2得21a b +=,根据基本不等式“1”的妙用计算即可;(2)由()f x 的图象过点(),ln c ab c +得()22c ac b a c +=-,进而得出22c ac b a c+=-,利用换元法及基本不等式即可求得3ca b+的最大值,即可得出t 的最小值.【详解】(1)由()f x 的图象过点()1,2得,(1)122f a b =++=,即21a b +=,所以()12222559b a a b a b a b ⎛⎫++=++≥+ ⎪⎝⎭,当且仅当22b a a b =,即13a b ==时等号成立.由()3a b t c +≥恒成立得,3ct a b≥+,(2)因为()f x 的图象过点(),ln c ab c +,则()()22ln ln f c c a b c c ab c =+++=+,即()22c ac b a c +=-,当2a c =时,0c =不合题意舍,所以2a c ≠,即2a c ≠,则22c acb a c+=-,则由0b >得2a c >,所以222222233533512ac c c ac a ac c c a b a ac c a a a c c c --===+-+⎛⎫+-+ ⎪⎝⎭+-,设20am c-=>,所以()()222237332521351a m m c m m a a m m c c -==+++-++⎛⎫-+ ⎪⎝⎭1131337m m =≤++,当且仅当33m m=,即1m =,则3,4a c b c ==时,等号成立,故答案为:9;113.【点睛】方法点睛:第二空由()f x 的图象过点(),ln c ab c +得出22c acb a c+=-,代入消元得出关于,a c 的齐次式,换元后根据基本不等式计算可得.15.(1)证明见解析(2)30︒【分析】(1)取11B C 的中点D ,连接1,,A D CD DE ,先得出平面1//A DC 平面1AB E ,由面面平行证明线面平行即可;(2)建立空间直角坐标系,根据面面夹角的向量公式计算即可.【详解】(1)取11B C 的中点D ,连接1,,A D CD DE ,由直三棱柱111ABC A B C -得,1111,//B C BC B C BC =,1111,//AA BB AA BB =,因为E 是棱BC 的中点,点D 是11B C 的中点,所以1B D CE =,所以四边形1ECDB 为平行四边形,所以1//CD B E ,同理可得四边形1BEDB 为平行四边形,所以11,//,BB DE BB DE =所以11,//AA DE AA DE =,所以四边形1AEDA 为平行四边形,所以1//A D AE ,因为AE ⊂平面1AB E ,1A D ⊄平面1AB E ,所以1A D //平面1AB E ,同理可得//CD 平面1AB E ,又1A D CD D = ,1,A D CD ⊂平面1A DC ,所以平面1//A DC 平面1AB E ,又1AC ⊂平面1A DC ,所以1//A C 平面1AB E .(2)设122AB AC AA ===,以A 为原点,分别以1,,AB AC AA 所在直线为,,x y z 轴建立空间直角坐标系,如图所示,则()()()()110,0,0,0,0,1,2,0,1,1,1,0A A B E ,所以()()()()11111,1,0,2,0,1,2,0,0,1,1,1AE AB A B EA ====--,设平面1AEB 的一个法向量为()1111,,n x y z =,由11100AE n AB n ⎧⋅=⎪⎨⋅=⎪⎩ 得,1111020x y x z +=⎧⎨+=⎩,取11x =,的()11,1,2n =-- ,设平面11A EB 的一个法向量为()2222,,n x y z =,由112120A B n EA n ⎧⋅=⎪⎨⋅=⎪⎩ 得,2222200x x y z =⎧⎨--+=⎩,取21y =,的()20,1,1n = ,设平面1AEB 与平面11A EB 的夹角为θ,则1212cos n n n n θ⋅===由图可知二面角11A B E A --为锐角,则二面角11A B E A --的大小为30︒.16.(1)21n a n =+(2)28(1)41nn n n -++【分析】(1)根据12311S S S ++,,成等比数列求得1a ,即可求得{}n a 的通项公式.(2)根据{}n a 的通项公式求得n S ,分奇偶项分别求出n b 再求和,即可求得{}n b 的前4n 项和.【详解】(1)因为2213(1)(1)S S S =++,所以2111(22)(1)(37)a a a +=++,即11(1)(3)0a a +-=,解得11a =-或3,又因为0n a >,所以13a =,所以32(1)21n a n n =+-=+.(2)1()(2)2n n n a a S n n +==+,所以1111()22nS n n =-+,所以n 为奇数时,1341134111111111111(1()()2323524141n n b b b S S S n n --+++=+=-+-++--+ 11(1)241n =-+,n 为偶数时,424424(42)44(42)16n n n n b b S S n n n n n--+=-=-⨯-⨯+=-24416(12)8(1)n b b b n n n +++=-+++=-+ ,所以前4n 项和4112(1)8(1)8(1)24141n nT n n n n n n =--+=-+++.17.(1)2y x =(2)证明见详解.【分析】(1)设动点F 的坐标为(),x y ,直接利用题中的条件列式并化简,从而求出动点F 的轨迹方程;(2)要证A 为线段BM 的中点,只需证12A B x x x =+即可,设直线的方程为12x my =+,设点()11,M x y ,()22,N x y ,()1,A A x y ,()1,B B x y ,联立直线与曲线的方程,列出韦达定理,由直线OP ,ON 可求得点,A B ,计算120B A x x x +-=即可证.【详解】(1)设点(),F x y ,则(),1E x -,因为OF OE ⊥,所以0OF OE =⋅ ,所以20x y -=,即2x y =,所以动点F 的轨迹方程为:2y x =;(2)因为BM y ⊥轴,所以设()11,M x y ,()22,N x y ,()1,A A x y ,()1,B B x y ,若要证A 为线段BM 的中点,只需证12A B x x x =+即可,当直线MN 斜率不存在或斜率为0时,与抛物线只有一个交点,不满足题意,所以直线MN 斜率存在且不为0,12120x x y y ≠,设直线MN :12x my =+,0m ≠,由212x my y x⎧=+⎪⎨⎪=⎩得22210mx x -+=,442148m m ∆=-⨯⨯=-,由题意可知,直线MN 与抛物线C 有两个交点,所以0∆>,即480m ->,所以12m <,由根与系数的关系得,121x x m +=,1212x x m=,由题意得,直线OP 方程y x =,所以()11,A y y ,直线ON 方程22y y x x =,所以2112,x y B y y ⎛⎫⎪⎝⎭,所以22212111111111222222212B A x y x x x x x x x y x x x x y x x ⎛⎫⋅+-=+-=+-=+- ⎪⎝⎭()121211112122222112202x x x x x x x x x x x x x x m m +-⎛⎫=⋅=+-=-⨯= ⎪⎝⎭,所以A 为线段BM 的中点.18.(1)0.035a =;72.5(2)0.6(3)160【分析】(1)由频率分布直方图的概率和为1,列出方程,求得0.035a =,再利用百分位数的计算方法,即可求解;(2)设“抽到男学生”为事件A ,“评分80分以上”为事件B ,结合全概率公式,即可求解;(3)根据题意,利用方差的计算公式,求得245x y s s s =,得到160y x y x s s m n s s +=,令x y s t s =,得到160n my t +=,利用基本不等式求得nmy t+≥200n m =-,得出不等式160≥m 的范围,即可求解.【详解】(1)解:由频率分布直方图的性质,可得:(0.0020.0040.00140.00200.0025)101a +++++⨯=,解得0.035a =,设25%分位数为0x ,由分布直方图得0.020,040.140.2++=,所以0700.05100.2x -=,解得072.5x =.(2)解:设“抽到男学生”为事件A ,“评分80分以上”为事件B ,可得()0.8,(|)0.55,()0.2,(|)0.8P A P B A P A P B A ====,由全概率公式得()()(|)()(|)0.80.550.20.80.6P B P A P B A P A P B A =⋅+⋅=⨯+⨯=.(3)解:由x y =,可得mx n yz x m n+==+,所以22222111111[()()][()()]200200m n m ni i i i i j i j s x z y z x x y y =====-+-=-+-∑∑∑∑2214()2005x y x y ms ns s s =+=,所以22160x y x y ms ns s s +=,即160y xy xs s mn s s +=,令x y s t s =,则160nmy t+=,由于n my t +≥=n my t =时,等号成立,又因为200n m =-,可得160≥=220064000m m -+≥,解得40m ≤或160m ≥,因为1200n m ≤≤≤且200m n +=,所以160m ≥,所以实数m 的最大值为160.19.(1)答案见解析,证明见解析(2)(],1-∞(3)证明见解析【分析】(1)类比,写出平方关系,倍角关系和导数关系,并进行证明;(2)构造函数()()sh F x x kx =-,()0,x ∞∈+,求导,分1k ≤和1k >两种情况,结合基本不等式,隐零点,得到函数单调性,进而得到答案;(3)结合新定义将所证变为()()121112121e sin e sin e cos x x x x x x x x x +-+>-+-,设函数()=e sin x f x x -,即证()()()12121f x x f x x f x >+'+,先利用导数求得()=e cos x f x x -'在()0,∞+上单调递增,再设()()()()()111,0h x f x x f x xf x x =+-->',利用导数得其单调性及()0h x >,从而()()()111f x x f x xf x >+'+,得证.【详解】(1)平方关系:()()22chsh 1x x -=;倍角公式:()()()sh 22sh ch x x x =;导数:()()sh()ch()ch()sh()x x x x ''⎧=⎪⎨=⎪⎩.理由如下:平方关系,()()2222e e e e ch sh 22x x x x x x --⎛⎫⎛⎫+--=- ⎪ ⎪⎝⎭⎝⎭2222e e e e 12244x x x x --++=--=+;倍角公式:()()()()()22e e e e e e sh 22sh ch 22x x x x x x x x x ----+-===;导数:()()e e ee sh()ch 22x xxxx x --'--+===,()e e ch()sh 2x x x x -'-==;以上三个结论,证对一个即可.(2)构造函数()()sh F x x kx =-,()0,x ∞∈+,由(1)可知()()ch F x x k ='-,①当1k ≤时,由e e ch()12x xx -+=≥,又因为0x >,故e e x x -≠,等号不成立,所以()()ch 0F x x k '=->,故()F x 为严格增函数,此时()(0)0F x F >=,故对任意0x >,()sh x kx >恒成立,满足题意;②当1k >时,令()()(),0,G x F x x ∞∈'=+,则()()sh 0G x x ='>,可知()G x 是严格增函数,答案第15页,共15页由(0)10G k =-<与1(ln 2)04G k k=>可知,存在唯一0(0,ln 2)x k ∈,使得0()0G x =,故当0(0,)x x ∈时,0()()()0F x G x G x =<=',则()F x 在0(0,)x 上为严格减函数,故对任意0(0,)x x ∈,()()00F x F <=,即()sh x kx >,矛盾;综上所述,实数k 的取值范围为(],1-∞;(3)因为()()ch sh e xx x +=,所以原式变为()()21212121e 1e sin sin cos x x x x x x x x --⋅>+--,即证()()121112121e sin e sin e cos x x x x x x x x x +-+>-+-,设函数()=e sin x f x x -,即证()()()12121f x x f x x f x >+'+,()=e cos x f x x -',设()()=e cos x t x f x x =-',()e sin x t x x '=+,0x >时()0t x '>,()t x 在()0,∞+上单调递增,即()=e cos x f x x -'在()0,∞+上单调递增,设()()()()()111,0h x f x x f x xf x x =+-->',则()()()11h x f x x f x =+'-'',由于()=e cos x f x x -'在()0,∞+上单调递增,11x x x +>,所以()()11f x x f x +>'',即()0h x '>,故()h x 在()0,∞+上单调递增,又()00h =,所以0x >时,()0h x >,所以()()()1110f x x f x xf x +-->',即()()()111f x x f x xf x >+'+,因此()()()12121f x x f x x f x >+'+恒成立,所以原不等式成立,得证.【点睛】思路点睛:对新定义的题型要注意一下几点:(1)读懂定义所给的主要信息筛选出重要的关键点(2)利用好定义所给的表达式以及相关的条件(3)含有参数是要注意分类讨论的思想.。

河北省保定市2023届高三模拟(一模)数学试题(含解析)

河北省保定市2023届高三模拟(一模)数学试题(含解析)

河北省保定市2023届高三模拟(一模)数学试题一、单选题1.(2023·河北保定·统考一模)已知集合{}2430A x x x =-+≤,{}1,0,1,2,3B =-,则A B =I ( )A .{}1,0,1,2-B .{}2,3C .{}0,1,2D .{}1,2,32.(2023·河北保定·统考一模)已知复数2i z =-,则()22z -=( )A .8i-B .8iC .88i-D .88i+3.(2023·河北保定·统考一模)设α,β是两个不同的平面,则“α内有无数条直线与β平行”是“//αβ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.(2023·河北保定·统考一模)保定市主城区开展提升城市“新颜值”行动以来,有一街边旧房拆除后,打算改建成矩形花圃ABCD ,中间划分出直角三角形MPQ 区域种玫瑰,直角顶点M 在边AB 上,且距离A 点5m ,距离B 点6m ,且P 、Q 两点分别在边BC 和AD 上,已知8m BC =,则玫瑰园的最小面积为( )A .230mB .215mC .2D .25.(2023·河北保定·统考一模)函数()()22ln 11x f x x +=+的大致图像为( )A .B .C .D .6.(2023·河北保定·统考一模)如图,在四棱锥P ABCD -中,底面ABCD 为矩形,2AB =,PAD V 是正三角形,平面PAD ⊥平面ABCD ,且P ABCD V -=,则PC 与平面PAD 所成角的正切值为( )A .2B .12C D 7.(2023·河北保定·统考一模)函数()()sin f x A x =+ωϕ,(0A >,0ω>,0πϕ<<)的部分图象如图中实线所示,图中圆C 与()f x 的图象交于M ,N 两点,且M 在y 轴上,则下说法正确的是( )A .函数()f x 的最小正周期是10π9B .函数()f x 在7ππ,123⎛⎫-- ⎪⎝⎭上单调递减C .函数()f x 的图象向左平移π12个单位后关于直线π4x =对称D .若圆C 的半径为5π12,则函数()f x 的解析式为()π23f x x ⎛⎫=+ ⎪⎝⎭8.(2023·河北保定·统考一模)已知14e 1a =-,12πb =,1sin 4c =,则( )A .a b c >>B .b a c >>C .c b a >>D .a c b>>二、多选题9.(2023·河北保定·统考一模)已知平面向量()2,1a =-r ,()4,2b =r ,()2,c t =r,则下列说法正确的是( )A .若b c ⊥r r,则4t =B .若//a c r r,则1t =-C .若1t =,则向量a r 在c r上的投影向量为35c-r D .若4t >-,则向量b r 与c r的夹角为锐角10.(2023·河北保定·统考一模)椭圆有一条光学性质:从椭圆一个焦点出发的光线,经过椭圆反射后,一定经过另一个焦点.假设光线沿直线传播且在传播过程中不会衰减,椭圆的方程为22195x y +=,则光线从椭圆一个焦点出发,到首次回到该焦点所经过的路程可能为( )A .2B .8C .10D .1211.(2023·河北保定·统考一模)沙漏,据《隋志》记载:“漏刻之制,盖始于黄帝”.它是古代的一种计时装置,由两个形状完全相同的容器和一个狭窄的连接管道组成,开始时细沙全部在上部容器中,细沙通过连接管道全部流到下部容器所需要的时间称为该沙漏的一个沙时.如图,某沙漏由上下两个圆锥组成,圆锥的底面直径和高均为6cm ,细沙全部在上部时,其高度为圆锥高度的23(细管长度忽略不计).假设该沙漏每秒钟漏下30.02cm 的沙,且细沙全部漏入下部后,恰好堆成一个盖住沙漏底部的圆锥形沙堆.以下结论正确的是( )A .沙漏的侧面积是2cmB .沙漏中的细沙体积为316πcm 3C .细沙全部漏入下部后此锥形沙堆的高度约为2.4cmD .该沙漏的一个沙时大约是837秒()π 3.14≈12.(2023·河北保定·统考一模)如图所示的三角数阵,其中第m 行(从上到下),第n 列(从左到右)的数表示为mn a ,且11m a =,当2m n ≥≥时,有()()11mn m n na m n a -=-+,则下列说法正确的是( )A .431a =B .C n mn ma =C .()()()1122223333441112nn n n a a a a a a a a n --+++⋅⋅⋅+<≥D .()1234121mm m m m mm a a a a a m++++⋅⋅⋅+=-三、填空题13.(2023·河北保定·统考一模)二项式6x ⎛⎝展开式中常数项是________.(填数字)14.(2023·河北保定·统考一模)写出过抛物线24y x =上的点()1,P t 且与圆()2221x y -+=相切的一条直线的方程________.15.(2023·河北保定·统考一模)某校为促进拔尖人才培养开设了数学、物理、化学、生物、信息学五个学科竞赛课程,现有甲、乙、丙、丁四位同学要报名竞赛课程,由于精力和时间限制,每人只能选择其中一个学科的竞赛课程,则恰有两位同学选择数学竞赛课程的报名方法数为________.16.(2023·河北保定·统考一模)已知()f x '是函数()f x 在定义域上的导函数,且()()1e x f x f x -'+=,()11f =,若函数()()()ln 20mf x mx x m =-+>在区间()0,∞+内存在零点,则实数m 的最小值为________.四、解答题17.(2023·河北保定·统考一模)已知()()2cos cos 0f x x x x ωωωω=->的最小正周期为π.(1)求π6f ⎛⎫⎪⎝⎭的值;(2)在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,若()2cos cos a c B b C -=,求角B 的大小以及()f A 的取值范围.18.(2023·河北保定·统考一模)已知1a ,21a a -,32a a -,…,()12n n a a n --≥是以1为首项,1为公差的等差数列.(1)求n a 的通项公式;(2)求数列(){}cos πn n a 前2n 项的和2n S .19.(2023·河北保定·统考一模)如图,平行六面体1111ABCD A B C D -的所有棱长均为ABCD 为正方形,11π3A AB A AD ∠=∠=,点E 为1BB 的中点,点F 为1CC 的中点,动点P 在平面ABCD 内.(1)若O 为AC 中点,求证:1A O AO ⊥;(2)若//FP 平面1D AE ,求线段CP 长度的最小值.20.(2023·河北保定·统考一模)在过去三年防疫攻坚战中,我国的中医中药起到了举世瞩目的作用.某公司收到国家药品监督管理局签发的散寒化湿颗粒《药品注册证书》,散寒化湿颗粒是依据第六版至第九版《新型冠状病毒肺炎诊疗方案》中的“寒湿疫方”研制的中药新药.初期为试验这种新药对新冠病毒的有效率,把该药分发给患有相关疾病的志愿者服用.(1)若10位志愿者中恰有6人服药后有效,从这10位患者中选取3人,以ξ表示选取的人中服药后有效的人数,求ξ的分布列和数学期望;(2)若有3组志愿者参加试验,甲,乙,丙组志愿者人数分别占总数的40%,32%,28%,服药后,甲组的有效率为64%,乙组的有效率为75%,丙组的有效率为80%,从中任意选取一人,发现新药对其有效,计算他来自乙组的概率.21.(2023·河北保定·统考一模)如图,双曲线的中心在原点,焦距为点分别为A ,B ,曲线C 是以双曲线的实轴为长轴,虚轴为短轴,且离心率为12的椭圆,设P 在第一象限且在双曲线上,直线BP 交椭圆于点M ,直线AP 与椭圆交于另一点N .(1)求椭圆及双曲线的标准方程;(2)设MN 与x 轴交于点T ,是否存在点P 使得4P T x x =(其中P x ,T x 为点P ,T 的横坐标),若存在,求出P 点的坐标,若不存在,请说明理由.22.(2023·河北保定·统考一模)已知函数()()sin ln 1f x x a x =-+.(1)当1a =时,证明:当[]0,1x ∈时,()0f x ≥;(2)当[]0,πx ∈时,()2e 2xf x ≤-恒成立,求a 的取值范围.参考答案:1.D【分析】解一元二次不等式再求交集.【详解】因为{}{}243013A x x x x x =-+≤=≤≤,所以A B =I {}1,2,3.故选:D 2.A【分析】利用复数的运算,再结合共轭复数的意义求解作答.【详解】因2i z =-,有2i z =,则()()22222i 24i 48i=448i=8i z -=-=+--+--, 所以()228i z -=-.故选:A 3.B【分析】根据面面平行的定义以及判定定理,举例即可得出答案.【详解】如图,长方体1111ABCD A B C D -中,11//A B 平面ABCD .在平面11ABB A 内,除直线AB 外,其他所有与11A B 平行的直线,都与平面ABCD 平行,但是平面11ABB A 与平面ABCD 不平行;若//αβ,根据面面平行的定义可知,平面α内的直线都与平面β平行.所以,“α内有无数条直线与β平行”是“//αβ”的必要不充分条件.故选:B.4.A【分析】设BMP θ∠=根据直角三角形的性质可将6cos MP θ=,5sin PQ θ=,进而可得115tan tan MPQS θθ⎛⎫=+ ⎪⎝⎭V ,再根据P 、Q 两点分别在边,BC 和AD 上,可得54tan ,83θ⎡⎤∈⎢⎥⎣⎦,进而可得最小值.【详解】如图所示,设BMP θ∠=,则2AMQ πθ∠=-,AQM θ∠=,所以6cos MP θ=,5sin MQ θ=,所以222115sin cos tan 11151515tan 2sin cos sin cos tan tan MPQS MP MQ θθθθθθθθθθ++⎛⎫=⋅==⋅=⋅=+ ⎪⋅⎝⎭V ,又P 、Q 两点分别在边BC 和AD 上,所以[]6tan 0,8BP θ=∈,[]50,8tan AQ θ=∈,所以54tan ,83θ⎡⎤∈⎢⎥⎣⎦,所以1tan 2tan θθ+≥=,当且仅当1tan tan θθ=,即tan 1θ=时,等号成立,所以115tan 30tan MPQS θθ⎛⎫=+≥ ⎪⎝⎭V ,即MPQ S V 的最小值为230m ,故选:A.5.B【分析】函数()()22ln 11x f x x +=+是由函数()22ln xg x x =向左平移1个单位得到的,而()22ln x g x x=是偶函数,所以得()()22ln 11x f x x +=+的图像关于直线=1x -对称,再取值可判断出结果.【详解】解:因为()()22ln 11x f x x +=+是由()22ln xg x x =向左平移一个单位得到的,因为()22ln ()(0)()x g x g x x x --==≠-,所以函数()22ln xg x x=为偶函数,图像关于y 轴对称,所以()f x 的图像关于=1x -对称,故可排除A ,D 选项;又当<2x -或0x >时,2ln 10x +>,()210x +>,所以()0f x >,故可排除C 选项.故选:B .【点睛】此题考查函数图像的识别,利用了平移、奇偶性,函数值的变化情况,属于基础题.6.B【分析】连接PO ,O 为AD 的中点,结合面面垂直性质定理证明PO ⊥平面ABCD ,根据锥体体积公式求PD ,再由面面垂直性质定理证明CD ⊥平面PAD ,根据线面角的定义证明PC 与平面PAD 所成角的平面角为CPD ∠,解三角形求其正切值.【详解】取AD 的中点O ,连接PO ,由已知PAD V 为等边三角形,所以PO AD ⊥,又平面PAD ⊥平面ABCD ,平面PAD ⋂平面ABCD AD =,PO ⊂平面PAD ,所以PO ⊥平面ABCD ,设PD x =,则PO ,AD x =,又2AB =,所以矩形ABCD 的面积2ABCD S x =,所以四棱锥P ABCD -的体积211233P ABCD ABCD V S PO x x -=⨯⨯=⨯=,2,所以4x =,所以4PD =,因为平面PAD ⊥平面ABCD ,CD AD ⊥,平面PAD ⋂平面ABCD AD =,CD ⊂平面ABCD ,所以CD ⊥平面PAD ,又PD ⊂平面PAD ,所以CD PD ⊥,所以CDP △为直角三角形,斜边为PC ,因为CD ⊥平面PAD ,所以PC 与平面PAD 所成角的平面角为CPD ∠,在Rt CDP △中,2CD AB ==,4PD =,所以1tan 2CD CPD PD ∠==,PC 与平面PAD 所成角的正切值为12.故选:B.7.D【分析】根据函数的图象,求得()f x 的最小正周期,可判定A 错误;利用五点作图法,求得π3ϕ=,结合三角函数的性质,可判定B 错误;利用三角函数的图形变换得到平移后的函数解析式为()cos 2g x A x =,进而判定C 错误;利用222CM OM OC =+,求得A 的值,可判定D 正确.【详解】解:由函数()f x 图象,可得点C 的横坐标为π3,所以函数()f x 的最小正周期为ππ2[(π36T =--=,所以A 不正确;又由2π2T ω==,且π()06f -=,即ππsin[2()]sin()063ϕϕ⨯-+=-+=,根据五点作图法且0πϕ<<,可得π03ϕ-+=,解得π3ϕ=,因为7ππ,1)23(x --∈,可得π5ππ,3632()x +--∈,结合三角函数的性质,可得函数()f x 在7ππ,12()3--是先减后增的函数,所以B 错误;将函数()f x 的图象向左平移π12个单位后,得到()πsin(2)cos 22g x A x A x =+=,可得对称轴的方程为2π,Z x k k =∈,即π,Z 2k x k =∈,所以π4x =不是函数()g x 的对称轴,所以C 错误;当0x =时,可得()π0sin 3f A A ==,即OM A ,若圆的半径为5π12,则满足222CM OM OC =+,即2225ππ())()123A =+,解得A ()f x 的解析式为()π23f x x ⎛⎫=+ ⎪⎝⎭,所以D 正确.故选:D.8.D【分析】利用构造函数法,结合导数,先判断,a c 的关系,然后判断,b c 的关系,从而确定正确答案.【详解】构造函数()()e 1sin 0xf x x x =--≥,()()e cos 0,x f x x f x '=-≥在[)0,∞+上单调递增,所以()104f f ⎛⎫> ⎪⎝⎭,即141e 1sin 04-->,也即141e 1sin 4->,则a c >.10.1592πb =≈,设()()21cos 1012g x x x x =+-≤≤,()sin g x x x '=-+,设()()sin 01h x x x x =-+≤≤,()cos 10h x x =+'-≥,所以()h x 在[]0,1上递增,()()00h x h ≥=,即()0g x '≥,()g x 在[]0,1上单调递增,所以()1004g g ⎛⎫>= ⎪⎝⎭,即11131cos 10,cos 432432+->>,构造函数()()sin 01cos xm x x x x=-≤≤,()2222cos sin 1110cos cos x x m x x x+'=-=-≥,()m x 在[]0,1上递增,所以()104m m ⎛⎫> ⎪⎝⎭,即1sin111131140,sin cos 0.2421875144441282πcos 4b ->>>=>=,即c b >.综上所述,a c b >>.故选:D【点睛】利用导数来比较代数式的大小,主要是通过构造函数法,然后利用导数研究所构造函数的单调性,由此来比较出代数式的大小.在比较大小的过程中,如果无法一次比较出大小关系,可通过多次比较大小(放缩法)来进行比较.9.BC【分析】根据向量线性运算即数量积公式可判断AB 选项,根据投影向量定义可得判断C 选项,由 4t >-可得0b c ⋅>r,但此时向量b r 与c r 的夹角可以为零角并非锐角,可得D 错误.【详解】解:已知平面向量(2,1)a =-r,(4,2)b =r ,(2,)c t =r ,对于A ,若b c ⊥r r ,可得0b c ⋅=r r,即4220t ⨯+=,解得4t =-,所以A 选项错误;对于B ,若//a c r r,根据平面向量共线性质,可得221t-=,即1t =-,所以B 选项正确;对于C ,若1t =,则(2,1)c =r,由投影向量定义可知向量a r 在c r 上的投影向量为222413215a c c c c c ⋅-+⋅==-+r r r r r r ,所以C 选项正确;对于D ,若4t >-,则422820b c t t ⋅=⨯+=+>r r ,所以cos ,0b c b c b c ⋅=>⋅r rr r r r ;但当1t =时,cos ,1b c b c b c ⋅====⋅r rr r r r ,此时向量b r 与c r的夹角为0︒,所以D 选项错误;故选:BC.10.ACD【分析】根据已知,光线自1F 出发,可以沿11F A 方向传播,也可以沿12F A 方向传播,也可以不沿x 轴传播.根据椭圆的光学性质,分别得出光线传播的路径,结合椭圆的定义,即可得出答案.【详解】设抛物线左焦点为1F ,右焦点为2F ,左顶点为1A ,右顶点为2A .由已知可得,3a =,2224c a b =-=,所以2c =.①当光线从1F 出发,沿11F A 方向传播,到达1A 后,根据椭圆的光学性质可知,光线沿11A F 方向传播,第一次经过1F ,此时所经过的路程为()11222A F a c =-=,故A项正确;②当光线从1F 出发,沿12F A 方向传播,到达2A 后,根据椭圆的光学性质可知,光线沿22A F 方向传播,过点2F 后,继续传播第一次经过1F ,此时所经过的路程为()212210A F a c =+=,故C 项正确;③当光线从1F 出发后,不沿x 轴传播,如图2光线开始沿1F P 传播,到达P 点后,根据椭圆的光学性质可知,光线沿2PF 方向传播,过点2F 后,继续传播到达Q 点后,根据椭圆的光学性质可知,光线沿1QF 方向传播,第一次经过1F ,此时所经过的路程为1221PF PF QF QF +++.根据椭圆的定义可知,1226PF PF a +==,1226QF QF a +==,所以121212PF PF QF QF +++=,故D 项正确.故选:ACD.11.BD【分析】A 选项,求出圆锥的母线长,从而利用锥体体积公式求出沙漏的侧面积;B 选项,根据细沙形成的圆锥的高度得到此圆锥的底面半径,得到细沙的体积;C 选项,由B 选项求出的体积公式得到细沙全部漏入下部后此锥形沙堆的高度;D 选项,利用细沙的体积和沙漏漏下的速度求出时间.【详解】A 选项,设下面圆锥的母线长为l ,则l =,故下面圆锥的侧面积为π3S rl ==⨯=2cm ,故沙漏的侧面积为2S =2cm ,故A 错误;B 选项,因为细沙全部在上部时,高度为圆锥高度的23,所以细沙形成的圆锥底面半径为2323⨯=cm ,高为2643⨯=cm ,故底面积为2π24π⋅=,所以沙漏中的细沙体积为3116π4π4cm 33⨯⨯=,B 正确;C 选项,由B 选项可知,细沙全部漏入下部后此锥形沙堆的体积为316πcm 3,其中此锥体的底面积为2π39π⋅=,故高度为16π3163 1.89π9⨯=≈cm ,C 错误;D 选项,16π16 3.14837.3300002.2⨯÷≈⨯≈秒,故该沙漏的一个沙时大约是837秒,D 正确.故选:BD 12.ACD【分析】运用累和法,结合组合数公式、裂项相消法、二项式系数和公式逐一判断即可.【详解】因为()11mnm n a m n an--+=,所以有()()()12111212111C 12m n n mnm mn m m m m n m n a a a m n m n m a a a a a n n m----+-+-=⋅⋅=⋅⋅=-LL 343411C 4144a =⨯=⨯=,所以A 对,B 错,而1mm a m=,()()()1111111nn n n a a n n n n--==---,所以()()11222233334411111111111,2231nn n n a a a a a a a a n n n --⎛⎫⎛⎫⎛⎫+++⋅⋅⋅+=-+-++-=-< ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭L 因此C 对()()12012123411C C C C C C C 1m mm m m m mm m m m m m m m a a a a a m m++++⋅⋅⋅+=++⋅⋅⋅+=+++⋅⋅⋅+-()121mm=-,因此D 对.故选:ACD【点睛】关键点睛:运用累和法、逆用组合数公式、裂项相消法是解题的关键.13.240【分析】根据二项式的展开通项公式求解即可.【详解】展开式的通项公式为3662166C 2C rrr r r r r T x x--+==,令3602r -=,解得4r =,所以常数项为44562C 240T ==,故答案为:240.14.10x -=或34110x y +-=或34110x y --=(写出其中一个即可)【分析】由已知求出点()1,2P 或()1,2P -.先求解直线斜率不存在时的方程;然后设斜率,得出点斜式方程,表示出圆心到直线的距离,列出方程,求解即可得出斜率,进而得出直线方程.【详解】由题意可知,24t =,解得2t =±,所以,点()1,2P 或()1,2P -.又圆()2221x y -+=的圆心()2,0C ,半径1r =.①当点()1,2P 时当直线l 斜率不存在时,此时l 方程为1x =,与圆相切,满足题意;当直线l 斜率存在时,设斜率为1k ,此时直线l 方程为()121y k x -=-,即1120k x y k --+=.因为,直线l 与圆相切,所以圆心()2,0C 到l 的距离1d r =,1,整理可得,1430k +=,解得134k =-,代入直线方程整理可得,直线方程为34110x y +-=.②当点()1,2P -时当直线l 斜率不存在时,此时l 方程为1x =,与圆相切,满足题意;当直线l 斜率存在时,设斜率为2k ,此时直线l 方程为()221y k x +=-,即2220k x y k ---=.因为,直线l 与圆相切,所以圆心()2,0C 到l 的距离2d r =,1,整理可得,2430k -=,解得234k =, 代入直线方程整理可得,直线方程为34110x y --=.综上所述,直线方程为1x =或34110x y +-=或34110x y --=.故答案为:1x =.15.96【分析】利用分步加法和分类乘法原理,先安排4名同学的2名选择数学竞赛,在安排剩下的2名同学到其他竞赛课程中即可.【详解】由题知先安排甲、乙、丙、丁四位同学的2名选择数学竞赛课程,则有:24C 6=种情况,剩下2名同学在选择物理、化学、生物、信息学四个学科竞赛课程时有:①2名同学选择1个学科竞赛则有:14C 4=种情况,②2名同学各选择1个学科竞赛则有1134C C 12=种情况,所以恰有两位同学选择数学竞赛课程的报名方法数为:()612496⨯+=种情况,故答案为:96.16.1【分析】(1)首先根据条件等式,变形得到函数()1e x xf x -=,再变形得到()1ln e 1ln 10x mx x mx -+--+-=,通过构造函数()e 1=--t g t t 得到1ln 0x mx -+=,参变分离后,转化为求函数的值域,即可求m 的取值范围.【详解】在()y f x =中,()()1e xf x f x -'+=,∴()()e e e x xf x f x '+=,∴()()()e e x f x x ''⋅=∴()e e xf x x c ⋅=+(c 为常数),由()11f =,解得:0c =,∴()1e x xf x -=,若()1ln 2e x x mmx x -=-+在区间()0,∞+内存在零点,整理可得:()1ln e1ln 10x mxx mx -+--+-=,设()e 1=--t g t t ,()e 1tg t '=-,令()0g t '=,得0=t ,当0t <时,()0g t '<,函数单调递减,当0t >时,()0g t '>,函数单调递增,所以当0=t 时,函数()g t 取得最小值,()00g =,所以()0g t ≥,当0=t 时,等号成立,所以()1ln e1ln 10x mxx mx -+--+-≥当且仅当1ln 0x mx -+=时,上式取等号即存在()0,x ∈+∞,使1e x m x -=,设()1e x h x x -=,()()12e 1x x xh x --'=,令()0h x '=,得1x =,当1x <时,()0h x '<,函数()h x 单调递减,当1x >时,()0h x '>,函数()h x 单调递增,所以当1x =时,函数()h x 取得最小值,()11h =,所以1e 1x m x -=≥,故m 最小值为1,故答案为:1【点睛】关键点点睛:本题考查利用导数研究函数的性质,零点,不等式的综合问题,本题的关键一是利用导数的等式,通过构造得到函数()f x 的解析式,关键二是利用同构得到等式()1ln e1ln 10x mxx mx -+--+-=,再构造函数求得1ln 0x mx -+=,参变分离后即可求解.17.(1)0(2)π3B =,()11,2f A ⎛⎤∈- ⎥⎝⎦【分析】(1)根据二倍角的余弦公式和辅助角公式化简,结合公式2πT ω=计算可得()π1sin 262f x x ⎛⎫=-- ⎪⎝⎭,即可求解π6f ⎛⎫⎪⎝⎭;(2)由正弦定理和诱导公式可得1cos 2B =,即可求出角B ;进而20,π3A ⎛⎫∈ ⎪⎝⎭,结合正弦函数的性质即可求解.【详解】(1)∵()2cos cos f x x x xωωω=-11π12cos 2sin 22262x x x ωωω⎛⎫=--=-- ⎪⎝⎭,由函数()f x 的最小正周期为π.即2ππ2ω=,得1ω=,∴()π1sin 262f x x ⎛⎫=-- ⎪⎝⎭,故π06f ⎛⎫= ⎪⎝⎭;(2)∵()2cos cos a c B b C -=,∴由正弦定理得()2sin sin cos sin cos A C B B C -=,∴()2sin cos sin cos cos sin sin sin A B B C B C B C A =+=+=.∵sin 0A >,∴1cos 2B =.∵()0,πB ∈,则π3B =.∵2ππ3A C B +=-=,∴20,π3A ⎛⎫∈ ⎪⎝⎭,∴ππ7π2,666A ⎛⎫-∈- ⎪⎝⎭,∴π1sin 2,162A ⎛⎫⎛⎤-∈- ⎪ ⎥⎝⎭⎝⎦,∴()π11sin 21,622f A A ⎛⎫⎛⎤=--∈- ⎪ ⎥⎝⎭⎝⎦.18.(1)()12n n n a +=(2)2n S 2n n=+【分析】(1)根据题意和等差数列前n 项求和公式可得当2n ≥时,(1)2n n n a +=,验证1a 符合该式即可;(2)由(1)可得2122n n a a n --+=,()()()1cos π12nn n n n a +=-,结合等差数列前n 项求和公式计算即可求解.【详解】(1)当2n ≥时,()()()()21213211122n n n n na a a a a a a a n n n -++-+-+⋅⋅⋅+=+-==-,又11a =,符合上式,∴2(1)22n n n n n a ++==;(2)由(1)知,()()212212221222n n n n n n a a n --⋅+-+=-+=,()()()()1cos π112nnn n n n n a a +=-=-,∴()()221222112233422222n n n n n S -⋅+⨯⨯⨯=-+-+⋅⋅⋅-+2(123)n =++++L ()122n n +=⨯2n n =+.19.(1)证明见解析【分析】(1)由条件先求1AD AA ⋅u u u r u u u r ,1AB AA ⋅u u u r u u u r ,AD AB ⋅u u u r u u u r,再证明10AO AO ⋅=u u u r u u u r ,由此完成证明;(2)建立空间直角坐标系,设(),,0P m n ,求平面1D AE 的法向量和直线FP 的方向向量,由条件列方程确定,m n 的关系,再求CP u u u r的最小值即可.【详解】(1)由已知1AB A A AD ===1π3A AD ∠=,1π3A AB ∠=,π2BAD ∠=,所以11π1cos 232AD AA ⋅==u u u r u u u r ,11π1cos 232AB AA ⋅==u u u r u u u r ,0AD AB ⋅=u u u r u u u r,因为O 为AC 中点,所以111222AO AC AB AD ==+u u u r u u u r u u u r u u u r,又()11111112222A O AO AO AA AO AB AD AA AB AD ⎛⎫⎛⎫⋅=-⋅=+-⋅+ ⎪ ⎪⎝⎭⎝⎭u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r ,所以111110002244A O AO ⋅=+++--=u u u r u u u r ,所以1AO AO ⊥u u u r u u u r所以1A O AO⊥(2)连接1A D ,1A B ,∵1A A AD ==1π3A AD ∠=∴1A D∵1A A AB ==1π3A AB ∠=∴1A B =连接BD ,由正方形的性质可得,,B O D 三点共线,O 为BD 的中点,所以1AO BD ⊥,由第一问1A O AO ⊥,,AO BD ⊂平面ABCD ,AO BD O =I ,所以1A O ⊥平面ABCD ,以O 为坐标原点, 1,,OA OB OA 所在直线为x 轴,y 轴,z 轴建立空间直角坐标系()1,0,0A 、()0,1,0D -、()10,0,1A 、()0,1,0B 、()1,0,0C -()112,1,1AD AD AA =+=--u u u u r u u u r u u u r1131,1,222AE AB BE AB AA ⎛⎫=+=+=- ⎪⎝⎭u u u r u u u r u u u r u u u r u u u r ,设平面1D AE 法向量为n r ,(),,n x y z =r,则100n AD n AE ⎧⋅=⎪⎨⋅=⎪⎩u u u u r r u u u r r ,所以203022x y z zx y --+=⎧⎪⎨-++=⎪⎩, ∴73022x z -+=,令3x =,则7z =,1y =.∴()3,1,7n =r为平面1D AE 的一个法向量,因为点P 在平面ABCD 内,故设点P 的坐标为(),,0m n ,因为()112FP OP OF OP OC CF OP OC AA =-=-+=--u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r ,所以31,,22FP m n ⎛⎫=+- ⎪⎝⎭u u u r ,0FP n ⋅=u u u r r,则310m n ++=,所以CP ====u u u r ,所以当25m =-时,CP u uu r 有最小值,最小值为20.(1)分布列见解析,95(2)13【分析】(1)由题意可知ξ的可能取值有0、1、2、3,分别求出相应的概率,进而求解;(2)由全概率公式即可求解.【详解】(1)由题意可知ξ的可能取值有0、1、2、3,()34310C 10C 30P ξ===,()2146310C C 31C 10P ξ===,()1246310C C 12C 2P ξ===,()36310136ξ===C P C ,所以随机变量ξ的分布列如下表所示:ξ0123P1303101216所以,()1311901233010265ξ=⨯+⨯+⨯+⨯=E .(2)设B =“任取一人新药对其有效”,=i A “患者来自第i 组”(1i =,2,3,分别对应甲,乙,丙),则123A A A Ω=U U ,且1A ,2A ,3A 两两互斥,根据题意得:()10.4P A =,()20.32P A =,()30.28P A =,()10.64P B A =,()20.75P B A =,()30.8P B A =,由全概率公式,得()()()()()()()1122330.40.640.320.750.280.80.72P B P A P B A P A P B A P A P B A =++=⨯+⨯+⨯=,任意选取一人,发现新药对其有效,计算他来自于乙组的概率()()()()()()22220.320.7510.723P A P B A P A B P A B P B P B ⨯====,所以,任意选取一人,发现新药对其有效,则他来自乙组的概率为13.21.(1)双曲线方程:22143x y -=,椭圆方程为:22143x y+=(2)存在,()4,3P 【分析】(1)设双曲线方程为22221x y a b-=,椭圆方程22221x y a b +=,根据焦距和离心率求出22,a b 可得答案;(2)设()0,p x t ,()11,M x y ,()22,N x y , 根据P 、A 、N 三点共线,P 、B 、M 三点共线可得()()2102102222y x x x y x --=++,令T x n =得直线MN l 的方程,与椭圆方程联立利用韦达定理代入上式化简可得()()2102102222y x x x y x --=++22nn-=+,若存在4p T x x =,即04x n =代入可得答案;法二:()00,p x y ,()11,M x y ,()22,N x y 设直线AP :()0022y y x x =++与椭圆方程联立可得N x ,M x 、T x ,若存在4pT x x =,则0044x x =⨯可得答案.【详解】(1)由已知可设双曲线方程为22221x y a b-=,椭圆方程22221x y a b +=,222274132a b a b ⎧+=⎧=⇒⎨==⎩所以双曲线方程:22143x y -=,椭圆方程为:22143x y +=;(2)设()0,p x t ,()11,M x y ,()22,N x y ,()2,0A -,()2,0B ,P 、A 、N 三点共线,22022y tx x =++,P 、B 、M 三点共线,11022y tx x =--,相除:()()2102102222y x x x y x --=++,令()22T x n n =-<<,则设MN l :x my n =+,联立椭圆方程:()22222346312034120x my nm y mny n x y =+⎧⇒+++-=⎨+-=⎩,易得0∆>,所以21212226312,3434mn n y y y y m m -+=-=++,∴2121242y y n y y mn-=+,()()()()()()()()21211221222112121121222222222222y x y my n my y n y mny y n n y x y y my n my y n y mny y n n y -+-+-+-===+++++++()()()()()()()()()()()()21221221212142222222222422n y y n n y n n y n y n n n n y n y n y y n n y -++-⎡⎤-++--⎣⎦===⎡⎤++++--+++⎣⎦,若存在4p T x x =,即04x n =,0022422242n x n n x n ---==+++,得21n =,又P 在第一象限,所以1n =,()4,3P ;法二:()00,p x y ,()11,M x y ,()22,N x y ,()2,0A -,()2,0B ,直线AP :()0022y y x x =++,()()()()022*********22000241616231202223412y y x y y y x x x x x x x y ⎧⎡⎤=+⎪+⇒+++-=⎢⎥⎨+++⎢⎥⎪⎣⎦+=⎩,显然0∆>,由()()22002200161222324N y x x x y -+-=++,又因为P 在双曲线上,满足2200143x y -=,即22004312y x =-,所以()()()()()()222200000222200000008626246224246232432312N y x x x x x x x x x y x x -+--+-+--====+++++-,即04N x x =,同理BP :()0022y y x x =--,可得04M x x =,所以04T x x =,若存在4p T x x =,即0044x x =⨯,而P 在第一象限,所以04x =,即()4,3P .【点睛】思路点睛:本题第二问主要是利用韦达定理代入()()2102102222y x x x y x --=++进行化简运算,考查了学生的思维能力和运算能力.22.(1)证明见解析(2)[)1,-+∞【分析】(1)法一:求导后利用放缩法得到()0f x ¢>,故()()00f x f ≥=;法二:多次求导,结合隐零点,得到()f x '先增后减,结合端点值的符号,得到()0f x ¢>在()0,1x ∈上恒成立,求出()()00f x f ≥=;(2)法一:构造()()2e 2sin ln 1x g x x a x =--++,变形后结合()e 100xx x --≥≥,()0sin 0x x x -≥≥,()()0ln 10x x x -+≥≥,且在0x =处取等号,得到1a ≥-时,()0g x ≥符合题意,1a <-时,结合函数单调性及零点存在性定理得到矛盾,求出答案;法二:构造()()2e 2sin ln 1xg x x a x =--++,求导后考虑0a ≥,利用放缩法及函数单调性可证,再考虑a<0,由()g x '在()0,π单调递增,且()01g a '=+,分10a +≥与10a +<两种情况,进行求解,得到答案.【详解】(1)法一:首先证明sin x x ≤,[)0,x ∈+∞,理由如下:构造()sin j x x x =-,[)0,x ∈+∞,则()cos 10j x x '=-≤恒成立,故()sin j x x x =-在[)0,x ∈+∞上单调递减,故()()00j x j ≤=,所以sin x x ≤,[)0,x ∈+∞,()()sin ln 1f x x x =-+,[]0,1x ∈,()22111cos 12sin 1212121x x f x x x x x ⎛⎫'=-=--≥--⎪+++⎝⎭()21111012121x x x x x=--≥--≤≤++,故()()2122202222x x x x x f x x x -+---'≥=>++在[]0,1x ∈上恒成立,所以()f x 在[]0,1单调递增,故()()00f x f ≥=法二:()()sin ln 1f x x x =-+,[]0,1x ∈,()1cos 1f x x x'=-+,且()00f '=,令()()1cos 1f x x xq x '=-=+,则()()21sin 1q x x x '=-++,令()()()21sin 1w q x x x x =-+='+,则()()32cos 01w x x x '=--<+在[]0,1x ∈上恒成立,所以()()21sin 1q x x x '=-++单调递减,又()010q '=>,其中π1sin1sin62>=,故()1sin1014q =-+<',故()00,1x ∃∈,使得()00q x '=,且当()00,x x ∈时,()0q x '>,当()0,1x x ∈时,()0q x '<,所以()f x '先增后减,又()00f '=,()11cos102f '=->,∴()0f x ¢>在()0,1x ∈上恒成立,所以()f x 单调递增,()()00f x f ≥=;(2)法一:()()2e 2sin ln 1xg x x a x =--++,()()()()()2e 1sin ln 11ln 10x g x x x x x x a x =--+-+-++++≥,下证:()e 100xx x --≥≥,()0sin 0x x x -≥≥,()()0ln 10x x x -+≥≥,且在0x =处取等号,令()()0e 1x x r x x -=-≥,则()()e 100x r x x -≥'=≥,故()()0e 1xx r x x -=-≥单调递增,故()()00r x r ≥=,且在0x =处取等号,()0sin 0x x x -≥≥在(1)中已证明;令()()()0ln 1t x x x x =-≥+,则()()101011x t x x x x '=-≥++≥=,故()()()0ln 1t x x x x =-≥+单调递增,故()()00t x t ≥=,且在0x =处取等号,当0x >时,()ln 10x +>,当10a +≥时,即1a ≥-时,()0g x ≥符合题意,当1a <-时,()00g =,()2e cos 1x ag x x x '=-++,()010g a ='+<,其中当1a <-时,2e 2e a ->,()cos 1a -≤,11111111a a a a a -+-==-≤-+-+-+,故()()2e cos 01aag a a a -'-=--+>-+,令()()2e cos 1xau x g x x x '==-++,[]0,πx ∈,则()()22e sin 01xau x x x '=+->+在[]0,πx ∈上恒成立,故()g x '在[]0,πx ∈上单调递增,故()10,x a ∃∈-,使得()10g x '=,()g x 在()10,x 单调递减,故()()100g x g <=与()0g x ≥矛盾,舍去;综上:a 的取值范围为[)1,-+∞;法二:()()2e 2sin ln 1x g x x a x =--++,()2e cos 1xag x x x '=-++,()0,πx ∈,①当0a ≥时,()2e 10xg x '≥->,()0,πx ∈,()g x 在[]0,π单调递增,且()()00g x g ≥=符合题意,②当a<0时,()2e cos 1xag x x x '=-++在()0,π单调递增,()0211g a a '=+-=+,③当10a +≥时,即10a -≤<时,()()010g x g a ''≥=+≥ ()g x 在[]0,π单调递增,()()00g x g ≥=符合题意,②当10a +<时,即1a <-时,()00g =,()2e cos 1x ag x x x '=-++,()010g a ='+<,其中当1a <-时,2e 2e a ->,()cos 1a -≤,11111111a a a a a -+-==-≤-+-+-+,故()()2e cos 01aag a a a -'-=--+>-+,令()()2e cos 1xau x g x x x '==-++,[]0,πx ∈,则()()22e sin 01xau x x x '=+->+在[]0,πx ∈上恒成立,故()g x '在[]0,πx ∈上单调递增,故()10,x a ∃∈-,使得()10g x '=,()g x 在()10,x 单调递减,故()()100g x g <=与()0g x ≥矛盾,舍去;综上:a 的取值范围为[)1,-+∞.【点睛】方法点睛:隐零点的处理思路:第一步:用零点存在性定理判定导函数零点的存在性,其中难点是通过合理赋值,敏锐捕捉零点存在的区间,有时还需结合函数单调性明确零点的个数;第二步:虚设零点并确定取范围,抓住零点方程实施代换,如指数与对数互换,超越函数与简单函数的替换,利用同构思想等解决,需要注意的是,代换可能不止一次.。

高三数学模拟题(含答案)

高三数学模拟题(含答案)

数学(理科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共150分.考试时间120分钟.注意事项:1.答卷前,考生务必用2B铅笔和0.5毫米黑色签字笔(中性笔)将XX、XX号、考试科目、试卷类型填涂在答题卡规定的位置上.2.第Ⅰ卷每小题选出答案后,用2B铅笔把答题卡上对应的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.答案不能答在试题卷上.3.第Ⅱ卷必须用0.5毫米黑色签字笔(中性笔)作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.参考公式:球的表面积为: 2S4R,其中R为球的半径.第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题.每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.i是虚数单位,复数2i1i的实部为A.2B.2C.1D.12.设全集UR,集合 2Mx|ylg(x1),Nx|0x2,则N(e U M)A.x|2x1B.x|0x1C.x|1x1D.x|x13.下列函数中周期为且为偶函数的是A.ysin(2x)B.ycos(2x)C.ysin(x)D.ycos(x)22224.设S n是等差数列a n的前n项和,a12,a53a3,则S9A.90B.54C.54D.725.已知m、n为两条不同的直线,、为两个不同的平面,则下列命题中正确的是A.若lm,ln,且m,n,则lB.若平面内有不共线的三点到平面的距离相等,则//正视图左视图-1-俯视图C.若m,mn,则n//D.若m//n,n,则m6.一个几何体的三视图如图所示,其中俯视图与左视图均为半径是2的圆,则这个几何体的表面积是A.16B.14C.12D. 87.已知抛物线错误!未找到引用源。

的焦点为F,准线为l,点P为抛物线上一点,且在第一象限,错误!未找到引用源。

2024届南京市高三第二次模拟考试(南京二模)数学试卷(含答案详解)

2024届南京市高三第二次模拟考试(南京二模)数学试卷(含答案详解)

江苏省南京市2024届高三第二次模拟考试高三数学试题卷一、选择题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知向量()1,2a = ,(),3b x x =+ .若a b,则x =()A .6-B .2-C .3D .62.“02r <<”是“过点(1,0)有两条直线与圆222:(0)C x y r r +=>相切”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件3.为了得到函数πsin 23y x ⎛⎫=+ ⎪⎝⎭的图象,只要把函数sin 2y x =图象上所有的点()A .向左平移π6个单位B .向左平移π3个单位C .向右平移π6个单位D .向右平移π3个单位4.我们把各项均为0或1的数列称为01-数列,01-数列在计算机科学和信息技术领域有着广泛的应用.把佩尔数列{}n P (10P =,21P =,212n n n P P P ++=+,*n ∈N )中的奇数换成0,偶数换成1,得到01-数列{}n a .记{}n a 的前n 项和为n S ,则20S =()A .16B .12C .10D .85.已知3()5P A =,()15P AB =,1(|)2P A B =,则()P B =()A .15B .25C .35D .456.在圆台12O O 中,圆2O 的半径是圆1O 半径的2倍,且2O 恰为该圆台外接球的球心,则圆台的侧面积与球的表面积之比为()A .3:4B .1:2C .3:8D .3:107.已知椭圆C 的左、右焦点分别为1F ,2F ,下顶点为A ,直线1AF 交C 于另一点B ,2ABF △的内切圆与2BF 相切于点P .若12BP F F =,则C 的离心率为()A .13B .12C .23D .348.在斜ABC 中,若sin cos A B =,则3tan tan B C +的最小值为()AB C D .二、选择题:本题共3小题,每小题6分,共18分。

1. 《2024年高考数学模拟试题及答案》

1. 《2024年高考数学模拟试题及答案》

1. 《2024年高考数学模拟试题及答案》一、选择题(本大题共 12 小题,每小题 5 分,共 60 分)1、已知集合 A ={x |-2 < x < 3},B ={x | x² 5x + 4 <0},则A ∩ B =()A {x | 1 < x < 3}B {x |-2 < x < 1}C {x | 1 < x < 4}D {x |-2 < x < 4}2、复数 z =(1 + i)(2 i)在复平面内对应的点位于()A 第一象限B 第二象限C 第三象限D 第四象限3、已知向量 a =(1, 2),b =(m, -1),若 a ⊥ b,则 m =()A -2B 2C -1/2D 1/24、某中学高一年级有学生 1000 人,高二年级有学生 800 人,高三年级有学生 600 人,现采用分层抽样的方法从该校抽取一个容量为 n的样本,若从高二年级抽取了 80 人,则 n 的值为()A 200B 240C 280D 3205、函数 f(x) = log₂(x² 4x + 3)的单调递增区间是()A (∞, 1)B (∞, 2)C (2, +∞)D (3, +∞)6、若直线 l₁:ax + 2y + 6 = 0 与直线 l₂:x +(a 1)y + a² 1= 0 平行,则 a =()A -1B 2C -1 或 2D 17、已知等差数列{aₙ}的前 n 项和为 Sₙ,若 a₁= 2,S₃= S₅,则公差 d =()A -2B 0C 2D 48、已知圆 C:(x 1)²+(y 2)²= 4 与直线 l:x y + 1 = 0 相交于 A,B 两点,则弦长|AB| =()A 2√2B 2√3C 4D 69、一个几何体的三视图如图所示,则该几何体的体积为()(正视图和侧视图是等腰三角形,底边为 4,高为 4;俯视图是边长为 4 的正方形)A 32B 64C 128/3D 256/310、设函数 f(x) =sin(ωx +φ)(ω > 0,|φ| <π/2)的最小正周期为π,且f(π/8) =√2/2,则()A f(x)在(0, π/2)上单调递减B f(x)在(π/8, 3π/8)上单调递增C f(x)在(0, π/2)上单调递增D f(x)在(π/8, 3π/8)上单调递减11、已知函数 f(x) = x³ 3x,若过点 M(2, t)可作曲线 y = f(x)的三条切线,则实数 t 的取值范围是()A (-6, -2)B (-4, -2)C (-6, 2)D (0, 2)12、已知双曲线 C:x²/a² y²/b²= 1(a > 0,b > 0)的左、右焦点分别为 F₁,F₂,过 F₂作双曲线 C 的一条渐近线的垂线,垂足为 H,若|F₂H| = 2a,则双曲线 C 的离心率为()A √5B 2C √3D √2二、填空题(本大题共 4 小题,每小题 5 分,共 20 分)13、已知函数 f(x) = 2sin(2x +π/6),则 f(x)的最小正周期为_____14、若 x,y 满足约束条件 x +y ≥ 1,x y ≥ -1,2x y ≤ 2,则 z= x + 2y 的最大值为_____15、已知抛物线 y²= 2px(p > 0)的焦点为 F,点 A(4, 2)在抛物线上,且|AF| = 5,则 p =_____16、已知数列{aₙ}满足 a₁= 1,aₙ₊₁= 2aₙ + 1,则 a₅=_____三、解答题(本大题共 6 小题,共 70 分)17、(10 分)在△ABC 中,角 A,B,C 所对的边分别为 a,b,c,已知 a = 3,b = 5,c = 7、(1)求角 C 的大小;(2)求△ABC 的面积18、(12 分)已知数列{aₙ}是等差数列,a₁= 1,a₃+ a₅=14、(1)求数列{aₙ}的通项公式;(2)设数列{bₙ}满足 bₙ = aₙ × 2ⁿ,求数列{bₙ}的前 n 项和 Sₙ19、(12 分)如图,在四棱锥 P ABCD 中,底面 ABCD 是平行四边形,PA ⊥底面 ABCD,PA = AB = 2,AD = 4,∠BAD = 60°(1)证明:BD ⊥平面 PAC;(2)求二面角 P BD A 的余弦值20、(12 分)某工厂生产甲、乙两种产品,已知生产每吨甲产品要用 A 原料 3 吨,B 原料 2 吨;生产每吨乙产品要用 A 原料 1 吨,B原料 3 吨。

2023届河南省开封市高三第一次模拟考试文科数学试题【含答案】

2023届河南省开封市高三第一次模拟考试文科数学试题【含答案】

开封市2023届高三年级第一次模拟考试文科数学一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,,则( ){}13A x x =-<<{}1,0,1,2B =-A B = A.B.C.D.{}2{}1,0-{}0,1,2{}1,0,1,2-2. 设命题,,则是():p x ∀∈R e 1xx ≥+p ⌝A. , B. ,x ∀∈R e 1≤+xx x ∀∈R e 1xx <+C , D. ,x ∃∈R e 1≤+xx x ∃∈R e 1x x <+3. 若是纯虚数,则实数( )4i43i a +-=a A. B. C. D. 2-23-34. 已知中,为边上一点,且,则( )ABC D BC 13BD BC =AD =A. B. C. D.1233AC AB+ 2133AC AB+1344AC AB+3144AC AB+5. 已知圆锥的底面半径为1,其侧面展开图为一个半圆,则该圆锥的体积为()D.π36. 如图为甲,乙两位同学在5次数学测试中成绩的茎叶图,已知两位同学的平均成绩相等,则甲同学成绩的方差为()A. 4B. 27. 已知则x +2y 的最大值为()30,10,0,0,x y x y x y +-≤⎧⎪-+≥⎨⎪≥≥⎩A. 2B. 3C. 5D. 68. 设是定义域为的偶函数,且在上单调递减,则满足()f x R [)0,∞+的的取值范围是( )()()2f x f x <-x A.B.C. D.(),2-∞-()2,-+∞(),1-∞()1,+∞9. 已知数列的前项和,若,则( ){}n a n 2n S n =()*5,p q p q +=∈N p q a a +=A. B. C. D. 7891010. 已知,是椭圆的两个焦点,点M 在C 上,则(1F 2F 22:14x C y +=12MF MF ⋅)A. 有最大值4B. 有最大值3C. 有最小值4D. 有最小值311. 如图,在正方体中,点M ,N 分别是,的中点,则下述1111ABCD A B C D -1A D 1D B 结论中正确的个数为()①∥平面;②平面平面;MN ABCD 1A ND ⊥1D MB ③直线与所成的角为; ④直线与平面所成的角为.MN 11B D 45︒1D B 1A ND 45︒A. 1B. 2C. 3D. 412. 在数学中,布劳威尔不动点定理是拓扑学里一个非常重要的不动点定理,它可应用到有限维空间,并且是构成一般不动点定理的基石.简单地讲就是对于满足一定条件的连续函数,存在点,使得,那么我们称该函数为“不动点”函数.若函数()f x 0x ()00f x x =为“不动点”函数,则实数a 的取值范围是()()e x f x a x=-A.B.C.D.1,e ⎛⎤-∞ ⎥⎝⎦2,e ⎛⎤-∞ ⎥⎝⎦(],1-∞(],e -∞二、填空题:本题共4小题,每小题5分,共20分.13. 已知点、、,则______.()1,0A ()2,2B ()0,3C ⋅=AB AC 14 已知函数,则______.()cos f x x x=-512f π⎛⎫= ⎪⎝⎭15. 3D 打印是快速成型技术的一种,它是一种以数字模型文件为基础,运用粉末状金属或塑料等可粘合材料,通过逐层打印的方式来构造物体的技术.如图所示的塔筒为打印3D得到的,已知该塔筒(数据均以外壁即塔筒外侧表面计算)的上底直径为6cm ,下底直径为9cm ,高为9cm ,则喉部(最细处)的直径为______cm .16. 在数列中,,.记是数列的前项和,{}n a 11a =()()*212nn n a a n ++-=∈N n S {}n a n 则______.20S =三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17. 同时从甲、乙、丙三个不同地区进口某种商品的数量分别为、、(单位:240160160件),工作人员用分层抽样的方法从这些商品中共抽取件样品进行检测.7(1)求抽取的件商品中,来自甲、乙、丙各地区的数量;7(2)设抽取的件商品分别用、、、、、、表示,现从中再随机抽取7A B C D E F G 件做进一步检测.2(i )试用所给字母列举出所有可能的抽取结果;(ii )设为事件“抽取的件商品来自不同地区”,求事件发生的概率.M 2M 18. 在中,角A ,B ,C ,所对的边分别为a ,b ,c ,已知,ABC cossin 2B Ca b A +=.23a b =(1)求的值;cos B (2)若,求.3a =c 19. 如图,△ABC 是正三角形,在等腰梯形ABEF 中,,AB EF ∥.平面ABC ⊥平面ABEF ,M ,N 分别是AF ,CE 的中点,.12AF EF BE AB ===4CE=(1)证明:平面ABC ;//MN (2)求三棱锥N -ABC 的体积.20. 已知函数,.()2sin f x x ax=-a ∈R (1)若是R 上的单调递增函数,求实数a 的取值范围;()f x (2)当时,求在上的最小值.1a =()()ln g x f x x =-0,2π⎛⎤⎥⎝⎦21. 图1所示的椭圆规是画椭圆的一种工具,在十字形滑槽上各有一个活动滑标M ,N ,有一根旋杆将两个滑标连成一体,,D 为旋杆上的一点且在M ,N 两点之间,且3MN =.当滑标M 在滑槽EF 内做往复运动,滑标N 在滑槽GH 内随之运动时,将2ND DM=笔尖放置于D 处可画出椭圆,记该椭圆为.如图2所示,设EF 与GH 交于点O ,以EF1C所在的直线为x 轴,以GH 所在的直线为y 轴,建立平面直角坐标系.(1)求椭圆的方程;1C (2)以椭圆的短轴为直径作圆,已知直线l 与圆相切,且与椭圆交于A ,B 两1C 2C 2C 1C 点,记△OAB 的面积为S ,若,求直线l 的斜率.S =(二)选考题:共10分.请考生在22、23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22. 在直角坐标系中,曲线的参数方程为(为参数),为曲线xOy C 222x pt y pt =⎧⎨=⎩t ()2,4上一点的坐标.C (1)将曲线的参数方程化为普通方程;C (2)过点任意作两条相互垂直的射线分别与曲线交于点A ,B ,以直线的斜率O C OA 为参数,求线段的中点的轨迹的参数方程,并化为普通方程.k AB M [选修4-5:不等式选讲]23. 已知函数.()21f x x a x =++-(1)当时,求的最小值;1a =()f x (2)若,时,对任意使得不等式恒成立,证明:0a >0b >[]1,2x ∈()21f x x b >-+.2211222a b ⎛⎫⎛⎫+++> ⎪ ⎪⎝⎭⎝⎭开封市2023届高三年级第一次模拟考试文科数学一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,,则( ){}13A x x =-<<{}1,0,1,2B =-A B = A.B.C.D.{}2{}1,0-{}0,1,2{}1,0,1,2-【答案】C 【解析】【分析】根据交集的定义计算即可.【详解】由题知,,{}13A x x =-<<{}1,0,1,2B =-由交集的定义得,,A B = {}0,1,2故选:C.2. 设命题,,则是():p x ∀∈R e 1xx ≥+p ⌝A. , B. ,x ∀∈R e 1≤+xx x ∀∈R e 1xx <+C. , D. ,x ∃∈R e 1≤+xx x ∃∈R e 1x x <+【答案】D 【解析】【分析】先仔细审题,抓住题目中的关键信息之后再动,原题让我们选择一个全称命题的否定,任意和存在是一对,要注意互相变化,大于等于的否定是小于.【详解】,的否定是,.x ∀∈R e 1xx ≥+x ∃∈R e 1xx <+故选:D3. 若是纯虚数,则实数( )4i43i a +-=aA. B. C. D. 2-23-3【答案】D 【解析】【分析】利用复数的除法化简复数,根据纯虚数的概念可得出关于实数的等式与4i43i a +-a 不等式,即可得解.【详解】为纯虚数,则,解得()()()()4i 43i 4i 412316i 43i 43i 43i 2525a a a a +++-+==+--+41203160a a -=⎧⎨+≠⎩.3a =故选:D.4. 已知中,为边上一点,且,则( )ABC D BC 13BD BC =AD =A. B. C. D.1233AC AB+ 2133AC AB+1344AC AB+3144AC AB +【答案】A 【解析】【分析】利用向量的线性运算即可求得.【详解】在中,.ABC BC AC AB=-因为,所以.13BD BC =()1133B AC ABD BC ==- 所以.()112333AD AB BD AB A A C AB C AB=++-==+故选:A5. 已知圆锥的底面半径为1,其侧面展开图为一个半圆,则该圆锥的体积为()D. π3【答案】B 【解析】【分析】由侧面展开图求得母线长后求得圆锥的高,再由体积公式计算.【详解】设圆锥母线长为,高为,底面半径为,l h 1r =则由得,所以,2π1πl ⨯=2l=h ==所以.2211ππ133V r h ==⨯=故选:B .6. 如图为甲,乙两位同学在5次数学测试中成绩的茎叶图,已知两位同学的平均成绩相等,则甲同学成绩的方差为()A. 4B. 2【答案】B 【解析】【分析】由平均数相等求出,再求方差.m 【详解】由可得,80290392180290329189055m ⨯+⨯++++⨯+⨯++++==,即甲同学成绩的方差为8m =()22221211225+++=故选:B7. 已知则x +2y 的最大值为()30,10,0,0,x y x y x y +-≤⎧⎪-+≥⎨⎪≥≥⎩A 2B. 3C. 5D. 6【答案】C 【解析】【分析】作出可行域,根据简单线性规划求解即可.【详解】作出可行域如图:由可得:,2z x y =+122z y x =-+平移直线经过点时,有最大值,12y x=-A z 由解得,3010x y x y +-=⎧⎨-+=⎩(1,2)A .max 145z =+=故选:C 8. 设是定义域为的偶函数,且在上单调递减,则满足()f x R [)0,∞+的的取值范围是( )()()2f x f x <-x A.B.C. D.(),2-∞-()2,-+∞(),1-∞()1,+∞【答案】D 【解析】【分析】利用的奇偶性、单调性可得,再解不等式可得答案.()f x 2x x-<【详解】因为是定义域为的偶函数,所以,()f x R ()()f x f x -=又在上单调递减,所以在上单调递增,()f x [)0,∞+(),0∞-若,则,解得.()()2f x f x <-2x x-<1x >故选:D.9. 已知数列的前项和,若,则( ){}n a n 2n S n =()*5,p q p q +=∈N p q a a +=A. B. C. D. 78910【答案】B 【解析】【分析】利用与的关系可求得的通项公式,进而可求得的值.n a n S {}n a p q a a +【详解】当时,;1n =21111a S ===当时,.2n ≥()221121n n n a S S n n n -=-=--=-也满足,故对任意的,,11a =21n a n =-N n *∈21n a n =-因此,.()222528p q a a p q +=+-=⨯-=故选:B.10. 已知,是椭圆的两个焦点,点M 在C 上,则(1F 2F 22:14x C y +=12MF MF ⋅)A. 有最大值4B. 有最大值3C. 有最小值4D.有最小值3【答案】A 【解析】【分析】根据椭圆方程求得,,2a =1b =c =,设,所以,利用对应函数单124MF MF +=1MF t=()21244MF MF t t t t⋅=-=-+调性即可求解.【详解】由椭圆可得,,,所以,,2214x y +=24a =21b =23c =2a =1b =c =因为点在上,所以,M C 1224MF MF a +==设,,即,则1MF t=[],t a c a c ∈-+22t ⎡∈⎣24MF t =-所以,()21244MF MF t t t t⋅=-=-+由对应函数单调性可知,2124MF MF t t⋅=-+当时,有最大值,最大值为2t =2124MF MF t t ⋅=-+4即时,最大值为,122MF MF ==12MF MF ⋅4当时,有最小值,最小值为2t =2124MF MF t t⋅=-+((22421-+=即,时,最小值为,12MF =22MF =+12MF MF ⋅1综上所述:最小值为,最大值为12MF MF ⋅14故选:A .11. 如图,在正方体中,点M ,N 分别是,的中点,则下述1111ABCD A B C D -1A D 1D B 结论中正确的个数为()①∥平面;②平面平面;MN ABCD 1A ND ⊥1D MB ③直线与所成的角为; ④直线与平面所成的角为.MN 11B D 45︒1D B 1A ND 45︒A. 1 B. 2C. 3D. 4【答案】C 【解析】【分析】建立空间直角坐标系,利用法向量的性质,结合空间向量夹角公式逐一判断即可.【详解】建立如下图所示的空间直角坐标系,设该正方体的棱长为,2,111(0,0,0),(2,0,2),(2,2,0),(0,0,2),(2,2,2),(1,0,1),(1,1,1)D A B D B M N 由正方体的性质可知:平面,则平面的法向量为,1D D ⊥ABCD ABCD 1(0,0,2)DD =,因为,所以,而平面,(0,1,0)MN =10D D MN ⋅= 1D D MN ⊥ MN ⊄ABCD 因此∥平面,故①对;MN ABCD 设平面的法向量为,,,1A ND (,,)m x y z = (1,1,1)DN =1(2,0,2)DA = 所以有,1100(1,0,1)2200m DN m DN x y z m x z m DA m DA ⎧⎧⊥⋅=++=⎧⎪⎪⇒⇒⇒=-⎨⎨⎨+=⊥⋅=⎩⎪⎪⎩⎩ 同理可求出平面的法向量,1D MB (1,0,1)n =因为,所以,因此平面平面,故②正确;110m n ⋅=-= m n ⊥1A ND ⊥1D MB 因为,,(0,1,0)MN =11(2,2,0)B D =-- 所以,111111cos ,MN B D MN B D MN B D ⋅〈〉===⋅因为异面直线所成的角范围为,所以直线与所成的角为,故③正确;(0,90]MN 11B D 45︒设直线与平面所成的角为,1D B 1A ND θ因为,平面的法向量为,1(2,2,2)D B =- 1A ND (1,0,1)m =-所以,111sin cos ,D B m D B m D B mθ⋅=〈〉===≠⋅所以直线与平面所成的角不是,因此④错误,1D B 1A ND 45︒一共有个结论正确,3故选:C12. 在数学中,布劳威尔不动点定理是拓扑学里一个非常重要的不动点定理,它可应用到有限维空间,并且是构成一般不动点定理的基石.简单地讲就是对于满足一定条件的连续函数,存在点,使得,那么我们称该函数为“不动点”函数.若函数()f x 0x ()00f x x =为“不动点”函数,则实数a 的取值范围是()()e x f x a x=-A.B.C.D.1,e ⎛⎤-∞ ⎥⎝⎦2,e ⎛⎤-∞ ⎥⎝⎦(],1-∞(],e -∞【答案】B 【解析】【分析】根据题意列出关于和的等式,然后分离参数,转化为两个函数有交点.0x a 【详解】题意得若函数为不动点函数,则满足()e x f x a x=-,即,即()0000e xf x a x x -==00e 2x a x =02e x x a =设,()2e xx g x =()()22e 2e 22e e x xxx x xg x --'==令,解得()0g x '=1x =当时,,所以在上为增函数(),1x ∈-∞()0g x '>()g x (),1-∞当时,,所以在上为减函数()1,x ∈+∞()0g x '<()g x ()1,+∞所以()max 2(1)eg x g ==当时,(),0x ∞∈-()0g x <当时,()0,x ∞∈+()0g x >所以的图象为:()g x要想成立,则与有交点,所以,002e x x a =y a =()g x ()max2e a g x ≤=对应区间为2,e ⎛⎤-∞ ⎥⎝⎦故选:B.二、填空题:本题共4小题,每小题5分,共20分.13. 已知点、、,则______.()1,0A ()2,2B ()0,3C ⋅=AB AC 【答案】5【解析】【分析】计算出向量、的坐标,利用平面向量数量积的坐标运算可求得AB AC的值.AB AC ⋅【详解】由题意可得,,因此,.()1,2AB =()1,3AC =-1235AB AC ⋅=-+⨯=故答案为:.514. 已知函数,则______.()cos f x x x=-512f π⎛⎫= ⎪⎝⎭【解析】【分析】利用辅助角公式将函数化简,再代入计算可得.【详解】∵函数,()1πcos 2cos 2sin 26f x x x x x x ⎫⎛⎫=-=-=-⎪ ⎪⎪⎝⎭⎭即,()2sin()6f x x π=-∴.5π5πππ()2sin()2sin 121264f =-==.15. 3D 打印是快速成型技术的一种,它是一种以数字模型文件为基础,运用粉末状金属或塑料等可粘合材料,通过逐层打印的方式来构造物体的技术.如图所示的塔筒为打印3D得到的,已知该塔筒(数据均以外壁即塔筒外侧表面计算)的上底直径为6cm ,下底直径为9cm ,高为9cm ,则喉部(最细处)的直径为______cm.【答案】【解析】【分析】由已知,根据题意,以最细处所在的直线为轴,其垂直平分线为轴建立平面x y 直角坐标系,设出双曲线方程,并根据离心率表示出之间的关系,由题意底直径为,a b 6cm ,所以双曲线过点,下底直径为9cm ,高为9cm ,所以双曲线过点,()3,m 9,92m ⎛⎫- ⎪⎝⎭代入双曲线方程即可求解方程从而得到喉部(最细处)的直径.【详解】由已知,以最细处所在的直线为轴,其垂直平分线为轴建立平面直角坐标系,x y 设双曲线方程为,()222210,0x y a b a b -=>>由已知可得,,且,ce a ==222c a b =+所以,所以双曲线方程为,224a b =222214x y a a -=底直径为6cm ,所以双曲线过点,()3,m 下底直径为9cm ,高为9cm ,所以双曲线过点,代入双曲线方程得:9,92m ⎛⎫- ⎪⎝⎭,解得:,()222222914819414m a a m a a ⎧-=⎪⎪⎨⎪--=⎪⎩2m a =⎧⎪⎨=⎪⎩所以喉部(最细处)的直径为故答案为:16. 在数列中,,.记是数列的前项和,{}n a 11a =()()*212nn n a a n ++-=∈N n S {}n a n 则______.20S =【答案】110【解析】【分析】对为奇数、为偶数两种情况讨论,求出数列前项中奇数项和偶数项n n {}n a 20的和,相加可得出的值.20S【详解】当为奇数时,,所以,数列的奇数项成以为首项,公差为n 22n n a a +-={}n a 1的等差数列,2所以,;132010921011002a a a ⨯⨯+++=⨯+= 当为偶数时,,n 22n n a a ++=所以,.()()()2420246818202510a a a a a a a a a +++=++++++=⨯= 因此,.2010010110S =+=故答案为:.110三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17. 同时从甲、乙、丙三个不同地区进口某种商品的数量分别为、、(单位:240160160件),工作人员用分层抽样的方法从这些商品中共抽取件样品进行检测.7(1)求抽取的件商品中,来自甲、乙、丙各地区的数量;7(2)设抽取的件商品分别用、、、、、、表示,现从中再随机抽取7A B C D E F G 件做进一步检测.2(i )试用所给字母列举出所有可能的抽取结果;(ii )设为事件“抽取的件商品来自不同地区”,求事件发生的概率.M 2M 【答案】(1)分别为件、件、件322(2)(i )答案见解析;(ii )1621【解析】【分析】(1)利用分层抽样可计算得出所抽取的件商品中,来自甲、乙、丙各地区的数7量;(2)(i )利用列举法可列举出所有的基本事件;(ii )列举出事件所包含的基本事件,利用古典概型的概率公式可求得的值.M ()P M【小问1详解】解:由已知,从甲、乙、丙三个不同地区进口某种商品的数量之比为,3:2:2由于采用分层抽样的方法从中抽取件商品,7因此应从甲、乙、丙三个不同地区进口的某种商品中分别抽取件、件、3737⨯=2727⨯=件.2727⨯=【小问2详解】解:(i )从抽取的件商品中随机抽取件商品的所有可能结果为:、、、72AB AC AD 、、、、、、、、、、、、、AE AF AG BC BD BE BF BG CD CE CF CG DE 、、、、;DF DG EF EG FG (ii )不妨设抽取的件商品中,来自甲地区的是、、,来自乙地区的是、,7A B C D E 来自丙地区的是、,F G 则从抽取的件商品中随机抽取的件商品来自相同地区的所有可能结果为:、72AD 、、、、、、、、、、、、、AE AF AG BD BE BF BG CD CE CF CG DF DG 、,共种,EF EG 16所有的基本事件共种,故.21()1621P M =18. 在中,角A ,B ,C ,所对的边分别为a ,b ,c ,已知,ABC cossin 2B Ca b A +=.23a b =(1)求的值;cos B (2)若,求.3a =c 【答案】(1)3cos 4B =(2)52c =【解析】【分析】(1)先由三角形内角和的关系将代换,再由正弦定理将边化角,求得cos2B C+角A ,B 的关系,解出的值;cos B (2)由第一问求得的的值,根据余弦定理公式展开列方程求解即可.cos B c 【小问1详解】因为,A B C π++=所以,222B C Aπ+=-得,cossin 22B C A+=因为,cossin 2B Ca b A +=由正弦定理,可得,sin sinsin sin 2AA B A ⋅=⋅又,所以,sin 0A ≠sinsin 2AB =又因为A ,B 均为三角形内角,所以,即,2AB =2A B =又因为,即,23a b =2sin 3sin A B =即,4sin cos 3sin B B B =又,得;sin 0B ≠3cos 4B =【小问2详解】若,则,3a =2b =由(1)知,3cos 4B =由余弦定理可得2222cos b a c ac B =+-,即,29502c c -+=()5202c c ⎛⎫--= ⎪⎝⎭所以或,2c =52当时,,则,即为等腰直角三角形,2c =b c =22A B C ==ABC 又因为,此时不满足题意,所以.a ≠52c =19. 如图,△ABC 是正三角形,在等腰梯形ABEF 中,,AB EF ∥.平面ABC ⊥平面ABEF ,M ,N 分别是AF ,CE 的中点,.12AF EF BE AB===4CE =(1)证明:平面ABC ;//MN (2)求三棱锥N -ABC 的体积.【答案】(1)证明见解析 (2)2【解析】【分析】(1)取的中点,连接,,证明平面平面,原题即CF D DM DN //MND ABC 得证;(2)取AB 的中点O ,连接OC ,OE ,设,由勾股定理即可12AF EF EB AB a ====求出,进而可求解三棱锥N -ABC 的体积.a 【小问1详解】取CF 的中点D ,连接DM ,DN ,∵M ,N 分别是AF ,CE 的中点,∴,,DM AC ∥DN EF ∥又∵平面ABC ,平面ABC ,∴平面ABC .DM ⊄AC ⊂DM ∥又,∴,同理可得, 平面ABC .EF AB ∥DN AB ∥DN ∥∵平面MND ,平面MND ,,DM⊂DN ⊂DM DN D = ∴平面平面ABC .MND ∥∵平面MND ,∴平面ABC .MN ⊂//MN 【小问2详解】取AB 的中点O ,连接OC ,OE .由已知得OA EF 且OA =EF ,∴OAFE 是平行四边形,∴OE AF 且OE =AF ∥∥∵△ABC 是正三角形,∴OC ⊥AB ,∵平面ABC ⊥平面ABEF ,平面平面ABEF =AB ,∴OC ⊥平面ABEF ,ABC ⋂又平面ABEF ,∴OC ⊥OE .OE ⊂设,,12AF EF EB AB a ====OC =在Rt △COE 中,由,解得,即.222OC OE CE +=2a =122AF EF EB AB ====由题意∠FAB =60°,M 到AB 的距离即为M 到平面ABC的距离sin 60h AM =︒=又平面ABC ,∴.//MN 11142332N ABC M ABC ABC V V S h --==⋅⋅=⨯⨯⨯=△20. 已知函数,.()2sin f x x ax=-a ∈R (1)若是R 上的单调递增函数,求实数a 的取值范围;()f x(2)当时,求在上的最小值.1a =()()ln g x f x x =-0,2π⎛⎤ ⎥⎝⎦【答案】(1)(],2-∞-(2)2ln 22ππ⎛⎫-- ⎪⎝⎭【解析】【分析】(1)由已知可得:即可求解.()2cos 0f x x a '=-≥(2)结合导数和隐零点替换即可求解最值.【小问1详解】由已知可得:恒成立,()2cos 0f x x a '=-≥即恒成立,又的最小值为-2,所以,2cos a x ≤2cos y x =2a ≤-则有.(],2a ∈-∞-【小问2详解】当时,,1a =()()ln 2sin ln g x f x x x x x=-=--()0,x ∈+∞所以,()12cos 1g x x x '=--令,在上单调递减,()()h x g x '=()212sin h x x x '=-+0,2π⎛⎤⎥⎝⎦又因为,,26106h ππ⎛⎫⎛⎫'=-+> ⎪ ⎪⎝⎭⎝⎭()12sin112sin 106h π'=-+<-+=所以存在使得,即,从而0,16x π⎛⎫∈ ⎪⎝⎭()0h x '=02012sin x x =0cos x =则有x()00,x 0,2x π⎛⎫ ⎪⎝⎭()h x '正负()g x '递增递减则有最大值为:()g x ',()00000011112cos 11110g x x x x x x '=--=--<-=-<所以,()0g x '<则在上单调递减,所以最小值为.()g x 0,2π⎛⎤ ⎥⎝⎦2ln 222g πππ⎛⎫⎛⎫=-- ⎪ ⎪⎝⎭⎝⎭21. 图1所示的椭圆规是画椭圆的一种工具,在十字形滑槽上各有一个活动滑标M ,N ,有一根旋杆将两个滑标连成一体,,D 为旋杆上的一点且在M ,N 两点之间,且3MN =.当滑标M 在滑槽EF 内做往复运动,滑标N 在滑槽GH 内随之运动时,将2ND DM=笔尖放置于D 处可画出椭圆,记该椭圆为.如图2所示,设EF 与GH交于点O ,以EF 1C 所在的直线为x 轴,以GH 所在的直线为y 轴,建立平面直角坐标系.(1)求椭圆的方程;1C (2)以椭圆的短轴为直径作圆,已知直线l 与圆相切,且与椭圆交于A ,B 两1C 2C 2C 1C点,记△OAB 的面积为S ,若,求直线l 的斜率.S =【答案】(1)2214x y +=(2)k =k =【解析】【分析】(1)由,,即可得到椭圆的长半轴长和短半轴长,进而可求解.2ND =1DM =(2)分类讨论直线的斜率是否存在,当斜率不存在时不满足题意,故设,l :l y kx m =+联立方程,表达出即可求解.S =【小问1详解】由题意可得,,2ND =1DM =所以椭圆的长半轴长为2,短半轴长为1,所以椭圆的方程为:.1C 1C 2214x y +=【小问2详解】若直线l 的斜率不存在,依题意,,带入方程可得,:1lx =±1C AB=此时,所以直线l 的斜率一定存在,设,S =≠:l y kx m =+l 与圆,即,2C 1=221m k =+联立可得,221,4,x y y kx m ⎧+=⎪⎨⎪=+⎩()222148440k x kmx m +++-=由得,()()222264161410k m k m ∆=-+->0k ≠,,122814kmx x k -+=+()21224114mx x k -=+2AB x =-===,由得,即,解得S =AB ==4251120k k -+=k =k =(二)选考题:共10分.请考生在22、23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22. 在直角坐标系中,曲线的参数方程为(为参数),为曲线xOy C 222x pt y pt =⎧⎨=⎩t ()2,4上一点的坐标.C (1)将曲线的参数方程化为普通方程;C (2)过点任意作两条相互垂直的射线分别与曲线交于点A ,B ,以直线的斜率O C OA 为参数,求线段的中点的轨迹的参数方程,并化为普通方程.k AB M 【答案】(1)2x y =(2)221x y =-【解析】【分析】(1)根据曲线的参数方程为(为参数),消去参数求解;C 222x pty pt =⎧⎨=⎩t t (2)设的斜率为,方程为,则的方程为:,分别与抛物线方OA k y kx =OB 1=-y xk 程联立,求得A ,B 的坐标,再利用中点坐标求解.【小问1详解】解:因为曲线的参数方程为(为参数),C 222x pt y pt =⎧⎨=⎩t 消去参数可得:,将点代入可得,t 22x py =()2,412p =所以曲线的普通方程为:;C 2x y =【小问2详解】由已知得:,的斜率存在且不为0,OA OB设的斜率为,方程为,则的方程为:,OA k y kx =OB 1=-y x k 联立方程可得:,2,,y kx x y =⎧⎨=⎩()2,A k k 同理可得:,211,B k k ⎛⎫- ⎪⎝⎭设,所以(),M x y 2211,211,2x k k y k k ⎧⎛⎫=- ⎪⎪⎪⎝⎭⎨⎛⎫⎪=+ ⎪⎪⎝⎭⎩所以,22214222x k y k =+-=-所以即为点轨迹的普通方程.221x y =-M [选修4-5:不等式选讲]23. 已知函数.()21f x x a x =++-(1)当时,求的最小值;1a =()f x (2)若,时,对任意使得不等式恒成立,证明:0a >0b >[]1,2x ∈()21f x x b >-+.2211222a b ⎛⎫⎛⎫+++> ⎪ ⎪⎝⎭⎝⎭【答案】(1)2; (2)证明见解析.【解析】【分析】(1)分段求解的最小值和范围,即可求得结果;()f x (2)转化为,结合二次函数在区间上的最值,利用()21f x x b >-+233a b x x +>-+不等式,即可证明.【小问1详解】当时,,1a =()121f x x x =++-当,,;1x ≤-()31f x x =-+()min ()14f x f =-=当,,;11x -<<()3f x x =-+()()2,4f x ∈当,,;1x ≥()31f x x =-()min ()12f x f ==∴当时,的最小值为2.1a =()f x 【小问2详解】,,当时,0a >0b >12x ≤≤可化为,2211x a x x b ++->-+233a b x x +>-+令,,,∴()233h x x x =-+[]1,2x ∈()()()max 121h x h h ===1a b +>∴,22222111()122222a b a b a b a b a b +⎛⎫⎛⎫+++=++++≥+++ ⎪ ⎪⎝⎭⎝⎭当且仅当时取得等号;a b =又当时,,1a b +>2()122a b a b ++++2>故.2211222a b ⎛⎫⎛⎫+++> ⎪ ⎪⎝⎭⎝⎭。

高三模拟考试数学试题(附答案)

高三模拟考试数学试题(附答案)

高三数学模拟试题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共150分.考试时间120分钟.第Ⅰ卷(选择题 共60分)一、选择题:(本大题共12小题,每小题5分,共60分)在每小题给出的四个选项中,只有一项是符合题目要求的,各题答案必需答在机读卡上。

1.已知集合M={x |x -a =0},N={x |ax -1=0},若M N=N ,则实数a 的值是(D )A .1B .-1C .1或-1D .0或1或-12.已知集合A B R ==,映射:f A B →满足 2()2f x x x =-+,若对于实数k B ∈,在集合A 中不存在原象,则k 的取值范围是( D )A . 1k ≥B .1k ≤C .1k <D .1k > 3.图中阴影部分可用哪一组二元一次不等式表示( C )A .⎩⎨⎧≥+--≥0221y x y B .⎩⎨⎧≤+--≥0221y x yC .⎪⎩⎪⎨⎧≥+--≥≤02210y x y xD .⎪⎩⎪⎨⎧≤+--≥≤02210y x y x4.已知F F 12,是双曲线1222=-y x 的左右焦点,P 、Q 为右支上的两点,直线PQ 过F 2且倾斜角为α,则PF QF PQ 11+-的值为( A ) A. 42 B. 8C. 22D. 随α大小变化5.已知等比数列{n a }的前n 项和12-=n n S ,则++2221a a …2n a +等于( D )A .2)12(-nB .)12(31-nC .14-nD .)14(31-n6.过点M (-2,4)作圆C :25)1()2(22=-+-y x 的切线l ,l 1:023=++a y ax 与l 平行,则l 1与l 间的距离是( A )A.512 B.528 C.58 D.52 7.已知函数y =f (x )是偶函数,y =g (x )是奇函数,它们的定义域为[-π,π],且它们在x ∈[0,π]上的图象如下图所示,则不等式)()(x g x f >0的解集为(D )A.(-3π,0)∪(3π,π)B.(-π,-3π)∪(3π,π) C.(-4π,0)∪(4π,π) D.(-π,-3π)∪(0,3π) 8.把函数y =cos x 的图象上的所有点的横坐标缩小到原来的一半,纵坐标扩大到原来的两倍,然后把图象向左平移4π个单位,则所得图形表示的函数的解析式为( B ) A .y=2sin 2x B .y=-2sin 2xC .y=2cos (x +4π) D .y=2cos (2x +4π) 9.在区间[-4,-1]上,函数f (x )=-x 2+px +q 与函数g (x )=x +x4同时取相同最大值,那么函数f (x )在区间[-4,-1]上的最小值为CA.-10B.-5C.-8D.-3210.函数y =x 2-2x 在区间[a ,b ]上的值域是[-1,3],则点(a ,b )的轨迹是图中的 ( A ) A .线段AB 和线段ADB .线段AB 和线段CDC .线段AD 和线段BC D .线段AC 和线段BD11.若抛物线y =2x 2上两点A (x 1,y 1)、B (x 2,y 2)关于直线y =x +m 对称,且x 1·x 2=-21,则实数m 的值为 B A.21 B.23 C.25 D.2 12.定义运算a*b 为:a*b=⎩⎨⎧>≤)()(b a b b a a 则关于x 的函数f (x )=x 21*的取值范围是( C )A .(]1,∞- B.(0,1) C. (]1,0 D.[1,+∞]第Ⅱ卷(非选择题 共90分)二、填空题:(本大题共4小题,每小题4分,共16分)各题答案必需填写在答题卡上(只填结果,不写过程)。

四川省成都市2023-2024学年高三下学期模拟测试数学试题含答案

四川省成都市2023-2024学年高三下学期模拟测试数学试题含答案

2023-2024年度高三模拟测试数学(答案在最后)考试时间:120分钟总分:150分一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}241,S y y s s s +==-+∈N ,{}23,T y y tt +==-∈N ,则()A.S T = B.S T⊆ C.S T⊇ D.S T ⋂=∅【答案】C 【解析】【分析】由()()2232421y t t t =-=+-++结合s +∈N ,t +∈N 即可得.【详解】()()2232421y t t t =-=+-++,故对t +∀∈N ,都有2s t =+,使22341t s s -=-+成立,又当2s =时,有2413s s -+=-,此时,不存在t +∈N 使233t -=-,故T S ⊆,即S T ⊇.故选:C.2.命题“2x y x y ++-≤”是“1x ≤,且1y ≤”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】C 【解析】【分析】根据绝对值三角不等式和充分条件必要条件的定义即可判断.【详解】若2x y x y ++-≤,22x y x y x y x y x ++-≤++-≤=,即1x ≤,22x y x y x y x y y +-+≤++-≤=,即1y ≤,则充分性成立;若1x ≤且1y ≤,当()()0x y x y +-≥时,22x y x y x y x y x +++-==-+≤,当()()0x y x y +-<时,22x y x y x y x y y ++++==--≤,则必要性成立;综上所述:“2x y x y ++-≤”是“1x ≤,且1y ≤”的充分必要条件.故选:C.3.若13i z =+,则22z z z=()A.13i +B.13i -C.D.10【答案】A 【解析】【分析】根据复数四则运算和乘方运算以及共轭复数的定义即可.【详解】()2213i 86i z =+=-+,21910z =+=,()()2286i 13i 13i10z z z-+-==+,故选:A.4.函数22tan ()1tan xf x x=-的最小正周期是()A.π4B.π2C.πD.2π【答案】C 【解析】【分析】借助正切函数的二倍角公式可得()tan 2f x x =,结合函数定义域及正切型函数的周期性计算即可得.【详解】22tan ()tan 21tan x f x x x==-,()ππ2x k k ≠+∈Z ,又tan 1x ≠±,可得()ππ42kx k ≠+∈Z ,即()tan 2f x x =,且()ππ2x k k ≠+∈Z 、()ππ42kx k ≠+∈Z ,故πT =.故选:C.5.已知抛物线²4y x =的焦点为F ,其上有两点,A B ,若AB 的中点为M ,满足MF 的斜率等于1,则BF 的最大值是()A.7 B.8C.5+D.10【答案】D 【解析】【分析】设直线AB 的方程为(0)y kx b k =+≠,112200(,),(,),(,)A x y B x y M x y ,利用韦达定理得出AB 中点M 的坐标,再根据条件得出222k k b k+-=-,再利用求根公式得出22211)x k=,再分1k >-或1k <两种情况,通过构造函数,利用函数单调性即可解决问题.【详解】由题知,直线AB 斜率存在,设直线AB 的方程为(0)y kx b k =+≠,112200(,),(,),(,)A x y B x y M x y ,由24y kx b y x=+⎧⎨=⎩,消y 得到222(24)0k x kb x b +-+=,由222(24)40kb k b ∆=-->,得到1kb <①,由韦达定理知,212122224,kb b x x x x k k -+=-=,所以12124()2y y k x x b k +=++=,又由题知00221211y k kb x k ==----,得到222k k b k+-=-②,由①②得到2210k k +->,即1k >或1k <.由抛物线定义知,21BF x =+,又由222(24)0k x kb x b +-+=,得到x =取2x =,将222k k b k +-=-代入并化简得到222221)k k x k k++==,当1k >-,则2111k k=,且101k <<,令(01)y x x =<<,则11y '==,由0y '=,得到220x x -=,解得2x =或0x =(舍),当(0,1]x ∈时,0'>y ,当(1,2)x ∈时,111y '===-,由(1,2)x ∈时,22(1,2)21x x ∈-++,221(0,1)21x x -+∈-++,所以(1,2)x ∈时,0'>y ,即有(0,2)x ∈时,0'>y ,当1)x ∈时,1y '=,22(2,)21x x ∈+∞-++,所以221(1,)21x x -+∈+∞-++,得到0'<y ,所以当2x =时,(0)y x x =>有最大值为3,所以2x 的最大值为9,得到2110BF x =+≤,当1k <-,则11k k=,且110k -<<,令(10)y x x =-<,则1111y '====-,因为10x <,所以22(2,)21x x ∈+∞-++,得到221(1,)21x x -+∈+∞-++,所以,0'<y 在(1x ∈-上恒成立,此时(1,1y ∈--,则2(3x ∈-,故212BF x =+<,综上,10BF ≤,故选:D.【点睛】关键点点晴:本题的关键在于找出k 的范围后,用k 表示出2x ,即222211)k k x k+-+=,再根据k 的范围,构造相应的函数,借助函数的单调性来解决问题.6.已知,a b ÎR ,函数11(),,22f x x ax b x x ⎡⎤=+-+∈⎢⎥⎣⎦的最大值为f M ,则f M 的最小值是()A.18B.14C.12D.25【答案】B 【解析】【分析】首先由题得1max (1),(2),()2f M f f f ⎧⎫=⎨⎬⎩⎭,再得到(1)2f M f a b ≥=-+,2211(253323f M f a b ≥=--,111(2)425336f M f a b ≥=--,再将以上三式两边相加可得1155222542523636f M a b a b a b ≥-++--+--≥--,即122f M ≥.【详解】设max ()f M f x =,则1max (1),(2),(2f M f f f ⎧⎫=⎨⎬⎩⎭,由于1511(252222f M f a b a b ≥=-+=--,(1)2f M f a b ≥=-+,1(2)4252f M f a b ≥=--,则(1)2f M f a b ≥=-+,2211()253323f M f a b ≥=--,111(2)425336f M f a b ≥=--,所以将以上三式两边相加可得1155222542523636f M a b a b a b ≥-++--+--≥--,即122f M ≥,所以14f M ≥.故选:B【点睛】(1)本题主要考查函数最值的求法,考查绝对值三角不等式,意在考查学生对这些知识的掌握水平和分析推理能力.(2)解答本题的关键有两点,其一是得到(1)2f M f a b ≥=-+,2211(253323f M f a b ≥=--,111(2)425336f M f a b ≥=--,其二是利用三角不等式求得1155222542523636f M a b a b a b ≥-++--+--≥--,即122f M ≥.7.半径为R 的光滑半球形碗中放置着4个半径为r 的质量相同的小球,且小球的球心在同一水平面上,今将另一个完全相同的小球至于其上方,若小球不滑动,则Rr的最大值是()A.1+B.1+C.1+D.1+【答案】D 【解析】【分析】由题意画出草图,求出球心坐标,分析受力情况,从而得出0≤,由此即可得解.【详解】以碗的大圆圆心,建立如图所示的空间直角坐标系,如图所示:上面球的球心、下面4个球之一的一个球心分别为()()12,0,O O r r ,以球2O 为对象分析它的受力情况:球1O给它的压力为4mg F = ,它自身受到的重力为()0,,0G mg =,由对称性可知碗给它的支持力为5,,4mg N ⎛⎫=- ⎪⎝⎭,0≤,解得(1R r ≤+,所以Rr的最大值是1.故选:D.【点睛】关键点睛:关键是准确分析受力情况,列出不等式,由此即可顺利得解.8.已知a ,b ,c 满足()5log 23b ba =+,()3log 52bb c =-,则()A.a c b c -≥-,a b b c -≥-B.a c b c -≥-,a b b c -≤-C.a c b c -≤-,a b b c -≥-D.a c b c -≤-,a b b c-≤-【答案】B 【解析】【分析】构造函数23()55x xf x ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭,利用其单调性,分1b >,1b =,1b <讨论即可.【详解】由题意得520bb->,即52bb>,则2015b⎛⎫<< ⎪⎝⎭,则0b >,令23(),(1)155x xf x f ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭,根据减函数加减函数为减函数的结论知:()f x 在R 上单调递减,当1b >时,可得23155bb⎛⎫⎛⎫+< ⎪ ⎪⎝⎭⎝⎭,235b b b ∴+<,两边同取以5为底的对数得()55log 2og 53l b b b b a =+<=,对235b b b +<通过移项得523b b b ->,两边同取以3为底的对数得()3log 52b bb c =->,所以c b a >>,所以b a -<-,所以c b c a -<-,且0,0c b c a ->->,故此时,a c b c ->-,故C,D 选项错误,2b =时,533371log 13log 21log 212log ,132a c c b ⎛⎫==-=-=∈ ⎪⎝⎭,,,552512log 13log 0,,132b a c b b a ⎛⎫-=-=∈∴->- ⎪⎝⎭,且0,0c b c a ->->,故A 错误,下面严格证明当1b >时,0b a c b <-<-,()55551log 23log log 232355b b b b b b b b a b ⎛⎫ ⎪⎛⎫ ⎪-=-+== ⎪ ⎪+⎛⎫⎛⎫⎝⎭+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,()3352log 52log 33b bb bc b b ⎡⎤⎛⎫⎛⎫-=--=-⎢⎥⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦根据函数()5233x xh x ⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭在R 上单调递增,且()11h =,则当1b >时,有52133bb⎛⎫⎛⎫<- ⎪ ⎪⎝⎭⎝⎭,230155bb⎛⎫⎛⎫<+ ⎪ ⎪⎝⎭⎝⎭< ,112355bb∴<⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭,下面证明:552233b b bb b b-<+,1b >要证:552233b b bb b b-<+,即证:()()152352bb bbb +-<,等价于证明4610b b b <+,即证:23155bb⎛⎫⎛⎫+< ⎪ ⎪⎝⎭⎝⎭,此式开头已证明,对552233b b bb b b-<+,左边同除分子分母同除5b ,右边分子分母同除3b 得152332355bbb b⎛⎫⎛⎫<- ⎪ ⎪⎝⎭⎝⎭⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭,则553152520log log log 33332355b b b b b bb ac b ⎛⎫ ⎪⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫ ⎪<-=<-<-=-⎢⎥⎢⎥ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎛⎫⎛⎫⎢⎥⎢⎥⎣⎦⎣⎦+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭故当1b >时,0b a c b <-<-,则a b b c-<-当01b <<时,可得23155b b⎛⎫⎛⎫+> ⎪ ⎪⎝⎭⎝⎭,235b b b ∴+>,两边同取以5为底的对数得()55log 2og 53l b b b b a =+>=,对235b b b +>通过移项得523b b b -<,两边同取以3为底的对数得()3log 52b bb c =-<,所以c b a <<,所以b a ->-,所以c b c a ->-,且0,0c b c a -<-<,故0b c a c <-<-,故此时,a c b c ->-,下面严格证明当01b <<时,0c b b a -<-<,当01b <<时,根据函数23(),(1)155x xf x f ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭,且其在R 上单调递减,可知23155b b⎛⎫⎛⎫+> ⎪ ⎪⎝⎭⎝⎭,则51log 02355b b b a ⎛⎫⎪ ⎪-=< ⎪⎛⎫⎛⎫+ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,则1012355b b <<⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭,根据函数函数()5233xxh x ⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭在R 上单调递增,且()11h =,则当01b <<时,520133bb⎛⎫⎛⎫<-< ⎪ ⎪⎝⎭⎝⎭,下面证明:552,(1)233b b bb b bb -><+,要证:552233b b bb b b->+即证:()()152352bb bbb >+-,等价于证4610b b b +>,即证:23155bb⎛⎫⎛⎫+> ⎪ ⎪⎝⎭⎝⎭,此式已证明,对552233b b b b b b->+,左边同除分子分母同除5b ,右边分子分母同除3b得152332355b bb b⎛⎫⎛⎫>- ⎪ ⎪⎝⎭⎝⎭⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭,则35552521log log log 033332355b b b b b b c b b a ⎛⎫ ⎪⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫ ⎪-=-<-<-=<⎢⎥⎢⎥ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎛⎫⎛⎫⎢⎥⎢⎥⎣⎦⎣⎦+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故01b <<时,0c b b a -<-<,则a b b c-<-当1b =时,53log 51,log 31a c ====,则||||a c b c -=-,||||a b b c -=-,综上||||a c b c -≥-,a b b c -≤-,故选:B.【点睛】关键点睛:本题的关键在于构造函数23()55x xf x ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭,利用其单调性及(1)1f =,从而得到,,a b c 之间的大小关系,同时需要先求出b 的范围,然后再对b 进行分类讨论.二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知ABC 中,4AB =,3A π=.下列说法中正确的是()A.若ABC 是钝角三角形,则02AC <<B.若ABC是锐角三角形,则BC <<C.AC BC的最大值是3D.2AC BC +的最小值是2+【答案】BC 【解析】【分析】根据B 为钝角时即可判断A ,根据正弦定理结合三角函数的性质即可判断BCD.【详解】对于A,若B 为钝角,则AC AB >,故4AC >,A 错误,对于B,由正弦定理可得sin sin sin sin sin BC AB AB A BC A C C C=⇒==,由于ABC 是锐角三角形,所以π02C <<且2ππ032C <-<,故ππ62C <<,故1sin ,12C ⎛⎫∈ ⎪⎝⎭,进而(sin BC C=∈,故B 正确,对于C,sin sin AC B B BC A ==,由于2π03B <<,所以sin 1B =时,取最大值,故最大值为3AC BC ==,C 正确,对于D,由正弦定理可得4sin 4sin ,sin sin sin sin sin sin BC AB AC A BBC AC A C B C C C==⇒===)2π4sin cos 24sin 2sin 4322sin sin sin sin sin sin sin C C B C C AC BC C C C C C C C⎛⎫- ⎪++⎝⎭+=+=+=++当π2C =时,)cos 22222sin C AC BC C ++=+=+<+D 错误,故选:BC10.记数列{}n a 的前n 项和为n S ,且满足128a a +=,1211n n a n a n +-=+.则()A.5640a =B.{}n a 是递增数列C.1(1)24n n S n +≥-⋅+ D.1(2)24n n S n +≥-⋅+【答案】ABD 【解析】【分析】累乘法可计算出数列{}n a 的通项公式判断A ,利用数列单调性定义判断B ,举反例判断C ,利用错位相减法求和判断D.【详解】由1211n n a n a n +-=+可得:23213a a =,34224a a =,45235a a =,L ,32242n n a n a n ---=-,21231n n a n a n ---=-,122n n a n a n--=,则当2n ≥时,()332124345212222221234322345211n n n n n n a a a a a a n n n a a a a a a n n n n n --------⨯⨯⨯⨯⨯⨯=⨯⨯⨯⨯⨯⨯=--- ,化简得()22221n n a a n n -=-,又128a a +=,1220a a =,则120,8a a ==,所以()12(2)nn a n n n =-⋅≥,又1n =时也成立,所以()12nn a n n =-⋅,所以55452640a =⨯⨯=,故A 正确;因为()()()111212320n n n n n a a n n n n n n ++-=+⋅--⋅=+>,所以{}n a 是递增数列,故B 正确;令()()()123102226221212n n n S n n n n -=⨯+⨯+⨯++-⋅-⋅+-⋅⋅ ,则()()()2341202226221212nn n S n n n n +=⨯+⨯+⨯++-⋅-⋅+-⋅⋅ ,两式相减得()()23412222321212n n n S n n n +⎡⎤-=⨯+⨯+⨯++---⋅⋅⎣⎦ ,所以()()23412222321212n n n S n n n +⎡⎤=-⨯+⨯+⨯++-+-⋅⋅⎣⎦,记()2342223212nn T n =+⨯+⨯++- ,则()()34512222322212nn n T n n +=+⨯+⨯++-+- ,两式相减得()()()2123451112222222121222412n nn n n n T n n n ++++--=+++++--=--=--- ,所以()1224n n T n +=-+,所以()()()11212224123428n n n n S n n n n n +++⎡⎤=-⨯-++-⋅⋅=-+-⎣⎦,11110(11)244S a +==<-⋅+=,不满足1(1)24n n S n +≥-⋅+,故C 错误;因为()121(2)2446212n n n S n n n ++--⋅-=-+-,且()(){}()22212114162124621220n n n n n n n n +++⎡⎤⎡⎤+-++---+-=>⎣⎦⎣⎦,所以(){}2146212n nn +-+-是递增数列,所以121(2)24(12)240n n S n S +--⋅-≥--⋅-=,即1(2)24n n S n +≥-⋅+,故D 正确.故选:ABD11.设12,,,n P P P ⋯为椭圆22:143x y C +=上逆时针排列的n 个点,F 为椭圆C 的左焦点,且线段12,,,n FP FP FP …把周角分为n 等份.则()A.当4n =时,12FPP面积的取值范围是8181,4949⎡-+⎢⎥⎣⎦B.当4n =时,四边形1234PP P P 的面积最大值为6C.当6n =时,26P P 与1FP 交于点M ,则FM 的取值范围是3,15⎡⎤⎢⎥⎣⎦D.对n +∀∈N ,且2n ≥,都有1123ni i n FP ==∑【答案】ACD 【解析】【分析】以点F 为极点,Fx 为极轴建立极坐标系,应用焦半径公式21cos (1)e a e θρ+=-;选项A ,当4n =时,12FPP 面积为1212ρρ,代入焦半径公式即可求最值;选项B ,举出反例,当四边形1234PP P P 恰为椭圆的顶点构成的四边形时推翻结论;选项C ,因为2626FP P FP M FP M S S S =+ ,应用三角形的面积公式得到26111||FM ρρ=+,代入焦半径公式即可;选项D ,112(1)π2cos[]13n n i i ii nFP θ==--+=∑∑,求和即可.【详解】以点F 为极点,Fx 为极轴建立极坐标系,且线段12,,,n FP FP FP …把周角分为n 等份,设11(,)P ρθ,则22332π4π(,),(,)P P n n ρθρθ++,……,2(1)π(,n n n P nρθ-+,其中n +∈N ,且2n ≥,极坐标系下,若椭圆2222:1(0),x y C a b c a b+=>>=对于点(,)P ρθ,则其焦半径公式是:21cos (1)e a e θρ+=-,其中ce a=,所以211(1)||1cos a e FP e ρθ-==-,222(1)||2π1cos()a e FP e nρθ-==-+,……,2(1)||2(1)π1cos[]n n a e FP n e nρθ-==--+,对n +∀∈N ,且2n ≥,且椭圆方程为:22:143x y C +=,12,1,2a b c e ====,有21112[1(]32||12cos 1cos 2FP ρθθ⨯-===--,同理223||2π2cos()FP nρθ==-+,……,3||2(1)π2cos[]n n FP n nρθ==--+,对于选项A ,当4n =时,此时,椭圆22:143x y C +=的弦13PP 和弦24P P 过焦点F ,且互相垂直,113||2cos FP ρθ==-,2233||π2sin 2cos()2FP ρθθ===+-+,12FPP 面积为:1212ρρ=133922cos 2sin 84(sin cos )2sin cos θθθθθθ⨯⨯=-++--,1212ρρ=29(sin cos )4(sin cos )7θθθθ=-+-+,构造函数247y t t =++,且πsin cos 2π4t θθθθ=-=-≤<,得[t ∈,显然函数247y t t =++在区间[上单调递增,从而99y -≤≤+所以128118149249ρρ-+≤≤≤,故12FPP 面积的取值范围是8136281362,4949⎡-+⎢⎣⎦,选项A 正确;对于选项B ,4n =,当弦13PP 和弦24P P 所在直线中有一条斜率不存在且另一条斜率为零时,此时四边形1234PP P P 恰为椭圆的顶点构成的四边形,面积为:11222422a b ab ⋅⋅==⨯⨯=,由于6>,四边形1234PP P P 的面积最大值为6不正确,选项B 错误;对于选项C ,当6n =时,11(,)P ρθ,22π(,)3P ρθ+,635π(,3P ρθ+,且椭圆方程为:22:143x y C +=,此时113||2cos FP ρθ==-,223||π2cos()3FP ρθ==-+,663||5π2cos()3FP ρθ==-+,因为2626FP P FP M FP M S S S =+ ,其中26262πππ,,333P FP P FM MFP ∠=∠=∠=,则242612π1π1πsin||sin ||sin 232323FM FM ρρρρ=⋅⋅+⋅⋅,得2626()||FM ρρρρ=+⋅,得到26π5π2cos()2cos()11133||33FM θθρρ-+-+=+=+2ππcos()cos()144cos 33||3333FM θθθ+-+=+=-,其中02πθ≤<,可得151||3FM ≤≤,FM 的取值范围是3,15⎡⎤⎢⎥⎣⎦,选项C 正确;对于选项D ,有:1112(1)π2cos[]1212(1)πcos[]333nnn i i i i i n i n FP nθθ===--+-==-⋅+∑∑∑,若在单位圆上取等分圆周的逆时针排列的n 个点:设2(1)π2(1)π(cos[1,2,1)i i i T i n n nθθ--++=-…,,这n 个点定构成正n 边形,它的中心恰为坐标原点,原点的横坐标为零,可得:12(1)πcos()0ni i nnθ=-+=∑,即12(1)πcos()0ni i nθ=-+=∑,所以1123ni i n FP ==∑,故选项D 正确;故选:ACD.12.已知,a b ÎR ,O 为坐标原点,函数()222()f x a x b x a b =++--+.下列说法中正确的是()A.当1a b =+时,若()f x x ≥的解集是(],2-∞,则0b <B.当2a b =+时,若2()f x x =有5个不同实根,则3a >+C.当a b +=时,若a b >,曲线()y f x =与半径为4的圆O 有且仅有3个交点,则2b =-D.当4a b +=时,曲线()y f x =与直线26y x =+所围封闭图形的面积的最小值是33【答案】BD 【解析】【分析】去掉绝对值化简函数得()()()4,2(),224,2a b x a x f x a b x x a b x b x ⎧-+-≤-⎪=--<≤⎨⎪+->⎩,然后依不同条件,结合图象进行分析求解.【详解】A 选项,由题意,()()()4,2(),224,2a b x a x f x a b x x a b x b x ⎧-+-≤-⎪=--<≤⎨⎪+->⎩,当1a b =+时,()()()2141,2(),22214,2b x b x f x x x b x b x ⎧-+-+≤-⎪=-<≤⎨⎪+->⎩,若()f x x ≥的解集是(],2-∞,当22x -<≤时,()f x x =显然成立,当2x ≤-时,令()()()2141f x b x b x =-+-+≥,即()()()22442141b x b b x b -+≥+⇒-+≥+在2x ≤-上恒成立,则要()210b -+≤,解得1b ≥-,且2x >时,()214b x b x +-<恒成立,即24bx b <恒成立,故20b <,解得0b <,综上,10b -≤<,A 错误;B 选项,当2a b =+时,()()()214,2()2,222142,2a x a x f x x x a x a x ⎧---≤-⎪=-<≤⎨⎪--->⎩,因为2()f x x =有5个不同实根,当22x -<≤时,22x x =,得0x =或2x =,有两个根,当2x >时,()()22142a x a x ---=,即()()2220x x a ⎡⎤---=⎣⎦,得()22x a =-或2x =,当<2x -时,()2214a x a x ---=,方程最多两个根,要想保证有5个不同实根,故()222x a =->为其中一个根,故3a >,此时()222x a =->,满足要求,而()22140x a x a +-+=,方程需要在(),2∞--有两个不同的实数根,设()2()214g x x a x a =+-+,则()2(2)8Δ4116012g a a a -=⎧⎪=-->⎨⎪-<-⎩,解得3a >+,B 正确;C选项,当a b +=()(41,2()2,224,2b x f x b x x b x ++≤-⎪=---<≤⎨⎪->⎪⎩,若a b >,则0b <,且曲线()y f x =与半径为4的圆O 有且仅有3个交点,如下图,可能是()4,2y b x =->与圆相切,则4d ==,得2b =-或2b =(舍),也可能,点()2,(2)f 在圆上,如下图,则(222222234b +--=,解得3b =或0b =(舍)所以C 错误;D 选项,当4a b +=时,()()44,2()22,22444,2x a x f x a x x x a x --≤-⎧⎪=--<≤⎨⎪-->⎩,且(2)84,(2)48f a f a -=-=-,当2x =-时,2262y =-⨯+=,当2x =时,22610y =⨯+=,当()()22210f f ⎧-≥⎪⎨≤⎪⎩,即32a ≤时,画出两函数图象如下:曲线()y f x =与直线26y x =+所围封闭图形的面积三角形ACD 的面积,令()2226a x x -=+,解得33x a =-,故33C x a =-令()44426x a x --=+,解得112x a =-,故112A x a =-,则()()924314112533a a AC a a a--=+--=--,点()2,48D a -到直线26y x =+的距离为4864145a h ---==+故()()()()292492411522335ACDa a a a S AC h a a ----=⋅==-- ,令()()()29243a a u a a--=-,32a ≤,则()()()()()()()()22249249239243a a a a a a u a a ⎡⎤-----⋅-+--⎣⎦-'=()()22392649203a a a a ⎡⎤-+--⎣⎦=<-,故()()()29243a a u a a--=-在32a ≤上单调递减,故最小值为()2393432603232u ⎛⎫-- ⎪⎛⎫⎝⎭==⎪⎝⎭-,当48226a -≥⨯+,即92a ≥时,此时245BD k a =-≥,42DE k =>,如图,曲线()y f x =与直线26y x =+所围封闭图形的面积三角形ABC的面积,令4426x a x --=+,解得233a x +=-,233C a x +=-,令()2226a x x -=+,解得33x a =-,故33A x a =-,因为92a ≥,所以22323339a a a AC a +-=+=-,故点()2,84B a --到直线26y x =+的距离d ==故此时曲线()y f x =与直线26y x =+所围封闭图形的面积为232123412923939a a a a a AC d a a --+⋅==--,令()32412939a a a w a a -+=-,则()()()()()()232322212249393412941293939a a a a a aa a aw a a a -+-'--+-+==--()322241442168139a a a a -+-=-,令()322414421681q a a a a =-+-,则()()227228821672430q a a a a a =-=-+'+>在92a ≥上恒成立,故()322414421681q a a a a =-+-在92a ≥单调递增,又9729819241442168121872916972811602842q ⎛⎫=⨯-⨯+⨯-=-+-=⎪⎝⎭,故()0w a '>在92a ≥上恒成立,故()32412939a a aw a a -+=-在92a ≥上单调递增,故最小值为729819729814129243984222362792922w ⨯-⨯+⨯-+⎛⎫=== ⎪⎝⎭-,当4810a -<且842a -<,即3922a <<时,此时245BD k a =-<,42DE k =>,当342a <≤时,()(]221,4a -∈-,如图,曲线()y f x =与直线26y x =+所围封闭图形的面积四边形BCED的面积,令4426x a x --=+,解得233a x +=-,233C a x +=-,故4612426633C C a a y x +-=+=-=,即23124,33a a C +-⎛⎫- ⎪⎝⎭,令()44426x a x --=+,解得112x a =-,故112E x a =-,262246284E E y x a a =+=-+=-,故()112,284E a a --,故2336411233a aCE a +-=-+=,设直线BC 与直线DE 相交于点H ,令()44444x a x a --=--,解得2x a =-,此时()444248y x a a a =--=---=-,故()2,8H a --,点H 到直线26y x =+的距离为1d ==,故()211821364233ECHa a S CE d --=⋅== ,其中()2,84B a --,()2,48D a -,故BD ===,点H 到直线BD 的距离为2d =,故()21442BDHS BD d a a =⋅=- ,则四边形BCED 的面积为()()2182443ECHBDH a SS a a --=-- ,当342a <≤时,()()22221821616154440108333334ECH BDH a a S S a a a a -⎛⎫-=+-=-+=-+ ⎪⎝⎭,当154a =时,面积取得最小值,最小值为33,当942a <<时,()()224,5a -∈,画出图象如下:四边形BCED 的面积为()()22221821616154440108333334ECH BDH a a S S a a a a -⎛⎫+=+-=-+=-+ ⎪⎝⎭,当942a <<时,21615333334a ⎛⎫-+> ⎪⎝⎭,综上,当4a b +=时,曲线()y f x =与直线26y x =+所围封闭图形的面积的最小值是33,D 正确.故选:BD【点睛】方法点睛:函数零点或方程根的问题:将函数零点问题或方程解的问题转化为两函数的图象交点问题,将代数问题几何化,借助图象分析,大大简化了思维难度,首先要熟悉常见的函数图象,包括指数函数,对数函数,幂函数,三角函数等,还要熟练掌握函数图象的变换,包括平移,伸缩,对称和翻折等,涉及零点之和问题,通常考虑图象的对称性进行解决.三、填空题:本题共4小题,每小题5分,共20分.13.26(1)x x ++的展开式中6x 的系数是________.【答案】141【解析】【分析】26(1)x x ++表示6个因式2(1)x x ++连乘的积,要得到含6x 的项,对各因式中项的选择分类讨论,结合组合数公式求解.【详解】26(1)x x ++表示6个因式2(1)x x ++连乘的积,要想得到含6x 的项,有以下4种情况:在这6个因式中,有3个因式选2x ,其余因式均选1;在这6个因式中,有2个因式选2x ,2个因式选x ,2个因式选1;在这6个因式中,有1个因式选2x ,4个因式选x ,1个因式选1;在这6个因式中,全选x .故展开式中6x 的系数为322146664656C C C C C C 141+++=.故答案为:14114.已知n 个人独立解决某问题的概率均为14,且互不影响,现将这n 个人分在一组,若解决这个问题概率超过910,则n 的最小值是_____【答案】9【解析】【分析】根据给定条件,利用相互独立事件及对立事件的概率公式求解即得.【详解】依题意,n 个人都没有解决问题的概率为1(14n -,因此这个小组能解决问题的概率为31(4n-,于是391(410n ->,整理得4()103n >,函数4()(,N 3n f n n *=∈是递增的,而88465536(8)1036561f ==<,994262144(9)10319683f ==>,因此4(103n >成立时min 9n =,所以n 的最小值是9.故答案为:915.已知,,A B C 是边长为1的正六边形边上相异的三点,则AB BC ⋅的取值范围是________.【答案】94,16⎛⎤- ⎥⎝⎦【解析】【分析】一方面224BA BC BA BC ⋅≤⋅≤⨯= ,而,,A B C 不重合,所以4BA BC ⋅<;另一方面,设AC中点为M ,那么224AC BA BC BM⋅=-,设A 在六边形的端点上,同理妨设C 在六边形的端点上.分四种情况即可得916BA BC ⋅≥- ,剩下的只需证明何时取等并且BA BC ⋅ 可以遍历9,416⎡⎫-⎪⎢⎣⎭中的每一个数.【详解】首先,224BA BC BA BC ⋅≤⋅≤⨯=,这里2是最长的那条对角线的长度,等号取到当且仅当,BA BC同向,且||||2BA BC ==,而这意味着,A C 重合,矛盾.所以4BA BC ⋅<.另一方面,我们先舍弃,,A B C 互不重合的条件,然后证明916BA BC ⋅≥- :设AC 中点为M ,那么224AC BA BC BM ⋅=- ,然后,设A 所在的边的端点为12,A A ,则()12min ,BA BC BA BC BA BC ⋅≥⋅⋅,(这是因为,记12(1)OA t OA tOA =-+,其中O 为原点,确定的()BA BC f t ⋅= ,那么()f t 是一次函数,从而t 属于[]0,1时,有()()()()min 0,1f t f f ≥)所以我们可以不妨设A 在六边形的端点上.同理,我们可以不妨设C 在六边形的端点上.此时分以下四种情况:(1),A C 重合,此时220004AC BA BC BM⋅=-≥-= ,(2),A C 为相邻顶点,此时22110444ACBA BC BM ⋅=-≥-=- ,(3),A C 相隔一个顶点,此时22339416416AC BA BC BM ⋅=-≥-=- ,(4),A C 为对径点,此时22311444AC BA BC BM ⋅=-≥-=- ,综上,916BA BC ⋅≥- ,所以,即使去掉,,A B C 互不重合的条件,我们仍有916BA BC ⋅≥- ,这就说明,,,A B C 互不重合时,有9416BA BC -≤⋅<,然后,取等条件如图所示:具体说明如下:构造一个[]0,1到六边形的函数(),(),()A t B t C t (即从数映射到点),使得111222((0),(0),(0))(,,),((1),(1),(1))(,,)A B C A B C A B C A B C ==,并且只沿着最近的轨道,这样在01t ≤<的情况下,()(),(),A t B t C t 互不重合同时设()()()()()g t B t A t B t C t =⋅,那么9(0),(1)416g g =-=,而()g t 连续,所以在01t ≤<的情况下,()g t 必定取遍9,416⎡⎫-⎪⎢⎣⎭,这就意味着,BA BC ⋅ 的取值范围就是9,416⎡⎫-⎪⎢⎣⎭,所以AB BC ⋅ 的取值范围是94,16⎛⎤- ⎥⎝⎦.故答案为:94,16⎛⎤- ⎥⎝⎦.【点睛】关键点点睛:关键是先舍弃,,A B C 互不重合的条件,然后分类讨论说明916BA BC ⋅≥- ,由此即可顺利得解.16.已知三棱锥-P ABC 中,232PA BC ==,45APC ∠= ,PA PB ⊥,二面角A PC B --的余弦值是33-.则当三棱锥-P ABC 的体积最大时,其外接球的表面积是________.【答案】36π【解析】【分析】先根据()()MA NB MP PA NP PB⋅=+⋅+展开计算求出MA NB ⋅,再代入cos ,3MA NB MA NB MA NB⋅==-⋅可得60NPB ∠= ,进而分析出要要体积最大,则PBC S 最大,利用基本不等式得到PB PC =,过O 作面β的垂线,则三棱锥-P ABC 的外接球球心必在该垂线上,根据PO AO =列方程求出半径即可.【详解】如图:平面APC 即平面α,平面BPC 即平面β,即二面角PC αβ--的余弦值为3-,过A 作AM PC ⊥,垂足为M ,过B 作BN PC ⊥,垂足为N ,则cos ,3MA NB =-,又PA =,45APC ∠= ,则3AM MP ==,设NPB θ∠=则()()MA NB MP PA NP PB MP NP MP PB PA NP PA PB⋅=+⋅+=⋅+⋅+⋅+⋅33cos 2NP PB θ=--⨯3333NP NP NP NP =--=- ,所以3cos ,33NP MA NB MA NB MA NB NB -⋅===-⋅,即3NP NB= ,所以tan NBNPθ== ,则60NPB θ∠== ,过A 作面β的垂线,垂足为E ,连接EM ,则sin ,3AE AM MA NB ===,即三棱锥-P ABC 当以A,要体积最大,则PBC S 最大,13·sin 60·24PBC S PB PC PB PC =︒= ,要PBC S 最大,则需·PB PC 最大,在PBC 中,222222cos 602BC PB PC PB PC PB PC PB PC PB PC PB PC PB PC=+-⋅=+-⋅≥⋅-⋅=⋅ 所以29PB PC BC ⋅≤=,当且仅当PB PC =时等号成立,此时PBC 为等边三角形,即3PB PC BC ===,又3MP =,所以,M C 重合,图形如下:设PBC 的中心为O ',连接,EO CO ''在EO C ' 中,333EC AC ==,323323CO '=⨯⨯=,120ECO '∠= ,所以3EO '=,过O '作面β的垂线,则三棱锥-P ABC 的外接球球心必在该垂线上,设为点O ,设球的半径为r ,则PO AO =,所以22226r PO r EO ''-+-=即22396r r -+-=,解得3r =,所以外接球的表面积是24π6π3r =.故答案为:36π【点睛】关键点点睛:本题的关键是利用cos ,MA NB MA NB MA NB⋅=⋅求出NPB ∠的大小,然后设出球心,列方程求出半径.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.甲、乙两人进行羽毛球比赛,比赛采取七局四胜制.已知甲每局比赛获胜的概率为23,输掉的概率为13,每局的比赛结果互不影响.(1)求甲最终获胜的概率;(2)记总共的比赛局数为X,求X的分布列与数学期望.【答案】(1)1808 2187(2)分布列见解析;期望为4012 729【解析】【分析】(1)借助相互独立事件的概率乘法公式计算即可得;(2)求出X的所有可能取值及其对应概率即可得分布列,借助期望公式计算即可得其数学期望.【小问1详解】因为甲四局比赛后获胜的概率为4216 381⎛⎫=⎪⎝⎭,甲五局比赛后获胜的概率为4342164C 33243⎛⎫⨯⨯=⎪⎝⎭,甲六局比赛后获胜的概率为4235 21160C 33729⎛⎫⎛⎫⨯⨯=⎪ ⎪⎝⎭⎝⎭,甲七局比赛后获胜的概率为433621320C 332187⎛⎫⎛⎫⨯⨯=⎪ ⎪⎝⎭⎝⎭,所以甲最终获胜的概率166416032018088124372921872187 P=+++=;【小问2详解】X的所有可能取值是4,5,6,7,因此有442117 (4)3381P X⎛⎫⎛⎫==+=⎪ ⎪⎝⎭⎝⎭,(5) P X==443344 21128C C 333327⎛⎫⎛⎫⨯⨯+⨯⨯=⎪ ⎪⎝⎭⎝⎭,(6) P X==42423355 2112200C C 3333729⎛⎫⎛⎫⎛⎫⎛⎫⨯⨯+⨯⨯=⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,(7)P X ==434333662112160C C 3333729⎛⎫⎛⎫⎛⎫⎛⎫⨯⨯+⨯⨯= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,则随机变量X 的分布列为:X4567P1781827200729160729于是()178200160401245678127729729729E X =⨯+⨯+⨯+⨯=,所以随机变量X 的数学期望是4012729.18.已知{}n p 是所有素数从小到大排列而成的数列,满足12p =,23p =.(1)比较50p 和150的大小,并说明理由;(2)证明:2221211112n p p p +++< .【答案】(1)50150p >,理由见解析;(2)证明见解析.【解析】【分析】(1)根据给定条件,探讨不超过150的正整数中含有因数2或3或5的合数个数即可推理得证.(2)由已知可得21n p n >-,利用放缩法,结合裂项求和法求和即得.【小问1详解】50150p >,理由如下:对于1150,k k *≤≤∈N ,满足是2的倍数,或是3的倍数,或是5的倍数的整数k 的个数是150150150150150150150[][][][][[[235232535235k N =++---+⨯⨯⨯⨯⨯110=,其中[]x 表示不超过x 的最大整数,则1到150中合数的个数大于1103107-=,因此对于[]1,150m p ∈,有15010743m <-=,又{}n p 是单调递增数列,所以5043150p p >>.【小问2详解】由21n p n >-,得22(21)4(1)n p n n n >->-,则当1n =时,2111142p =<,不等式成立,当2n ≥时,211111()4(1)41n p n n n n<=---,因此2111111111111(1)442231242ni i p n n n =<+-+-++-=-<-∑成立,所以原不等式对n *∀∈N 恒成立.19.已知ABC 是斜三角形.(1)证明:222cos cos cos 2cos cos cos 1A B C A B C +++=;(2)若cos 2cos 22cos 22A B C ++=-,求tan C 的取值范围.【答案】(1)证明见解析(2))+∞【解析】【分析】(1)根据积化和差与和差化积公式,二倍角的余弦公式化简即可得证;(2)根据(1)及两角和的余弦公式,同角三角函数的基本关系,均值不等式求解.【小问1详解】因为2cos cos cos 2cos cos cos()πA B C A B A B =--[cos()cos()]cos()A B A B A B =-++-+()()()2cos cos cos C A B A B =----+()21cos cos 2cos 22C A B =--+22211cos cos cos 22C A B ⎛⎫=---+-⎪⎝⎭()2221cos cos cos A B C =-++,所以222cos cos cos 2cos cos cos 1A B C A B C +++=,原式得证.【小问2详解】由cos 2cos 22cos 22A B C ++=-,由二倍角的余弦公式可整理得:22222(cos cos cos )3(2cos 1)2A B C C ++-+-=-.结合(1)得212cos cos cos 1cos A B C C -=-.由题设知cos cos cos 0A B C ≠,则2cos cos cos cos()sin sin cos cos A B C A B A B A B ==-+=-.所以3cos cos sin sin A B A B =,故tan tan 3A B =,且π,0,2A B ⎛⎫∈ ⎪⎝⎭.所以tan tan tan tan tan tan()tan tan 12A B A BC A B A B ++=-+==-≥=(当且仅当tan tan A B ==时取等).所以tan C 的取值范围是)+∞.20.如图,圆锥SO 的底面半径为2,高SO =,,A B C 为底面圆周上三点,且2AC =.P 是线段SB 的中点,满足OP AC ⊥.(1)求三棱锥S ABC -的体积;(2)记二面角S AC P --的大小为α,二面角S PC A --的大小为β.求sin sin αβ+的值.【答案】(1)4363+(2【解析】【分析】(1)根据题意判断出OB AC ⊥,进而求出ABC 的面积,从而得出三棱锥S ABC -的体积;(2)建立空间直角坐标系,依次求解出二面角S AC P --、二面角S PC A --即可.【小问1详解】解:因为SO 为高,所以SO ⊥平面ABC ,所以SO AC ⊥,因为OP AC ⊥,且OP SO O = ,OP SO ⊂,平面SOB ,所以AC ⊥平面SOB ,OB ⊂面SOB ,所以AC OB ⊥,延长OB 交AC 于H ,则BH 垂直平分AC ,故OH ==2HB =+所以(12222ABC S =⨯⨯+=+所以(16233S ABC V -+=⨯+⨯=;【小问2详解】以O 为原点,OH 、AC 、OS为x 轴、y 轴、z 轴建立空间直角坐标系则(0,0,S,)1,0A-,)C,()2,0,0B -,(P -,则()0,2,0AC =,1,SA =--,(1AP =--,(1,0,SP =-,SC =-,设平面SAC 的法向量为()1111,,n x y z = ,则110n AC n SA ⎧⋅=⎪⎨⋅=⎪⎩,即1111200y y =⎧⎪--=,令11z =,故()12,0,1n =,设平面PAC 的法向量为()2222,,n x y z = ,则2200n AC n AP ⎧⋅=⎪⎨⋅=⎪⎩,即(22222010y x y =⎧⎪⎨-++=⎪⎩,令21z =,故2n ⎛⎫=⎪⎪⎭,所以121212cos ,n nn n n n ⋅==⋅sin α=设平面SPC 的法向量为()3333,,n x y z = ,则3300n SP n SC ⎧⋅=⎪⎨⋅=⎪⎩,即333330x y ⎧--=⎪+-=,令31z =,故()3n =+,所以232323cos ,n nn n n n ⋅==⋅=,所以sin β===所以sin sin αβ+==.21.已知双曲线22122:1x y C a b-=上有一点()A ,1C 在点A 处的切线为0x =.(1)求双曲线1C 的标准方程;(2)设椭圆2222:1,24x y C m m+=≠±.过点A 作椭圆2C 的两条切线,AM AN ,切点为,M N 直线,AM AN分别交双曲线1C 于点,PQ .证明:直线PQ 过定点,并求出定点坐标.【答案】(1)2214x y -=(2)证明见解析,定点)【解析】【分析】(1)由()A 在双曲线上,得到22811a b-=,再由1C 在点A 处的切线为0x =,与双曲线方程联立,利用判别式为零求解;(2)不妨设,AM AN 的方程分别为(11y k x =-+与(21y k x =-+,与椭圆方程联立,由相切,利用判别式为零,得到12,k k是方程22410k m -+-=的两不等实根,利用韦达定理得到12k k +,取122k k ==,得直线:12PQ y x =-过点).再设过点)且不与x 轴重合的直线l 交1C 于点','P Q,其方程为x ty =+,与1C方程联立,再论证直线''AP AQ k k +=即可.【小问1详解】由()A 在双曲线上,得22811a b-=.联立22221,0,x y a b x ⎧-=⎪⎨⎪-=⎩得22222214210y y a b a a ⎛⎫-++-= ⎪⎝⎭.由相切知方程中422216221Δ410a a a b ⎛⎫⎛⎫=---= ⎪⎪⎝⎭⎝⎭.于是解得2241a b ⎧=⎨=⎩所以双曲线1C 的方程是2214xy -=.【小问2详解】容易知道直线,AM AN 的斜率存在,如图所示:不妨设,AM AN的方程分别为(11y k x =-+与(21y k x =-+.联立(22211,41,x y m y k x ⎧+=⎪⎨⎪=-+⎩得()()()2222211114814140m kx k x m++-+--=.由相切知()()()2222221111Δ64116410km km ⎡⎤=--+--=⎢⎥⎣⎦,整理得2211410k m -+-=.同理有2222410k m -+-=.又12k k ≠,故12,k k是方程22410k m -+-=的两不等实根.由韦达定理得12k k +.取122k k ==,得直线:12PQ y x =-过点).取122121,22k k -==,得直线PQ 与x 轴重合,则所求定点在x 轴上.所以定点)是必要的,下证其充分性:设过点)且不与x 轴重合的直线l 交1C 于点','P Q,其方程为x ty =+联立221,4x y x ty ⎧-=⎪⎨⎪=⎩得22(4)20t y -+-=,其中2t ≠±.由韦达定理得122122,42.4y y t y y t ⎧+=-⎪⎪-⎨⎪=-⎪-⎩而直线','AP AQ的斜率分别为'1k =='2k =.所以''12k k +=22224)4)242(4)t t t t t t -++-=-++-=于是充分性得证.综上,直线PQ过定点).22.已知函数()ln(1)f x a x a =--∈R.(1)当1a =时,讨论函数()f x 的单调性;。

2023-2024学年河北省部分学校高三下学期高考演练数学模拟试题(一模)含解析

2023-2024学年河北省部分学校高三下学期高考演练数学模拟试题(一模)含解析

2023-2024学年河北省部分学校高三下学期高考演练数学模拟试题(一模)一、单选题1.已知集合{}220|A x x x =-<,集合{}210|2x B x -=-≤,则A B ⋃=()A .{}|02x x <<B .{}2|0x x <≤C .{}|2x x <D .{}2|x x ≤【正确答案】D【分析】根据一元二次不等式以及指数不等式化简集合,A B ,由集合的并运算即可求解.【详解】由于22021022202x x x x ---≤⇒≤⇒-≤⇒≤所以{}|02A x x =<<,{}|2B x x =≤,所以{}|2A B x x ⋃=≤.故选:D.2.已知复数1z ,2z ,“21z z >”是“211z z >”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【正确答案】D【分析】根据充分条件和必要条件的定义求解.【详解】若21z z >,可得复数1z ,2z 都为实数,当120z z <<时,211z z <,充分性不成立;反之,若211z z >取复数11i z =+,222i z =+,满足2121z z =>,但此时复数1z ,2z 均为虚数,不能比较大小,必要性不成立,所以“21z z >”是“211z z >”的既不充分也不必要条件;故选:D.3.若函数923log ,14()1,123x x f x x x x ⎧->⎪⎪=⎨⎪≤⎪++⎩,则523f f ⎡⎤=⎪⎢⎥⎢⎣⎛ ⎝⎦⎭⎥⎫()A .517B .175C .417D .174【正确答案】C【分析】根据自变量的取值,即可代入到分段函数中,计算即可.【详解】由于5231>,所以5522935313log 34442f ⎛⎫=-=-= ⎪⎝⎭,故5211431217134f f f ⎡⎤⎛⎫==⎢⎥ ⎪⎝⎭⎢⎥⎣⎦+⎪⎭+⎛⎫ ⎝=,故选C.4.2021年5月22日上午10点40分,祝融号火星车安全驶离着陆平台,到达火星表面,开始巡视探测.为了帮助同学们深入了解祝融号的相关知识,某学校进行了一次航天知识讲座,讲座结束之后,学校进行了一次相关知识测试(满分100分),学生得分都在[]50,100内,其频率分布直方图如下,若各组分数用该组的中间值代替,估计这些学生得分的平均数为()A .70.2B .72.6C .75.4D .82.2【正确答案】C【分析】根据题意,由频率之和为1,可得m 的值,然后结合平均数的计算公式,代入计算,即可得到结果.【详解】由条件可得()0.0040.0540.0120.010101m ++++⨯=,则0.020m =,故得分的平均数为.()0.004550.020650.054750.012850.010951075.4⨯+⨯+⨯+⨯+⨯⨯=故选:C5.中国国家大剧院的外观被设计成了半椭球面的形状.如图,若以椭球的中心为原点建立空间直角坐标系,半椭球面的方程为2222221x y z a b c++=(0,z ≥,,,0a b c >,且a ,b ,c 不全相等).若该建筑的室内地面是面积为2(0)m m π>的圆,给出下列结论:①a b =;②c m =;③2ac m =;④若ac m >,则1c >,其中正确命题的个数为()A .1B .2C .3D .4【正确答案】B【分析】根据已知得a b m ==,结合题设判断各项正误即可.【详解】在2222221x y z a b c ++=中,令0z =可得该建筑室内地面对应的曲线方程为22221x y a b+=,由室内地面是面积为2πm (0)m >的圆,故a b =,①对;且22ππa m =,则a b m ==,又,,a b c 不全相等,故c m ≠,②错;若2ac m =,则2mc m =,可得c m =,与,,a b c 不全相等矛盾,③错;若ac m >,则0mc m >>,故1c >,④对.故选:B.6.已知α是第三象限角,3cos 2sin 2αα+=,则tan α=()A .24B 33C 3D .22【正确答案】A【分析】根据α是第三象限角,3cos 2sin 2αα+=,利用二倍角公式整理得26sin sin 10αα--=,求得sin α,再利用基本关系求解.【详解】∵α是第三象限角,3cos 2sin 2αα+=,∴()2312sin sin 2αα-+=,∴26sin sin 10αα--=,解得1sin 3α=-或1sin 2α=(舍去),∴22cos 1sin 3αα=--=-,∴2tan 4α=,故选:A.7.直线:40l ax by +-=与圆22:4O x y +=相切,则22(3)(4)a b -+-的最大值为()A .16B .25C .49D .81【正确答案】C【分析】利用圆与直线的位置关系得出,a b 的方程,根据方程分析利用22(3)(4)a b -+-表示的几何意义求解即可.【详解】由直线l 与圆O 相切可得:圆心()0,0O 到直线l 的距离等于圆的半径,2=,故224a b +=,即点(,)a b 在圆O 上,22(3)(4)a b -+-的几何意义为圆上的点(,)a b 与点(3,4)之间距离的平方,由224a b +=圆心为()0,0,因为22344+>,所以点(3,4)在圆224a b +=外,所以点(,)a b 到点(3,4)的距离的最大值为圆心到(3,4)的距离与圆半径之和,即27d r +=,所以22(3)(4)a b -+-的最大值为2749=.故选:C.8.为了提高同学们对数学的学习兴趣,某高中数学老师把《周髀算经》、《九章算术》、《孙子算经》、《海岛算经》这4本数学著作推荐给学生进行课外阅读,若该班A ,B ,C 三名同学有2名同学阅读其中的2本,另外一名同学阅读其中的1本,若4本图书都有同学阅读(不同的同学可以阅读相同的图书),则这三名同学选取图书的不同情况有()A .144种B .162种C .216种D .288种【正确答案】A【分析】利用排列组合公式进行合理分类讨论即可.【详解】分两种情况:第一种情况,先从4本里选其中2本,作为一组,有24C 种,第二组从第一组所选书籍中选1本,再从另外2本中选取1本作为一组,剩余一本作为一组,再分给3名同学,共有211342231C C C A 2方法;第二种情况:从4本里任选2本作为一组,剩余的两本作为一组,有224222C C A 种分法,分给3名同学中的2名同学,有23A 种分法,剩余1名同学,从这4本中任选一本阅读,有14C 种分法,共有2221423422C C A C A ⋅种方法.故这三名同学选取图书的不同情况有222113214242233422C C 1C C C A A C 1442A +⋅=种.故选:A.二、多选题9.已知函数()sin cos (0)f x x x ωωω=+>的最小正周期为π2,若12()()2f x f x =-,则()A .()f x 关于直线1x x =对称B .()f x 关于点2(,0)x 对称C .12x x +的最大值为π2D .12x x +的最小值为π8【正确答案】AD【分析】根据辅助角公式化简()f x ,利用周期的公式求解4ω=,进而根据12()()2f x f x =-可判断12,x x x x ==为()f x 的对称轴,即可判断AB,利用对称中心可求解DC.【详解】由π()sin cos cos )4f x x x x ω=+=+的最小正周期为π2可得2ππ2ω=,即4ω=,故π())4f x x =+,由12()()2f x f x =-可得1()f x ,2()f x 分别为()f x 的最大值和最小值,故()f x 关于直线1x x =对称,不关于点2(,0)x 对称,故A 正确,B 错误;由()π4πZ 4x k k +=∈可得()1πZ 416x kx k =-∈,故()f x 的对称中心()1ππ,0Z 416k k ⎛⎫-∈ ⎪⎝⎭,则121π1π2ππ,Z 41628x x n n n +=-=-∈,当0n =时,12x x +取得最小值π8,没有最大值,故C 错误,D 正确.故选:AD10.已知双曲线2222:1(0,0)x y C a b a b-=>>的虚轴长为2,过C 上点P 的直线l 与C 的渐近线分别交于点A ,B ,且点P 为AB 的中点,则下列正确的是()A .若(,)P m n 且直线l 的斜率存在,直线l 的方程为21mynx a -=B .若(2,1)P ,直线l 的斜率为1C.若离心率e =2OAB S=△D .若直线l 的斜率不存在,2AB =【正确答案】BCD【分析】根据点差法可得直线的斜率,进而可判断A ,利用A 选项的求解可判断B ,利用离心率可得渐近线方程,进而联立直线AB 与渐近线方程得交点坐标,利用三角形面积公式以及双曲线方程可判断C ,根据顶点和渐近线方程可求解D.【详解】由题意1b =,双曲线222:1x C y a-=.对于A ,若(,)P m n ,则2221m n a-=,即2222m a n a -=.设11(,)A x y ,22(,)B x y ,则221120x y a -=,222220x y a -=,利用点差法可得121222212122()2ABy y x x m m k x x a y y a n a n-+===-+=,所以直线l 的方程为y n -=2()mx m a n-,即2222a ny a n mx m -=-,所以22222mx a ny m a n a -=-=,即21mxny a -=,故A 错误;对于B ,若(2,1)P ,可得222211a -=,则a =l 的斜率为22121m a n ==⨯,即B 正确;对于C,若离心率222,2c e c a b a==+,可得2a =.则双曲线22:14x C y -=,其渐近线方程为2xy =±,设11(,)2x A x ,22(,2xB x -,直线()()121112:22x x x AB y x x x x +=-+-,令121220,x xy x x x ==+,则121221122212221OAB x x x x x x S x x +=+=△,由A 知AB 方程为14mxny -=,联立方程142mxny x y ⎧-=⎪⎪⎨⎪=⎪⎩可得142x m n =-,同理可得242x m n =+,所以1211442222OAB S x x m n m n ==⨯-+△2288244m n ===-,故C 正确;对于D ,若直线l 的斜率不存在,则直线l 过双曲线的顶点,所以(,0)P a ±,双曲线的渐近线方程为1y x a=±,当x a =±时,代入渐近线方程易得A ,B 两点的纵坐标为1±,所以2AB =,故D 正确;故选:BCD.11.如图,在直四棱柱1111ABCD A B C D -中,底面ABCD 是菱形,点P ,Q ,M 分别为11A D ,11C D ,BC 的中点,下列结论正确的有()A .//AC 平面PQMB .该四棱柱有外接球,则四边形ABCD 为正方形C .BC 与平面PQM 不可能垂直D .BD QM⊥【正确答案】ABC【分析】根据线线平行即可判断A ,利用外接圆的对角互补,则可判断B ,利用反证法,结合线面垂直的性质定理可判断C,D.【详解】对A ,连接11AC ,由点P ,Q ,分别为11A D ,11C D 可得11//ACPQ ,11111////.AA BB CC AA BB CC == ,所以四边形11A ACC 为平行四边形,则11//AC AC ,故//AC PQ ,AC ⊄平面PQM ,PQ ⊂平面PQM ,则//AC 平面PQM ,即A 正确;对B ,若四棱柱有外接球,则四边形ABCD 有外接圆,则ABCD 对角互补,则ABCD 为正方形,即B 正确;对C ,若BC ⊥平面PQM ,PQ ⊂平面PQM ,则BC PQ ⊥,由//PQ AC 可得BC AC ⊥,与条件矛盾,故BC 与平面PQM 不可能垂直,即C 正确;对D ,取CD 的中点N ,连接MN ,QN ,则//MN BD ,1//QN CC ,1CC ⊥ 平面ABCD ,QN ∴⊥平面ABCD ,MN ⊂ 平面ABCD ,QN MN ∴⊥,90QNM ∴∠=︒,则90QMN ∠<︒,故BD 与QM 不垂直,即D 错误.故选:ABC.12.设()f x 是定义在R 上的偶函数,其图象关于直线2x =对称,当[0,2]x ∈时,2()f x x =,若方程()4log (5)(0,1)a f x x a a >=+≠在[]4,6-上恰有5个实数解,则()A .()f x 的周期为4B .()f x 在[]8,10上单调递减C .()f x 的值域为[]0,2D .711a <<【正确答案】AD【分析】由对称性与奇偶性得到函数的周期性,即可判断A 、B ,结合所给函数解析式求出函数的值域,即可判断C ,画出函数()y f x =与4log (5)(1)a y x a =+>的图象,数形结合,即可判断D.【详解】由()f x 的图象关于2x =对称可得(4)()f x f x +=-,再由()f x 为偶函数可得()()f x f x -=,故()(4)f x f x =+,即()f x 的周期为4,即A 正确;当[0,2]x ∈时,由2()f x x =,可得()f x 在[0,2]上单调递增,故()f x 在[]8,10上单调递增,即B 错误;又(0)0f =,(2)4f =,故()f x 的值域为[]0,4,即C 错误;在同一坐标系下画出函数()y f x =与4log (5)(1)a y x a =+>的图象如图所示.由图可知,要使()y f x =与()4log (5)b g x x =+在[]4,6-上恰有5个不同交点,只需()()24641g g a ⎧<⎪>⎨⎪>⎩,即log 71log 1111a a a <⎧⎪<⎨⎪>⎩,解得711a <<,即a 的取值范围为()7,11,故D 正确.故选:AD三、填空题13.已知O 为ABC 的外心,若2OA =,且75BAC ∠=︒,则OB OC ⋅=__________.【正确答案】23-【分析】由平面向量数量积公式进行求解.【详解】由圆的性质可得2150BOC BAC ∠=∠=︒,2OA OB OC ===,故cos 22cos15023OB OC OB OC BAC ⋅=⋅∠=⨯⨯︒= 故23-14.若函数4()ln 42mxf x x-=-的图象关于原点对称,则实数m 的值为__________.【正确答案】2-【分析】根据奇函数的性质根据()()f x f x -=-,即可求解.【详解】依题意,()()f x f x -=-,即44ln ln 4242mx mxx x-+=-+,所以442424mx x x mx +-=+-,解得2m =±,当2m =时,42()ln42xf x x-=-,定义域{}2x x ≠不关于原点对称,故舍去,当2m =-时,42()ln 42xf x x+=-,定义域为{}22x x -<<,符合要求,故2m =-,故2-15.函数33()sincos sin cos 2222x x x xf x =-的最小值为__________.【正确答案】14-/0.25-【分析】根据二倍角公式化简()1sin 24f x x =-,即可求解最值.【详解】因为33()sin cos sin cos 2222x x x x f x =-22sin cos sin cos 2222x x x x ⎛⎫=-= ⎪⎝⎭1sin cos 2x x -1sin 24x =-,所以当π22π,Z 2x k k =+∈时,sin 21x =,此时()f x 的最小值为14-.故14-四、双空题16.如图,在三棱锥A BCD -中,AB CD ⊥,AD BC ⊥,且3BD AC =,点E ,F 分别为AD ,BC 的中点,则异面直线AC 与BD 所成角的大小为__________,AC 与EF 所成角的余弦值为__________.【正确答案】90︒10【分析】根据异面直线夹角的定义作辅助线,构造三角形.【详解】取AB 的中点G ,连接EG ,FG ,则//FG AC ,//EG BD ,故EFG ∠或其补角为异面直线AC 与EF 所成的角,过A 作AO ⊥平面BCD 于点O ,连接BO ,CO ,DO ,则AO CD ⊥,又AB CD ⊥,且AB AO A = ,故CD ⊥平面AOB ,故BO CD ⊥,同理可得DO BC ⊥,即O 为BCD △的垂心,故BD CO ⊥,又AO BD ⊥,AO CO O = ,AO ⊂平面AOC ,CO ⊂平面AOC ,故BD ⊥平面AOC ,故AC BD ⊥,即AC 与BD 所成角为90︒;所以90EGF ∠=︒,由3BD AC =可得3EG FG =,故cos FG EFG EF ∠==即异面直线AC 与EF故①90︒,②10.五、解答题17.已知n S 是公差不为0的等差数列{}n a 的前n 项和,2a 是1a ,4a 的等比中项,1278S =.(1)求数列{}n a 的通项公式;(2)已知1213n a n n b a --=⋅,求数列{}n b 的前n 项和n T .【正确答案】(1)n a n=(2)(1)31nn T n =-⨯+【分析】(1)根据题意列式求解1,a d ,即可得结果;(2)由(1)可得:1(21)3n n b n -=-⨯,利用错位相减法求和.【详解】(1)设数列{}n a 的公差为d ,因为2a 是1a ,4a 的等比中项,则2214a a a =,即2111()(3)a d a a d +=+,且0d ≠,整理得1d a =①,又因为121121211782dS a =+⨯⨯=,整理得163339a d +=②由①②解得,11a =,1d =,所以()11n a n n =+-=.(2)由(1)知,()11213213n n n n b a n ---=⨯=-⨯,则021133353(21)3n n T n -=⨯+⨯+⨯+⋅⋅⋅+-⨯,可得12313133353(23)3(21)3n nn T n n -=⨯+⨯+⨯+⋅⋅⋅+-⨯+-⨯,两式相减得0123121323232323(21)3n nn T n --=⨯+⨯+⨯+⨯+⋅⋅⋅+⨯--⨯16(13)1(21)313n n n --=+--⨯-(22)32n n =-⨯-,所以(1)31nn T n =-⨯+.18.为了了解大家对养宠物的看法,某单位对本单位450名员工(其中女职工有150人)进行了调查,发现女职工中支持养宠物的职工占13,若从男职工与女职工中各随机选取一名,至少有1名职工支持养宠物的概率为12.(1)求该单位男职工支持养宠物的人数,并填写下列22⨯列联表;支持养宠物不支持养宠物合计男职工女职工合计450(2)依据小概率值0.05α=的独立性检验,能否认为该单位职工是否支持养宠物与性别有关?附:()()()()()22n ad bc a b c d a c b d χ-=++++,n a b c d =+++.α0.100.050.0100.001x α2.7063.8416.63510.828【正确答案】(1)表格见解析(2)不能认为该单位职工是否支持养宠物与性别有关【分析】(1)运用对立事件列方程求出男职工支持养宠物的概率p ,再求出男职工中支持养宠物的人数;(2)根据卡方公式求解.【详解】(1)从男职工中随机选取1人,设支持养宠物的概率为p ,则2人中至少有一名支持养宠物是都不支持养宠物的对立事件,∴111(1)(1)32p ---=,解得14p =,则男职工中支持养宠物的人数为1300745⨯=,22⨯列联表如下:支持养宠物不支持养宠物合计男职工75225300女职工50100150合计125325450(2)零假设为:0H :性别与态度无关联;由于22450(7510022550) 3.462 3.841125325300150χ<⨯-⨯=≈⨯⨯⨯,∴不能认为该单位职工是否支持养宠物与性别有关;综上,男职工中支持养宠物的人数为75;不能认为该单位职工是否支持养宠物与性别有关.19.在ABC 中,4AB =,AC =点D 为BC 的中点,连接AD 并延长到点E ,使3AE DE =.(1)若1DE =,求BAC ∠的余弦值;(2)若π4ABC ∠=,求线段BE 的长.【正确答案】(1)4-2【分析】(1)设BD DC x ==,由cos cos 0ADB ADC ∠+∠=结合余弦定理求解即可求出x =ABC 中,由余弦定理即可求出答案.(2)在ABC 中,由余弦定理求出BC =ABD △中,由余弦定理求出AD =,连接BE ,在ABE 中,由余弦定理即可求出线段BE 的长.【详解】(1)因为1DE =,3AE DE =,所以2AD =,因为πADB ADC ∠+∠=,所以cos cos 0ADB ADC ∠+∠=,设BD DC x ==,则222222022BD AD AB CD AD AC BD AD CD AD+-+-+=⋅⋅,即224164802222x x x x +-+-+=⋅⋅⋅⋅,解得x =2BC BD ==在ABC 中,由余弦定理知,222cos2AB AC BC BAC AB AC +-∠==-⋅(2)在ABC 中,由余弦定理知,2222cos AC AB BC AB BC ABC =+-⋅⋅∠,所以2816242BC BC =+-⋅⋅⋅,化简得280BC -+=,解得BC =因为D 是BC 的中点,所以12BD BC ==在ABD △中,由余弦定理知,2222cos AD AB BD AB BD ABC =+-⋅⋅∠16224102=+-⨯=,所以AD =,因为3AE DE =,所以32AE AD ==在ABD △中,由余弦定理知,222cos2AB AD BD BAE AB AD +-∠=⋅连接BE ,在ABE 中,由余弦定理知,2222cos BE AB AE AB AE BAE =+-⋅⋅∠=351624222⎛⎫+-⨯⨯= ⎪ ⎪⎝⎭,所以BE =20.如图,在三棱锥-P ABC 中,平面PAC ⊥平面ABC ,若PAC △为等边三角形,ABC 为等腰直角三角形,且AC BC =,点E 为AC 的中点,点D 在线段AB 上,且4AB AD =.(1)证明:AB ⊥平面PDE ;(2)求平面PDE 与平面PBC 所成锐二面角的余弦值.【正确答案】(1)证明见解析4【分析】(1)作出辅助线,得到DE AB ⊥,由三线合一得到PE AC ⊥,从而得到线面垂直,面面垂直,从而证明出结论;(2)建立空间直角坐标线,利用空间向量求解二面角的余弦值.【详解】(1)如图,取AB 的中点G ,由AC BC =可得CG AB ⊥,由4AB AD =可得D 为AG 的中点,由E 为AC 的中点可得DE 为ACG 的中位线,∴DE CG ∥,∴DE AB ⊥,∵E 为AC 的中点,PA PC =,∴PE AC ⊥,∵平面PAC ⊥平面ABC ,且平面PAC 平面ABC AC =,PE 在面PAC 内,∴PE ⊥平面ABC ,而AB ⊂平面ABC ,∴PE AB ⊥,又PE DE E = ,且PE DE ⊂,平面PDE ,∴AB ⊥平面PDE .(2)以C 为原点,CA 、CB 为x 、y 轴,过C 垂直于面ABC 的直线为z 轴,设4PA =.则(4,0,0)A ,(0,4,0)B ,(0,0,0)C,P ,则(2,0,PA =- ,()4,4,0AB =-,∴1(1,1,4PD PA AD PA AB =+=+=-,(2,4,PB =--,(2,0,PC =--,设平面PBC 的一个法向量为(,,)n x y z =,由24020n PB x y z n PC x ⎧⋅=-+-=⎪⎨⋅=--=⎪⎩,解得0y =,令x =1z =-,故1)n =-,由(1)可知(4,4,0)AB =-为平面PDE 的一个法向量,∴cos,4ABAB nA nBn=⋅=-⋅,又平面PDE与平面PBC21.已知抛物线2:2(0)C x py p=>的焦点为F,直线:(1)2(0)l y k x k=>--与C交于A,B 两点,当3k=时,28AF BF+=.(1)求抛物线C的方程;(2)若直线:(1)2m y k x=---与抛物线C交于M,N两点,证明:由直线AM,直线BN及y 轴围成的三角形为等腰三角形.【正确答案】(1)24x y=(2)证明见解析【分析】(1)根据直线抛物线方程的联立以及抛物线的定义即可求解;(2)根据直线与抛物线方程的联立以及坐标关系即可求解.【详解】(1)当3k=时,直线:3(1)235l y x x=--=-,与22x py=联立消去y,整理可得26100x px p-+=,由0∆>得236400p p->,即109p>.设11(,)A x y,22(,)B x y,可得126x x p+=,所以()12123101810y y x x p +=+-=-,由题意可得0,2p F ⎛⎫ ⎪⎝⎭,准线方程为2py =-,根据抛物线的定义可得12p AF y =+,22p BF y =+,所以121810191028AF BF y y p p p p +=++=-+=-=,解得2p =,满足0∆>,所以抛物线C 的方程为24x y =.(2)直线():12(0)l y k x k =-->与24x y =联立可得24480x kx k -++=,由0∆>得21616320k k -->,即2k >或1k <-(舍)设11(,)A x y ,22(,)B x y ,则124x x k +=;直线:(1)2m y k x =---与24x y =联立消去y ,整理可得24480x kx k +-+=,由0∆>得21616320k k +->,即1k >或2k <-(舍),故2k >,设33(,)M x y ,44(,)N x y ,则344x x k +=-;因为2231313131314()4AMy y x x x xk x x x x --+===--,同理424BN x x k +=,所以123404AMBN x x x xk k ++++==,所以由直线AM ,直线BN 及y 轴围成的三角形为等腰三角形.22.已知函数()()2ln 2R f x ax x x x a =--∈.(1)若4a =,求()f x '的极值;(2)若函数()2y f x x =+有两个零点1x ,2x ,且21x ex >,求证.12ln ln 3a x x +>【正确答案】(1)极大值为4ln 22-,无极小值(2)证明见解析【分析】(1)对()f x 求导,判断()f x '的单调性,即可求出()f x '的极值;(2)根据极值点的概念整理原不等式可得12211221ln ln ln ln x x x x x x x x +-=+-即112122111ln()ln 1x x xx x x x x +=-,构建新函数1()ln (e)1t t t t t ϕ+=>-,求导,利用导数证明()2t ϕ>即可.【详解】(1)2()ln 2f x ax x x x =--的定义域为(0,)+∞,当4a =时,()4ln 22f x x x '=-+,设()4ln 22g x x x =-+,则442()2xg x x x-'=-=,由()0g x =可得2x =,当02x <<时,()0g x '>,当2x >时,()0g x '<,∴()f x '在(0,2)上单调递增,在(2,)+∞上单调递减,∴()f x '的极大值为(2)4ln 22f '=-,无极小值;(2)由()20f x x +=可得2 ln 0ax x x -=,即1ln xa x=.设ln ()(0)xh x x x=>,则21ln ()x h x x -'=.由()0h x '=可得e x =,当(0,e)x ∈时,()0h x '>,函数()h x 单调递增,当(e,)x ∈+∞时,()0h x '<,函数()h x 单调递减.∴()h x 有极大值1(e)eh =,当01x <<时,()0h x <,当1x >时,()0h x >.要使()2y f x x =+有两个零点1x ,2x ,需有110ea <<,即e a >.∵1212ln ln 1x x a x x ==,由比例的性质可得12211221ln ln ln ln x x x x x x x x +-=+-,即()21211221ln ln x x x x x x x x =+-,故121212122211111ln()ln ln 1x x x x x x x x x x x x x x ++==--,设21x t x =,由21e 0x x >>可得t e >,设函数1()ln (e)1t t t t t ϕ+=>-,则212ln ()(1)t t t t t ϕ--'=-,设1()2ln s t t t t =--,则22211()110s t t t t ⎛⎫'=-+=-> ⎪⎝⎭,∴()s t 在(e,)+∞上单调递增,故1()(e)e 20es t s >=-->,故()0t ϕ'>,∴()t ϕ在(e,)+∞上单调递增,故e 12()(e)12e 1e 1t ϕϕ+>==+>--,∴212e x x >,故312e ax x >,故312ln()ln e ax x >,即12ln ln 3a x x +>.关键点点睛:本题(2)的关键点在于由题意得出1212ln ln 1x x a x x ==,建立关系112122111ln()ln 1x x xx x x x x +=-,再结合题意化简整理,再利用导数证明不等式.。

浙江省金华市十校2024届高三4月模拟考试数学试卷含答案

浙江省金华市十校2024届高三4月模拟考试数学试卷含答案

金华十校2024年4月高三模拟考试数学试题卷(答案在最后)注意事项:1.本试卷分选择题和非选择题两部分,共4页.考试时间120分钟.试卷总分为150分.2.答题前,考生务必将自己的姓名、准考证号填写在答题卡上.3.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上,写在本试卷上无效.选择题部分(共58分)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}0,1,2,3A =,{}220B x x x =-<,则A B = ()A.{}0B.{}1C.{}1,2 D.{}1,2,3【答案】B 【解析】【分析】根据一元二次不等式求解{}02B x x =<<,即可由交集求解.【详解】{}{}22002B x x x x x =-<=<<,故A B = {}1,故选:B2.i2i =+()A.12i 55+ B.12i 55-C.12i 33+ D.12i 33-【答案】A 【解析】【分析】根据复数的除法运算即可求解.【详解】()()()i 2i i 12i 22i 2i 5i -+==++-,故选:A3.设()0,πα∈,条件1:sin 2p α=,条件:cos 2q α=,则p 是q 的()A.充分不要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】B 【解析】【分析】根据必要不充分条件的定义,结合同角三角函数基本关系,即可求解.【详解】由于()0,πα∈,若1sin 2α=,则cos 2α==±,充分性不成立,若cos 2α=,则1sin 2α==,必要性成立,故p 是q 的必要不充分条件.故选:B .4.设直线2:20l x y a --=,圆()()22:121C x y -+-=,则l 与圆C ()A.相交B.相切C.相离D.以上都有可能【答案】C 【解析】【分析】求出圆心和半径,求出圆心到直线l 的距离,与半径比较即可判断求解.【详解】圆22:(1)(2)1C x y -+-=的圆心为(1,2)C ,半径1r =,则圆心C 到直线l 的距离221d r ===,故直线l 与圆C 相离.故选:C .5.等差数列{}n a 的首项为正数,公差为d ,n S 为{}n a 的前n 项和,若23a =,且2S ,13S S +,5S 成等比数列,则d =()A.1B.2C.92D.2或92【答案】B 【解析】【分析】由等比中项的性质得到()22513S S S S =+,结合求和公式得到13d a =-或12d a =,再由23a =,10a >计算可得.【详解】因为2S ,13S S +,5S 成等比数列,所以()22513S S S S =+,即()()()2111510243d a d a d a ++=+,即()()11320a d a d +-=,所以13d a =-或12d a =,又23a =,10a >,当13d a =-,则11133a d a a +=-=,解得132=-a (舍去),当12d a =,则11123a d a a +=+=,解得11a =,则2d =.故选:B6.在ABC △中,sin 7B =,120C =︒,2BC =,则ABC △的面积为()A.B.C.D.【答案】D 【解析】【分析】根据两角差的正弦公式求出sin A ,再由正弦定理求出b ,代入面积公式即可得解.【详解】由题意,()312121sin sin 60sin 60cos cos 60sin 22714A B B B =︒-=︒-︒=⨯⨯,由正弦定理,sin sin a bA B =,即2sin 74sin 2114a Bb A⨯===,所以11sin 24222ABC S ab C ==⨯⨯⨯=△故选:D7.金华市选拔2个管理型教师和4个教学型教师去新疆支教,把这6个老师分配到3个学校,要求每个学校安排2名教师,且管理型教师不安排在同一个学校,则不同的分配方案有()A.72种B.48种C.36种D.24种【答案】A 【解析】【分析】首先取2名教学型老师分配给一个学校,再把剩余老师分成22A 组,然后分给剩余2个不同学校有22A 种不同分法,再由分步乘法计数原理得解.【详解】选取一个学校安排2名教学型老师有1234C C 种不同的方法,剩余2名教学型老师与2名管理型教师,各取1名,分成两组共有22A 种,这2组分配到2个不同学校有22A 种不同分法,所以由分步乘法计数原理知,共有12223422C C A A 362272⋅⋅⋅=⨯⨯⨯=种不同的分法.故选:A8.已知()1cos 3αβ-=,1sin sin 12αβ=-,则22cos sin αβ-=()A.12B.13 C.16D.18【答案】C 【解析】【分析】由已知结合两角差的余弦公式可先求出cos cos αβ,然后结合二倍角公式及和差化积公式进行化简即可求解.【详解】由1cos()3αβ-=得1cos cos sin sin 3αβαβ+=,又1sin sin 12αβ=-,所以5cos cos 12αβ=,所以[][]22cos ()()cos ()()1cos 21cos 2cos 2cos 2cos sin 2222αβαβαβαβαβαβαβ++-++--+-+-=-==cos()cos()αβαβ=+-(cos cos sin sin )(cos cos sin sin )αβαβαβαβ=-+5151111(()12121212236=+⨯-=⨯=.故选:C .二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.从某小区抽取100户居民用户进行月用电量调查,发现他们的用电量都在50350KW h ~⋅之间,进行适当分组后(每组为左闭右开区间),画出频率分布直方图如图所示,记直方图中六个小矩形的面积从左到右依次为i s (1i =,2,L ,6),则()A.x 的值为0.0044B.这100户居民该月用电量的中位数为175C.用电量落在区间[)150,350内的户数为75D.这100户居民该月的平均用电量为61(5025)ii i s =+∑【答案】AD 【解析】【分析】根据频率分布直方图中频率之和为1即可判断A ,根据中位数的计算即可求解B ,根据频率即可求解C ,根据平均数的计算即可判断D.【详解】对于A ,由频率分布直方图的性质可知,(0.00240.00360.00600.00240.0012)501x +++++⨯=,解得0.0044x =,故A 正确;对于B ,因为(0.00240.0036)500.30.5+⨯=<,(0.00240.00360.0060)500.60.5++⨯=>,所以中位数落在区间[150,200)内,设其为m ,则0.3(150)0.0060.5m +-⨯=,解得183m ≈,故B 错误;对于C ,用电量落在区间[150,350)内的户数为(0.00600.00440.00240.0012)5010070+++⨯⨯=,故C 错误;对于D ,这100户居民该月的平均用电量为61261(5025)(50225)(50625)(5025)ii s s s i s=++⨯+++⨯+=+∑ ,故D 正确.故选:AD .10.已知01a b <<<,1m n >>,则()A.a bb a > B.n mm n >C .log log b m na > D.log log ab n m>【答案】ACD 【解析】【分析】利用指数函数和对数函数的单调性求解即可.【详解】对于A ,因为01a b <<<,所以指数函数x y b =在R 上单调递减,且a b <,所以a b b b >,因为幂函数b y x =在(0,)+∞上单调递增,且a b <,所以b b a b <,所以a b b a >,故A 正确,对于B ,取5m =,2n =,则2552<,故B 错误;对于C ,因为对数函数log b y x =在(0,)+∞上单调递减,log m y x =在(0,)+∞上单调递增,所以log log 1b b a b >=,log log 1m m n m <=,所以log log b m a n >,故C 正确;对于D ,因为ln y x =在(0,)+∞上单调递增,所以ln ln 0a b <<,ln 0m >,则ln ln log log ln ln a b m mm m a b=>=,因为对数函数log a y x =在(0,)+∞上单调递减,所以log log log a a b n m m >>,故D 正确.故选:ACD .11.在矩形ABCD 中,2AB AD =,E 为线段AB 的中点,将ADE △沿直线DE 翻折成1A DE △.若M 为线段1AC 的中点,则在ADE △从起始到结束的翻折过程中,()A.存在某位置,使得1DE A C ⊥B.存在某位置,使得1CE A D ⊥C.MB 的长为定值D.MB 与CD 所成角的正切值的最小值为12【答案】BCD 【解析】【分析】当1A C DE ⊥时,可得出DE ⊥平面1A OC ,得出OC DE ⊥推出矛盾判断A ,当1OA ⊥平面BCDE时可判断B ,根据等角定理及余弦定理判断C ,建系利用向量法判断D.【详解】如图,设DE 的中点O ,连接,OC OA ,则1OA DE ⊥,若1A C DE ⊥,由111A O A C A = ,11,AO AC ⊂平面1A OC ,可得DE ⊥平面1A OC ,OC ⊂平面1A OC ,则可证出OC DE ⊥,显然矛盾()CD CE ≠,故A 错误;因为CE DE ⊥,所以当1OA ⊥平面BCDE ,由CE ⊂平面BCDE 可得1O A CE ⊥,由1O A DE O = ,1,O A DE ⊂平面1A DE ,即可得CE ⊥平面1A DE ,再由1A D ⊂平面1A DE ,则有1CE A D ⊥,故B 正确;取CD 中点N ,1//MN A D ,112MN A D =,//BN ED ,且1,MNB A DE ∠∠方向相同,所以1MNB A DE ∠=∠为定值,所以BM =C 正确;不妨设AB =,以,OE ON 分别为,x y 轴,如图建立空间直角坐标系,设1A ON θ∠=,则()10,cos ,sin A θθ,()()1cos sin 2,1,0,1,2,0,,1,,(1,0,0)222B C M D θθ⎛⎫+-⎪⎝⎭,()2,2,0DC =,3cos sin ,,,2222BM BM θθ-⎛⎫== ⎪⎝⎭ ,设MB 与CD 所成角为ϕ,则cos 5DC BM DC BMϕ⋅==≤⋅ ,即MB 与CD 所成最小角的余弦值为5,此时1tan 2ϕ=,故D 正确.故选:BCD【点睛】关键点点睛:处理折叠问题,注意折前折后可变量与不变量,充分利用折前折后不变的量,其次灵活运用线面垂直的判定定理与性质定理是研究垂直问题的关键所在,最后不容易直接处理的最值问题可考虑向量法计算后得解.非选择题部分(共92分)三、填空题:本题共3小题,每小题5分,共15分.12.已知单位向量a ,b满足|2|a b -=,则a 与b 的夹角为________.【答案】3π(或写成60︒)【解析】【分析】将等式|2|a b -=两边平方即可.【详解】因为222|2|443a b a a b b -=-⋅+=,所以12a b ⋅= ,所以1cos ,2a b 〈〉=r r ,[],0π,3a b a b π∈=,,.故答案为:3π.13.已知函数()2,0,ln ,0x x f x x x ⎧≤=⎨>⎩若()f x 在点()()1,1f 处的切线与点()()00,x f x 处的切线互相垂直,则0x =______.【答案】12-##0.5-【解析】【分析】分别求出函数在两段上的导数,根据导数的几何意义求出切线斜率,再由切线垂直得解.【详解】当0x >时,1()0f x x'=>,所以(1)1f '=,且点()()00,x f x 不在ln y x =上,否则切线不垂直,故00x ≤,当0x <时,()2f x x '=,所以00()2f x x '=,由切线垂直可知,0211x ⨯=-,解得012x =-.故答案为:12-14.设椭圆()221112211:10x y C a b a b +=>>与双曲线()222222222:10,0y x C a b a b -=>>有相同的焦距,它们的离心率分别为1e ,2e ,椭圆1C 的焦点为1F ,2F ,1C ,2C 在第一象限的交点为P ,若点P 在直线y x =上,且1290F PF ∠=︒,则221211e e +的值为______.【答案】2【解析】【分析】设椭圆与双曲线相同的焦距为2c ,先根据题意得出点P 的坐标()0c >,再将点P 分别代入椭圆和双曲线的方程中,求离心率,即可得解.【详解】设椭圆与双曲线相同的焦距为2c ,则2222221122,a b c a b c +=-=,又1290F PF ∠=︒,所以121||||2OP F F c ==,又点P 在第一象限,且在直线y x =上,所以22,22P c c ⎛⎫⎪⎪⎝⎭,又点P 在椭圆上,所以22221122221c c a b ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭+=,即22222112c c a a c +=-,整理得422411240a a c c -+=,即22211112410e e ⎛⎫⋅-⋅+= ⎪⎝⎭,解得2114242e ±±==,因为101e <<,所以21122e =,同理可得点P 在双曲线上,所以22222222221c a b ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭-=,即22222222c a c a c -=-,解得2122e -=,所以22121122222e e +-+=+=.故答案为:2.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.为鼓励消费,某商场开展积分奖励活动,消费满100元的顾客可拋掷骰子两次,若两次点数之和等于7,则获得5个积分:若点数之和不等于7,则获得2个积分.(1)记两次点数之和等于7为事件A ,第一次点数是奇数为事件B ,证明:事件A ,B 是独立事件;(2)现有3位顾客参与了这个活动,求他们获得的积分之和X 的分布列和期望.【答案】(1)证明见解析(2)分布列见解析;152【解析】【分析】(1)根据古典概型分别计算(),(),()P A P B P AB ,由()P AB ,()()P A P B 的关系证明;(2)根据n 次独立重复试验模型求出概率,列出分布列,得出期望.【小问1详解】因为两次点数之和等于7有以下基本事件:()()()()()()1,6,2,5,3,4,4,3,5,2,6,1共6个,所以()61366P A ==,又()12P B =.而第一次点数是奇数且两次点数之和等于7的基本事件是()()()163452,,,,,共3个,所以()313612P AB ==,故()()()P AB P A P B =,所以事件A ,B 是独立事件.【小问2详解】设三位参与这个活动的顾客共获得的积分为X ,则X 可取6,9,12,15,()30311256C 16216P X ⎛⎫==-= ⎪⎝⎭,()21311759C 166216P X ⎛⎫⎛⎫==-= ⎪⎪⎝⎭⎝⎭,()223151512C 166216P X ⎛⎫⎛⎫==-= ⎪ ⎪⎝⎭⎝⎭,()3331115C 6216P X ⎛⎫=== ⎪⎝⎭,所以分布列为:X691215P12521675216152161216所以()12575151156912152162162162162E X =⨯+⨯+⨯+⨯=.16.设()sin cos cos f x x x a x =+,π0,2x ⎡⎤∈⎢⎥⎣⎦.(1)若1a =,求()f x 的值域;(2)若()f x 存在极值点,求实数a 的取值范围.【答案】(1)0,4⎡⎢⎣⎦(2)()1,-+∞【解析】【分析】(1)求导,得()()()sin 12sin 1f x x x =-+-',即可根据π0,6x ⎛⎫∈ ⎪⎝⎭和ππ,62x ⎛⎫∈ ⎪⎝⎭判断导数的正负确定函数的单调性,求解极值点以及端点处的函数值即可求解,(2)将问题转化为()0f x '=在π0,2x ⎛⎫∈ ⎪⎝⎭上有解,即可分离参数得12sin sin a x x=-,利用换元法,结合函数单调性即可求解.【小问1详解】若1a =,()πsin cos cos 0,2f x x x x x ⎡⎤=+∈⎢⎥⎣⎦,,()()()222cos sin sin 2sin sin 1sin 12sin 1f x x x x x x x x =--=--+=-+-'当π0,6x ⎛⎫∈ ⎪⎝⎭时,sin 0,2sin 10x x >-<,则()0f x '>,()f x 单调递增;当ππ,62x ⎛⎫∈⎪⎝⎭时,sin 0,2sin 10x x >->,则()0f x '<,()f x 单调递减又π3364f ⎛⎫=⎪⎝⎭,()01f =,π02f ⎛⎫= ⎪⎝⎭所以()0,4f x ⎡∈⎢⎣⎦,即()f x 的值域为0,4⎡⎢⎣⎦【小问2详解】()222cos sin sin 12sin sin f x x x a x x a x =--=--'.()f x 存在极值点,则()0f x '=在π0,2x ⎛⎫∈ ⎪⎝⎭上有解,即12sin sin a x x =-有解.令sin t x =,则12a tt =-在()0,1t ∈上有解.因为函数12y t t=-在区间()0,1上单调递减,所以()1,a ∞∈-+,经检验符合题意.17.如图,在三棱柱111ABC A B C -中,ABC △是边长为2的正三角形,侧面11BB C C 是矩形,11AA A B =.(1)求证:三棱锥1A ABC -是正三棱锥;(2)若三棱柱111ABC A B C -的体积为1AC 与平面11AA B B 所成角的正弦值.【答案】(1)证明见解析(2)23【解析】【分析】(1)根据线面垂直的判定定理及性质定理,证明1A O ⊥平面ABC 即可;(2)建立空间直角坐标系,利用向量法求线面角正弦即可.【小问1详解】分别取AB ,BC 中点D ,E ,连接CD ,AE 交于点O ,则点O 为正三角形ABC 的中心.因为11AA A B CA CB ==,得1CD AB AD AB ⊥⊥,,又11,,A D CD D A D CD =⊂ 平面1A CD ,所以AB ⊥平面1A CD ,又1A O ⊂平面1A CD ,则1AB AO ⊥;取11B C 中点1E ,连接111A E E E ,,则四边形11AA E E 是平行四边形,因为侧面11BB C C 是矩形,所以1BC EE ⊥,又BC AE ⊥,又11,,EE AE E EE AE =⊂ 平面11AA E E ,所以BC ⊥平面11AA E E ,又1A O ⊂平面11AA E E ,则1BC A O ⊥;又AB BC B ⋂=,,AB BC ⊂平面ABC ,所以1A O ⊥平面ABC ,所以三棱锥1A ABC -是正三棱锥.【小问2详解】因为三棱柱111ABC A B C -的体积为1263AO =,以E 为坐标原点,EA 为x 轴正方向,EB 为y 轴正方向,过点E 且与1OA 平行的方向为z 轴的正方向建立空间直角坐标系,则)()()1,0,1,0,0,1,0,,0,33AB C A ⎛⎫- ⎪ ⎪⎝⎭,设平面11AA B B 的法向量1n,因为()1,,0,33AB AA ⎛⎫==- ⎪ ⎪⎝⎭.则1110033AB n y AA n x z ⎧⋅=+=⎪⎨⋅=-+=⎪⎩,取1z =,可得)1n = ,又11,1,33AC AA AC ⎛⎫=+=-- ⎪ ⎪⎝⎭,设直线1AC 与平面11AA B B 所成角为θ,所以111111sin cos ,3n AC n AC n AC θ⋅====.18.设抛物线()2:20C y px p =>,直线=1x -是抛物线C 的准线,且与x 轴交于点B ,过点B 的直线l与抛物线C 交于不同的两点M ,N ,()1,A n 是不在直线l 上的一点,直线AM ,AN 分别与准线交于P ,Q 两点.(1)求抛物线C 的方程;(2)证明:BP BQ =:(3)记AMN △,APQ △的面积分别为1S ,2S ,若122S S =,求直线l 的方程.【答案】(1)24y x =(2)证明见解析(3)10x ±+=【解析】【分析】(1)根据准线方程可得p ,即可求解;(2)设l :1x ty =-,()()1122,,,M x y N x y ,联立直线与抛物线,得出根与系数的关系,再由直线的相交求出,P Q 坐标,转化为求0P Q y y +=即可得证;(3)由(2)可得2S PQ =,再由112S MN d =,根据122S S =可得t ,即可得解.【小问1详解】因为=1x -为抛物线的准线,所以12p=,即24p =,故抛物线C 的方程为24y x=【小问2详解】如图,设l :1x ty =-,()()1122,,,M x y N x y ,联立24y x =,消去x 得2440y ty -+=,则()2Δ1610t =->,且121244y y ty y +=⎧⎨=⎩,又AM :()1111y ny n x x --=--,令=1x -得()1121,1y n P n x ⎛⎫--- ⎪-⎝⎭,同理可得()2221,1y n Q n x ⎛⎫--- ⎪-⎝⎭,所以()()()()12121212222221122P Q y n y n y n y n y y n n n x x ty ty ⎡⎤----+=-+-=-+⎢⎥----⎣⎦()()()()()()1221122222222y n ty y n ty n ty ty --+--=--⋅-,()()()212122212124248882202444ty y nt y y nn nt n n t y y t y y t --++-=-=-=-++-,故BP BQ =.【小问3详解】由(2)可得:()()122122222y n y n S PQ ty ty --==-=--1112222S MN d nt ==⨯-,由122S S =,得:212t-=,解得t =,所以直线l 的方程为10x ±+=.【点睛】关键点点睛:本题第二问中直线较多,解题的关键在于理清主从关系,据此求出,P Q 点的坐标(含参数),第二个关键点在于将BP BQ =转化为,P Q 关于x 对称,即0P Q y y +=.19.设p 为素数,对任意的非负整数n ,记0101kk n a p a p a p =++⋅⋅⋅+,()012p k W n a a a a =+++⋅⋅⋅+,其中{}()0,1,2,,10i a p i k ∈⋅⋅⋅-≤≤,如果非负整数n 满足()p W n 能被p 整除,则称n 对p “协调”.(1)分别判断194,195,196这三个数是否对3“协调”,并说明理由;(2)判断并证明在2p n ,21p n +,22p n +,…,()221p n p +-这2p 个数中,有多少个数对p “协调”;(3)计算前2p 个对p “协调”的非负整数之和.【答案】(1)194,196对3“协调”,195对3不“协调”(2)有且仅有一个数对p “协调”,证明见解析(3)522p p -【解析】【分析】(1)根据n 对p “协调”的定义,即可计算()()()333194,195,196W W W ,即可求解,(2)根据n 对p “协调”的定义以及整除原理可证明引理,证明每一列里有且仅有一个数对p “协调”,即可根据引理求证.(3)将()22222,1,2,,1p n p n p n p n p +++- 这2p 个数分成p 组,每组p 个数,根据引理证明每一列里有且仅有一个数对p “协调”,即可求解.【小问1详解】因为012341942313031323=⨯+⨯+⨯+⨯+⨯,所以()3194210126W =++++=,012341950323031323=⨯+⨯+⨯+⨯+⨯,所以()3195020125W =++++=,012341961323031323=⨯+⨯+⨯+⨯+⨯,所以()3196120126W =++++=,所以194,196对3“协调”,195对3不“协调”.【小问2详解】先证引理:对于任意的非负整数t ,在(),1,2,,1pt pt pt pt p +++- 中有且仅有一个数对p “协调”.证明如下:设012012kk pt b p b p b p b p =++++ ,由于pt 是p 的倍数,所以00b =,所以01212k k pt j jp b p b p b p +=++++ ,即pt j +对于0p 这一项的系数为()01j j p ≤≤-,所以()()()1201p k W pt j b b b j j p +=++++≤≤- ,根据整除原理可知,在()()01p W pt j j p +≤≤-中有且仅有一个数能被p 整除,所以在(),1,2,,1pt pt pt pt p +++- 中有且仅有一个数对p “协调”.接下来把以上2p 个数进行分组,分成以下p 组(每组p 个数):()()()()()()22222222222221211221111121p n p n p n p n p p n p p n p p n p p n p p n p pp n p p p n p p p n p +++-++++++-+-+-++-++-根据引理可知,在以上每组里恰有1个数对p “协调”,所以共有p 个数对p “协调”.【小问3详解】继续考虑()22222,1,2,,1p n p n p n p n p +++- 这2p 个数分成p 组,每组p 个数:()()()()()()22222222222221211221111121p n p n p n p n p p n p p n p p n p p n p p n p pp n p p p n p p p n p +++-++++++-+-+-++-++-由(2)的引理可知每一行里有且只有一个数对p “协调”,下面证明每一列里有且仅有一个数对p “协调”.证明如下:设某一列第一个数为()201,01p n t n p t p +≤≤-≤≤-,则20120p n t tp p np +=++,所以()2p W p n t n t +=+,同理当01s p ≤≤-时,()2p W p n sp t n s t ++=++,所以当01s p ≤≤-时,集合{}201p n sp t s p ++≤≤-中的p 个数中有且只有1个数对p “协调”.注意到数阵中每一个数向右一个数增加1,向下一个数增加p ,所以p个数对p “协调”的数之和为:()()()()232112112112p n p p p p np p p ⋅++++-++++-⋅=+- ,进一步,前2p 个对p “协调”的非负整数之和为:()()()22152323011112222p n p p p p p p np p p p -=---⎡⎤=-=⋅+=⎢⎥⎣⎦∑【点睛】方法点睛:对于新型定义,首先要了解定义所给的关系式的特性,抽象特性和计算特性,抽象特性是将定义可近似的当作数列或者函数分析.计算特性,将复杂的关系通过找规律即可利用已学相关知识求解.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高三数学模拟试题及答案
一、选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的
1. 设集合≤ ≤ , ≤ ≤ ,则
2. 计算:
A. B.- C. 2 D. -2
3. 已知是奇函数,当时,,则
A. 2
B. 1
C.
D.
4. 已知向量 ,则的充要条件是
A. B. C. D.
6. 已知函数,则下列结论正确的是
A. 此函数的图象关于直线对称
B. 此函数的最大值为1
C. 此函数在区间上是增函数
D. 此函数的最小正周期为
8. 已知、满足约束条件,
若,则的取值范围为
A. [0,1]
B. [1,10]
C. [1,3]
D. [2,3]
第二部分非选择题共100分
二、填空题本大题共7小题,分为必做题和选做题两部分,每小题5分,满分30分。

一必做题:第9至13题为必做题,每道试题考生都必须作答。

9. 已知等比数列的公比为正数,且,则 = .
10. 计算 .
11. 已知双曲线的一个焦点是,则其渐近线方程为 .
12. 若 n的展开式中所有二项式系数之和为64,则展开式的常数项为 .
13. 已知
依此类推,第个等式为.
二选做题:第14、15题为选做题,考生只选做其中一题,两题全答的只算前一题得分。

14. 坐标系与参数方程选做题已知曲线C的参数方程为θ为参数,则曲线C上的点到直线3 -4 +4=0的距离的最大值为
三、解答题:本大题共6小题,满分80分.解答须写出文字说明,证明过程或演算步骤。

17.本小题满分12分
某连锁超市有、两家分店,对该超市某种商品一个月30天的销售量进行统计:分店的销售量为200件和300件的天数各有15天; 分店的统计结果如下表:
销售量单位:件 200 300 400
天数 10 15 5
1根据上面统计结果,求出分店销售量为200件、300件、400件的频率;
2已知每件该商品的销售利润为1元,表示超市、两分店某天销售该商品的利润之和,若以频率作为概率,且、两分店的销售量相互独立,求的分布列和数学期望.
19.本小题满分14分
已知数列中,,且当时,, .
记的阶乘 !
1求数列的通项公式;2求证:数列为等差数列;
3若,求的前n项和.
20.本小题满分14分
已知椭圆:的离心率为,连接椭圆的四个顶点得到的四边形的面积为 .
1求椭圆的方程;
2设椭圆的左焦点为,右焦点为,直线过点且垂直于椭圆的长轴,动直线垂直于点,线段的垂直平分线交于点M,求点M的轨迹的方程;
3设O为坐标原点,取上不同于O的点S,以OS为直径作圆与相交另外一点R,求该圆面积的最小值时点S的坐标.
21.本小题满分14分
已知函数,函数是函数的导函数.
1若,求的单调减区间;
2若对任意,且,都有,求实数的取值范围;
3在第2问求出的实数的范围内,若存在一个与有关的负数,使得对任意时恒成立,求的最小值及相应的值.
高三数学模拟试题答案
题号 1 2 3 4 5 6 7 8
答案 A D B A C C D B
二、填空题每小题5分,共30分
9. ; 10. ; 11. ; 12. ;
13. ;
14. 3; 15. 33.
三、解答题共80分
16. 解:1 是钝角,,…………………………1分
在中,由余弦定理得:
所以…………………………4分
解得或舍去负值,所以…………………………6分
2由…………………………7分
在三角形APQ中,
又…………………………8分
…………………………9分
………11分
………………………12分
17. 解:1B分店销售量为200件、300件、400件的频率分别为,和………3分
2A分店销售量为200件、300件的频率均为,……………4分
的可能值为400 ,500,600,700,且……………5分
P =400= , P =500= ,
P =600= , P =700= ,………9分
的分布列为
400 500 600 700
P
……………10分
=400 +500 +600 +700 = 元…………………12分
18.1证明:连结 ,交与 ,连结,
中,分别为两腰的中点∴ ………………2分
因为面 ,又面,所以平面………………4分
2解法一:设平面与所成锐二面角的大小为,以为空间坐标系的原点,分别以所在直线为轴建立空间直角坐标系,则
………6分
设平面的单位法向量为,则可设……………………………7分
设面的法向量,应有
即:
解得:,所以…………………………………………12分
∴ ……………………………………………………13分
所以平面与所成锐二面角为60°………………………………………14分
解法二:延长CB、DA相交于G,连接PG,过点D作DH⊥PG ,垂足为H,连结
HC ……………………6分
∵矩形PDCE中PD⊥DC,而AD⊥DC,PD∩AD=D
∴CD⊥平面PAD ∴CD ⊥PG,又CD∩DH=D
∴PG⊥平面CDH,从而PG⊥HC ………………8分
∴∠DHC为平面PAD与平面PBC所成的锐二面角的平面角………………………………………………10分
在△ 中,,可以计算…12分
在△ 中,……………………………13分
所以平面与所成锐二面角为60°………………………………………14分
19. 解:1 , ,
! …………………………………………2分
又,! ………………………………………………………3分
2 由两边同时除以得即…4分
∴数列是以为首项,公差为的等差数列…………………………5分
,故……………………………6分
3因为………………8分
记 =
………10分
记的前n项和为
则①
∴ ②
由②-①得:
……………………………………………………………………………………13分
∴ = ……………14分
20. 解:1解:由,得,再由,解得…………1分
由题意可知,即…………………………………2分
解方程组得………………………………………3分
所以椭圆C1的方程是………………………………………………3分
2因为,所以动点到定直线的距离等于它到定点 1,0的距离,所以动点的轨迹是以为准线,为焦点的抛物线,…6分
所以点的轨迹的方程为…………………………………………7分
3因为以为直径的圆与相交于点,所以∠ORS = 90°,即
……………………………………………………………………………………8分
设S ,,R ,, = - , - , = ,
所以
因为,,化简得……………………………10分
所以,
当且仅当即 =16,y2=±4时等号成立. ………………………12分
圆的直径|OS|=
因为≥64,所以当 =64即=±8时,,……………13分
所以所求圆的面积的最小时,点S的坐标为16,±8……………………14分
感谢您的阅读,祝您生活愉快。

相关文档
最新文档