串行接口8位LED显示驱动MAX7219-MAX7221
max7219资料及电路图
MAX7219是MAXIM公司生产的串行输入/输出共阴极数码管显示驱动芯片,一片MAX7219可驱动8个7段(包括小数点共8段)数字LED、LED条线图形显示器、或64个分立的LED发光二级管。
该芯片具有10MHz传输率的三线串行接口可与任何微处理器相连,只需一个外接电阻即可设置所有LED的段电流。
它的操作很简单,MCU只需通过模拟SPI三线接口就可以将相关的指令写入MAX7219的内部指令和数据寄存器,同时它还允许用户选择多种译码方式和译码位。
此外它还支持多片7219串联方式,这样MCU就可以通过3根线(即串行数据线、串行时钟线和芯片选通线)控制更多的数码管显示。
MAX7219的外部引脚分配如图1所示及内部结构如图2所示。
图1 MAX7219的外部引脚分配图2 MAX7219的内部引脚分配各引脚的功能为:DIN:串行数据输入端DOUT:串行数据输出端,用于级连扩展LOAD:装载数据输入CLK:串行时钟输入DIG0~DIG7:8位LED位选线,从共阴极LED中吸入电流SEG A~SEG G DP 7段驱动和小数点驱动ISET:通过一个10k电阻和Vcc相连,设置段电流MAX7219有下列几组寄存器:(如图3)MAX7219内部的寄存器如图3,主要有:译码控制寄存器、亮度控制寄存器、扫描界限寄存器、关断模式寄存器、测试控制寄存器。
编程时只有正确操作这些寄存器,MAX7219才可工作。
图 3 MAX7219内部的相关寄存器分别介绍如下:(1)译码控制寄存器(X9H)如图4所示,MAX7219有两种译码方式:B译码方式和不译码方式。
当选择不译码时,8个数据为分别一一对应7个段和小数点位;B译码方式是BCD译码,直接送数据就可以显示。
实际应用中可以按位设置选择B译码或是不译码方式。
图4 MAX7219的译码控制寄存器(2)扫描界限寄存器(XBH)如图5所示,此寄存器用于设置显示的LED的个数(1~8),比如当设置为0xX4时,LED 0~5显示。
MAX7219
多功能LED译码显示驱动IC PS7219 1 引言PS7219是由力源公司自行研制、开发的一款新型多功能8位LED显示驱动IC。
接口采用三线SPI方式,用户只需简单修改内部相关的控制或数字RAM,便可很容易地实现多位LED显示。
在性能上PS7219与MAXIM 公司的MAX7219完全兼容,并增加了位闪等功能。
PS7219具有多个级联特性,为大屏幕LED显示提供了方便。
在理论上,只需三根用户I/O口控制线,便可以实现无穷多的LED级联显示。
在实际应用中,已实现了149片PS7219级联,可以控制1192位LED 显示。
2 PS7219特点与引脚说明PS7219的特点:★ 串行接口(16位控制字);★ 8位共阴级LED显示驱动;★ 显示位数1~8,可数字调节;★ 按位进行BCD译码/不译码数字制;★ 16级亮度数字控制;★ 上电LED全熄;★ 提供位闪功能;★ 多个PS7219级联可实现任意多的LED显示;★ 宽24脚双列直插模块封装。
PS7219引脚图如图1所示。
引脚功能说明见表1。
3 PS7219内部结构如图2 所示,PS7219由六部分组成。
图2 PS7219内部组成框图图1 PS7219引脚排列3.1 串行输入缓冲部分主要功能是与外部控制信号接口,将控制命令串行读入,并进行串并转换,供控制器读取。
3.2 控制器是整个IC的核心部分。
它先将输入缓冲部分的控制字读入处理,根据其地址值送到相应的控制RAM或数字RAM,同时将数据送入串行同步输出部分,以便在下一个控制字输入周期,将其串行输出。
3.3 控制RAM数据RAM这两部分一起控制LED译码显示部分,实现不同功能及字符的显示。
控制RAM包括:空操作寄存器,译码模式控制寄存器,亮度控制寄存器,掉电控制寄存器,闪烁控制寄存器,测试控制寄存器和扫描界线寄存器。
数据RAM包括:数据1—8寄存器。
3.4 LED译码显示根据控制RAM和数据RAM的不同值,来实现相应的显示功能。
MAX7219中文资料-附有程序
MAX7219是MAXIM公司生产的串行输入/输出共阴极数码管显示驱动芯片,一片MAX7219可驱动8个7段(包括小数点共8段)数字LED、LED条线图形显示器、或64个分立的LED发光二级管。
该芯片具有10MHz传输率的三线串行接口可与任何微处理器相连,只需一个外接电阻即可设置所有LED的段电流。
它的操作很简单,MCU只需通过模拟SPI三线接口就可以将相关的指令写入MAX721 9的内部指令和数据寄存器,同时它还允许用户选择多种译码方式和译码位。
此外它还支持多片7219串联方式,这样MCU就可以通过3根线(即串行数据线、串行时钟线和芯片选通线)控制更多的数码管显示。
MAX7219的外部引脚分配如图1所示及内部结构如图2所示。
图1 MAX7219的外部引脚分配图2 MAX7219的内部引脚分配各引脚的功能为:DIN:串行数据输入端DOUT:串行数据输出端,用于级连扩展LOAD:装载数据输入CLK:串行时钟输入DIG0~DIG7:8位LED位选线,从共阴极LED中吸入电流SEG A~SEG G DP 7段驱动和小数点驱动ISET:通过一个10k电阻和Vcc相连,设置段电流MAX7219有下列几组寄存器:(如图3)MAX7219内部的寄存器如图3,主要有:译码控制寄存器、亮度控制寄存器、扫描界限寄存器、关断模式寄存器、测试控制寄存器。
编程时只有正确操作这些寄存器,MAX7219才可工作。
图 3 MAX7219内部的相关寄存器分别介绍如下:(1)译码控制寄存器(X9H)如图4所示,MAX7219有两种译码方式:B译码方式和不译码方式。
当选择不译码时,8个数据为分别一一对应7个段和小数点位;B译码方式是BCD译码,直接送数据就可以显示。
实际应用中可以按位设置选择B译码或是不译码方式。
图4 MAX7219的译码控制寄存器(2)扫描界限寄存器(XBH)如图5所示,此寄存器用于设置显示的LED的个数(1~8),比如当设置为0xX4时,LED 0~5显示。
MAX7219工作原理简介
MAX7219工作原理简介MAX7219是一个采用3线串行接口的8位共阴极7段LED显示驱动器。
本文分析了MAX7219各个寄存器的功能,并结合MAX7219的工作时序,给出了MAX7219在Motorola MC68HC908单片机系统中的一个应用实例。
关键词: MCU;MAX7219;LED Motorola MC68HC908MAX7219工作时序及其寄存器MAX7219是一个高性能的多位LED显示驱动器,可同时驱动8位共阴极LED或64个独立的LED。
其内部结构框图如图1所示,主要包括移位寄存器、控制寄存器、译码器、数位与段驱动器以及亮度调节和多路扫描电路等。
MAX7219 采用串行接口方式,只需LOAD、DIN、CLK三个管脚便可实现数据传送。
DIN管脚上的16位串行数据包不受LOAD状态的影响,在每个CLK的上升沿被移入到内部16位移位寄存器中。
然后,在LOAD的上升沿数据被锁存到数字或控制寄存器中。
LOAD必须在第16个时钟上降沿或之后,但在下一个时钟上升沿之前变高,否则数据将会丢失。
DIN端的数据通过移位寄存器传送,并在16.5个时钟周期后出现在DOUT端,随CLK 的下降沿输出。
MAX7219的操作时序如图2所示。
MAX7219的串行数据标记为D15~D0,其中低8位表示显示数据本身,最高的4位D15~D12未使用,寻址内部寄存器的地址位占用D11~D8,选择14个内部寄存器,见表1。
图1 MAX7219内部结构框图图2 MAX7219的数据传送时序MAX7219 内部具有14个可寻址数字和控制寄存器。
其中的8个数字寄存器由一个片内8×8双端口SRAM实现。
它们可直接寻址,因此可对单个数进行更新并且通常只要 V+超过2V数据就可保留下去。
除8个数位寄存器之外,还有无操作、译码方式、亮度调整、扫描位数、睡眠模式和显示器测试6个控制寄存器。
无操作寄存器用于多片MAX7219级联,在不改变显示或不影响任意控制寄存器条件下,它允许数据从DIN传送到DOUT。
MAX7219驱动单个8X8点阵LED模块
MAX7219驱动单个88点阵LED模块模块介绍MAX7219 是一种集成化的串行输入/输出共阴极显示驱动器,它连接微处理器与8位数字的7段数字LED显示,也可以连接条线图显示器或者64个独立的LED。
其上包括一个片上的B型BCD编码器、多路扫描回路,段字驱动器,而且还有一个8*8的静态RAM用来存储每一个数据。
只有一个外部寄存器用来设置各个LED的段电流。
一个方便的四线串行接口可以联接通用的微处理器。
每个数据可以寻址在更新时不需要改写所有的显示。
MAX7219同样允许用户对每一个数据选择编码或者不编码。
整个设备包含一个150μA的低功耗关闭模式,模拟和数字亮度控制,一个扫描限制寄存器允许用户显示1-8位数据,还有一个让所有LED发光的检测模式。
只需要3个IO口即可驱动1个点阵!点阵显示时无闪烁!支持级联!模块参数:1.单个模块可以驱动一个8*8共阴点阵2.模块工作电压:5V3.模块尺寸:长3.2厘米X宽3.2厘米X高1.3厘米4.带4个固定螺丝孔,孔径3mm5.模块带输入输出接口,支持多个模块级联接线说明:1.模块左边为输入端口,右边为输出端口。
2.控制单个模块时,只需要将输入端口接到CPU3.多个模块级联时,第1个模块的输入端接CPU,输出端接第2个模块的输入端,第2个模块的输出端接第3个模块的输入端,以此类推...器件列表◆Keywish Arduino Uno R3 主板*1◆USB 接口线*2◆MAX7219显示驱动器*1◆8位数字的7段数字LED显示*1◆跳线*4接线Arduino MAX7219显示驱动器VCC VCCGND GND5 CLK6 CS7 DIN程序#include "LedControl.h"int DIN =7;int CS =6;int CLK =5;byte e[8]={0x7C,0x7C,0x60,0x7C,0x7C,0x60,0x7C,0x7C};byte d[8]={0x78,0x7C,0x66,0x66,0x66,0x66,0x7C,0x78};byte u[8]={0x66,0x66,0x66,0x66,0x66,0x66,0x7E,0x7E};byte c[8]={0x7E,0x7E,0x60,0x60,0x60,0x60,0x7E,0x7E};byte eight[8]={0x7E,0x7E,0x66,0x7E,0x7E,0x66,0x7E,0x7E};byte s[8]={0x7E,0x7C,0x60,0x7C,0x3E,0x06,0x3E,0x7E};byte dot[8]={0x00,0x00,0x00,0x00,0x00,0x00,0x18,0x18};byte o[8]={0x7E,0x7E,0x66,0x66,0x66,0x66,0x7E,0x7E};byte m[8]={0xE7,0xFF,0xFF,0xDB,0xDB,0xDB,0xC3,0xC3};LedControl lc=LedControl(DIN,CLK,CS,0);void setup(){lc.shutdown(0,false);//The MAX72XX is in power-saving mode on startup lc.setIntensity(0,15);// Set the brightness to maximum valuelc.clearDisplay(0);// and clear the display}void loop(){byte smile[8]={0x3C,0x42,0xA5,0x81,0xA5,0x99,0x42,0x3C};byte neutral[8]={0x3C,0x42,0xA5,0x81,0xBD,0x81,0x42,0x3C};byte frown[8]={0x3C,0x42,0xA5,0x81,0x99,0xA5,0x42,0x3C};printByte(smile);delay(1000);printByte(neutral);delay(1000);printByte(frown);delay(1000);printEduc8s();lc.clearDisplay(0);delay(1000);}void printEduc8s(){printByte(e);delay(1000);printByte(d);delay(1000);printByte(u);delay(1000);printByte(c);delay(1000);printByte(eight);delay(1000);printByte(s);delay(1000);printByte(dot);delay(1000);printByte(c);delay(1000);printByte(o);delay(1000);printByte(m);delay(1000);}void printByte(byte character []) {int i =0;for(i=0;i<8;i++){lc.setRow(0,i,character[i]); }}实验结果。
MAX7221
MAX7221驱动大尺寸共阳极LED数码显示器的电路设计作者:刘玉琼来源:《电子世界》2012年第12期【摘要】MAX7221是一个高度集成化的具有SPI串行输入接口的共阴极LED驱动显示集成电路,应用非常普及。
文章介绍了采用MAX7221构成大尺寸共阳极LED数码显示系统电路的设计方法。
【关键词】MA7221;LED显示器;共阳极1.概述MAX7221是一块应用比较普遍的LED驱动集成电路,在该集成电路的标准应用电路中,无需更多的外围器件,就能很方便地驱动共阴极的小尺寸数码显示器。
在笔者的一个项目中,需要用单片机和MAX7221来驱动大尺寸共阳极的LED数码显示器,通过查找,并未发现有这方面的技术资料和文献。
经过多次试验,找到一个用MAX7221驱动大尺寸共阳极LED显示器的方法。
本文介绍的采用MAX7221驱动共阳极大尺寸LED数码显示器的相应驱动电路设计,经实际应用的检验,具有较高的可靠性。
2.主要元器件介绍2.1 MAX7221MAX7221是美国MAXIM(美信)公司推出的紧凑型串行输入/输出共阴极显示驱动器,可以驱动8位7段共阴极LED数码显示器、条形图显示器或64个独立的LED。
该器件内置了BCD B码译码器、多路复用扫描电路、段和位驱动电流调节器、亮度脉宽调节器以及存储每位数字的静态存储器,外围电路只需一个9.53KΩ的电阻用以设定所有LED的段电流。
该芯片通过内置的SPI串行接口,可以方便地连接微处理器,对每位数字单独进行寻址和更新,无需重新写入整个显示器,同时支持多片级联,单片机软件编程十分方便,应用十分普及。
图1为MAX7221的典型应用电路。
2.2 大尺寸LED数码管在笔者的某个项目中,需要用到大尺寸共阳极的LED数码显示器,在大尺寸数码管的制造中,一般是采用多个LED管芯串联和并联,保证LED数码管亮度,以及亮度的均匀度达到一定要求。
图2为笔者在项目中使用的型号为LN40101DS大尺寸LED数码管内部连接图。
MAX7219
_______________General DescriptionThe MAX7219/MAX7221 are compact, serial input/out-put common-cathode display drivers that interface microprocessors (µPs) to 7-segment numeric LED dis-plays of up to 8 digits, bar-graph displays, or 64 indi-vidual LEDs. Included on-chip are a BCD code-B decoder, multiplex scan circuitry, segment and digit drivers, and an 8x8 static RAM that stores each digit.Only one external resistor is required to set the seg-ment current for all LEDs. The MAX7221 is compatible with SPI™, QSPI™, and Microwire™, and has slew-rate-limited segment drivers to reduce EMI.A convenient 3-wire serial interface connects to all common µPs. Individual digits may be addressed and updated without rewriting the entire display. The MAX7219/MAX7221 also allow the user to select code-B decoding or no-decode for each digit.The devices include a 150µA low-power shutdown mode, analog and digital brightness control, a scan-limit register that allows the user to display from 1 to 8digits, and a test mode that forces all LEDs on.________________________ApplicationsBar-Graph Displays 7-Segment Displays Industrial Controllers Panel Meters LED Matrix Displays____________________________Featureso 10MHz Serial Interfaceo Individual LED Segment Control o Decode/No-Decode Digit Selectiono 150µA Low-Power Shutdown (Data Retained)o Digital and Analog Brightness Control o Display Blanked on Power-Up o Drive Common-Cathode LED Display o Slew-Rate Limited Segment Drivers for Lower EMI (MAX7221)o SPI, QSPI, Microwire Serial Interface (MAX7221)o 24-Pin DIP and SO PackagesMAX7219/MAX7221Serially Interfaced, 8-Digit LED Display Drivers________________________________________________________________Maxim Integrated Products1________Typical Application Circuit__________________Pin Configuration19-4452; Rev 3; 7/97SPI and QSPI are trademarks of Motorola Inc. Microwire is a trademark of National Semiconductor Corp.For free samples & the latest literature: , or phone 1-800-998-8800.For small orders, phone 408-737-7600 ext. 3468.M A X 7219/M A X 72212_______________________________________________________________________________________ABSOLUTE MAXIMUM RATINGSELECTRICAL CHARACTERISTICS(V+ = 5V ±10%, R SET = 9.53k Ω±1%, T A = T MIN to T MAX , unless otherwise noted.)Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.Voltage (with respect to GND)V+............................................................................-0.3V to 6V DIN, CLK, LOAD, CS ...............................................-0.3V to 6V All Other Pins.............................................-0.3V to (V+ + 0.3V)CurrentDIG0–DIG7 Sink Current................................................500mA SEGA–G, DP Source Current.........................................100mA Continuous Power Dissipation (T A = +85°C)Narrow Plastic DIP..........................................................0.87W Wide SO..........................................................................0.76W Narrow CERDIP.................................................................1.1WOperating Temperature RangesMAX7219C_G/MAX7221C_G ..............................0°C to +70°C MAX7219E_G/MAX7221E_G............................-40°C to +85°C Storage Temperature Range.............................-65°C to +160°C Lead Temperature (soldering, 10sec).............................+300°CMAX7219/MAX7221_______________________________________________________________________________________3ELECTRICAL CHARACTERISTICS (continued)(V+ = 5V ±10%, R SET =9.53k Ω±1%, T A = T MIN to T MAX , unless otherwise noted.)M A X 7219/M A X 72214_________________________________________________________________________________________________________________________________Typical Operating Characteristics(V+ = +5V, T A = +25°C, unless otherwise noted.)730750740770760790780800820810830 4.04.44.85.25.66.0SCAN FREQUENCY vs. POSITIVE SUPPLY VOLTAGEM A X 7219/21 01POSITIVE SUPPLY VOLTAGE (V)S C A N F R E Q U E N C Y (H z )20104030605070012345SEGMENT DRIVER OUTPUT CURRENTvs. OUTPUT VOLTAGEOUTPUT VOLTAGE (V)O U T P U T C U R R E N T (m A )MAX7219SEGMENT OUTPUT CURRENTM A X 7219/21 035µs/div10mA/div0MAXIMUM INTENSITY = 31/32MAX7221SEGMENT OUTPUT CURRENTM A X 7219/21 045µs/div10mA/divMAXIMUM INTENSITY = 15/16MAX7219/MAX7221______________________________________________________________Pin Description_________________________________________________________Functional DiagramM A X 7219/M A X 72216______________________________________________________________________________________________________Detailed DescriptionMAX7219/MAX7221 DifferencesThe MAX7219 and MAX7221 are identical except fortwo parameters: the MAX7221 segment drivers are slew-rate limited to reduce electromagnetic interfer-ence (EMI), and its serial interface is fully SPI compati-ble.Serial-Addressing ModesFor the MAX7219, serial data at DIN, sent in 16-bit packets, is shifted into the internal 16-bit shift register with each rising edge of CLK regardless of the state of LOAD. For the MAX7221, CS must be low to clock data in or out. The data is then latched into either the digit or control registers on the rising edge of LOAD/CS .LOAD/CS must go high concurrently with or after the 16th rising clock edge, but before the next rising clock edge or data will be lost. Data at DIN is propagated through the shift register and appears at DOUT 16.5clock cycles later. Data is clocked out on the falling edge of CLK. Data bits are labeled D0–D15 (Table 1).D8–D11 contain the register address. D0–D7 contain the data, and D12–D15 are “don’t care” bits. The first received is D15, the most significant bit (MSB).Digit and Control RegistersTable 2 lists the 14 addressable digit and control regis-ters. The digit registers are realized with an on-chip,8x8 dual-port SRAM. They are addressed directly so that individual digits can be updated and retain data as long as V+ typically exceeds 2V. The control registers consist of decode mode, display intensity, scan limit (number of scanned digits), shutdown, and display test (all LEDs on).Shutdown ModeWhen the MAX7219 is in shutdown mode, the scan oscil-lator is halted, all segment current sources are pulled to ground, and all digit drivers are pulled to V+, thereby blanking the display. The MAX7221 is identical, except the drivers are high-impedance. Data in the digit and control registers remains unaltered. Shutdown can be used to save power or as an alarm to flash the display by successively entering and leaving shutdown mode. For minimum supply current in shutdown mode, logic inputs should be at ground or V+ (CMOS-logic levels).Typically, it takes less than 250µs for the MAX7219/MAX7221 to leave shutdown mode. The display driver can be programmed while in shutdown mode, and shutdown mode can be overridden by the display-test function.Figure 1. Timing DiagramTable 1. Serial-Data Format (16 Bits)Initial Power-UpOn initial power-up, all control registers are reset, the display is blanked, and the MAX7219/MAX7221 enter shutdown mode. Program the display driver prior to display use. Otherwise, it will initially be set to scan one digit, it will not decode data in the data registers, and the intensity register will be set to its minimum value.Decode-Mode RegisterThe decode-mode register sets BCD code B (0-9, E, H,L, P, and -) or no-decode operation for each digit. Each bit in the register corresponds to one digit. A logic high selects code B decoding while logic low bypasses the decoder. Examples of the decode mode control-regis-ter format are shown in Table 4.When the code B decode mode is used, the decoder looks only at the lower nibble of the data in the digit registers (D3–D0), disregarding bits D4–D6. D7, which sets the decimal point (SEG DP), is independent of the decoder and is positive logic (D7 = 1 turns the decimal point on). Table 5 lists the code B font.When no-decode is selected, data bits D7–D0 corre-spond to the segment lines of the MAX7219/MAX7221.Table 6 shows the one-to-one pairing of each data bit to the appropriate segment line.MAX7219/MAX7221Table 3. Shutdown Register Format (Address (Hex) = XC)Table 4. Decode-Mode Register Examples (Address (Hex) = X9)M A X 7219/M A X 7221Intensity Controland Interdigit BlankingThe MAX7219/MAX7221 allow display brightness to be controlled with an external resistor (R SET ) connected between V+ and ISET. The peak current sourced from the segment drivers is nominally 100 times the current entering ISET. This resistor can either be fixed or vari-able to allow brightness adjustment from the front panel. Its minimum value should be 9.53Ω, which typi-cally sets the segment current at 40mA. Display bright-ness can also be controlled digitally by using the intensity register.Digital control of display brightness is provided by an internal pulse-width modulator, which is controlled by the lower nibble of the intensity register. The modulator scales the average segment current in 16 steps from a maximum of 31/32 down to 1/32 of the peak current set by R SET (15/16 to 1/16 on MAX7221). Table 7 lists the intensity register format. The minimum interdigit blank-ing time is set to 1/32 of a cycle.8_______________________________________________________________________________________Table 5. Code B FontTable 6. No-Decode Mode Data Bits and Corresponding Segment Lines*The decimal point is set by bit D7 = 1Scan-Limit RegisterThe scan-limit register sets how many digits are dis-played, from 1 to 8. They are displayed in a multiplexed manner with a typical display scan rate of 800Hz with 8digits displayed. If fewer digits are displayed, the scan rate is 8f OSC /N, where N is the number of digitsscanned. Since the number of scanned digits affects the display brightness, the scan-limit register should not be used to blank portions of the display (such as leading zero suppression). Table 8 lists the scan-limit register format.MAX7219/MAX7221_______________________________________________________________________________________9Table 7. Intensity Register Format (Address (Hex) = XA)Table 8. Scan-Limit Register Format (Address (Hex) = XB)*See Scan-Limit Register section for application.M A X 7219/M A X 7221If the scan-limit register is set for three digits or less,individual digit drivers will dissipate excessive amounts of power. Consequently, the value of the R SET resistor must be adjusted according to the number of digits dis-played, to limit individual digit driver power dissipation.Table 9 lists the number of digits displayed and the corresponding maximum recommended segment cur-rent when the digit drivers are used.Display-Test RegisterThe display-test register operates in two modes: normal and display test. Display-test mode turns all LEDs on by overriding, but not altering, all controls and digit reg-isters (including the shutdown register). In display-test mode, 8 digits are scanned and the duty cycle is 31/32(15/16 for MAX7221). Table 10 lists the display-test reg-ister format.No-Op RegisterThe no-op register is used when cascading MAX7219s or MAX7221s. Connect all devices’ LOAD/CS inputs together and connect DOUT to DIN on adjacent devices. DOUT is a CMOS logic-level output that easily drives DIN of successively cascaded parts. (Refer to the Serial Addressing Modes section for detailed infor-mation on serial input/output timing.) For example, if four MAX7219s are cascaded, then to write to thefourth chip, sent the desired 16-bit word, followed by three no-op codes (hex XX0X, see Table 2). When LOAD/CS goes high, data is latched in all devices. The first three chips receive no-op commands, and the fourth receives the intended data.__________Applications InformationSupply Bypassing and WiringTo minimize power-supply ripple due to the peak digit driver currents, connect a 10µF electrolytic and a 0.1µF ceramic capacitor between V+ and GND as close to the device as possible. The MAX7219/MAX7221 should be placed in close proximity to the LED display, and connections should be kept as short as possible to minimize the effects of wiring inductance and electro-magnetic interference. Also, both GND pins must be connected to ground.Selecting R SET Resistor andUsing External DriversThe current per segment is approximately 100 times the current in ISET. To select R SET , see Table 11. The MAX7219/MAX7221’s maximum recommended seg-ment current is 40mA. For segment current levels above these levels, external digit drivers will be need-ed. In this application, the MAX7219/MAX7221 serve only as controllers for other high-current drivers or tran-sistors. Therefore, to conserve power, use R SET = 47k Ωwhen using external current sources as segment dri-vers.The example in Figure 2 uses the MAX7219/MAX7221’s segment drivers, a MAX394 single-pole double-throw analog switch, and external transistors to drive 2.3”AND2307SLC common-cathode displays. The 5.6V zener diode has been added in series with the decimal point LED because the decimal point LED forward volt-age is typically 4.2V. For all other segments the LED forward voltage is typically 8V. Since external transis-tors are used to sink current (DIG 0 and DIG 1 are used as logic switches), peak segment currents of 45mA are allowed even though only two digits are displayed. In applications where the MAX7219/MAX7221’s digit dri-vers are used to sink current and fewer than four digits are displayed, Table 9 specifies the maximum allow-able segment current. R SET must be selected accord-ingly (Table 11).Refer to the Power Dissipation section of the Absolute Maximum Ratings to calculate acceptable limits for ambient temperature, segment current, and the LED forward-voltage drop.10______________________________________________________________________________________Table 9. Maximum Segment Current for 1-, 2-, or 3-Digit DisplaysTable 10. Display-Test Register Format (Address (Hex) = XF)Note: The MAX7219/MAX7221 remain in display-test mode (all LEDs on) until the display-test register is reconfigured for normal operation.Computing Power DissipationThe upper limit for power dissipation (PD) for the MAX7219/MAX7221 is determined from the following equation:PD = (V + x 8mA) + (V+ - V LED )(DUTY x I SEG x N)where:V+ = supply voltageDUTY = duty cycle set by intensity register N = number of segments driven (worst case is 8)V LED = LED forward voltageI SEG = segment current set by R SET Dissipation Example:I SEG = 40mA, N = 8, DUTY = 31/32, V LED = 1.8V at 40mA, V+ = 5.25V PD = 5.25V(8mA) + (5.25V - 1.8V)(31/32 x 40mA x 8) = 1.11WThus, for a CERDIP package (θJA = +60°C/W from Table 12), the maximum allowed ambient temperature T A is given by:T J(MAX)= T A + PD x θJA + 150°C = T A +1.11W x60°C/Wwhere T A = +83.4°C.Cascading DriversThe example in Figure 3 drives 16 digits using a 3-wire µP interface. If the number of digits is not a multiple of 8, set both drivers’ scan limits registers to the same number so one display will not appear brighter than the other. For example, if 12 digits are need, use 6 digits per display with both scan-limit registers set for 6 digits so that both displays have a 1/6 duty cycle per digit. If 11 digits are needed, set both scan-limit registers for 6digits and leave one digit driver unconnected. If one display for 6 digits and the other for 5 digits, the sec-ond display will appear brighter because its duty cycle per digit will be 1/5 while the first display’s will be 1/6.Refer to the No-Op Register section for additional infor-mation.MAX7219/MAX7221______________________________________________________________________________________11Table 11. R SET vs. Segment Current and LED Forward VoltageTable 12. Package Thermal Resistance DataM A X 7219/M A X 722112______________________________________________________________________________________Figure 2. MAX7219/MAX7221 Driving 2.3-Inch DisplaysMAX7219/MAX7221______________________________________________________________________________________13Figure 3. Cascading MAX7219/MAX7221s to Drive 16 7-Segment LED DigitsM A X 7219/M A X 722114_______________________________________________________________________________________Ordering Information (continued)___________________Chip TopographySEG FSEG ACLK LOAD OR CS DIG 1DIG 5GNDGNDDIG 7DIG 3DIG 2DIG 60.093"(2.36mm)0.080"(2.03mm)SEG B ISET SEG ESEG DP SEG CSEG G DIG 4DIG 0DIN DOUT SEG DTRANSISTOR COUNT: 5267SUBSTRATE CONNECTED TO GNDMAX7219/MAX7221______________________________________________________________________________________15________________________________________________________Package InformationM A X 7219/M A X 7221___________________________________________Package Information (continued)Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.16____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600©1997 Maxim Integrated ProductsPrinted USAis a registered trademark of Maxim Integrated Products.。
MAX7219驱动数码管应用
MAX7219驱动数码管应用MAX7219的PROTEUS仿真MAX7219是美国MAXIM(美信)公司生产的串行输入/输出共阴极显示驱动器。
它采用了3线串行接口,传送速率达10M数据,能驱动8位七段数字型LED或条形显示器或64只独立的LED。
MAX7219内置BCD码译码器、多路扫描电路、段和数字驱动器和存储每一位的8*8静态RAM。
能方便的用模拟或数字方法控制段电流的大小,改变显示器的数量;能进入低功耗的关断模式(仅消耗150uA电流,数据保留);能方便地进行级联。
可广泛用于条形图显示、七段显示、工业控制、仪器仪表面板等领域。
而且其最重要的一点是,每个显示位都能个别寻址和刷新,而不需要重写其他的显示位,这使得软件编程十分简单且灵活。
MAX719后缀表示其封装方式和工作温度,如表所示:后缀封装工作温度 CNG 窄24脚 0----70? CWG SO24脚 0----70? ENG 窄24脚 -40---85? EWG SO24脚 -40---85? 一. MAX7219的结构和功能1(引脚说明MAX7219的引脚排列如图所示,各引脚功能叙述如下:(1)脚:DIN,串行数据输入。
在CLK的上升沿到来时,数据被移入到内部的16位移位寄存器中。
(2)、(3)、(5)~(8)、(10)、(11)脚:DIG0—DIG7,输入。
8位数字位位选线,从共阴极显示器吸收电流。
(4)、(9)脚:GND,地。
两个引脚必须连接在一起。
(12)脚:LOAD,数据装载输入端。
在LOAD上升沿,移位寄存器接受的数据被锁存。
(13)脚:CLK,时钟输入端,最高时钟频率10MHz。
在CLK的上升沿,数据被移入到内部的16位移位寄存器中。
在CLK的下降沿,数据从DOUT脚输出。
(14)~(15)、(20)~(23)脚:输出。
七段驱动器和小数点驱动器。
它供给显示器电流。
(18)脚:ISET,电流调节端。
通过一个电阻和VCC相连,来调节最大段电流。
8位串行接口数码显示驱动器MAX7219及其应用
8位串行接口数码显示驱动器MAX7219及其应用潍坊高等专科学校 王瑞兰LED数码管的应用已十分广泛,用于数码管显示的驱动电路种类较多,但大致可分为静态显示驱动和动态扫描显示驱动两大类别。
本文所要介绍的MAX7219芯片就是 用于动态扫描显示驱动的芯片。
该芯片的特点是利用一块芯片就能完成8位字数据和8位线数据的驱动,使得电路紧凑。
多芯片级联时,采用串行输入输出,可节省CPU的口线和接口芯片。
与数码管联接时无需限流电阻,8位显示的电流可通过一个外部电阻进行调节。
显示亮度也可通过程序进行控制。
片内具有,可以对输入的数据先进行译码再驱动输出,也可以将输入的数据直接驱动。
一、管脚功能MAX7219采用24管脚DIP和SO两种封装形式,管脚排列如图1所示,各引脚功能见表1。
二、MAX7219内部结构MAX7219的内部功能框图如图2所示。
16位移位寄存器所存数据为D0~D15,见表2。
D8~D11为寄存器地址,D0-D7为数据,D12-D15为不关心位。
片内有14个寄存器,其中8个数据寄存器,寄存着与DIG 0-DIG 7对应的显示数据,地址依次为×1H-8H;6个控制寄存器,即译码控制寄存器(Decode Mode)、显示亮度控制寄存器(Intensity)、扫描频率限制寄存器(Scan Limit)、消隐控制寄存器(Shutdown)、显示测试寄存器Display Test)及无操作寄存器(No-Op),其地址依次为×9H-CH、×FH、×0H。
数据寄存器为8×8双指针SRAM。
因为各寄存器可直接寻址,所以寄存器的数据可分别进行修改。
寄存器的数据可以保存到电源电压降低到2V。
三、控制寄存器1. Shutdown 寄存器Shutdown 寄存器写入×××××××0B数据时,将呈现消隐状态。
串行接口8位LED显示驱动器MAX7219
表 2 串行数据格式( 16 位)
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0
X XXX
地址
数据
寄存器
空操作 位0 位1 位2 位3 位4 位5 位6 位7
译码模式 强度 限扫 关闭
显示测试
D15~ D12
表 3 寄存器地 址控制字
地址
D11
达。串行输入数据通过移位寄存器传输, 在以 D15( 如表 2 所列) , D8~ D11 为移位寄存器地
址, D0~ D7 为数据, D12~ D15 是无 关 位。第一位接收到的位 是最高位
D15。D7 为数据最高有效位, D0 为数 据最低有效位。
2. M AX 7219 控制字
图 2 M A X 7219 的功能框图
显示检测寄存器有两种操作模式: 一般测 试和显示测试。显示测试模式时所有的 L ED 点亮, 方法是将所有控制字寄存器( 包括关闭寄 存器) 置成无效。在显示测试模式下扫描 8 位的
表 5 软件译码数字对应的段笔划
寄存器数据 D7 D6 D5 D4 D3 D2 D1 D0 对应的段笔划 DP A B C D E F G
串行接口 8 位 LED 显示驱动器 MAX7219
- 29-
新特器件应用
串行接口 8 位 L ED 显示驱动器 M AX7219
山西省医疗器械研究所 张志清
摘要: M AX7219 是一种高集成化的串行输入/ 输出共阴极显示驱动器, 具有软件译码、硬 件译码功能, 单一位数据能被寻址更新, 可广泛应用于工业控制、仪器仪表的柱状图、7 段 码 L ED 矩阵显示。本文介绍了该驱动器的引脚功能、工作原理, 并给出了应用实例。 关键词: 串行数据 控制字 译码器 驱动器 L ED 显示
MAX7219在串行LED显示驱动器上的应用
率高( 700- 800m2/m2) , 但价格贵一倍。各 个 换 热 站 采 用 钠 离 子 交 换 器 进行水处理, 所以换热站采用压差控 制 , 现 已 运 行 1000 万 m2; 已 投 入 运行两年, 没有发现任何问题。
6.结论 通过上面的分析, 对于二级热网, 更好地利用?城镇直埋供热管道 工程技术规程?指导工程设计, 对于满足规程验算条件的直管段, 完全
CLR ES DISP1: CLR P1.0
MOV R0, 20H
DISP2: MOV SBUF, @R0 JNB T1 INC R0 DJNZ R1, DISP2 SETB P1.0 NOP NOP CLR T1 RET
四 、结 束 语 : MAX7219 能 够 驱 动 8 个 LED, 可 方 便 地 对 每 位 LED 进行单独控制、刷新, 不需重写整个显示器寄存器, 通信方式采用 串行数据方式, 可与任何一种单片机方便接口。MCU8031 与 MAX7219 构成的显示系统可应用在条状图形显示器、7 段数 码 管 显 示 器 、工 业 控制器显示模板、面板表与 LED 矩阵显示器等众多场合。科
两 T 构的合拢段施工时, 将任一侧的桁架挂篮拆除, 另一侧的桁 架接长后 支 撑 在 第 10# 块 箱 梁 上 , 将 挂 篮 拖 至 适 当 位 置 , 即 可 进 行 合 拢段施工, 如简图 3- 3 所示。桁架挂篮应保持其中心线与箱梁中心线 一致, 如有偏移, 应使用千斤顶逐渐纠正。
五 、挂 篮 的 提 升 及 拆 除 箱梁由根部至端部为二次抛物线形, 因此每浇筑一个梁段均需将 底模提高一次。为此, 我们再吊带上精确制作了几个销钉孔, 根据销钉 位置不同来实现底模升高。当提高不多时, 可采取支垫底模的方法。经 过几次提高后, 高差变大时, 需用提升挂篮的方法将底模升高, 挂篮的 提升方法如简图 4 所示, 用链滑车将各吊带同时提高, 然后用炮弹销 穿入所需销钉孔。
MAXIM MAX7219 MAX7221 说明书
现货库存、技术资料、百科信息、热点资讯,精彩尽在鼎好!_______________General DescriptionThe MAX7219/MAX7221 are compact, serial input/out-put common-cathode display drivers that interface microprocessors (µPs) to 7-segment numeric LED dis-plays of up to 8 digits, bar-graph displays, or 64 indi-vidual LEDs. Included on-chip are a BCD code-B decoder, multiplex scan circuitry, segment and digit drivers, and an 8x8 static RAM that stores each digit.Only one external resistor is required to set the seg-ment current for all LEDs. The MAX7221 is compatible with SPI™, QSPI™, and Microwire™, and has slew-rate-limited segment drivers to reduce EMI.A convenient 3-wire serial interface connects to all common µPs. Individual digits may be addressed and updated without rewriting the entire display. The MAX7219/MAX7221 also allow the user to select code-B decoding or no-decode for each digit.The devices include a 150µA low-power shutdown mode, analog and digital brightness control, a scan-limit register that allows the user to display from 1 to 8digits, and a test mode that forces all LEDs on.________________________ApplicationsBar-Graph Displays 7-Segment Displays Industrial Controllers Panel Meters LED Matrix Displays____________________________Featureso 10MHz Serial Interfaceo Individual LED Segment Control o Decode/No-Decode Digit Selectiono 150µA Low-Power Shutdown (Data Retained)o Digital and Analog Brightness Control o Display Blanked on Power-Up o Drive Common-Cathode LED Display o Slew-Rate Limited Segment Drivers for Lower EMI (MAX7221)o SPI, QSPI, Microwire Serial Interface (MAX7221)o 24-Pin DIP and SO PackagesMAX7219/MAX7221Serially Interfaced, 8-Digit LED Display Drivers________________________________________________________________Maxim Integrated Products1________Typical Application Circuit__________________Pin Configuration19-4452; Rev 3; 7/97SPI and QSPI are trademarks of Motorola Inc. Microwire is a trademark of National Semiconductor Corp.For free samples & the latest literature: , or phone 1-800-998-8800.For small orders, phone 408-737-7600 ext. 3468.M A X 7219/M A X 72212_______________________________________________________________________________________ABSOLUTE MAXIMUM RATINGSELECTRICAL CHARACTERISTICS(V+ = 5V ±10%, R SET = 9.53k Ω±1%, T A = T MIN to T MAX , unless otherwise noted.)Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.Voltage (with respect to GND)V+............................................................................-0.3V to 6V DIN, CLK, LOAD, CS ...............................................-0.3V to 6V All Other Pins.............................................-0.3V to (V+ + 0.3V)CurrentDIG0–DIG7 Sink Current................................................500mA SEGA–G, DP Source Current.........................................100mA Continuous Power Dissipation (T A = +85°C)Narrow Plastic DIP..........................................................0.87W Wide SO..........................................................................0.76W Narrow CERDIP.................................................................1.1WOperating Temperature RangesMAX7219C_G/MAX7221C_G ..............................0°C to +70°C MAX7219E_G/MAX7221E_G............................-40°C to +85°C Storage Temperature Range.............................-65°C to +160°C Lead Temperature (soldering, 10sec).............................+300°CMAX7219/MAX7221_______________________________________________________________________________________3ELECTRICAL CHARACTERISTICS (continued)(V+ = 5V ±10%, R SET =9.53k Ω±1%, T A = T MIN to T MAX , unless otherwise noted.)M A X 7219/M A X 72214_________________________________________________________________________________________________________________________________Typical Operating Characteristics(V+ = +5V, T A = +25°C, unless otherwise noted.)730750740770760790780800820810830 4.04.44.85.25.66.0SCAN FREQUENCY vs. POSITIVE SUPPLY VOLTAGEM A X 7219/21 01POSITIVE SUPPLY VOLTAGE (V)S C A N F R E Q U E N C Y (H z )20104030605070012345SEGMENT DRIVER OUTPUT CURRENTvs. OUTPUT VOLTAGEOUTPUT VOLTAGE (V)O U T P U T C U R R E N T (m A )MAX7219SEGMENT OUTPUT CURRENTM A X 7219/21 035µs/div10mA/div0MAXIMUM INTENSITY = 31/32MAX7221SEGMENT OUTPUT CURRENTM A X 7219/21 045µs/div10mA/divMAXIMUM INTENSITY = 15/16MAX7219/MAX7221______________________________________________________________Pin Description_________________________________________________________Functional DiagramM A X 7219/M A X 72216______________________________________________________________________________________________________Detailed DescriptionMAX7219/MAX7221 DifferencesThe MAX7219 and MAX7221 are identical except fortwo parameters: the MAX7221 segment drivers are slew-rate limited to reduce electromagnetic interfer-ence (EMI), and its serial interface is fully SPI compati-ble.Serial-Addressing ModesFor the MAX7219, serial data at DIN, sent in 16-bit packets, is shifted into the internal 16-bit shift register with each rising edge of CLK regardless of the state of LOAD. For the MAX7221, CS must be low to clock data in or out. The data is then latched into either the digit or control registers on the rising edge of LOAD/CS .LOAD/CS must go high concurrently with or after the 16th rising clock edge, but before the next rising clock edge or data will be lost. Data at DIN is propagated through the shift register and appears at DOUT 16.5clock cycles later. Data is clocked out on the falling edge of CLK. Data bits are labeled D0–D15 (Table 1).D8–D11 contain the register address. D0–D7 contain the data, and D12–D15 are “don’t care” bits. The first received is D15, the most significant bit (MSB).Digit and Control RegistersTable 2 lists the 14 addressable digit and control regis-ters. The digit registers are realized with an on-chip,8x8 dual-port SRAM. They are addressed directly so that individual digits can be updated and retain data as long as V+ typically exceeds 2V. The control registers consist of decode mode, display intensity, scan limit (number of scanned digits), shutdown, and display test (all LEDs on).Shutdown ModeWhen the MAX7219 is in shutdown mode, the scan oscil-lator is halted, all segment current sources are pulled to ground, and all digit drivers are pulled to V+, thereby blanking the display. The MAX7221 is identical, except the drivers are high-impedance. Data in the digit and control registers remains unaltered. Shutdown can be used to save power or as an alarm to flash the display by successively entering and leaving shutdown mode. For minimum supply current in shutdown mode, logic inputs should be at ground or V+ (CMOS-logic levels).Typically, it takes less than 250µs for the MAX7219/MAX7221 to leave shutdown mode. The display driver can be programmed while in shutdown mode, and shutdown mode can be overridden by the display-test function.Figure 1. Timing DiagramTable 1. Serial-Data Format (16 Bits)Initial Power-UpOn initial power-up, all control registers are reset, the display is blanked, and the MAX7219/MAX7221 enter shutdown mode. Program the display driver prior to display use. Otherwise, it will initially be set to scan one digit, it will not decode data in the data registers, and the intensity register will be set to its minimum value.Decode-Mode RegisterThe decode-mode register sets BCD code B (0-9, E, H,L, P, and -) or no-decode operation for each digit. Each bit in the register corresponds to one digit. A logic high selects code B decoding while logic low bypasses the decoder. Examples of the decode mode control-regis-ter format are shown in Table 4.When the code B decode mode is used, the decoder looks only at the lower nibble of the data in the digit registers (D3–D0), disregarding bits D4–D6. D7, which sets the decimal point (SEG DP), is independent of the decoder and is positive logic (D7 = 1 turns the decimal point on). Table 5 lists the code B font.When no-decode is selected, data bits D7–D0 corre-spond to the segment lines of the MAX7219/MAX7221.Table 6 shows the one-to-one pairing of each data bit to the appropriate segment line.MAX7219/MAX7221Table 3. Shutdown Register Format (Address (Hex) = XC)Table 4. Decode-Mode Register Examples (Address (Hex) = X9)M A X 7219/M A X 7221Intensity Controland Interdigit BlankingThe MAX7219/MAX7221 allow display brightness to be controlled with an external resistor (R SET ) connected between V+ and ISET. The peak current sourced from the segment drivers is nominally 100 times the current entering ISET. This resistor can either be fixed or vari-able to allow brightness adjustment from the front panel. Its minimum value should be 9.53Ω, which typi-cally sets the segment current at 40mA. Display bright-ness can also be controlled digitally by using the intensity register.Digital control of display brightness is provided by an internal pulse-width modulator, which is controlled by the lower nibble of the intensity register. The modulator scales the average segment current in 16 steps from a maximum of 31/32 down to 1/32 of the peak current set by R SET (15/16 to 1/16 on MAX7221). Table 7 lists the intensity register format. The minimum interdigit blank-ing time is set to 1/32 of a cycle.8_______________________________________________________________________________________Table 5. Code B FontTable 6. No-Decode Mode Data Bits and Corresponding Segment Lines*The decimal point is set by bit D7 = 1Scan-Limit RegisterThe scan-limit register sets how many digits are dis-played, from 1 to 8. They are displayed in a multiplexed manner with a typical display scan rate of 800Hz with 8digits displayed. If fewer digits are displayed, the scan rate is 8f OSC /N, where N is the number of digitsscanned. Since the number of scanned digits affects the display brightness, the scan-limit register should not be used to blank portions of the display (such as leading zero suppression). Table 8 lists the scan-limit register format.MAX7219/MAX7221_______________________________________________________________________________________9Table 7. Intensity Register Format (Address (Hex) = XA)Table 8. Scan-Limit Register Format (Address (Hex) = XB)*See Scan-Limit Register section for application.M A X 7219/M A X 7221If the scan-limit register is set for three digits or less,individual digit drivers will dissipate excessive amounts of power. Consequently, the value of the R SET resistor must be adjusted according to the number of digits dis-played, to limit individual digit driver power dissipation.Table 9 lists the number of digits displayed and the corresponding maximum recommended segment cur-rent when the digit drivers are used.Display-Test RegisterThe display-test register operates in two modes: normal and display test. Display-test mode turns all LEDs on by overriding, but not altering, all controls and digit reg-isters (including the shutdown register). In display-test mode, 8 digits are scanned and the duty cycle is 31/32(15/16 for MAX7221). Table 10 lists the display-test reg-ister format.No-Op RegisterThe no-op register is used when cascading MAX7219s or MAX7221s. Connect all devices’ LOAD/CS inputs together and connect DOUT to DIN on adjacent devices. DOUT is a CMOS logic-level output that easily drives DIN of successively cascaded parts. (Refer to the Serial Addressing Modes section for detailed infor-mation on serial input/output timing.) For example, if four MAX7219s are cascaded, then to write to thefourth chip, sent the desired 16-bit word, followed by three no-op codes (hex XX0X, see Table 2). When LOAD/CS goes high, data is latched in all devices. The first three chips receive no-op commands, and the fourth receives the intended data.__________Applications InformationSupply Bypassing and WiringTo minimize power-supply ripple due to the peak digit driver currents, connect a 10µF electrolytic and a 0.1µF ceramic capacitor between V+ and GND as close to the device as possible. The MAX7219/MAX7221 should be placed in close proximity to the LED display, and connections should be kept as short as possible to minimize the effects of wiring inductance and electro-magnetic interference. Also, both GND pins must be connected to ground.Selecting R SET Resistor andUsing External DriversThe current per segment is approximately 100 times the current in ISET. To select R SET , see Table 11. The MAX7219/MAX7221’s maximum recommended seg-ment current is 40mA. For segment current levels above these levels, external digit drivers will be need-ed. In this application, the MAX7219/MAX7221 serve only as controllers for other high-current drivers or tran-sistors. Therefore, to conserve power, use R SET = 47k Ωwhen using external current sources as segment dri-vers.The example in Figure 2 uses the MAX7219/MAX7221’s segment drivers, a MAX394 single-pole double-throw analog switch, and external transistors to drive 2.3”AND2307SLC common-cathode displays. The 5.6V zener diode has been added in series with the decimal point LED because the decimal point LED forward volt-age is typically 4.2V. For all other segments the LED forward voltage is typically 8V. Since external transis-tors are used to sink current (DIG 0 and DIG 1 are used as logic switches), peak segment currents of 45mA are allowed even though only two digits are displayed. In applications where the MAX7219/MAX7221’s digit dri-vers are used to sink current and fewer than four digits are displayed, Table 9 specifies the maximum allow-able segment current. R SET must be selected accord-ingly (Table 11).Refer to the Power Dissipation section of the Absolute Maximum Ratings to calculate acceptable limits for ambient temperature, segment current, and the LED forward-voltage drop.10______________________________________________________________________________________Table 9. Maximum Segment Current for 1-, 2-, or 3-Digit DisplaysTable 10. Display-Test Register Format (Address (Hex) = XF)Note: The MAX7219/MAX7221 remain in display-test mode (all LEDs on) until the display-test register is reconfigured for normal operation.Computing Power DissipationThe upper limit for power dissipation (PD) for the MAX7219/MAX7221 is determined from the following equation:PD = (V + x 8mA) + (V+ - V LED )(DUTY x I SEG x N)where:V+ = supply voltageDUTY = duty cycle set by intensity register N = number of segments driven (worst case is 8)V LED = LED forward voltageI SEG = segment current set by R SET Dissipation Example:I SEG = 40mA, N = 8, DUTY = 31/32, V LED = 1.8V at 40mA, V+ = 5.25V PD = 5.25V(8mA) + (5.25V - 1.8V)(31/32 x 40mA x 8) = 1.11WThus, for a CERDIP package (θJA = +60°C/W from Table 12), the maximum allowed ambient temperature T A is given by:T J(MAX)= T A + PD x θJA + 150°C = T A +1.11W x60°C/Wwhere T A = +83.4°C.Cascading DriversThe example in Figure 3 drives 16 digits using a 3-wire µP interface. If the number of digits is not a multiple of 8, set both drivers’ scan limits registers to the same number so one display will not appear brighter than the other. For example, if 12 digits are need, use 6 digits per display with both scan-limit registers set for 6 digits so that both displays have a 1/6 duty cycle per digit. If 11 digits are needed, set both scan-limit registers for 6digits and leave one digit driver unconnected. If one display for 6 digits and the other for 5 digits, the sec-ond display will appear brighter because its duty cycle per digit will be 1/5 while the first display’s will be 1/6.Refer to the No-Op Register section for additional infor-mation.MAX7219/MAX7221______________________________________________________________________________________11Table 11. R SET vs. Segment Current and LED Forward VoltageTable 12. Package Thermal Resistance DataM A X 7219/M A X 722112______________________________________________________________________________________Figure 2. MAX7219/MAX7221 Driving 2.3-Inch DisplaysMAX7219/MAX7221______________________________________________________________________________________13Figure 3. Cascading MAX7219/MAX7221s to Drive 16 7-Segment LED DigitsM A X 7219/M A X 722114_______________________________________________________________________________________Ordering Information (continued)___________________Chip TopographySEG FSEG ACLK LOAD OR CS DIG 1DIG 5GNDGNDDIG 7DIG 3DIG 2DIG 60.093"(2.36mm)0.080"(2.03mm)SEG B ISET SEG ESEG DP SEG CSEG G DIG 4DIG 0DIN DOUT SEG DTRANSISTOR COUNT: 5267SUBSTRATE CONNECTED TO GNDMAX7219/MAX7221______________________________________________________________________________________15________________________________________________________Package InformationM A X 7219/M A X 7221___________________________________________Package Information (continued)Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.16____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600©1997 Maxim Integrated ProductsPrinted USAis a registered trademark of Maxim Integrated Products.。
MAX7219共阴极LED驱动器程序
MAX7219共阴极 LED数码管显示驱动(一)、 MAX7219MAX7219是一种串入、并出的共阴极LED数码管显示驱动器,每片可驱动8 位 LED数码管显示,与单片机的接口只要 3 根线,内带BCD译码器,及显示测试、移位、锁存器等,输出电流达40mA,外头只要一只亮度调整电阻。
MAX7219引脚图1、引脚功能说明DIN:串行数据输入端,CLK的上涨沿时数据被载入内部16 位移位存放器中CLK:串行时钟输入端,最高工作频次可达10MHzLOAD:片选端,低电平接收DIN 端的数据,高电平常数据被所存DIG0~7: LED的位控制端A~DP:LED的端控制端DOUT:串行数据输出端,用于芯片的级联ISET:硬件亮度调整端,在该引脚与VCC之间跨接一个电阻,LED的亮度即可经过该电阻来调理,流过LED的段驱动均匀电流为流过此电阻电流的100 倍, 此电阻值范围为:10~80K 之间。
2、内部存放器说明A、译码方式选择存放器地点:09H赋值: FFH表示使用MAX7219内部的BCD译码器00H表示不使用MAX7219内部的 BCD译码器B、亮度调理存放器地点:0AH赋值:00H~0FH 可改变MAX7219所驱动的LED的亮度,其变化范围在1/32~31/32之间C、扫描位数设定存放器地点:0BH赋值: 00H所有位不显示01H~07H挨次对应于1~8 位及前方位所有显示(即需显示的位应为“1”)D、待机模式开关存放器地点:0CH赋值: 00H LED全灭01H LED正常显示E、显示器测试存放器地点: 0FH赋值: 00H LED为正常显示状态01H LED测试状态,即LED全亮F、8 位LED显示数据存放器地点: 01H~08H对这些存放器赋值(即需显示的内容),就会在对应的1~8 位LED数码管上显示出来3、使用注意事项因为电源中杂波或邻近的电磁等扰乱信号,使MAX7219在上电后不显示或乱显示;为了除去这类现象应在 MAX7219的 VCC端与地之间接一只104pf 的瓷片电容,在LOAD端于地之间接一只10K 的电阻。
用MCS-51单片机串行口对MAX7219及显示器控制的方法和程序
介绍MAX7219的功能,与MCS-51的时序配合及一种新颖的利用MCS-51串行方式0对MAX7219及显示器控制的方法和程序。
单片机系统通常需要有LED对系统的状态进行观测,而很多工业控制用单片机如MCS-51系列本身并无显示接口部分,需要外接显示的译码驱动电路。
LED数码管显示有动态显示和静态显示两种方式。
通常不管采用哪种显示方式,单片机往往都工作于并行I/O或存储器方式。
作者在采用MCS-51单片机的控制系统中,利用MAXIM公司的串行接口8位LED显示驱动器MAX7219构成显示接口电路,仅需使用单片机3个引脚,即可实现对8位LED数码管的显示控制和驱动,线路非常简单,控制简单方便。
1 MAX7219的功能和设置:MAX7219芯片为MAXIM公司推出的串行输入/输出共阴极显示驱动器,是用一个芯片实现以往用软件完成的动态显示电路扫描工作的器件。
每片可控制显示8个七段LED数码管、条形图或64个发光二极管,控制字简单,可与各种微机接口。
为24引脚芯片,除与显示器连接外,与微机串行口为3线连接,芯片外部电路仅为一限制峰值段电流的电阻,线路简单,极大地方便了对显示器件的控制。
该芯片控制的显示位数多,控制字少,可对全部或个别显示位的数据进行更新。
并可方便地进行多个芯片的级联,扩展显示容量。
MAX7219有多种封装形式,如窄式DIP封装。
MAX7219的串行数据格式如表1所示。
其中:D12~D15位不用;D8~D11为显示位和各种工作方式的控制寄存器地址位,可选择要显示的位、解码方式、显示亮度、扫描位数、停止方式、显示测试等,其地址分布如表2所示;D0~D7为数据位,其形式与显示出的数字间的关系与解码方式有关。
表2中X可为16进制任意值,一般取为0。
每组16位数据中,首先接收的为最高有效位,最后接收的为最低有效位。
解码方式寄存器可设置各位数码管为解码显示方式,或非解码的数据位与显示段直接对应的显示方式。
max7221动态显示课程设计实验报告
单片机课程设计实验报告课程设计名称:MAX7221动态显示课程设计姓名:设计目标:1、利用Proteus 软件设计一个以AT89C52单片机为主控元件由MAX7221驱动的8位7段数码管动态显示电路。
2、利用protel99绘制原理图。
3、利用microfost Visio绘制硬件总设计框图和程序流程图。
4、根据流程图利用Keil uVision对单片机软件进行编译,与Proteus联调后使系统控制能够完成显示:“01234567”,保持。
图 1 总设计框图二、硬件电路设计本设计中,单片机采用Atmel公司的AT89C52;MAX7221串行输入/输出共阴极显示驱动器;LED数码显示器采用8位7段共阴极数码管显示器。
(硬件总原理图见附件1)P3.0口用来串行数据的接收;P3.1口用来串行数据的发送;P3.2口为外部中断0,此处电平触发(IT0=1)每次执行完中断里面的程序(只要不关闭中断)就又跳进中断里去了,不断的循环执行。
XTAL1和XTAL2外接12MHz的晶振和2个22pF的电容构成时钟电路。
EA/VPP,当EA=1时允许使用片内ROM,当EA=0时只使用片外ROM。
EA/VPP端和RESET 复位端连接一个10μF的有极性电容,在EA端再接+5V,在RESET端接一个8.2k的电阻并接地构成复位电路。
AT89C52与时钟电路和复位电路构成单片机最小系统。
MAX7221采用串行接口方式,可以很方便地和单片机相连,仅占用单片机的P3.0口,P3.1口和P3.2口。
DIN脚为串行数据输入端,数据存入内部16位移位寄存器,它与P3.0口相连。
CS 脚是片选输入端,当 CS=0 时,串行数据存入移位寄存器,当 CS 为上升沿时锁存最后 16 位数据,与P3.1口相连。
CLK 脚是串行时钟输入端,最高频率 10MHz,在时钟上升沿数据移位存入内部移位寄存器,当时钟下降沿时,数据由 DOUT输出,CLK 输入仅当CS 为0 时有效,与P3.2口相连。
串行LED显示驱动器MAX7219及其应用
沿出现的同时或之后,但在下一个CI。K上升沿之前 变为高电平,否则移人的数据将丢失。
表l引脚说明
引脚号
l 2。3.5~ 8.10.11 4.9 12
13
14~17 20~23 18 19
24
名称
功能说明
D。 DIG0~
串行数据输入端。在CLK的上升沿数 据被锁人芯片内部16位移位寄存器 8位LED位选线.从共阴极LED中吸
等教育出版社,1991 4 谢嘉奎.电子线路(第4版).北京:高等教育出
版社,1999
The Calculating of the Power Factor for Switching Power Supply
I。i Tin鲥un Mi Yulin Jiang Zhongshan Ren Jiancun I。i Xin
Key words non—sine waveform,power factor,switching power supply,fourier analysis
万方数据
D15 D14 D13 D12 D1l D10 D9
D8 D7 D6 D5 D4
RESS
MSB
DATA
LSB
万方数据
第5期
胡奕明:串行I。ED显示驱动器MAX7219及其应用
29
+5V
图l典型应用电路 其中:D7~DO:8位数据位,D7最高位,
Do为最底位; D11~D8:4位地址位; D15~D12:无关位,通常全取1。 MAX7219通过D11~D8 4位地址位译码,可 寻址14个内部寄存器,分别是8个LED显示位寄 存器,5个控制寄存器和1个空操作寄存器。LED显 示寄存器由内部8×8静态RAM构成,操作者可直 接对位寄存器进行个别寻址,以刷新和保持数据,只 要V+超过2 V(一般为+5 V)。 控制寄存器包括:译码模式,显示亮度调节,扫 描限制(选择扫描位数),关断和显示测试寄存器。
Max7219-7221中文
/MAX7221串行接口8位LED显示驱动器一、概述MAX7219/MAX7221是一种集成化的串行输入/输出共阴极显示驱动器,它连接微处理器与8位数字的7段数字LED显示,也可以连接条线图显示器或者64个独立的LED。
其上包括一个片上的B型BCD编码器、多路扫描回路,段字驱动器,而且还有一个8*8的静态RAM用来存储每一个数据。
只有一个外部寄存器用来设置各个LED的段电流。
MAX7221与SPI™、QSPI™以及MICROWIRE™相兼容,同时它有限制回转电流的段驱动来减少EMI(电磁干扰)。
一个方便的四线串行接口可以联接所有通用的微处理器。
每个数据可以寻址在更新时不需要改写所有的显示。
MAX7219/MAX7221同样允许用户对每一个数据选择编码或者不编码。
整个设备包含一个150μA的低功耗关闭模式,模拟和数字亮度控制,一个扫描限制寄存器允许用户显示1-8位数据,还有一个让所有LED发光的检测模式。
在应用时要求3V的操作电压或segment blinking,可以查阅MAX6951数据资料。
二、应用条线图显示仪表面板工业控制LED矩阵显示三、管脚配置四、功能特点●10MHz连续串行口●独立的LED段控制●数字的译码与非译码选择●150μA的低功耗关闭模式●亮度的数字和模拟控制●高电压中断显示●共阴极LED显示驱动●限制回转电流的段驱动来减少EMI(MAX7221)●SPI,QSPI,MICROWIRE串行接口(MAX7221)●24脚的DIP和SO封装五、分类信息芯片工作温度范围管脚封装MAX7219CNG0°C to+70°C24Narrow Plastic DIP MAX7219CWG0°C to+70°C24Wide SO MAX7219C/D0°C to+70°C Dice*MAX7219ENG-40°C to+85°C24Narrow Plastic DIP MAX7219EWG-40°C to+85°C24Wide SO MAX7219ERG-40°C to+85°C24Narrow CERDIP九、时序图十、详细描述(一)MAX7219和MAX7221的不同之处MAX7219和MAX7221是相同的除了以下两点:(1):MAX7219的段驱动有回流限制可以减少EMI;(2):MAX7219的串行口和SPI完全兼容。
MAX7219原理及其应用1
MAX7219原理及其应用西安通信学院(710106) 王建华 逄玉台摘 要 在单片机应用系统中,单片机与LED的连接有并行和串行方式。
由于串行方式占用单片机口线少,因而得到广泛应用。
MAX7219芯片是一个专用的八位LED显示驱动串行接口,文章介绍了其组成原理、应用电路、程序设计及应用中应注意的问题。
关键词 寄存器 液晶显示器 单片机MAX7219是微处理器和共阴极七段——八位LED显示、图条/柱图显示或64点阵显示接口的小型串行输入/输出芯片。
片内包括BCD译码器、多路扫描控制器、字和位驱动器和8×8静态RAM。
外部只需要一个电阻设置所有LED显示器字段电流。
MAX7219和微处理器只需三根导线连接,每位显示数字有一个地址由微处理器写入。
允许使用者选择每位是BCD译码或不译码。
使用者还可选择停机模式、数字亮度控制、从1~8选择扫描位数和对所有LED显示器的测试模式。
1 MAX7219工作原理1.1 MAX7219简介MAX7219和单片计算机连接有三条引线(DIN、CLK、LOAD),采用16位数据串行移位接收方式。
即单片机将16位二进制数逐位发送到DIN端,在CLK上升沿到来前准备就绪,CLK的每个上升沿将一位数据移入MAX7219内移位寄存器,当16位数据移入完,在LOAD引脚信号上升沿将16位数据装入MAX7219内的相应位置,在MAX7219内部硬件动态扫描显示控制电路作用下实现动态显示。
1.2 MAX7219引脚说明MAX7219为24引脚芯片,引脚排列如图1所示,各引脚功能如下:DIN:串行数据输入端;DIG0~DIG7:LED位线;LOAD:数据装载信号输入端;SEGA~SEGG,SEGDp:段码输出端;ISET:硬件亮度调节端;DOUT:串行数据输出端;CLK:移位脉冲输入端;V+:正电源;GND:地。
SEGDpSEGASEGCSEGDDOUTDINDIG0DIG4GNDDIG6DIG2DIG3DIG7GNDDIG5DIG1LOAD CLKSEGFSEGBSEGGISETSEGEV+图1 MAX7219引脚图1.3 MAX7219内部组成结构MAX7219组成如图2所示。
MAX7221的资料
MAX72211 概述MAX7221 是Maxim(美信)公司专为LED 显示驱动而设计生产的串行接口八位LED 显示驱动芯片.该芯片包含有七段译码器、位和段驱动器、多路扫描器、段驱动电流调节器、亮度脉宽调节器及多个特殊功能寄存器.该芯片采用串行接口方式,可以很方便地和单片机相连,未经扩展最多可用于8 位数码显示或64 段码显示.经实际使用发现,该芯片具有占用单片机I/O 口少(仅三线)、显示多样、可靠性高、简单实用、编程灵活方便的特点.2 MAX7221 功能简介2.1 MAX7221 的功能特点(1)10MHz 的串行接口;(2)BCD 译码/非译码模式选择;(3)耗电仅150uA 的省电模式(显示关闭);(4)数字和模拟双重亮度控制;(5)SPI、QSPI、Microwire 等多种串行接口;(6)显示位数可方便地进行扩展.2.2 MAX7221 引脚介绍(见图1)Din 脚,串行数据输入端,数据存入内部16 位移位寄存器.DIG0~DIG7 脚,8 位共阴极数码管的控制输入端,显示关闭时输出高电平.GND 脚,接地端,4 和9 脚都要接地.CS 脚,片选输入端,当CS=0 时,串行数据存入移位寄存器,当CS 为上升沿时锁存最后16 位数据.CLK 脚,串行时钟输入端,最高频率10MHz,在时钟上升沿数据移位存入内部移位寄存器,当时钟下降沿时,数据由Dout 输出,CLK 输入仅当CS=0 时有效.SEGA~SEGG,SEGDP 脚,数码管七段驱动和小数点驱动端,关闭显示时各段驱动输出为高电平.收稿日期:2003-11-20作者简介:张华林(1973-),男,福建诏安县人,讲师,学士.44漳州师范学院学报(自然科学版)2004 年Iset 脚,连接到Vdd 的电阻连接端,用来模拟设定各段驱动电流.Vdd 脚,5V 正电压输入端.Dout 脚,串行数据输出端,数据由Din 输入,经16.5 个时钟延迟后由Dout 引脚输出,此引脚用来扩展MAX7221.2.3 MAX7221 功能2.3.1 串行数据输入和控制寄存器串行数据输入输出时CS 必须为低电平,串行数据由Din 送入一个16 位的数据包,并在每个时钟上升沿时存入内部16 位移位寄存器.数据经16.5 个周期后,在时钟的下降沿由Dout 引脚输出.16 位数据D0~D15 的排列见表1.D0~D7 包含数据,D8~D11 包含寄存器地址,D12~D15 为未定义位,芯片最先接收D15 位.控制寄存器的地址图见表2.表1表22.3.2 省电模式MAX7221 允许工作在省电模式(显示关闭,见表3),在该模式下,供电电流可降低到150uA. 器件在这种模式下上电时,250us 内即可进入正常工作模式.在测试状态下,省电模式被屏蔽.表32.3.3 译码/非译码模式译码模式寄存器可以设置对每一位数字的BCD 译码模式或非译码模式,寄存器的每一位对应一个数字,高电平代表译码,低电平代表旁路译码器.见表4.当芯片处于译码模式时,数据位只有D0~D3 有效,D4~D6 位为无效位,D7 为小数点位,见表5.当芯片处于非译码模式时,数据D0~D7 位对应8 个笔划段,见表6.第1 期张华林:MAX7221 的原理与应用45 表4表5表62.3.4 亮度控制寄存器本芯片允许由外加在Vdd 和Iset 之间的电阻Rset 调节LED 亮度,Rset 阻值至少为9.53K,它也允许由亮度控制寄存器进行设置,通过设置每一笔划的扫描脉冲占空比达到调整亮度的目的,见表7.2.3.5 扫描位数控制寄存器扫描位数控制寄存器可以设置显示1~8 位(见表8),多路扫描器在显示8 位时典型的扫描频率为800Hz.显示位数减少时,扫描频率上升为8f/N(f 为扫描频率,N 为显示位数).当显示位数为3 位、2 位、1 位时,Rset 应至少增大为15K、20K、40K.46漳州师范学院学报(自然科学版)2004 年表7表82.3.6 显示测试模式和空操作模式显示测试寄存器操作有两种模式:正常模式和显示测试模式(见表9).显示测试时屏蔽所有功能设置,全部8 位的每一笔划的扫描脉冲占空比均为15/16.空操作模式用于芯片扩展,后面的芯片要显示的数据经过前面的芯片时,前面的芯片应处于空操作模式.表93 MAX7221 与PIC 单片机的连接MAX7221 与PIC16C73 单片机的接口电路如图2 所示,该电路是某型号打码机的显示部分电路,U1、U2、U3 分别用来显示打码速度、打码碳带温度、打码位置.U1、U2、U3 共占用7 个数码管,另有4 个指示灯,分别为工作指示、测试指示、温度过高报警指示、碳带用完报警指示.PIC 单片机的RC3、RC4、RC5 分别接MAX7221 的CLK、DATAIN、CS 引脚.本文介绍的显示电路应用于某型号打码机,经实践证明,其显示简单,运行可靠.该芯片还第1 期张华林:MAX7221 的原理与应用47 可以广泛应用于段曲线显示、工业控制、LED 矩阵显示等.图2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
```````````````````````````````````গၤNBY832:0NBY8332ᆐஜࡼࠈቲၒྜྷ0ၒ߲ৢፓመာདࣅLj᎖ೌᆈࠀಯ)μQ*Ꭷ9ᆡ8ࣤMFEၫ൩መာĂᄟተᅄመာ75ৈࣖೂࡼMFEăୈดᒙCDE!C൩ፉ൩Ăࣶവআྸහ࢟വĂࣤਜ਼ᆡདࣅጲૺࡀඛᆡၫᔊࡼ9y9ஸზSBNăᒑኊጙৈᅪݝ࢟ᔜ૾భᒙჅᎌMFEࡼࣤ࢟ഗăNBY8332ରྏ᎖TQJ UN ĂRTQJ UN ጲૺNJDSPXJSF UN ాLjࣤདࣅࡒᎌڼൈሢᒜLjጲଢ଼ࢅFNJăܣಽࡼ5ሣࠈቲాభጲೌჅᎌᄰμQăభ࣪ඛᆡၫᔊࣖኰᒍਜ਼ৎቤLjᇄኊᒮቤቖྜྷᑳৈመာăNBY832:0NBY8332થᏤઓᆐඛᆡၫᔊኡᐋC൩ፉ൩ऻፉ൩ऱါăୈᎌ261μBࢅਈࣥෝါĂෝผਜ਼ၫᔊೡ఼ࣞᒜĂᏤઓመာ2ᒗ9ᆡၫᔊࡼྸහሢᒜࡀጲૺ༓ᒜ࢛ೡჅᎌMFEࡼހ၂ෝါăྙኊ4Wᔫ࢟ኹᔊࣤ࿑ႄࡼ።Lj༿ݬఠNBY7:62ၫᓾ೯ă```````````````````````````````````።```````````````````````````````````ᄂቶ♦21NI{ࠈቲా♦ࣖೂࡼMFE఼ࣤᒜ♦ፉ൩0ऻፉ൩ᆡኡᐋ♦261μBࢅਈࣥ)ၫۣߒ*!♦ၫᔊਜ਼ෝผೡ఼ࣞᒜ♦࢟ဟࠀ᎖ཝᓨზ♦དࣅৢፓMFEመာ♦ࣤདࣅࡼڼൈሢᒜถᎌᓐ᎖ଢ଼ࢅFNJ!)NBY8332*!♦TQJĂRTQJĂNJDSPXJSFࠈቲా)NBY8332*!♦35୭EJQਜ਼TPॖᓤNBY832:0NBY8332ࠈቲాĂ9ᆡĂMFEመာདࣅ________________________________________________________________Maxim Integrated Products1```````````````````````````࢜ቯ።࢟വ```````````````````````````````୭ᒙ19-4452; Rev 4; 7/03```````````````````````````````ࢾ৪ቧᇦࢾ৪ቧᇦ)ኚ*Ᏼၫᓾ೯ࡼᔢઁ߲ă*ൡຢᔫᏴU B >!,36°DăTQJਜ਼RTQJဵNpupspmb!Jod/ࡼܪăNJDSPXJSFဵObujpobm!Tfnjdpoevdups!Dpsq/ࡼܪăᄟተᅄመာጓ఼ᒜෂۇܭMFE࢛ᑫመာ۾ᆪဵ፞ᆪၫᓾ೯ࡼፉᆪLjᆪᒦభถࡀᏴडፉࡼݙᓰཀྵࡇᇙăྙኊጙݛཀྵཱྀLj༿Ᏼิࡼଐᒦݬఠ፞ᆪᓾ೯ăᎌਈଥৃĂૡૺࢿ৪ቧᇦLj༿ೊNbyjnᒴሾ၉ᒦቦǖ21911!963!235:!)۱ᒦਪཌ*Lj21911!263!235:!)ฉᒦਪཌ*LjषᆰNbyjnࡼᒦᆪᆀᐶǖdijob/nbyjn.jd/dpnăN B Y 832:0N B Y 8332ࠈቲాĂ9ᆡĂMFEመာདࣅ2_______________________________________________________________________________________ABSOLUTE MAXIMUM RATINGSELECTRICAL CHARACTERISTICS(V+ = 5V ±10%, R SET = 9.53k Ω±1%, T A = T MIN to T MAX , unless otherwise noted.)Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.Voltage (with respect to GND)V+............................................................................-0.3V to 6V DIN, CLK, LOAD, CS ...............................................-0.3V to 6V All Other Pins.............................................-0.3V to (V+ + 0.3V)CurrentDIG 0–DIG 7 Sink Current..............................................500mA SEG A–G, DP Source Current........................................100mA Continuous Power Dissipation (T A = +85°C)Narrow Plastic DIP (derate 13.3mW/°Cabove +70°C)..............................................................1066mW Wide SO (derate 11.8mW/°C above +70°C).................941mW Narrow CERDIP (derate 12.5mW/°C above +70°C)...1000mWOperating Temperature Ranges (T MIN to T MAX )MAX7219C_G/MAX7221C_G ..............................0°C to +70°C MAX7219E_G/MAX7221E_G............................-40°C to +85°C Storage Temperature Range.............................-65°C to +160°C Lead Temperature (soldering, 10s).................................+300°CNBY832:0NBY8332ࠈቲాĂ9ᆡĂMFEመာདࣅ_______________________________________________________________________________________3ELECTRICAL CHARACTERISTICS (continued)(V+ = 5V ±10%, R SET = 9.53k Ω±1%, T A = T MIN to T MAX , unless otherwise noted.)N B Y 832:0N B Y 8332ࠈቲాĂ9ᆡĂMFEመာདࣅ4_______________________________________________________________________________________``````````````````````````````````````````````````````````````````````࢜ቯᔫᄂቶ(V+ = +5V, T A = +25°C, unless otherwise noted.)730750740770760790780800820810830 4.04.44.85.25.66.0SCAN FREQUENCY vs. POSITIVE SUPPLY VOLTAGEM A X 7219/21 01POSITIVE SUPPLY VOLTAGE (V)S C A N F R E Q U E N C Y (H z )20104030605070012345SEGMENT DRIVER OUTPUT CURRENTvs. OUTPUT VOLTAGEOUTPUT VOLTAGE (V)O U T P U T C U R R E N T (m A )MAX7219SEGMENT OUTPUT CURRENTM A X 7219/21 035μs/div10mA/div0MAXIMUM INTENSITY = 31/32MAX7221SEGMENT OUTPUT CURRENTM A X 7219/21 045μs/div10mA/divMAXIMUM INTENSITY = 15/16NBY832:0NBY8332ࠈቲాĂ9ᆡĂMFEመာདࣅ``````````````````````````````````````````````````````````````````````````୭ႁී``````````````````````````````````````````````````````````````````````````ถౖᅄN B Y 832:0N B Y 8332ࠈቲాĂ9ᆡĂMFEመာདࣅ6_______________________________________________________________________________________```````````````````````````````ሮᇼႁීNBY832:0NBY8332ࡼཌܰNBY832:ਜ਼NBY8332߹ೝৈݬၫᅪᅲཝሤᄴǖNBY8332ࣤདࣅࡒᎌڼൈሢᒜถLjᎌᓐ᎖ଢ଼ࢅ࢟ࠟছཷ)FNJ*LjࠈቲాᅲཝରྏTQJăࠈቲኰᒍෝါ࣪᎖NBY832:Lj࠭EJOၒྜྷࡼࠈቲၫጲ27ᆡၫ۞ተါᏴDMLࡼඛৈဍዘጤྜྷดݝ27ᆡጤᆡࡀLjᎧMPBE ࡼᓨზᇄਈǗ࣪᎖NBY8332LjCS ܘኍᆐࢅ࢟ຳဟݣถጤྜྷጤ߲ၫăၫᏴMPBE0CS ࡼဍዘჄࡀᒗᆡࡀ఼ᒜࡀăMPBE0CS ܘኍᏴ27ৈဟᒩࡼဍዘᒄઁĂࡣᏴሆጙဟᒩࡼဍዘᒄ༄ᒙᆐ࢟ຳLj॥ᐌၫࣀပăEJO࣡ࡼၫᄰਭጤᆡࡀLj݀ளਭ27/6ৈဟᒩᒲ໐ઁ߲ሚᏴEPVUăၫᏴDMLࡼሆଢ଼ዘጤ߲ăၫᆡE1ᒗE26ܭာ)ܭ2*LjE9ᒗE22۞ࡀᒍLjE1ᒗE8۞ၫLjE23ᒗE26ᆐᇄਈሲă၅ሌ၃ࡵࡼၫဵE26Lj૾ᔢᎌᆡ)NTC*ăᆡࡀਜ਼఼ᒜࡀܭ3߲೫25ৈభኰᒍᆡࡀਜ਼఼ᒜࡀăᆡࡀᎅຢ9y9ၷ࣡ాTSBN৩߅LjᑚቋࡀభᒇኰᒍLjჅጲభॊܰৎቤඛጙᆡLj݀༦ᒑገW,᎖3W૾భۣߒၫă఼ᒜࡀᎅፉ൩ෝါĂመာೡࣞĂྸහሢᒜ)ྸහᆡࡼၫ*Ăਈࣥਜ਼መာހ၂)࢛ೡჅᎌMFE*ᔝ߅ăਈࣥෝါࡩNBY832:ࠀ᎖ਈࣥෝါဟLjྸහᑩᄫLjჅᎌࣤ࢟ഗᏎ౯ᒗ࢟ᆡLjჅᎌᆡདࣅ౯ᒗW,Lj࠭ऎਈܕመာă߹དࣅᆐᔜᅪLjNBY8332ࡼᓨౚᅲཝሤᄴăᆡࡀਜ਼఼ᒜࡀᒦࡼၫۣߒݙܤăಽਈࣥෝါభஂဏ࢟ถLjᄰਭೌኚྜྷĂᅓ߲ਈࣥෝါLjဧመာࠀ᎖࿑ႄᓨზLj᎖ۨவᒎာăᆐ೫ဧਈࣥෝါሆࡼ࢟Ꮞ࢟ഗଢ଼ᒗᔢቃLj൝ၒྜྷ።ᆐ࢟ᆡW ,)DNPT൝࢟ຳ*ăᄰޟ༽ౚሆLjNBY832:0NBY8332ᅓ߲ਈࣥෝါኊገࡼဟମቃ᎖361μtăభᏴਈࣥෝါሆ࣪መာདࣅቲܠ߈Ljࣅመာހ၂ถభጲᅓ߲ਈࣥෝါăᅄ2/!ဟኔᅄܭ2/!ࠈቲၫৃါ)27ᆡ*߱ဪ࢟߱ဪ࢟ဟLjჅᎌ఼ᒜࡀۻআᆡLjመာࠀ᎖ਈܕᓨზLjNBY832:0NBY8332ྜྷਈࣥෝါăఎመာᒄ༄Ljሌ࣪መာདࣅܠ߈ă॥ᐌLj߱ဪᒙᆐྸහ2ৈၫᆡLjݙ્࣪ၫࡀࡼၫፉ൩Ljೡࣞࡀۻᒙᆐᔢቃᒋăፉ൩ෝါࡀፉ൩ෝါࡀᒙඛৈၫᆡࡼCDE൩)C൩*ৃါ)1.:ĂFĂIĂMĂQਜ਼.*ऻፉ൩ݷᔫኡሲăࡀࡼඛጙᆡ࣪።᎖ඛৈၫᆡă൝࢟ຳኡᐋC൩ፉ൩Lj൝ࢅ࢟ຳᐌĐവđፉ൩ăܭ5߲೫ፉ൩ෝါ఼ᒜࡀৃါࡼာಿăݧC൩ፉ൩ෝါဟLjፉ൩ஞ၃ᆡࡀࡼࢅᆡၫ)E4ᒗE1*LjE5ᒗE7ăᒙቃၫ࢛)TFH EQ*ࡼE8Ꭷፉ൩ᇄਈLjᆐᑵ൝࢟ຳ)E8>2ᐌ࢛ೡቃၫ࢛*Ljܭ6߲೫C൩ᔊተăኡᐋऻፉ൩ෝါဟLjၫᆡE8ᒗE1࣪።᎖NBY832:0NBY8332ࡼࣤሣăܭ7ჅာᆐඛৈၫᆡᎧࣤሣࡼ࣪።ਈᇹăNBY832:0NBY8332ࠈቲాĂ9ᆡĂMFEመာདࣅܭ4/!ਈࣥࡀৃါ)ᒍ)လങᒜ*!>!1yYD*N B Y 832:0N B Y 8332ೡ఼ࣞᒜਜ਼ᆡମሿNBY832:0NBY8332ಽೌᏴW,ਜ਼JTFUᒄମࡼᅪݝ࢟ᔜ)S TFU *఼ᒜመာೡࣞă࠭ࣤདࣅᄋࡼख़ᒋ࢟ഗܪ߂ᒋဵഗྜྷJTFU࢟ഗࡼ211۶ăক࢟ᔜభጲৼࢾLjጐభጲݧభܤ࢟ᔜLjጲဣሚ༄ෂۇࡼೡࣞࢯஂă࢟ᔜᔢቃᒋ።ᆐ:/64l ΩLjᄰޟࣤ࢟ഗᒙᆐ51nBăጐభጲಽೡࣞࡀ఼ᒜመာೡࣞăመာೡࣞࡼၫᔊ఼ᒜᄰਭጙৈดݝ൴ࢯᒜဣሚLjᎅೡࣞࡀࡼࢅᆡ఼ᒜăࢯᒜຳࣤ࢟ഗॊ߅27ৈࢀLjᔢࡍᒋᆐख़ᒋ࢟ഗࡼ42043Ljᔢቃᒋᆐख़ᒋ࢟ഗࡼ2043Ljख़ᒋ࢟ഗᎅS TFU ᒙ)࣪᎖NBY8332ᆐ26027ᒗ2027*Ljܭ8߲೫ೡࣞࡀࡼৃါăᔢቃᆡମሿဟମᒙᆐጙৈᒲ໐ࡼ2043ăࠈቲాĂ9ᆡĂMFEመာདࣅ8_______________________________________________________________________________________ܭ6/!C൩ᔊተܭ7/!ऻፉ൩ෝါሆၫᆡᎧࣤሣࡼ࣪።ਈᇹ*ቃၫ࢛ᎅᆡE8!>!2࢛ೡăྸහሢᒋࡀྸහሢᒋࡀᒙገመာࡼၫᆡၫLj࠭2ࡵ9ăᑚቋᆡጲআऱါመာLjመာ9ᆡၫဟLj࢜ቯࡼመာྸහႥൈᆐ911I{ăྙਫመာࡼᆡၫ୷Ljྸහൈᆐ9g PTD 0OLjᒦOᆐྸහᆡၫăᎅ᎖ྸහᆡၫ્፬ሰመာೡࣞLjྸහሢᒋࡀݙ።᎖መာࡼహڹݝॊ)ಿྙLj༄ࡴഃணᒏ*Ljܭ9ᒦ߲೫ྸහሢᒋࡀࡼৃါăNBY832:0NBY8332ࠈቲాĂ9ᆡĂMFEመာདࣅ_______________________________________________________________________________________9ܭ9/!ྸහሢᒋࡀৃါ)ᒍ)လങᒜ*!>!1yYC**።ቧᇦݬྸහሢᒋࡀݝॊăN B Y 832:0N B Y 8332ྙਫྸහሢᒋࡀᒙᏴྯᆡৎLjඛᆡདࣅ્ሿਭࣶࡼൈăፐࠥLjኊገোჅመာࡼᆡၫࢯᑳS TFU ࢟ᔜᒋLj࠭ऎሢᒜඛᆡདࣅࡼăܭ:߲೫ჅገመာࡼᆡၫLjጲૺဧᆡདࣅဟ࣪።ࡼᔢࡍࣤ࢟ഗăመာހ၂ࡀመာހ၂ࡀᎌೝᒬᔫෝါǖᑵޟෝါਜ਼መာހ၂ෝါăመာހ၂ෝါ࢛ೡჅᎌMFELjݙ၊ྀੜ఼ᒜࡀਜ਼ᆡࡀ)۞౪ਈࣥࡀ*ࡼดྏ఼ᒜLjࡣ݀ݙৎখᑚቋࡀࡼดྏăᏴመာހ၂ෝါሆLjྸහ9ৈၫᆡLjᐴహ܈ᆐ42043!)NBY8332ᆐ26027*Ljܭ21߲೫መာހ၂ࡀࡼৃါăహݷᔫࡀೊNBY832:NBY8332ဟLjኊገဧహݷᔫࡀăჅᎌୈࡼMPBE0CS ၒྜྷೌᏴጙLj݀EPVUೌࡵሤୈࡼEJOăEPVUဵጙവDNPT൝࢟ຳၒ߲Ljభ༵႕དࣅઁኚೊୈࡼEJO!)ਈ᎖ࠈቲၒྜྷ0ၒ߲ဟኔࡼሮᇼቧᇦ༿ݬఠࠈቲኰᒍෝါݝॊ*ăಿྙLjྙਫ5ຢNBY832:ೊᏴጙLjሶ5ຢቖྜྷၫဟLjᐌख႙ሤ።ࡼ27ᆡᔊLjઁख႙4ৈహݷᔫ൩)လങᒜࡼ1yYY1YLjݬܭ3*ăࡩMPBE0CS ᒙဟLjၫჄࡀࡵჅᎌୈă༄4ຢ၃ࡵࡼဵహݷᔫෘഎLj5ຢᐌ၃ࡵሤ።ࡼၫă```````````````````````````````።ቧᇦ࢟Ꮞവਜ਼ೌሣᆐ೫ၫᆡདࣅࡼख़ᒋ࢟ഗჅޘညࡼ࢟Ꮞᆬ݆ଢ଼ᒗᔢቃLjᏴW,ਜ਼HOEᒄମೌጙৈ21μG࢟ஊ࢟ྏਜ਼ጙৈ1/2μG ჿࠣ࢟ྏLj࢟ྏ።ణதୈहᒙăNBY832:0NBY8332።কణதMFEመာڔᓤLjೌሣ።భถLj࠭ऎሣ࢟ঢਜ਼࢟ࠟছཷଢ଼ᒗᔢቃăࠥᅪLjೝৈHOE୭࣒ገೌࡵăኡᐋS TFU ࢟ᔜૺဧᅪݝདࣅඛࣤ࢟ഗࡍᏖဵJTFU࢟ഗࡼ211۶Lj༿ݬఠܭ22ኡᐋS TFU ăNBY832:0NBY8332ࡼᔢࡍࣤ࢟ഗᅎୀᒋᆐ51nBăჅኊࣤ࢟ഗ᎖কᒋဟLjኊገݧᅪݝၫᆡདࣅăᑚᒬ።ᒦLjNBY832:0NBY8332ᒑᔫᆐࡍ࢟ഗདࣅᄏࡼ఼ᒜăፐࠥLjᆐ೫ஂဏ࢟ถLjࡩဧᅪݝ࢟ഗᏎᔫᆐࣤདࣅဟLjኡᐋS TFU >58l Ωăᅄ3ာಿᒦဧ೫NBY832:0NBY8332ࡼࣤདࣅĂጙຢNBY4:5ၷᒖෝผఎਈਜ਼ጙৈᅪݝᄏLj᎖དࣅ3/4#BOE3418TMDৢፓመာăᎅ᎖ቃၫ࢛MFEࡼᑵມ࢟ኹ࢜ቯᒋᆐ5/3WLjᏴቃၫ࢛MFEࠀࠈೊ೫ጙৈ6/7Wฃऔă࣪᎖ࣤLjMFEࡼᑵມ࢟ኹ࢜ቯᒋᆐ9Wăᎅ᎖ݧᅪݝᄏᇢ၃࢟ഗ)EJH 1ਜ਼EJH 2ᔫ൝ఎਈ*LjჅጲ૾ဧᒑመာ3ᆡၫLjጐᏤ56nBࡼख़ᒋࣤ࢟ഗăᏴNBY832:0NBY8332ࡼᆡདࣅᔫᇢ࢟ഗࡼ።ᒦLjჅመာࡼᆡၫቃ᎖5ᆡLjܭ:ਖࢾ೫ჅᏤࡼᔢࡍࣤ࢟ഗăܘኍးࡩኡᐋS TFU )ܭ22*ă༿ݬఠBctpmvuf Nbyjnvn Sbujoht ݝॊᒦ߲ࡼDpoujovpvt Qpxfs Ejttjqbujpo ଐႯถ৫၊ࡼણஹᆨࣞĂࣤ࢟ഗਜ਼MFE ᑵሶኹଢ଼ᒋăࠈቲాĂ9ᆡĂMFEመာདࣅ10______________________________________________________________________________________ܭ21/!መာހ၂ࡀࡼৃါ)ᒍ)လങᒜ*!>!1yYG*ᓖǖNBY832:0NBY8332ۣߒᆐመာހ၂ෝါ)ჅᎌMFE࢛ೡ*Ljᒇࡵመာހ၂ࡀᒙᆐᑵޟᔫᓨზăଐႯNBY832:0NBY8332ࡼ)QE*ሢᎅሆါཀྵࢾǖPD = (V+ x 8mA) + (V+ - V LED )(DUTY x I SEG x N)ါᒦǖW,!>!࢟Ꮞ࢟ኹEVUZ!>!ೡࣞࡀᒙࡼᐴహ܈O!>!Ⴥདࣅࡼࣤၫ)ᔢތ༽ౚሆᆐ9*W MFE >!MFEᑵሶ࢟ኹJ TFH >!S TFU ᒙࡼࣤ࢟ഗଐႯಿǖJ TFH >!51nB-!O!>!9-!EVUZ!>!42043-!W MFE >!2/9Wࡩ࢟ഗᆐ51nBĂW,!>!6/36WဟPD = (5.25V x 8mA) + (5.25V - 1.8V)(31/32 x 40mA x 8) = 1.11WჅጲLj࣪᎖DFSEJQॖᓤ)ᎅܭ23భᒀLjθKB >,91°D0X*LjჅᏤࡼᔢણஹᆨࣞU B ᎅሆါ߲ǖT J(MAX)= T A + PD x θJA150°C = T A +1.11W x 80°C/W ါᒦLjU B >,72/3°DăಿᒦLjQEJQਜ਼TPॖᓤࡼU B ሢᒋॊܰᆐ,77/8°Dਜ਼,66/7°Dăೊདࣅᅄ4ာಿݧ4ሣμQాདࣅ27ৈၫᆡăྙਫᆡၫݙဵ9ࡼ۶ၫLjདࣅࡼྸහሢᒋࡀᒙᏴሤᄴၫᔊLjᑚዹLjభጲۣߒඛৈመာᎌሤᄴࡼೡࣞăಿྙLjྙਫኊገመာ23ৈၫᆡLjඛৈመာభጲདࣅ7ᆡLjೝৈྸහሢᒋࡀᒙᆐ7ᆡLjกඐඛৈመာࡼඛጙᆡᐴహ܈ᆐ207ăྙਫኊገመာ22ᆡLjೝৈྸහሢᒋࡀᒙᆐ7ᆡLj݀ဧ2ৈᆡདࣅݙገೌăྦጙৈመာᆐ7ᆡLjጙৈᆐ6ᆡLjᎅ᎖औৈመာࡼඛጙᆡᐴహ܈ᆐ206Ljऎጙৈመာࡼᐴహ܈ᆐ207LjჅጲऔৈመာመࡻ܈ጙৈৎೡጙቋLjሮᇼቧᇦ༿ݬఠహݷᔫࡀݝॊăNBY832:0NBY8332______________________________________________________________________________________11ܭ22/!S TFU Ꭷࣤ࢟ഗૺMFEᑵሶ࢟ኹࡼਈᇹܭ23/!ॖᓤེᔜၫN B Y 832:0N B Y 833212______________________________________________________________________________________ᅄ3/!ಽNBY832:0NBY8332དࣅ3/4joመာNBY832:0NBY8332______________________________________________________________________________________13ᅄ4/!ᄰਭೊNBY832:0NBY8332དࣅ27ᆡ8ࣤMFEN B Y 832:0N B Y 833214______________________________________________________________________________________````````````````````````````ࢾ৪ቧᇦ)ኚ*```````````````````````````````በຢᅠແTRANSISTOR COUNT: 5267SUBSTRATE CONNECTED TO GNDNBY832:0NBY8332______________________________________________________________________________________15`````````````````````````````````````````````````````````````````````````````ॖᓤቧᇦ(۾ၫᓾ೯ᄋࡼॖᓤᅄభถݙဵᔢதࡼਖৃLjྙኊᔢதࡼॖᓤᅪተቧᇦLj༿އኯ/packages ă)N B Y 832:0N B Y 8332``````````````````````````````````````````````````````````````````````````````ॖᓤቧᇦ)ኚ*(۾ၫᓾ೯ᄋࡼॖᓤᅄభถݙဵᔢதࡼਖৃLjྙኊᔢதࡼॖᓤᅪተቧᇦLj༿އኯ/packages ă)Nbyjnݙ࣪Nbyjnޘອጲᅪࡼྀੜ࢟വဧঌᐊLjጐݙᄋᓜಽభăNbyjnۣഔᏴྀੜဟମĂᎌྀੜᄰۨࡼ༄ᄋሆኀখޘອᓾ೯ਜ਼ਖৃࡼཚಽă16____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600©2003 Maxim Integrated ProductsNbyjn ဵNbyjn!Joufhsbufe!Qspevdut-!Jod/ࡼᓖݿܪă。