2017-2018学年福建省福州市高一下学期期末质量检查数学试题

合集下载

2017-2018学年度高一语文第二学期期末试卷 含答案

2017-2018学年度高一语文第二学期期末试卷 含答案

2017-2018学年度第二学期第二次月考(全二册)高一年级语文试卷命题人:校对:考试时长:150 分钟分值:150 分I 卷(选择题,共44分)一基础知识单项选择题(本大题共10小题,每小题2分,共20分。

在下列各小题的备选答案中,选择一个正确的答案)1.下列加点的字注音,错误最多的一项是()A.憎.恶(zèng)岑.寂(cán)流涎.(yán)锱.铢必较(zhī)B.目眦.(zì)攻讦.(jiān)拉纤.(qiàn)一蹴.而就(cù)C.瞋.目(chēng)绮.丽(yǐ)得逞.(chěng)昙.花一现(tán)D.折腾.(teng)帷.幕(weí)露.穷(lù)清沁.肺腑(qìng)2.下列词语中,错别字最多的一项是()A.不及不离挥豁无度珍羞美味源源不断B.抱残守却诩诩如生转瞬即逝迫在眉睫C.相形见拙烟熏火燎宠然大物屈指可数D.莫名其妙震耳欲聋猝不及防冠冕堂煌3.下列词语中,加点字解释完全正确的一项是()A.待人接物.(物体)自鸣.得意(表示)无动于衷.(内心)B.疾.言厉色(急速)胡作非.为(不对)灭顶..之灾(水漫过头顶)C.自顾不暇.(时间)冥思苦.想(用心)一丝不苟.(苟且、马虎)D.小心..谨慎(留心)纵横交错.(叉开) 有史可稽.(考核、核查)4.依次填入下列句子横线处的关联词,最恰当的是()也有的播迁他邦,重振雄风;也有的昙花一现,未老而先亡。

————,————它们内容的深浅,作用的大小,时间的久暂,空间的广狭,————它们存在过,————都是传统文化。

A.不过如果只要便B.不过即使如果就C.但是不管只要便D.但是也许如果就5.下列句子中标点使用规范的一项()A.“你打碎了我的盘子”,她很低沉地说:“我的小儿子没有饭吃了。

”B. 做年夜饭不能拉风箱——呱嗒呱嗒的风箱声会破坏神秘感——因此要烧最好的草、棉花柴或者豆秸。

人教A版数学高二弧度制精选试卷练习(含答案)1

人教A版数学高二弧度制精选试卷练习(含答案)1

人教A 版数学高二弧度制精选试卷练习(含答案) 学校:___________姓名:___________班级:___________考号:___________一、单选题1.设扇形的周长为4cm ,面积为21cm ,则扇形的圆心角的弧度数是 ( ) A .1 B .2 C .3 D .4【来源】黑龙江省鹤岗市第一中学2018-2019学年高一12月月考数学(理)试题【答案】B 2.已知扇形的面积为,扇形圆心角的弧度数是,则扇形的周长为( ) A . B . C . D .【来源】同步君人教A 版必修4第一章1.1.2弧度制【答案】C3.扇形圆心角为3π,半径为a ,则扇形内切圆的圆面积与扇形面积之比为( ) A .1:3B .2:3C .4:3D .4:9【来源】2012人教A 版高中数学必修四1.1任意角和弧度制练习题(二)(带解析)【答案】B4.已知扇形的圆心角为2弧度,弧长为4cm , 则这个扇形的面积是( ) A .21cm B .22cm C .24cm D .24cm π【来源】陕西省渭南市临渭区2018—2019学年高一第二学期期末数学试题【答案】C5.若扇形的面积为38π、半径为1,则扇形的圆心角为( ) A .32π B .34π C .38π D .316π 【来源】浙江省杭州第二中学三角函数 单元测试题【答案】B 6.一场考试需要2小时,在这场考试中钟表的时针转过的弧度数为( ) A .3π B .3π- C .23π D .23π-【来源】浙江省台州市2019-2020学年高一上学期期末数学试题【答案】B7.实践课上小华制作了一副弓箭,如图所示的是弓形,弓臂BAC 是圆弧形,A 是弧BAC 的中点,D 是弦BC 的中点,测得10AD =,60BC =(单位:cm ),设弧AB 所对的圆心角为θ(单位:弧度),则弧BAC 的长为( )A .30θB .40θC .100θD .120θ【来源】安徽省池州市2019-2020学年高一上学期期末数学试题【答案】C8.已知扇形AOB 的半径为r ,弧长为l ,且212l r =-,若扇形AOB 的面积为8,则该扇形的圆心角的弧度数是( )A .14B .12或2C .1D .14或1 【来源】广西贵港市桂平市2019-2020学年高一上学期期末数学试题【答案】D9.已知扇形的圆心角为150︒,弧长为()5rad π,则扇形的半径为( )A .7B .6C .5D .4【来源】安徽省六安市六安二中、霍邱一中、金寨一中2018-2019学年高二下学期期末联考数学(文)试题【答案】B10.已知扇形AOB ∆的周长为4,当扇形的面积取得最大值时,扇形的弦长AB 等于( )A .2B .sin1C .2sin1D .2cos1【来源】湖北省宜昌市一中、恩施高中2018-2019学年高一上学期末联考数学试题【答案】C11.“圆材埋壁”是《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,学会一寸,锯道长一尺,问径几何?”其意为:今有一圆柱形木材,埋在墙壁中,不知道大小,用锯取锯它,锯口深一寸,锯道长一尺,问这块圆柱形木材的直径是多少?现有圆柱形木材一部分埋在墙壁中,截面如图所示,已知弦1AB =尺,弓形高1CD =寸,则阴影部分面积约为(注: 3.14π≈,5sin 22.513︒≈,1尺=10寸)( )A .6.33平方寸B .6.35平方寸C .6.37平方寸D .6.39平方寸【来源】山东省潍坊市2018-2019学年高一下学期期中考试数学试题【答案】A12.已知扇形OAB 的面积为1,周长为4,则弦AB 的长度为( ) A .2 B .2/sin 1 C .2sin 1 D .sin 2【来源】黑龙江省部分重点高中2019-2020学年高一上学期期中联考数学试题【答案】C13.已知扇形OAB 的面积为4,圆心角为2弧度,则»AB 的长为( ) A .2 B .4 C .2π D .4π【来源】江苏省南京市2019-2020学年高一上学期期末数学试题【答案】B14.已知α 为第三象限角,则2α所在的象限是( ). A .第一或第二象限B .第二或第三象限C .第一或第三象限D .第二或第四象限【来源】四川省南充高级中学2016-2017学年高一4月检测考试数学试题【答案】D15.若扇形的面积为216cm ,圆心角为2rad ,则该扇形的弧长为( )cm . A .4 B .8 C .12 D .16【来源】江苏省盐城市大丰区新丰中学2019-2020学年高一上学期期末数学试题【答案】B16.周长为6,圆心角弧度为1的扇形面积等于( )A .1B .32πC .D .2【来源】河北省邯郸市魏县第五中学2019-2020学年高一上学期第二次月考数学试题【答案】D17.已知一个扇形弧长为6,扇形圆心角为2rad ,则扇形的面积为 ( )A .2B .3C .6D .9【来源】2013-2014学年辽宁省实验中学分校高二下学期期末考试文科数学试卷(带解析)【答案】D18.集合{|,}42k k k Z ππαπαπ+≤≤+∈中角所表示的范围(阴影部分)是( ) A . B . C .D .【来源】2015高考数学理一轮配套特训:3-1任意角弧度制及任意角的三角函数(带解析)【答案】C19.已知⊙O 的半径为1,A ,B 为圆上两点,且劣弧AB 的长为1,则弦AB 与劣弧AB 所围成图形的面积为( )A .1122-sin 1B .1122-cos 1C .1122-sin 12D .1122-cos 12【来源】河北省衡水中学2019-2020学年高三第一次联合考试数学文科试卷【答案】A20.已知一个扇形的圆心角为56π,半径为3.则它的弧长为( ) A .53π B .23π C .52π D .2π 【来源】河南省新乡市2018-2019学年高一下学期期末数学试题【答案】C21.中国传统扇文化有着极其深厚的底蕴. 一般情况下,折扇可看作是从一个圆面中剪下的扇形制作而成,设扇形的面积为1S ,圆面中剩余部分的面积为2S ,当1S 与2S 的比值为12时,扇面看上去形状较为美观,那么此时扇形的圆心角的弧度数为( )A .(3π-B .1)πC .1)πD .2)π【来源】吉林省长春市2019-2020学年上学期高三数学(理)试题【答案】A22.《九章算术》是中国古代第一部数学专著,成于公元一世纪左右,系统总结了战国、秦、汉时期的数学成就,其中《方田》一章中记载了计算弧田(弧田就是由圆弧和其所对弦所围成弓形)的面积所用的经验公式:弧田面积=12(弦⨯矢+矢⨯矢),公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差,按照上述经验公式计算所得弧田面积与其实际面积之间存在误差,现有圆心角为23π,弦长为实际面积与按照上述经验公式计算出弧田的面积之间的误差为( )平方米(其中3π≈ 1.73≈)A .14B .16C .18D .20【来源】上海市实验学校2018-2019学年高一下学期期末数学试题【答案】B23.已知某扇形的面积为22.5cm ,若该扇形的半径r ,弧长l 满足27cm r l +=,则该扇形圆心角大小的弧度数是()A .45B .5C .12D .45或5 【来源】安徽省阜阳市太和县2019-2020学年高三上学期10月质量诊断考试数学(文)试题【答案】D24.已知一个扇形的圆心角为3弧度,半径为4,则这个扇形的面积等于( ). A .48 B .24 C .12 D .6【来源】湖南师范大学附属中学2016-2017学年高一下学期期中考试数学试题【答案】B25.已知扇形的圆心角23απ=,所对的弦长为 ) A .43π B .53π C .73π D .83π 【来源】河南省新乡市辉县市一中2018-2019高一下学期第一阶段考试数学试题【答案】D26.如果2弧度的圆心角所对的弦长为4,那么这个圆心所对的弧长为( ) A .2 B .2sin1 C .2sin1 D .4sin1【来源】黑龙江省大兴安岭漠河一中2019-2020学年高一上学期11月月考数学试题【答案】D27.若α是第一象限角,则下列各角中属于第四象限角的是( )A .90α︒-B .90α︒+C .360α︒-D .180α︒+【来源】福建省厦门双十中学2017-2018学年高一下学期第二次月考数学试题【答案】C28.已知扇形的半径为2,面积为4,则这个扇形圆心角的弧度数为( )A B .2 C . D .【来源】河南省南阳市2016—2017学年下期高一期终质量评估数学试题【答案】B二、填空题29.已知大小为3π的圆心角所对的弦长为2,则这个圆心角所夹扇形的面积为______. 【来源】安徽省马鞍山市第二中学2018-2019学年高一下学期开学考试数学试题【答案】23π. 30.135-=o ________弧度,它是第________象限角.【来源】浙江省杭州市七县市2019-2020学年高一上学期期末数学试题【答案】34π- 三 31.设扇形的半径长为8cm ,面积为24cm ,则扇形的圆心角的弧度数是【来源】2011-2012学年安徽省亳州一中高一下学期期中考试数学试卷(带解析)【答案】32.在北纬60o 圈上有甲、乙两地,若它们在纬度圈上的弧长等于2R π(R 为地球半径),则这两地间的球面距离为_______ . 【来源】上海市浦东新区川沙中学2018-2019学年高二下学期期末数学试题 【答案】3R π 33.已知一个扇形的弧长等于其所在圆半径的2倍,则该扇形圆心角的弧度数为________,若该扇形的半径为1,则该扇形的面积为________.【来源】浙江省宁波市2019-2020学年高一上学期期末数学试题【答案】2 134.设O 为坐标原点,若直线l :102y -=与曲线τ0y =相交于A 、B 点,则扇形AOB 的面积为______.【来源】上海市普陀区2016届高三上学期12月调研(文科)数学试题 【答案】3π 35.已知扇形的圆心角为12π,面积为6π,则该扇形的弧长为_______; 【来源】福建省漳州市2019-2020学年学年高一上学期期末数学试题 【答案】6π 36.在半径为5的圆中,5π的圆心角所对的扇形的面积为_______. 【来源】福建省福州市八县一中2019-2020学年高一上学期期末联考数学试题 【答案】52π37.已知集合M ={(x ,y )|x ﹣3≤y ≤x ﹣1},N ={P |PA PB ,A (﹣1,0),B (1,0)},则表示M ∩N 的图形面积为__.【来源】上海市复兴高级中学2015-2016学年高二上学期期末数学试题【答案】4338.圆心角为2弧度的扇形的周长为3,则此扇形的面积为 _____ .【来源】山东省泰安市2019届高三上学期期中考试数学(文)试题 【答案】91639.已知圆心角是2弧度的扇形面积为216cm ,则扇形的周长为________【来源】上海市向明中学2018-2019学年高三上学期第一次月考数学试题【答案】16cm40.扇形的圆心角为3π,其内切圆的面积1S 与扇形的面积2S 的比值12S S =______. 【来源】上海市七宝中学2015-2016学年高一下学期期中数学试题 【答案】2341.已知扇形的半径为6,圆心角为3π,则扇形的面积为__________. 【来源】江苏省苏州市2019届高三上学期期中调研考试数学试题【答案】6π42.若扇形的圆心角120α=o ,弦长12AB cm =,则弧长l =__________ cm .【来源】黑龙江省齐齐哈尔八中2018届高三8月月考数学(文)试卷43.已知扇形的周长为8cm ,圆心角为2弧度,则该扇形的半径是______cm ,面积是______2cm .【来源】浙江省杭州市西湖高级中学2019-2020学年高一上学期12月月考数学试题【答案】2 444.已知扇形的弧长是半径的4倍,扇形的面积为8,则该扇形的半径为_________【来源】江西省宜春市上高县第二中学2019-2020学年高一上学期第三次月考数学(理)试题【答案】2.45.已知点P(tan α,cos α)在第三象限,则角α的终边在第________象限.【来源】[同步]2014年湘教版必修二 3.1 弧度制与任意角练习卷1(带解析)【答案】二三、解答题46.已知角920α=-︒.(Ⅰ)把角α写成2k πβ+(02,k Z βπ≤<∈)的形式,并确定角α所在的象限;(Ⅱ)若角γ与α的终边相同,且(4,3)γππ∈--,求角γ.【来源】安徽省合肥市巢湖市2019-2020学年高一上学期期末数学试题【答案】(Ⅰ)α=8(3)29ππ-⨯+,第二象限角;(Ⅱ)289πγ=- 47.已知一扇形的圆心角为α,半径为R ,弧长为l .(1)若60α=︒,10cm R =,求扇形的弧长l ;(2)若扇形周长为20cm ,当扇形的圆心角α为多少弧度时,这个扇形的面积最大?【来源】山东省济南市外国语学校三箭分校2018-2019学年高一下学期期中数学试题【答案】(1)()10cm 3π(2)2α= 48.已知一扇形的圆心角为60α=o ,所在圆的半径为6cm ,求扇形的周长及该弧所在的弓形的面积.【来源】江西省南昌市新建一中2019-2020学年高一上学期期末(共建部)数学试题【答案】2π+12,6π﹣49.已知一扇形的周长为4,当它的半径与圆心角取何值时,扇形的面积最大?最大值是多少?【来源】宁夏大学附中2019-2020学年高一上学期第一次月考数学试题【答案】半径为1,圆心角为2,扇形的面积最大,最大值是2.50.已知扇形的圆心角为α(0α>),半径为R .(1)若60α=o ,10cm R =,求圆心角α所对的弧长;(2)若扇形的周长是8cm ,面积是24cm ,求α和R .【来源】安徽省阜阳市颍上二中2019-2020学年高一上学期第二次段考数学试题【答案】(1)10cm 3π(2)2α=,2cm R =。

福建省福州市六校2023-2024学年高一下学期期末联考试题 数学试题(含答案)

福建省福州市六校2023-2024学年高一下学期期末联考试题 数学试题(含答案)

福州市六校2023-2024学年高一下学期期末联考数学试卷(满分:150分,完卷时间:120分钟)命题学校:第一部分(选择题共58分)一、单选题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 复数在复平面内对应的点位于( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限2. 甲、乙两人独立地破译一份密码,已知各人能破译的概率分别为,则甲、乙两人一起破译这份密码,密码被成功破译的概率为( )A.B.C.D.3. 已知平面向量,的夹角为,且,,则在方向上的投影向量为( )A. B.C. D. 4. 已知三条不重合的直线和平面,下列命题中是真命题的为( )A. 若直线和平面所成的角相等,则B. 若,则C. 若,则D 若,则5. 进入8月份后,我市持续高温,气象局一般会提前发布高温橙色预警信号(高温橙色预警标准为24小时内最高气温将升至37摄氏度以上),在今后3天中,每一天最高气温在37摄氏度以上的概率是.用计算机生成了20组随机数,结果如下:116 785 812 730 134 452 125 689 024 169 334 217 109 361 908 284 044 147 318 027若用0,1,2,3,4,5表示高温橙色预警,用6,7,8,9表示非高温橙色预警,则今后3天中恰有2天发布高温橙色预警信号的概率估计是( )A.B.C.D..的的(23i)(1i)z =-+11,4512072025920a b π62= a (b =- a b12⎫⎪⎪⎭21⎛⎫⎪ ⎪⎝⎭32⎫-⎪⎪⎭32⎛⎫⎪ ⎪⎝⎭,,a b c α,a b αa P b ,a c b c ⊥⊥a P b ,α⊥⊥a a b b Pα,a b αα⊥⊥a P b3535121320256. 如图所示,在中,为BC 边上的三等分点,若,,为AD 中点,则( )A. B. C. D. 7. 在中,角的对边分别为,则的面积为( )A.B.C.D.8. 已知三棱锥的顶点都在球的球面上,底面是边长为3的等边三角形.若三棱锥的表面积为( )A. B. C. D. 二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 为了加深师生对党史的了解,激发广大师生知史爱党、知史爱国的热情,某校举办了“学党史、育文化”暨“喜迎党的二十大”党史知识竞赛,并将1000名师生的竞赛成绩(满分100分,成绩取整数)整理成如图所示的频率分布直方图,则下列说法正确的( )A. 的值为0.005;B. 估计成绩低于60分的有25人C. 估计这组数据的众数为75D. 估计这组数据的第85百分位数为8610. 下列说法正确的是( )ABC V D AB a =AC b =E BE =2136a b-+ 2136a b +1136a b-+ 1136a b + ABC V ,,A B C sin 32,,,,,7sin 53A a b c C cB π===ABC V 154D ABC -O ABC V D ABC -O 16π12π8π4πaA. 已知事件A ,B ,且,,如果,那么,B.对于单峰的频率分布直方图而言,若直方图在右边“拖尾”,则平均数大于中位数C. 若A ,B 是两个互斥事件,则D. 若事件A ,B ,C 两两独立,则11. 如图,棱长为的正方体中中,下列结论正确的是( )A. 异面直线与所成角为B. 直线与平面所成的角为C. 二面角平面角的正切值为D. 点到平面第二部分(非选择题共92分)三、填空题:本题共3小题,每小题5分,共15分.12. 在正四棱锥中,,则该棱锥体积为____________.13. 在对某中学高一年级学生身高(单位:)调查中,抽取了男生20人,其平均数和方差分别为174和12,抽取了女生30人,其平均数和方差分别为164和30,根据这些数据计算出总样本的平均数为__________,方差为__________.14. 设样本空间含有等可能的样本点,且事件,事件,事件,使得,且满足两两不独立,则______.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15. 已知复数是方程的一个虚根(是虚数单位,).(1)求;(2)复数,若为纯虚数,求实数的值.16. 已知向量,,的的()0.5P A =()0.2P B =B A ⊆()0.2P A B = ()0.5P AB =()1P A B = ()()()()P ABC P A P B P C =11111ABCD A B C D -11B D 1BC 601AC 11C CDD 4511B C D D --1A 1BDC P ABCD -2PA AB ==cm {}1,2,3,4,5,6,7,8Ω={}1,2,3,4A =B ={}1,2,3,5{}1,,,8C m n =()()()()P ABC P A P B P C =,,A B C m n +=2i z m =+26130x x -+=i R m ∈||z 1i z a =-1zz a ,a b2b = 2a b +=(1)求向量的夹角的大小;(2)设向量,若的夹角为锐角,求实数k 的取值范围.17. 新课标设置后,特别强调了要增加对数学文化的考查,某市高二年级期末考试特命制了一套与数学文化有关的期末模拟试卷,试卷满分150分,并对整个高二年级的学生进行了测试.现从这些学生中随机抽取了100名学生的成绩,按照成绩为,,…,分成了6组,制成了如图所示的频率分布直方图(假定每名学生的成绩均不低于90分).(1)求频率分布直方图中的x 的值,并估计所抽取的100名学生成绩的平均分(同一组中的数据用该组区间的中点值代表);(2)若利用分层抽样的方法从样本中成绩位于的两组学生中抽取6人,再从这6人中随机抽取2人参加这次考试的考情分析会,试求这组中至少有1人被抽到的概率.18. 已知平面,平面,为等边三角形,,,为的中点.(1)求证:平面;(2)求证:平面平面;(3)求直线和平面所成角的正弦值.,a bθ3,m a b n a kb =-=+,m n [)90,100[)100,110[]140,150[)120,140[)130140,AB ⊥ACD DE ⊥ACD ACD V 2AD DE ==1AB =F CD //AF BCE BCE ⊥CDE BF BCE19. 如图,设中角所对的边分别为为边上的中线,已知,且(1)求的值;(2)求的面积;(3)设点分别为边上的动点(含端点),线段交于,且的面积为面积的,求的取值范围.ABCV,,A B C,,,a b c AD BC1c=2sin cos sin15sin,cosc A B a A c C BAD=-∠=bABCV,E F,AB AC EF AD G AEF△ABCV 16AG EF⋅参考答案1. D2. C .3. D4. D5. B6. A7. A .8. A.9. ACD 10. BC 11. ACD.12..13. ;.14. 15. (1(2)16. (1)(2)17. (1),平均分为; (2)18.(1)证明:取的中点,连接、.为的中点,且.平面,平面,,.又,.四边形为平行四边形,则.平面,平面,平面.16846.81323π6611,,533⎛⎫⎛⎫---+∞ ⎪ ⎪⎝⎭⎝⎭0.02x =116.535CE G FG BG F CD //GF DE ∴12GF DE =AB ⊥Q ACD DE ⊥ACD //AB DE ∴//GF AB ∴12AB DE =GF AB ∴=∴GFAB //AF BG AF ⊄ BCE BG ⊂BCE //AF ∴BCE(2)证明:为等边三角形,为的中点,.平面,平面,.,所以,,又,平面,平面.平面,平面平面.(319. (1) (2(3)ACD V F CD AF CD ∴⊥DE ⊥ ACD AF ⊂ACD DE AF ∴⊥//BG AF DE BG ⊥BG CD ⊥CD DE D = ,CD DE ⊂CDE BG ∴⊥CDE BG ⊂ BCE ∴BCE ⊥CDE 4b =50,2⎡⎤⎢⎥⎣⎦。

2017-2018年福建省师大附中高二(下)期末数学试卷含答案解析02

2017-2018年福建省师大附中高二(下)期末数学试卷含答案解析02

方法有 (
)
A. 360 种 B. 432 种 C. 456 种 D. 480 种
14.已知函数 f x {
x ex
1 x
0
,若函数 y f f x a 1有三个零点,则实数 a 的取值范围是
x2 2x 1(x 0)
()
A.
1,12,3
3
1 e
PB A ( )
A. 1
B. 4
C. 5
3
9
9
5. 设 0<p<1,随机变量 ξ 的分布列是
D. 2 3
ξ
0
1
2
P
则当 p 在(0,1)内增大时,( ).
A. D(ξ)减小 B. D(ξ)增大 C. D(ξ)先减小后增大 D. D(ξ)先增大后减小
6. 若 (1 2x)2018 a0 a1x
a x2018 2018
19. (本小题满分10分)
已知复数
z1
a
1
2
(a2
1)i

z2
2
(a
1)i(a
R,i
是虚数单位).
(Ⅰ)若复数 z1 z2 在复平面内对应的点在第四象限,求实数 a 的取值范围;
(Ⅱ)若虚数 z1 是实系数一元二次方程 4x2 4x m 0 的根,求实数 m 的值.
20. (本小题满分 10 分)已知极坐标的极点与平面直角坐标系的原点重合,极轴与 x 轴的正半轴重合,且长度
C.
1,1
1 e
2,3
3
1 e
D.
1,1
2 e
2,3
二、填空题 (每小题5分,共20分) 15. 从 1,3,5,7,9 中任取 2 个数字,从 0,2,4,6 中任取 2 个数字,

2017-2018学年高一下学期期中数学试卷Word版含解析

2017-2018学年高一下学期期中数学试卷Word版含解析

2017-2018学年高一下学期期中数学试卷一、选择题(共12小题,每小题5分,满分60分)1.下列说法中正确的是()A.共线向量的夹角为0°或180°B.长度相等的向量叫做相等向量C.共线向量就是向量所在的直线在同一直线上D.零向量没有方向2.下列函数中为奇函数的是()A.y=sin|x| B.y=sin2x C.y=﹣sinx+2 D.y=sinx+13.已知角的终边经过点(4,﹣3),则tanα=()A.B.﹣ C.D.﹣4.函数y=cos(4x﹣π)的最小正周期是()A.4πB.2πC.πD.5.在直角坐标系中,直线3x+y﹣3=0的倾斜角是()A.B.C. D.6.函数的单调递减区间()A.(k∈Z)B.(k∈Z)C.(k∈Z)D.(k∈Z)7.函数y=3sin(2x+)+2图象的一条对称轴方程是()A.x=﹣B.x=0 C.x=πD.8.下列选项中叙述正确的是()A.终边不同的角同一三角函数值可以相等B.三角形的内角是第一象限角或第二象限角C.第一象限是锐角D.第二象限的角比第一象限的角大9.如果点P(sinθcosθ,2cosθ)位于第二象限,那么角θ所在象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限10.向量+++化简后等于()A.B.C.D.11.已知函数y=Asin(ωx+φ)+B的一部分图象如图所示,如果A>0,ω>0,|φ|<,则()A.A=4 B.ω=1 C.φ=D.B=412.给出下列说法:①终边相同的角同一三角函数值相等;②在三角形中,若sinA=sinB,则有A=B;③不论是用角度制还是用弧度制度量一个角,它们与扇形的半径的大小无关;④若sinα=sinβ,则α与β的终边相同;⑤若cos θ<0,则θ是第二或第三象限的角.其中正确说法的个数是()A.1 B.2 C.3 D.4二、填空(本大题共4小题,每小题5分,共20分.)13.以点(0,2)和(4,0)为端点的线段的中垂线的方程是.14.圆x2+y2=4上的点到直线3x+4y﹣25=0的距离最小值为.15.已知=, =, =, =, =,则+++﹣= .16.已知tan()=,tan()=﹣,则tan()= .三、解答题(本大题共6小题,17题10分其余每题12分共70分)17.已知角α的终边经过一点P(5a,﹣12a)(a>0),求2sinα+cosα的值.18.已知△ABC的三个顶点A(0,4),B(﹣2,6),C(8,2);(1)求AB边的中线所在直线方程.(2)求AC的中垂线方程.19.若圆经过点A(2,0),B(4,0),C(1,2),求这个圆的方程.20.已知cosα=,cos(α﹣β)=,且0<β<α<,(1)求tan2α的值;(2)求cosβ的值.21.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π)的部分图象如图所示,(Ⅰ)求函数的解析式;(Ⅱ)求函数的对称轴方程和对称中心坐标.22.已知函数f(x)=sin2ωx+sinωx•cosωx﹣1(ω>0)的周期为π.(1)当x∈[0,]时,求f(x)的取值范围;(2)求函数f(x)的单调递增区间.2017-2018学年高一下学期期中数学试卷参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.下列说法中正确的是()A.共线向量的夹角为0°或180°B.长度相等的向量叫做相等向量C.共线向量就是向量所在的直线在同一直线上D.零向量没有方向【考点】向量的物理背景与概念.【分析】根据共线向量、平行向量、相等向量以及零向量的概念便可判断每个说法的正误,从而找出正确选项.【解答】解:A.共线向量的方向相同或相反;方向相同时,夹角为0°,相反时的夹角为180°,∴该说法正确;B.长度相等,方向相同的向量叫做相等向量,∴该说法错误;C.平行向量也叫共线向量,∴共线向量不是向量所在直线在同一直线上;∴该说法错误;D.零向量的方向任意,并不是没有方向,∴该说法错误.故选:A.2.下列函数中为奇函数的是()A.y=sin|x| B.y=sin2x C.y=﹣sinx+2 D.y=sinx+1【考点】函数奇偶性的判断.【分析】要探讨函数的奇偶性,先求函数的定义域,判断其是否关于原点对称,然后探讨f(﹣x)与f(x)的关系,即可得函数的奇偶性.【解答】解:选项A,定义域为R,sin|﹣x|=sin|x|,故y=sin|x|为偶函数.选项B,定义域为R,sin(﹣2x)=﹣sin2x,故y=sin2x为奇函数.选项C,定义域为R,﹣sin(﹣x)+2=sinx+2,故y=sinx+2为非奇非偶函数偶函数.选项D,定义域为R,sin(﹣x)+1=﹣sinx+1,故y=sinx+1为非奇非偶函数,故选:B.3.已知角的终边经过点(4,﹣3),则tanα=()A.B.﹣ C.D.﹣【考点】任意角的三角函数的定义.【分析】根据三角函数的定义进行求解即可.【解答】解:∵角α的终边经过点P(4,﹣3),∴tanα==,故选:B.4.函数y=cos(4x﹣π)的最小正周期是()A.4πB.2πC.πD.【考点】三角函数的周期性及其求法.【分析】根据余弦函数的最小正周期的求法,将ω=4代入T=即可得到答案.【解答】解:∵y=cos(4x﹣π),∴最小正周期T==.故选:D.5.在直角坐标系中,直线3x+y﹣3=0的倾斜角是()A.B.C. D.【考点】直线的倾斜角.【分析】由已知方程得到直线的斜率,根据斜率对于得到倾斜角.【解答】解:由已知直线的方程得到直线的斜率为﹣,设倾斜角为α,则tanα=﹣,α∈[0,π),所以α=;故选:D.6.函数的单调递减区间()A.(k∈Z)B.(k∈Z)C.(k∈Z)D.(k∈Z)【考点】正弦函数的单调性.【分析】利用y=sinx的单调性,求出函数的单调递减区间,进而可求函数的单调递减区间.【解答】解:利用y=sinx的单调递减区间,可得∴∴函数的单调递减区间(k∈Z)故选D.7.函数y=3sin(2x+)+2图象的一条对称轴方程是()A.x=﹣B.x=0 C.x=πD.【考点】正弦函数的图象.【分析】利用正弦函数的图象的对称性,求得y=3sin(2x+)+2图象的一条对称轴方程.【解答】解:∵对于函数y=3sin(2x+)+2图象,令2x+=kπ+,求得x=+,可得函数图象的一条对称轴方程为x=π,故选:C.8.下列选项中叙述正确的是()A.终边不同的角同一三角函数值可以相等B.三角形的内角是第一象限角或第二象限角C.第一象限是锐角D.第二象限的角比第一象限的角大【考点】命题的真假判断与应用.【分析】分别举例说明四个选项的正误得答案.【解答】解:对于A,终边不同的角同一三角函数值可以相等,正确,如;对于B,三角形的内角是第一象限角或第二象限角,错误,如是终边在坐标轴上的角;对于C,第一象限是锐角,错误,如是第一象限角,不是锐角;对于D,第二象限的角比第一象限的角大,错误,如是第二象限角,是第一象限角,但.故选:A.9.如果点P(sinθcosθ,2cosθ)位于第二象限,那么角θ所在象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】三角函数的化简求值.【分析】根据象限得出sinθ,cosθ的符号,得出θ的象限.【解答】解:∵P(sinθcosθ,2cosθ)位于第二象限,∴sinθcosθ<0,cosθ>0,∴sinθ<0,∴θ是第四象限角.故选:D.10.向量+++化简后等于()A.B.C.D.【考点】向量加减混合运算及其几何意义.【分析】利用向量的三角形法则与多边形法则即可得出.【解答】解:向量+++=,故选:D.11.已知函数y=Asin(ωx+φ)+B的一部分图象如图所示,如果A>0,ω>0,|φ|<,则()A.A=4 B.ω=1 C.φ=D.B=4【考点】由y=Asin(ωx+φ)的部分图象确定其解析式.【分析】先根据函数的最大值和最小值求得A和B,然后利用图象中﹣求得函数的周期,求得ω,最后根据x=时取最大值,求得φ.【解答】解:如图根据函数的最大值和最小值得求得A=2,B=2函数的周期为(﹣)×4=π,即π=,ω=2当x=时取最大值,即sin(2×+φ)=1,2×+φ=2kπ+φ=2kπ﹣∵∴φ=故选C.12.给出下列说法:①终边相同的角同一三角函数值相等;②在三角形中,若sinA=sinB,则有A=B;③不论是用角度制还是用弧度制度量一个角,它们与扇形的半径的大小无关;④若sinα=sinβ,则α与β的终边相同;⑤若cos θ<0,则θ是第二或第三象限的角.其中正确说法的个数是()A.1 B.2 C.3 D.4【考点】任意角的概念.【分析】由任意角的三角函数的定义,三角函数值与象限角的关系,即可得出结论.【解答】解:①由任意角的三角函数的定义知,终边相同的角的三角函数值相等,正确.②在三角形中,若sinA=sinB,则有A=B,故正确;③不论是用角度制还是用弧度制度量一个角,它们与扇形的半径的大小无关,正确,④若sinα=sinβ,则α与β的终边相同或终边关于y轴对称,故不正确.⑤若cosα<0,则α是第二或第三象限角或α的终边落在x轴的非正半轴上,故不正确.其中正确的个数为3个,故选:C.二、填空(本大题共4小题,每小题5分,共20分.)13.以点(0,2)和(4,0)为端点的线段的中垂线的方程是2x﹣y﹣3=0 .【考点】待定系数法求直线方程.【分析】先求出线段AB的中垂线的斜率,再求出线段AB的中点的坐标,点斜式写出AB的中垂线得方程,并化为一般式.【解答】解:设A(0,2)、B(4,0).=﹣,所以线段AB的中垂线得斜率k=2,又线段AB的中点为(2,1),直线AB的斜率 kAB所以线段AB的中垂线得方程为y﹣1=2(x﹣2)即2x﹣y﹣3=0,故答案为:2x﹣y﹣3=0.14.圆x2+y2=4上的点到直线3x+4y﹣25=0的距离最小值为 3 .【考点】直线与圆的位置关系.【分析】圆心(0,0)到直线3x+4y﹣25=0的距离d==5,圆x2+y2=4上的点到直线3x+4y﹣25=0距离的最小值是AC=5﹣r,从而可求.【解答】解:∵圆心(0,0)到直线3x+4y﹣25=0的距离d==5,∴圆x2+y2=4上的点到直线3x+4y﹣25=0距离的最小值是AC=5﹣r=5﹣2=3故答案为:3.15.已知=, =, =, =, =,则+++﹣= .【考点】向量的加法及其几何意义.【分析】利用向量的三角形法则与多边形法则即可得出.【解答】解: +++﹣=+++﹣=﹣=,故答案为:.16.已知tan()=,tan()=﹣,则tan()= 1 .【考点】两角和与差的正切函数.【分析】观察三个函数中的角,发现=﹣(),故tan()的值可以用正切的差角公式求值【解答】解:∵=﹣(),∴tan()===1故答案为1三、解答题(本大题共6小题,17题10分其余每题12分共70分)17.已知角α的终边经过一点P(5a,﹣12a)(a>0),求2sinα+cosα的值.【考点】任意角的三角函数的定义.【分析】利用三角函数的定义可求得sinα与cosα,从而可得2sinα+cosα.【解答】解:由已知r==13a…∴sinα=﹣,cosα=,…∴2sinα+cosα=﹣…18.已知△ABC的三个顶点A(0,4),B(﹣2,6),C(8,2);(1)求AB边的中线所在直线方程.(2)求AC的中垂线方程.【考点】待定系数法求直线方程.【分析】(1)利用中点坐标公式、斜截式即可得出.(2)利用斜率计算公式、相互垂直的直线斜率之间的关系、斜截式即可得出.【解答】解:(1)∵线段AB的中点为(﹣1,5),∴AB边的中线所在直线方程是=,即x+3y﹣14=0.(2)AC的中点为(4.3)==﹣,∵KAC∴y﹣3=4(x﹣4)即y=4x﹣13,∴AC的中垂线方程为y=4x﹣13.19.若圆经过点A(2,0),B(4,0),C(1,2),求这个圆的方程.【考点】圆的一般方程.【分析】设出圆的一般式方程,把三个点的坐标代入,求解关于D、E、F的方程组得答案.【解答】解:设圆的方程为x2+y2+Dx+Ey+F=0,则,解得.∴圆的方程为:.20.已知cosα=,cos(α﹣β)=,且0<β<α<,(1)求tan2α的值;(2)求cosβ的值.【考点】二倍角的正切;两角和与差的余弦函数.【分析】(1)利用已知及同角三角函数基本关系式可求sinα,进而可求tanα,利用二倍角的正切函数公式可求tan2α的值.(2)由0<β<α<,得0<α﹣β<,利用同角三角函数基本关系式可求sin(α﹣β),由β=α﹣(α﹣β)利用两角差的余弦函数公式即可计算求值.【解答】解:(1)∵由cosα=,0<α<,得sinα===,∴得tan=∴于是tan2α==﹣.…(2)由0<β<α<,得0<α﹣β<,又∵cos(α﹣β)=,∴sin(α﹣β)==,由β=α﹣(α﹣β)得:cosβ=cos[α﹣(α﹣β)]=cosαcos(α﹣β)+sinαsin(α﹣β)==.…21.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π)的部分图象如图所示,(Ⅰ)求函数的解析式;(Ⅱ)求函数的对称轴方程和对称中心坐标.【考点】由y=Asin(ωx+φ)的部分图象确定其解析式;正弦函数的图象.【分析】(Ⅰ)由函数的最值求出A,由周期求出ω,由五点法作图求出φ的值,可得函数的解析式.(Ⅱ)利用正弦函数的图象的对称性,求得函数的对称轴方程和对称中心坐标.【解答】解:(Ⅰ)由函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π)的部分图象,可得A=2, ==+,∴ω=2.再根据五点法作图可得2•(﹣)+φ=,∴φ=,函数f(x)=2sin(2x+).(Ⅱ)由2x+=kπ+,求得x=﹣,可得函数的图象的对称轴方程为x=﹣,k∈Z.令2x+=kπ,求得x=﹣,可得函数的图象的对称轴中心为(﹣,0),k∈Z.22.已知函数f(x)=sin2ωx+sinωx•cosωx﹣1(ω>0)的周期为π.(1)当x∈[0,]时,求f(x)的取值范围;(2)求函数f(x)的单调递增区间.【考点】三角函数中的恒等变换应用;正弦函数的图象.【分析】(1)利用降幂公式降幂,再由辅助角公式化简,由x的范围求得相位的范围,则函数的取值范围可求;(2)利用复合函数的单调性求得原函数的单调区间.【解答】解:(1)f(x)=sin2ωx+sinωx•cosωx﹣1==.∵ω>0,∴T=,则ω=1.∴函数f(x)=sin(2x﹣)﹣.由0,得,∴,∴.∴f(x)的取值范围[﹣1,];(2)令,得:,(k∈Z),∴f(x)的单调递增区间为[kπ﹣,kπ+],(k∈Z).。

一年级数学第二学期期末质量检测试卷

一年级数学第二学期期末质量检测试卷

一年级未央区2017-2018学年度第二学期期末质量检测一年级数学试卷一、我学会了(32分)1.3个十和6个一合起来是(),它是()位数,它前面一个数是(),后面一个数是()。

2.83里面有()个十和()个一。

3.个位上是2,十位上的数字比个位上大4,这个两位数是()。

4.找规律填数。

(1)12.()32,42(),()(2)95,(),85,80,(),()(3)10,21,32,(),54,(),()5.在○中填上“<”“>”或“=”65○100-5 32+13○35+14 58-27○58-2688-35○88-36 66-60○16-10 98-17○64+176.在()里填上适当的数。

7+()=15 17+()=87 14+()=6030+50>() 25+18<() 15+()<807.在25+60里,25和60叫做(),在79-40里,79叫做()。

8.100是()位数,比最大的两位数大()二、我知道对错(对的打“√”,错的打“×” 10分)1.66中的两个“6”意义完全相同。

()2.长方形、正方形都有四条边。

()3.按规律画一画△▽△▽△▽△▽,下一个画△。

()4.两位数都比一位数大。

()5.在你认识的数里,11是最小的两位数。

()三、我会做了(32分)1.直接写得数。

50+40= 86-6= 15+40= 68-30=9+19= 18+62= 50-5= 100-20=2.列竖式计算39+26= 58+38=81-35= 90-28=3.看一看、连一连4.画一画、分一分(1)把一个长方形分成两个三角形。

(2)把一个长方形分成两个长方形(3)把一个长方形分成一个正方形和一个长方形5.在正确的下面画“√”(1)一年级一班有48人,二班人数比一班多一些,二班有多少人?45人52人80人(2)一本动画书售价52元,一本故事书的售价比它少的多,故事书的售价多少元?26元50元53元四、我会想了(26分)1.(1)小花和小君共踢了多少下?(2)小花比小君多踢多少下?美国英国中国俄罗斯46 27 26 19(1)美国比俄罗斯多多少枚金牌?(2)俄罗斯再添几枚金牌就可以和中国一样多了?3.商店共有90本作业本。

2017---2018学年度第二学期期末考试七年级数学试卷含答案

2017---2018学年度第二学期期末考试七年级数学试卷含答案

2017---2018学年度第二学期期末考试七年级数学试卷一、选择题(共10道小题,每小题3分,共30分) 下列各题均有四个选项,其中只有一个..是符合题意的. 1.PM2.5也称为可入肺颗粒物,是指大气中直径小于或等于2.5微米的颗粒物.2.5微米等于 0.000 002 5米,把0.000 002 5用科学记数法表示为 A .2.5×106 B .0.25×10-5 C. 25×10-7 D .2.5×10-6 2. 已知a b <,则下列不等式一定成立的是 A .b a 2121<B .22a b -<-C .33->-b aD .44a b +>+3.下列计算正确的是A .2a +3a =6a B. a 2+a 3=a 5 C. a 8÷a 2=a 6 D. (a 3)4= a 74.⎩⎨⎧==3,1y x 是二元一次方程52=+ay x 的一个解,则a 的值为A. 1B.31C. 3D. -1 5.若把不等式x +2≤0的解集在数轴上表示出来,则正确的是A .B .C .D .6.下列因式分解正确的是A .4)2)(2(2-=-+x x x B .22)1(12x -=+-x x C .()222211a a a -+=-+D .()248224a a a a -=-7.小文统计了本班同学一周的体育锻练情况,并绘制了直方图①小文同学一共统计了60人;②这个班同学一周参加体育锻炼时间的众数是8; ③这个班同学一周参加体育锻炼时间的中位数是9; ④这个班同学一周参加体育锻炼时间的平均值为8.根据图中信息,上述说法中正确的是A. ①②B. ②③C.③④D. ①④8.将直尺和直角三角板按如图所示方式摆放,已知∠1=30°,则∠2的大小是A.30°B.45°C.60°D.65°9.某市居民用电的电价实行阶梯收费,收费标准如下表:一户居民每月用电量x(单位:度)电费价格(单位:元/度)0≤< 0.48x200<0.53200≤x400x>0.78400七月份是用电高峰期,李叔计划七月份电费支出不超过200元,直接写出李叔家七月份最多可用电的度数是A.100 B.396 C.397 D.40010用小棋子摆出如下图形,则第n个图形中小棋子的个数为A. nB. 2n C. n2D.n2+1二、填空题:(共6道小题,每小题3分,共18分) 11.因式分解:=__________________. 12.计算ab ab b a 44822÷-)(结果为_____________.13.一个角的补角等于这个角的3倍,则这个角的度数为_____________.14.已知x ,y 是有理数,且0106222=+-++y y x x , 则y x = .15.两个同样的直角三角板如图所示摆放,使点F ,B ,E ,C 在一条直线上,则有DF ∥AC ,理由是__________________.16.《九章算术》是中国古代的数学专著,下面这道题是《九章算术》中第七章的一道题:“今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?”译文:“几个人一起去购买某物品,如果每人出8钱,则多了3钱;如果每人出7钱,则少了4钱.问有多少人,物品的价格是多少?”设有x 人,物品价格为y 钱,可列方程组为__________________.三、解答题(共10道小题,共52分,其中第17—24每小题5分,25,26每小题6分)17.计算:22-020173-)21()14.3-()1-(++π18.化简求值:已知250x x +-=,求代数式2(1)(3)(2)(2)x x x x x ---++-的值.19.完成下面的证明:2218x -如图,已知DE ∥BC ,∠DEB =∠GFC ,试说明BE ∥FG . 解:∵DE ∥BC∴∠DEB =______( ). ∵∠DEB =∠GFC∴______=∠GFC ( ).∴BE ∥FG ( ).20.解方程组⎩⎨⎧=-=+133232y x y x21.解不等式组()315112 4.2x x x x -+⎧⎪⎨--⎪⎩<,≥并求出它的非负整数解.22.某单位有职工200人,其中青年职工(20-35岁),中年职工(35-50岁),老年职工(50岁及以上)所占比例如扇形统计图所示.为了解该单位职工的健康情况,小张、小王和小李各自对单位职工进行了抽样调查,将收集的数据进行了整理,绘制的统计表分别为表1、表2和表3.表1:小张抽样调查单位3名职工的健康指数年龄 26 42 57 健康指数977972表2:小王抽样调查单位10名职工的健康指数年龄 23 25 26 32 33 37 39 42 48 52 健康指数 93899083797580696860表3:小李抽样调查单位10名职工的健康指数年龄 22 29 31 36 39 40 43 46 51 55 健康指数94908885827872766260根据上述材料回答问题:(1)扇形统计图中老年职工所占部分的圆心角度数为(2)小张、小王和小李三人中, 的抽样调查的数据能够较好地反映出该单位职工健康情况,并简要说明其他两位同学抽样调查的不足之处.23.已知:如图,DE 平分∠BDF ., ∠A =21∠BDF ,DE ⊥BF ,求证:AC ⊥BF24.列方程组解应用题新年联欢会上,同学们组织了猜谜活动,并采取每答对一题得分,每答错一题扣分记分方法。

福建省福州市2023-2024学年高三下学期4月末质量检测数学试卷(解析版)

福建省福州市2023-2024学年高三下学期4月末质量检测数学试卷(解析版)

2023—2024学年福州市高三年级4月末质量检测数学试题(完卷时间120分钟;满分150分)友情提示:请将所有答案填写到答题卡上!请不要错位、越界答题!一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合101M x x ⎧⎫=≤⎨⎬+⎩⎭,则R M =ð()A.{}1x x <- B.{}1x x ≤- C.{}1x x >- D.{}1x x ≥-【答案】D 【解析】【分析】先解不等式再利用补集运算即可求解.【详解】由101x ≤+得10x +<,即1x <-,所以{}1M x x =<-,于是{}R 1M x x =≥-ð.故选:D.2.设a ,b ∈R ,则“0ab <”是“0a ba b+=”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】C 【解析】【分析】根据充要条件的概念即可求解.【详解】当0ab <时,00a b >⎧⎨<⎩或0a b <⎧⎨>⎩,则0a b a b +=,即充分性成立;当0a b a b +=时,0b ba a =->,则0ab <,即必要性成立;综上可知,“0ab <”是“0a ba b+=”的充要条件.故选:C.3.等轴双曲线经过点()3,1-,则其焦点到渐近线的距离为()A. B.2C.4D.【答案】A 【解析】【分析】由题意,先求出等轴双曲线的方程,得到焦点坐标和渐近线方程,再利用点到直线的距离公式进行求解即可.【详解】因为该曲线为等轴双曲线,不妨设该双曲线的方程为22221(0)x y a a a-=>,因为等轴双曲线经过点(3,1)-,所以22911a a-=,解得28a =,则22216c a a =+=,所以该双曲线的一个焦点坐标为(4,0)F ,易知该双曲线的一条渐近线方程为y x =,则点(4,0)F 到直线y x =的距离d ==.故选:A .4.已知1sin 44πα⎛⎫+=⎪⎝⎭,则sin 2α的值为() A.78B.158C.158-D.78-【答案】D【解析】【分析】先利用和角公式展开1sin 44πα⎛⎫+= ⎪⎝⎭,平方可求sin 2α.【详解】1sin cos 4224πααα⎛⎫+=+=⎪⎝⎭平方可得11(1sin 2)216α+=,所以7sin 28α=-,故选D.【点睛】本题主要考查倍角公式,熟记公式是求解关键,题目较为简单,侧重考查数学运算的核心素养.5.已知非零复数z 满足1i z z -=-,则zz=()A.1 B.1- C.iD.i-【答案】D 【解析】【分析】设()i ,z a b a b =+∈R ,利用条件证明a b =,再代入zz化简即可.【详解】设()i ,z a b a b =+∈R ,则由1i z z -=-知()1i 1i a b a b -+=+-.从而()()222211a b a b -+=+-,展开即得a b =.由z 非零,知0a b =≠,故()()()2i 1i i 1i 2i i i 1i 1i 1i 2i a z a b b a z a b b-----======-+++-+.故选:D.6.()()54112x x -+的展开式中2x 的系数为()A.14- B.6- C.34D.74【答案】B 【解析】【分析】直接利用二项式的展开式以及组合数的应用求出结果.【详解】5(1)x -的展开式为15C (1)(0rrrr T x r +=⋅-⋅=,1,2,3,4,5),4(12)x +的展开式14C 2(0k k k k T x k +=⋅⋅=,1,2,3,4),当0r =,2k =时,2x 的系数为224C 224⋅=;当1r =,1k =时,2x 的系数为54240-⨯⨯=-;当2r =,0k =时,2x 的系数为25C 10=,故2x 的系数为2410406+-=-.故选:B .7.数列{}n a 共有5项,前三项成等差数列,且公差为d ,后三项成等比数列,且公比为q .若第2项等于2,第1项与第4项的和等于10,第3项与第5项的和等于30,则d q -=()A.1 B.2 C.3D.4【答案】B 【解析】【分析】结合等差、等比数列的概念利用第二项写出剩下四个项,进而列方程组即可求解.【详解】由根据题意得,该数列的项为()()22,2,2,2,2d d d q d q -+++,又()()222102230d d q d d q ⎧-++=⎪⎨+++=⎪⎩,即26213021d q d q ⎧+=⎪-⎪⎨⎪+=⎪+⎩,解得24q d =⎧⎨=⎩或31q d =⎧⎨=⎩.于是2d q -=.故选:B.8.四棱锥E ABCD -的顶点均在球O 的球面上,底面ABCD 为矩形,平面BEC ⊥平面ABCD,BC =,1CD CE ==,2BE =,则O 到平面ADE 的距离为()A.13B.14C.24D.58【答案】A 【解析】【分析】根据线面关系可证得AB ⊥平面BEC ,BE CE ⊥,将四棱锥E ABCD -补成长方体111AD DA BECB -,确定球心的位置,再建立空间直角坐标系,求解平面ADE 的法向量,利用空间向量的坐标运算计算O 到平面ADE 的距离即可.【详解】因为平面BEC ⊥平面ABCD ,交线为BC ,又底面ABCD 为矩形,则AB BC ⊥,因为AB ⊂平面ABCD ,所以AB ⊥平面BEC ,则,AB CE AB EB ⊥⊥,又BC =,1CD CE ==,2BE =,所以222BE CE BC +=,则BE CE ⊥,如图,将四棱锥E ABCD -补成长方体111AD DA BECB -,若四棱锥E ABCD -的顶点均在球O 的球面上,则长方体111AD DA BECB -的顶点均在球O 的球面上,O 为体对角线11D B 中点,如图,以E 为原点,1,,EC EB ED 所在直线为,,x y z轴建立空间直角坐标系,则()()()()()110,2,1,1,0,1,0,0,0,0,0,1,1,2,0A D E D B ,故11,1,22O ⎛⎫⎪⎝⎭,设平面ADE 的法向量为(),,n x y z =,又()()0,2,1,1,0,1EA ED == ,12020n EA y z y z n ED x z x z⎧⎧⋅=+==-⎪⎪⇒⎨⎨⋅=+=⎪⎪⎩=-⎩ ,令2z =,所以()2,1,2n =-- ,又11,1,22EO ⎛⎫= ⎪⎝⎭ ,则O 到平面ADE的距离为13EO n n ⋅==.故选:A.【点睛】方法点睛:解决与球相关的切、接问题,其通法是作出截面,将空间几何问题转化为平面几何问题求解,其解题思维流程如下:(1)定球心:如果是内切球,球心到切点的距离相等且为球的半径;如果是外接球,球心到接点的距离相等且为半径;(2)作截面:选准最佳角度做出截面(要使这个截面尽可能多的包含球、几何体的各种元素以及体现这些元素的关系),达到空间问题平面化的目的;(3)求半径下结论:根据作出截面中的几何元素,建立关于球的半径的方程,并求解.或者采用补形法,利用规则图形的外接球位置确定所求外接球球心的位置.二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.在一次射击比赛中,甲、乙两名选手的射击环数如下表,则下列说法正确的是()甲乙87909691869086928795A.甲选手射击环数的极差大于乙选手射击环数的极差B.甲选手射击环数的平均数等于乙选手射击环数的平均数C.甲选手射击环数的方差大于乙选手射击环数的方差D.甲选手射击环数的第75百分位数大于乙选手射击环数的第75百分位数【答案】ABC 【解析】【分析】通过极差、平均数、方差、第75百分位数的计算即可求解.【详解】甲选手射击环数从小到大排列:86,87,90,91,96,则甲选手射击环数的:极差等于968610-=;平均数等于()18687909196905⨯++++=;方差等于()()()()()2222218690879090909190969012.45⎡⎤⨯-+-+-+-+-=⎣⎦;第75百分位数等于91.乙选手射击环数从小到大排列:86,87,90,92,95,则乙选手射击环数的:极差等于95869-=;平均数等于()18687909295905⨯++++=;方差等于()()()()()2222218690879090909290959010.85⎡⎤⨯-+-+-+-+-=⎣⎦;第75百分位数等于92.综上可知,ABC 选项正确,D 选项错误.故选:ABC.10.已知函数()()sin 2f x x ϕ=+满足()()33ππ+=-f x f x,且()ππ2f f ⎛⎫> ⎪⎝⎭,则()A.1sin 2ϕ=B.1sin 2ϕ=-C.()y f x =的图象关于点13π,012⎛⎫⎪⎝⎭对称 D.()f x 在区间π,π2⎛⎫⎪⎝⎭单调递减【答案】BC 【解析】【分析】由已知结合正弦函数的对称性可先求出ϕ,即可判断A ,B ;然后结合正弦函数的对称性及单调性检验选项C ,D 即可判断.【详解】因为函数()sin(2)f x x ϕ=+满足()()33ππ+=-f x f x,所以()f x 的图象关于π3x =对称,则2πππ32k ϕ+=+,Z k ∈,则6πkπϕ=-,Z k ∈,所以π()sin(2)6f x x =-或5π()sin(2)6f x x =+,因为π((π)2f f >,所以π2π6n ϕ=-,Z n ∈,1sin 2ϕ=-,A 错误,B 正确;则π()sin(2)6f x x =-,13π(sin 2π012f ==,即()f x 的图象关于点13(π,0)12对称,C 正确;当ππ2x <<时,5ππ11π2666x <-<,因为sin y t =在5π(6,11π6上不单调,D 错误.故选:BC .11.已知函数()()e eee xxxx f x ax --=+-+恰有三个零点1x ,2x ,3x ,且123x x x <<,则()A.1230x x x ++=B.实数a 的取值范围为(]0,1C.110ax +>D.31ax a +>【答案】ACD 【解析】【分析】利用()f x 的奇偶性可判断A 选项;将函数的零点问题转化为函数图像的交点问题,再利用导数和基本不等式确定切线斜率的取值范围,进而得实数a 的取值范围,即可判断B 选项;由112122e1e 1x xax +=+来可判断C 选项;由32321e 1x ax =-+得323121e 1x a x ⎛⎫=- ⎪+⎝⎭,进而31ax a +>等价于323e 210x x -->,令()()2=e210xh x x x -->,用导数证明()0h x >,即可判断D 选项.【详解】函数()()e eee xxxx f x ax --=+-+定义域为R ,()()()()()e e e e e e e e x x x x x x x xf x a x ax f x ----⎡⎤-=-+-+=-+-+=-⎣⎦,所以()f x 是奇函数,则()00f =,又因为()f x 有三个零点且123x x x <<,()()()1230f x f x f x ===,所以13x x =-,20x =,即1230x x x ++=,故A 选项正确;()()e eee0xxxxf x ax --=+-+=,得222e e e 121e e e 1e 1x x x x x x xax --=--==-+++,令()221e 1xg x =-+,则()()2224e 0e 1xxg x =>+',所以()f x 在R 上增函数,要使函数()f x 有3个零点,y ax =与()y g x =的图象有3个交点,如图:又()()()2222222224e 4e 411e 1e 2e 1e 2e xxx xx x x g x ===≤=+++++',当且仅当0x =时取等号,即()01g x <'≤,所以01a <<,故B 错误;111212222e 1110e 1e 1x x x ax ⎛⎫+=-+=> ⎪++⎝⎭,故C 选项正确;由32321e 1x ax =-+得323121e 1x a x ⎛⎫=- ⎪+⎝⎭,又30x >,要使333223212111e 1e 1x x ax a x ⎛⎫+=-+-> ⎪++⎝⎭成立,则323e 210x x -->成立,令()()2=e210xh x x x -->,()()()2=2e 100x h x x -'>>,所以()h x 在()0,∞+单调递增,则()()0=0h x h >,于是323e210x x -->,则31ax a +>,故D 正确.故选:ACD.【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法:(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.三、填空题:本题共3小题,每小题5分,共15分.12.若向量()3,4a =- 在向量()2,1b =- 上的投影向量为b λ,则λ等于______.【答案】2-【解析】【分析】根据投影向量的公式运算即可得答案.【详解】向量a 在向量b上的投影向量为2a b b b⋅ ,所以()()()223,42,164252,1a b b λ-⋅-⋅--====--.故答案为:2-.13.倾斜角为π3的直线经过抛物线C :212y x =的焦点F ,且与C 交于A ,B 两点,Q 为线段AB 的中点,P 为C 上一点,则PF PQ +的最小值为______.【答案】8【解析】【分析】由题意,根据给定条件,求出点Q 的横坐标,再借助抛物线的定义求解作答.【详解】易知抛物线2:12C y x =的焦点(3,0)F ,准线3x =-,直线AB的方程为3)y x =-,联立23)12y x y x⎧=-⎪⎨=⎪⎩,消去y 并整理得21090x x -+=,不妨设1(A x ,1)y ,2(B x ,2)y ,由韦达定理得1210x x +=,此时线段AB 的中点Q 的横坐标5Q x =,过P 作准线3x =-的垂线,垂足为D ',过Q 作准线3x =-的垂线,垂足为D ,由抛物线的定义可得5382Q pPF PQ PD PQ QD QD x +=+≥≥+='+'==||||PF PQ +取得的最小值为8.故答案为:8.14.如图,六面体111ABCDA C D 的一个面ABCD 是边长为2的正方形,1AA ,1CC ,1DD 均垂直于平面ABCD ,且11AA =,12CC =,则该六面体的体积等于________,表面积等于______.【答案】①.6②.22【解析】【分析】根据1AA ,1CC ,1DD 均垂直于平面ABCD ,所以111////AA CC DD ,在1DD 上取1DM AA =,连接1,A M MC ,从而根据线线平行可得故1ABA DCM -为三棱柱,111BCC A MD -为三棱柱,根据柱体体积公式即可得该六面体的体积,根据几何体外表面的线线关系结合勾股定理、余弦定理、三角形面积公式、梯形面积公式、正方形面积公式,即可得几何体的表面积.【详解】如图,在1DD 上取1DM AA =,连接1,A M MC ,因为1AA ,1CC ,1DD 均垂直于平面ABCD ,所以111////AA CC DD ,则11,AA AD AA DC ⊥⊥,因为正方形ABCD ,所以AD DC ⊥,又,,AD DC D AD DC =⊂ 平面11A ADD ,所以DC ⊥平面11A ADD ,由1DM AA =可得四边形1AA MD 为平行四边形,所以11//,AD A M AD A M =,因为面ABCD 为正方形,则//,AD BC AD BC =,所以11//,BC A M BC A M =,则四边形1A MCB 为平行四边形,所以11//,A B MC A B MC =,又1A B ⊄平面11DCC D ,MC ⊂平面11DCC D ,所以1//A B 平面11DCC D ,因为平面11DCC D 平面11111A BC D C D =,则111//A B C D ,所以四边形11MD C C 为平行四边形,所以112MD C C ==,故1ABA DCM -为三棱柱,111BCC A MD -为三棱柱,则该六面体的体积1111ABA CDM BCC A MD V V V --=+=1111212222622ABA BCC S BC S DC ⋅+⋅=⨯⨯⨯+⨯⨯⨯= ;如图,连接1,BD D B ,又1A B ===,11A D ===,BD ==所以1BD ==,则在四边形111A BC D中,由余弦定理得22211111111110cos 210A B A D BD D A B A B A D +-∠===-⋅,所以11sin 10D A B ∠==,则11111111sin 610A BC D S AB A D D A B =⋅⋅∠== ,该六面体的表面积111111111ABA BCC A BCD ABCDA ADD DCC D S S S S S S S =+++++ 四边形四边形()()11112122132232622222222=⨯⨯+⨯⨯+⨯+⨯+⨯+⨯++⨯=.故答案为:6;22.【点睛】关键点点睛:解决本题的关键是确定六面体的线线关系.关于求几何体的体积,要注意分割与补形.将不规则的几何体通过分割或补形将其转化为规则的几何体求解.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.已知数列{}n a 满足12a =,12n n a a n -=+(2n ≥).(1)求数列{}n a 的通项公式;(2)记数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和为n S ,证明:1n S <.【答案】(1)2n a n n =+,*n ∈N ;(2)证明见解析.【解析】【分析】(1)根据给定条件,利用累加法,结合等差数列前n 项和公式求解即得.(2)利用裂项相消法求和即可得证.【小问1详解】数列{}n a 中,当2n ≥时,12n n a a n -=+,即12n n a a n --=,则12112312()()()()n n n n n a a a a a a a a a a ---=--⋅⋅⋅+--++++()()2222462222n n n a n n n n +=+++⋅⋅⋅+-+==+,而12a =满足上式,所以数列{}n a 的通项公式是2n a n n =+,*n ∈N .【小问2详解】由(1)知()21n a n n n n =+=+,*n ∈N ,则()111111n a n n n n ==-++,因此()()1111122311n S n n n n =++⋅⋅⋅++⨯⨯-+1111111111223111n n n n n =-+-+⋅⋅⋅+-+-=--++,而1n ≥,则1111n -<+,所以1n S <.16.甲企业生产线上生产的零件尺寸的误差X 服从正态分布()20,0.2N ,规定()0.2,0.2X ∈-的零件为优等品,()0.6,0.6X ∈-的零件为合格品.(1)从该生产线上随机抽取100个零件,估计抽到合格品但非优等品的个数(精确到整数);(2)乙企业拟向甲企业购买这批零件,先对该批零件进行质量抽检,检测的方案是:从这批零件中任取2个作检测,若这2个零件都是优等品,则通过检测;若这2个零件中恰有1个为优等品,1个为合格品但非优等品,则再从这批零件中任取1个作检测,若为优等品,则通过检测;其余情况都不通过检测.求这批零件通过检测时,检测了2个零件的概率(精确到0.01).(附:若随机变量()2,N ξμσ,则()0.6827P μσξμσ-<<+=,()220.9545P μσξμσ-<<+=,()330.9973P μσξμσ-<<+=)【答案】(1)约31个(2)约为0.61【解析】【分析】(1)利用正态分布的对称性即可求解;(2)利用条件概率求解即可.【小问1详解】依题意得,0μ=,0.2σ=,所以零件为合格品的概率为()()0.60.6330.9973P X P X μσμσ-<<=-<<+=,零件为优等品的概率为()()0.20.20.6827P X P X μσμσ-<<=-<<+=,所以零件为合格品但非优等品的概率为0.99730.68270.3146P =-=,所以从该生产线上随机抽取100个零件,估计抽到合格品但非优等品的个数为1000.314631⨯≈.【小问2详解】设从这批零件中任取2个作检测,2个零件中有2个优等品为事件A ,恰有1个优等品,1个为合格品但非优等品为事件B ,从这批零件中任取1个检测是优等品为事件C ,这批产品通过检测为事件D ,则D A BC =+,且A 与BC 互斥,所以()()()()()()P D P A P BC P A P B P C B=+=+221222C 0.6827C 0.68270.31460.6827 1.62920.6827=⨯+⨯⨯⨯=⨯,所以这批零件通过检测时,检测了2个零件的概率为22()0.68271(|)0.61() 1.62920.6827 1.6292P AD P A D P D ===≈⨯.答:这批零件通过检测时,检测了2个零件的概率约为0.61.17.如图,以正方形ABCD 的边AB 所在直线为旋转轴,其余三边旋转120°形成的面围成一个几何体ADF BCE -.设P 是CE 上的一点,G ,H 分别为线段AP ,EF 的中点.(1)证明://GH 平面BCE ;(2)若BP AE ⊥,求平面BPD 与平面BPA 夹角的余弦值.【答案】(1)证明见解析(2【解析】【分析】(1)证法一:在正方形ABEF 中,连接AH 并延长,交BE 的延长线于点K ,连接PK ,通过证明Rt Rt AFH KEH ≌△△可得GH PK ∥,进而利用线面平行的判定定理即可证明;证法二:取BP 的中点Q ,连接GQ ,EQ ,通过证明四边形GQEH 是平行四边形可得GH QE ∥,进而利用线面平行的判定定理即可证明;证法三:取AB 的中点I ,连接G I ,HI ,利用面面平行的判定定理证明平面//GIH 平面BCE ,从而即可得证//GH 平面BCE .(2)首先通过线面垂直的判定定理证明BP ⊥平面ABEF 可得BP BE ⊥,然后建立空间直角坐标系,利用向量法可求平面BPD 与平面BPA 夹角的余弦值.【小问1详解】证法一:在正方形ABEF 中,连接AH 并延长,交BE 的延长线于点K ,连接PK .因为G ,H 分别为线段AP ,EF 中点,所以HF HE =,所以Rt Rt AFH KEH ≌△△,所以AH KH =,所以GH PK ∥.又因为GH ⊄平面BCE ,PK ⊂平面BCE ,所以//GH 平面BCE .证法二:取BP 的中点Q ,连接GQ ,EQ ,因为G ,H 分别为线段AP ,EF 的中点,所以//GQ AB ,12GQ AB =,又因为//AB EF ,AB EF =,所以GQ HE ∥,GQ HE =,所以四边形GQEH 是平行四边形,所以GH QE ∥,又因为GH ⊄平面BCE ,QE ⊂平面BCE ,所以//GH 平面BCE .证法三:取AB 的中点I ,连接G I ,HI .因为G ,H 分别为线段AP ,EF 的中点,所以GI BP ∥,HI EB ∥,又因为GI ⊄平面BCE ,BP ⊂平面BCE ,所以//GI 平面BCE .因为HI ⊄平面BCE ,BE ⊂平面BCE ,所以//HI 平面BCE .又因为GI HI I ⋂=,GI ⊂平面GIH ,HI ⊂平面GIH ,所以平面//GIH 平面BCE ,又因为GH Ì平面GIH ,所以//GH 平面BCE .【小问2详解】依题意得,AB ⊥平面BCE ,又因为BP ⊂平面BCE ,所以AB BP ⊥.又因为BP AE ⊥,AB AE A = ,AB ,AE ⊂平面ABEF ,所以BP ⊥平面ABEF ,又BE ⊂平面ABEF ,所以BP BE ⊥,所以BP ,BE ,BA 两两垂直.以B 为原点,BP ,BE ,BA 所在直线分别为x ,y ,z轴建立空间直角坐标系,如图所示.不妨设1AB =,30BCP ∠= ,则()1,0,0P ,31,,122D ⎛⎫- ⎪ ⎪⎝⎭,()1,0,0BP =,31,,122BD ⎛⎫=- ⎪ ⎪⎝⎭,设平面BPD 的法向量为(),,m x y z = ,则0,0,BP m BD m ⎧⋅=⎪⎨⋅=⎪⎩即031022x x y z =⎧-+=⎩,取2y =,得0x =,1z =,所以平面BPD 的一个法向量是()0,2,1m =,又平面BPA 的一个法向量为()0,1,0n =.设平面BPD 与平面BPA 的夹角为θ,则25cos cos ,5m n m n m n θ⋅====.所以平面DBP 与平面BPA.18.点P 是椭圆E :22221x y a b+=(0a b >>)上(左、右端点除外)的一个动点,()1,0F c -,()2,0F c 分别是E 的左、右焦点.(1)设点P 到直线l :2a x c =的距离为d ,证明2PF 为定值,并求出这个定值;(2)12PF F △的重心与内心(内切圆的圆心)分别为G ,I ,已知直线IG 垂直于x 轴.(ⅰ)求椭圆E 的离心率;(ⅱ)若椭圆E 的长轴长为6,求12PF F △被直线IG 分成两个部分的图形面积之比的取值范围.【答案】(1)证明见解析,定值为ca(2)(ⅰ)13;(ⅱ)45,54⎡⎤⎢⎥⎣⎦【解析】【分析】(1)由两点间距离公式(结合点P 在椭圆上)、点到直线距离公式表示出2,PF d ,两式相比即可得解;(2)(ⅰ)解法一:一方面由(1)得20cPF a x a =-,另一方面结合已知以及椭圆定义得023x PF a =-,对比两式即可得解;解法二:利用已知以及椭圆定义得12,PF PF 的一种表达式,另外结合两点间距离公式也可以分别表示12,PF PF ,从而平方后作差即可得解;解法三:表示出12,PF PF 方程,根据题意设出内心坐标,结合点到直线距离公式以及内切圆性质即可得解;(ⅱ)先求出椭圆方程,然后求得1FCD 的面积1S 与12PF F △的面积S 之比的表达式结合导数即可求出其范围,进一步即可得解.【小问1详解】依题意,222b c a +=.设()00,P x y ,则2200221x y a b+=,0a x a -<<,所以2PF =所以20c PF x a a==-,又a c >,所以0c a x a >,20ax c >,所以20c PF a x a =-,20a d x c=-所以0220ca x PF c a a d a x c-==-,即2PF 为定值,且这个定值为c a .【小问2详解】(ⅰ)解法一:依题意,00,33x y G ⎛⎫ ⎪⎝⎭,设直线IG 与x 轴交于点C ,因为IG x ⊥轴,所以0,03x C ⎛⎫⎪⎝⎭,所以001202333x x F C F C c c x ⎛⎫⎛⎫-=+--=⎪ ⎪⎝⎭⎝⎭,因为12PF F △的内切圆与x 轴切于点C ,所以1212023PF PF F C F C x -=-=,又因为122PF PF a +=,解得023x PF a =-由(1)得20cPF a x a =-,所以003x c a x a a -=-,所以椭圆E 的离心率13c e a ==.解法二:依题意,00,33x y G ⎛⎫⎪⎝⎭,设直线IG 与x 轴交于点C ,因为IG x ⊥轴,所以0,03x C ⎛⎫⎪⎝⎭,所以001202333x x F C F C c c x ⎛⎫⎛⎫-=+--=⎪ ⎪⎝⎭⎝⎭,因为12PF F △的内切圆与x 轴切于点C ,所以1212023PF PF F C F C x -=-=,又因为122PF PF a +=,得0102,3,3x PF a x PF a ⎧=+⎪⎪⎨⎪=-⎪⎩所以0,3,3x a x a =+=-两式平方后作差,得00443cx ax =对任意0x 成立,所以椭圆E 的离心率13c e a ==.解法三:依题意,00,33x y G ⎛⎫ ⎪⎝⎭,因为IG x ⊥轴,设点I 坐标为0,3x t ⎛⎫ ⎪⎝⎭,可求直线1PF 方程为()00y y x c x c=++,则点I 到直线1PFt =,即()()()2222000003x y c t x c t y x c ⎛⎫⎛⎫+-+=++ ⎪⎪⎝⎭⎝⎭,化简得()22000002033x x y t t c x c y c ⎛⎫⎛⎫+++-+= ⎪ ⎪⎝⎭⎝⎭,①同理,由点I 到直线2PF 的距离等于t ,可得()22000002033x x y t t c x c y c ⎛⎫⎛⎫+----= ⎪ ⎪⎝⎭⎝⎭,②将式①-②,得00084233t cx y cx ⋅=⋅,则04y t =.将04y t =代入式①,得()2200001016233y x x c x c c ⎛⎫⎛⎫+++-+= ⎪ ⎪⎝⎭⎝⎭,化简得220022198x y c c+=,得229c a =,所以椭圆E 的离心率13c e a ==.(ⅱ)由26a =,得3a =,又13c a =,所以1c =,2228b a c =-=,所以椭圆E的方程为221 98x y+=.根楛椭圆对称性,不妨设点P在第一象限或y轴正半轴上,即0003,0x y≤<<≤又()11,0F-,()21,0F,所以直线1PF的方程为()11yy xx=++,设直线IG与1PF交于点D,因为03Dxx=,所以()()00331Dy xyx+=+,1FCD的面积1S与12PF F△的面积S之比为()()()()00200131123313118122y xxx xSS xy+⎛⎫+⨯⎪++⎝⎭==+⨯⨯,令()()()23181xf xx+=+(03x≤<),则()()()()231181x xf xx+-+'=,当[)0,1x∈,()0f x'<,当()1,3x∈,()0f x'>,所以函数()f x在[)0,1单调递减,在()1,3单调递增.又因为()12f=,()419f=,()132f=,所以()f x的值域是41,92⎡⎤⎢⎥⎣⎦,所以14192SS≤≤,所以11415SS S≤≤-,根据对称性,12PF F△被直线IG分成两个部分的图形面积之比的取值范围是45,54⎡⎤⎢⎥⎣⎦.【点睛】关键点点睛:第二问(ⅱ)的关键在于求得1FCD 的面积1S 与12PF F △的面积S 之比的表达式,由此即可顺利得解.19.记集合()()()()()()(){}000,R ,,,f x x D L l x kx b x x D f x l x x D f x l x ∈==+∈∀∈≤∃∈=且,集合()()()()()()(){}000,R ,,,f x x D T l x kx b x x D f x l x x D f x l x ∈==+∈∀∈≥∃∈=且,若()(),f x x D l x L ∈∈,则称直线()y l x =为函数()f x 在D 上的“最佳上界线”;若()(),f x x D l x T ∈∈,则称直线()y l x =为函数()f x 在D 上的“最佳下界线”.(1)已知函数()2f x x x =-+,()01l x kx =+.若()()0,R f x x l x L ∈∈,求k 的值;(2)已知()e 1xg x =+.(ⅰ)证明:直线()y l x =是曲线()y g x =的一条切线的充要条件是直线()y l x =是函数()g x 在R 上的“最佳下界线”;(ⅱ)若()()ln 1h x x =-,直接写出集合()()(),1,,R h x x g x x L T ∞∈+∈⋂中元素的个数(无需证明).【答案】(1)3k =或1-(2)(ⅰ)证明见解析;(ⅱ)2个【解析】【分析】(1)由题意可得R x ∀∈,21x x kx -+≤+,且0R x ∃∈,20001x x kx -+=+,再由△0=求解即可;(2)(ⅰ)结合“最佳下界线”及充要条件的定义证明即可;(ⅱ)由定义直接写出结果即可.【小问1详解】依题意,()()0,R f x x l x L ∈∈ ,R x ∴∀∈,21x x kx -+≤+,且0R x ∃∈,20001x x kx -+=+,令2()(1)1x x k x ϕ=-+--,2Δ(1)4k =--,则()0x ϕ≤,且0()0x ϕ=,∴Δ0,Δ0,≤⎧⎨≥⎩,∴Δ0=,即2(1)40k --=,12k -=或12k -=-,解得3k =或1-;【小问2详解】(ⅰ)先证必要性.若直线()y l x =是曲线()y g x =的切线,设切点为()00,e 1x x +,因为()e x g x '=,所以切线方程为()()000e 1e x x y x x -+=-,即()()000e 1e 1x xl x x x =+-+(*)一方面,()()00g x l x =,所以0x ∃∈R ,()()00g x l x =,另一方面,令()()()()000e e 1e x xx G x g x l x x x =-=---,则()00G x =,因为()0e e xx G x '=-,所以当0x x <时,()0G x '<,()G x 在()0,x ∞-单调递减,当0x x >时,()0G x '>,()G x 在()0,x ∞+单调递增,所以()()00G x G x ≥=,所以()()g x l x ≥.即x ∀∈R ,()()g x l x ≥,所以()(),R g x x l x T ∈∈,即()l x 是函数()g x 在R 上的“最佳下界线”.再证充分性.若()l x 是函数()g x 在R 上的“最佳下界线”,不妨设()l x kx b =+,由“最佳下界线”的定义,x ∀∈R ,()()g x l x ≥,且0x ∃∈R ,()()00g x l x =,令()()()e 1xH x g x l x kx b =-=+--,则()0H x ≥且()00H x =,所以()min 0H x =.因为()e xH x k '=-,①若0k ≤,则()0H x '≥,所以()H x 在R 上单调递增,所以10x x ∃<,使得()()100H x H x <=,故0k ≤不符合题意.②若0k >,令()0H x '=,得ln x k =,当(),ln x k ∞∈-时,()0H x '<,得()H x 在(),ln k ∞-单调递减,当()ln ,x k ∞∈+时,()0H x >,得()H x 在()ln ,k ∞+单调递增,所以,当且仅当ln x k =时,()H x 取得最小值()ln H k .又由()H x 在0x 处取得最小值,()min 0H x =,所以()0,ln 0,x lnk H k =⎧⎨=⎩即000e ,e 10,x x k kx b ⎧=⎪⎨+--=⎪⎩解得0e x k =,()001e 1x b x =-+,所以()()000e 1e 1x xl x x x =+-+,由(*)式知直线()y l x =是曲线()y g x =在点()00,e 1x x +处的切线.综上所述,直线()y l x =是曲线()y g x =的一条切线的充要条件是直线()y l x =是函数()g x 在R 上的“最佳下界线”.(ⅱ)集合()()(),1,,R h x x g x x L T ∞∈+∈⋂元素个数为2个.【点睛】方法点睛:新定义题型的特点是:通过给出一个新概念,或约定一种新运算,或给出几个新模型来创设全新的问题情景,要求考生在阅读理解的基础上,依据题目提供的信息,联系所学的知识和方法,实现信息的迁移,达到灵活解题的目的:遇到新定义问题,应耐心读题,分析新定义的特点,弄清新定义的性质,按新定义的要求,“照章办事”,逐条分析、验证、运算,使问题得以解决.。

2017-2018学年高二年级数学期末试卷(理数)含答案

2017-2018学年高二年级数学期末试卷(理数)含答案

2.若 x 2m2 3 是 1 x 4 的必要不充分条件,则实数 m 的取值范围是( )
10.已知函数 f x 1 x3 1 mx2 4x 3 在区间 1,2上是增函数,则实数 m 的取值范围是(
32
A . 3,3
B . ,3 3, C . ,1 1,
,则满足
11.已知函数
f
x
3|x1| , x2 2x
x 1,
0, x
0
若关于
x
的方程 f
x2

a
1f
x
a

0有
7
个不
等实根,则实数 a 的取值范围是(
)
A . 2,1
B .2,4
C . 2,1
D . ,4
12.
已知函数
A . loga c logb c B . logc a logc b C . a c bc
D . ca cb
一、选择题(本大题共 12 小题,每小题 5 分,共 60 分。在每小题给出的四个选项中,只有一项是 9.已知函数 f x 2 xm 1 为偶函数,记 a f log0.5 3 , b f log2 5 , c f 2m,则
由题设知


解得 的横坐标分别是 则 有 又
,又 于是
, ,

,即 l 与直线 平行, 一定相交,分别联立方

是平面
的法向量,则
,即

对任意
,要使

的面积之比是常数,只需 t 满足
可取
,故,所以 与平面
20. (1)依题意可得
所成角的正弦值为 ---------12 分 ,

人教版数学高一下册期末测试精选(含答案)2

人教版数学高一下册期末测试精选(含答案)2

B.若 , ,则
C.若 // , m ,则 m / /
D.若 m , ,n / / ,则 m n
【来源】广西梧州市 2019-2020 学年高一上学期期末数学试题 【答案】C
16.已知圆 x a2 y2 1 与圆 x2 y b2 1外切,则( ).
A. a2 b2 4
32.已知点 A(2, a) ,圆 C : (x 1)2 y2 5
(1)若过点 A 只能作一条圆 C 的切线,求实数 a 的值及切线方程; (2)设直线 l 过点 A 但不过原点,且在两坐标轴上的截距相等,若直线 l 被圆 C 截得
的弦长为 2 3 ,求实数 a 的值.
【来源】江西省宜春市上高县上高二中 2019-2020 学年高二上学期第三次月考数学(理) 试题
【答案】B
7.如图,四边形 ABCD 和 ADEF 均为正方形,它们所在的平面互相垂直,动点 M 在 线段 AE 上,设直线 CM 与 BF 所成的角为 ,则 的取值范围为( )
A.
0,
3
B.
0,
π 3
C.
0,
2
D.
0,
2
【来源】四川省乐山市 2019-2020 学年高二上学期期末数学(文)试题
6
a
1 3
,则
cos
2 3
2a
()
A. 7 9
B. 1 3
1
C.
3
7
D.
9
【来源】河北省石家庄市第二中学 2018-2019 学年高二第二学期期末考试数学(理)试

【答案】A
13.已知圆 C 被两直线 x y 1 0 , x y 3 0 分成面积相等的四部分,且截 x 轴

人教版数学高三期末测试精选(含答案)4

人教版数学高三期末测试精选(含答案)4

人教版数学高三期末测试精选(含答案)学校:___________姓名:___________班级:___________考号:___________一、单选题1.南宋数学家杨辉在《详解九章算法》和《算法通变本末》中,提出了一些新的垛积公式,所讨论的高阶等差数列与一般等差数列不同,前后两项之差并不相等,但是逐项差数之差或者高次差成等差数列对这类高阶等差数列的研究,在杨辉之后一般称为“垛积术”.现有高阶等差数列,其前7项分别为1,4,8,14,23,36,54,则该数列的第19项为( )(注:2222(1)(21)1236n n n n ++++++=L )A .1624B .1024C .1198D .1560【来源】2020届湖南省高三上学期期末统测数学(文)试题 【答案】B2.在ABC ∆中,若222sin sin sin A B C +<,则ABC ∆的形状是( ) A .钝角三角形 B .直角三角形 C .锐角三角形D .不能确定【来源】海南省文昌中学2018-2019学年高一下学期段考数学试题 【答案】A3.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若a ﹣b =c cos B ﹣c cos A ,则△ABC 的形状为( ) A .等腰三角形 B .等边三角形C .直角三角形D .等腰三角形或直角三角形【来源】江苏省常州市2018-2019学年高一下学期期末数学试题 【答案】D4.已知圆C 1:(x +a )2+(y ﹣2)2=1与圆C 2:(x ﹣b )2+(y ﹣2)2=4相外切,a ,b 为正实数,则ab 的最大值为( )A .B .94C .32D .2【来源】安徽省安庆市五校联盟2018-2019学年高二(上)期中数学(理科)试题 【答案】B5.已知等比数列{}n a 满足122336a a a a +=+=,,则7a =( )【来源】甘肃省兰州市第一中学2016-2017学年高二下学期期末考试数学(文)试题 【答案】A6.《莱因德纸草书》是世界上最古老的数学著作之一,书中有一道这样的题目:把100个面包分给五个人,使每个人所得成等差数列,最大的三份之和的17是最小的两份之和,则最小的一份的量是 ( ) A .116B .103C .56D .53【来源】湖南省湘南三校联盟2018-2019学年高二10月联考文科数学试卷 【答案】D7.若ABC ∆的三个内角满足sin :sin :sin 5:11:13A B C =,则ABC ∆( ) A .一定是锐角三角形 B .一定是直角三角形C .一定是钝角三角形D .可能是锐角三角形,也可能是钝角三角形【来源】广东省中山市第一中学2019-2020学年高二上学期10月月考数学试题 【答案】C8.若不等式22log (5)0x ax -+>在[4,6]x ∈上恒成立,则a 的取值范围是( )A .(,4)-∞)B .20(,)3-∞ C .(,5)-∞D .29(,)5-∞【来源】重庆市七校(渝北中学、求精中学)2019-2020学年高一上学期期末联考数学试题 【答案】C9.港珠澳大桥通车后,经常往来于珠港澳三地的刘先生采用自驾出行.由于燃油的价格有升也有降,现刘先生有两种加油方案,第一种方案:每次均加30升的燃油;第二种方案,每次加200元的燃油,则下列说法正确的是( ) A .采用第一种方案划算 B .采用第二种方案划算 C .两种方案一样D .无法确定【来源】2020届广东省珠海市高三上学期期末数学(文)试题 【答案】B10.已知正项等比数列{}n a 的前n 项和为n S ,12a =,23434a a a +=,则5S =( )【来源】2020届山西省吕梁市高三上学期第一次模拟考试数学(文)试题 【答案】A11.在ABC ∆中3AB =,5BC =,7AC =,则边AB 上的高为( )A B C D 【来源】重庆市松树桥中学2018-2019学年高一下学期期末数学试题 【答案】B12.不等式220ax bx ++>的解集是()1,2-,则a b -=( ) A .3-B .2-C .2D .3【来源】重庆市松树桥中学2018-2019学年高一下学期期末数学试题 【答案】B13.各项均为正数的数列{}n a ,其前n 项和为n S ,若224n n n a S a -=,则2019S 为( )A .BC .2019D .4038【来源】重庆市松树桥中学2018-2019学年高一下学期期末数学试题 【答案】A14.设m ,n 为正数,且2m n +=,则2312m n m n +++++的最小值为( ) A .176B .145 C .114D .83【来源】重庆市松树桥中学2018-2019学年高一下学期期末数学试题 【答案】B15.已知数列{}n a 的前n 项和为n S ,且314n n S a +=,则使不等式1000成立的n 的最大值为( )A .7B .8C .9D .10【来源】重庆市松树桥中学2018-2019学年高一下学期期末数学试题 【答案】C16.ABC ∆中角A ,B ,C 的对边分别是a ,b ,c ,若1a =,b =4B π=,则A =( )A .6π B .56π C .6π或56πD .23π【来源】重庆市松树桥中学2018-2019学年高一下学期期末数学试题 【答案】A17.等差数列{}n a 前n 项和为n S ,已知46a =,36S =,则( ) A .410n a n =-B .36n a n =-C .2n S n n =-D .224n S n n =-【来源】2020届安徽省芜湖市高三上学期期末数学(理)试题 【答案】C18.在等差数列{}n a 中,652a a =,则17a a +=( ) A .0B .1C .2-D .3【来源】2020届福建省三明市高三上学期期末质量检测文科数学试题 【答案】A19.若0,0,a b c d >><<则一定有( ) A .a b c d> B .a b c d< C .a b d c> D .a b d c< 【来源】2014年全国普通高等学校招生统一考试理科数学(四川卷带解析) 【答案】D20.已知平面上有四点O ,A ,B ,C ,向量,,OA OB OC u u u r u u u r u u u r 满足:0OA OB OC ++=u u u r u u u r u u u r r1OA OB OB OC OC OA ⋅=⋅=⋅=-u u u v u u u v u u u v u u u v u u u v u u u v,则△ABC 的周长是( )A .B .C .3D .6【来源】福建省晋江市季延中学2017-2018学年高一下学期期末考试数学试题 【答案】A21.在ABC ∆中,60A =︒,1b =,则sin sin sin a b c A B C ++++的值为( )A .1B .2C D .【来源】辽宁省实验中学分校2016-2017学年高一下学期期末数学(文)试题 【答案】B二、填空题22.在ABC △中,角,,A B C 所对的边分别为,,a b c ,120ABC ∠=︒,ABC ∠的平分线交AC 于点D ,且1BD =,则4a c +的最小值为________. 【来源】2018年全国普通高等学校招生统一考试数学(江苏卷) 【答案】923.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知5a =8b ,A =2B ,则sin B =_____.【来源】江苏省常州市2018-2019学年高一下学期期末数学试题 【答案】3524.如图,为测得河对岸塔AB 的高,先在河岸上选一点C,使C 在塔底B 的正东方向上,测得点A 的仰角为60°,再由点C 沿北偏东15°方向走10 m 到位置D,测得∠BDC =45°,则塔AB 的高是_____.【来源】2014届江西省南昌大学附属中学高三第三次月考理科数学试卷(带解析) 【答案】1025.设等比数列{}n a 满足a 1+a 3=10,a 2+a 4=5,则a 1a 2…a n 的最大值为 . 【来源】智能测评与辅导[文]-等比数列 【答案】6426.设x ,y 满足约束条件20260,0x y x y x y +-≥⎧⎪+≤⎨⎪≥≥⎩,则23z x y =-+的最小值是______.【来源】2020届山西省吕梁市高三上学期第一次模拟考试数学(文)试题 【答案】9-27.已知数列{}n a 是等差数列,且公差0d <,()11a f x =+,20a =,()31a f x =-,其中()242f x x x =-+,则{}n a 的前10项和10S =________.【来源】2020届安徽省芜湖市高三上学期期末数学(文)试题 【答案】70-28.若x ,y 满足约束条件22020x x y x y ≤⎧⎪-+≥⎨⎪+-≥⎩,则3z x y =-的最小值为________.【来源】2020届安徽省芜湖市高三上学期期末数学(文)试题 【答案】2-29.已知数列{}n a 满足11a =,()13N n n n a a n *+⋅=∈,那么数列{}n a 的前9项和9S =______.【来源】2020届安徽省芜湖市高三上学期期末数学(理)试题 【答案】24130.设a ,b ,c 分别为ABC ∆内角A ,B ,C 的对边.已知2cos cos a B C=,则222a cb ac+-的取值范围为______.【来源】2020届吉林省通化市梅河口市第五中学高三上学期期末数学(理)试题【答案】()()0,2U三、解答题31.如图,在平面四边形ABCD 中,BC =3,CD =5,DA 2=,A 4π=,∠DBA 6π=.(1)求BD 的长: (2)求△BCD 的面积.【来源】江苏省常州市2018-2019学年高一下学期期末数学试题 【答案】(1)7;(2 32.近年来,中美贸易摩擦不断.特别是美国对我国华为的限制.尽管美国对华为极力封锁,百般刁难,并不断加大对各国的施压,拉拢他们抵制华为5G ,然而这并没有让华为却步.华为在2018年不仅净利润创下记录,海外增长同样强劲.今年,我国华为某一企业为了进一步增加市场竞争力,计划在2020年利用新技术生产某款新手机.通过市场分析,生产此款手机全年需投入固定成本250万,每生产x (千部)手机,需另投入成本()R x 万元,且 210100,040()100007019450,40x x x R x x x x ⎧+<<⎪=⎨+-≥⎪⎩,由市场调研知,每部手机售价0.7万元,且全年内生产的手机当年能全部销售完.(I )求出2020年的利润()W x (万元)关于年产量x (千部)的函数关系式,(利润=销售额—成本);(II)2020年产量为多少(千部)时,企业所获利润最大?最大利润是多少?【来源】湖北省四校(襄州一中、枣阳一中、宜城一中、曾都一中)2018-2019学年高一下学期期中联考数学试题【答案】(Ⅰ)210600250,040()10000()9200,40x x x W x x x x ⎧-+-<<⎪=⎨-++≥⎪⎩(Ⅱ)2020年产量为100(千部)时,企业所获利润最大,最大利润是9000万元. 33.设集合A={x|x 2<9},B={x|(x-2)(x+4)<0}. (1)求集合A∩B ;(2)若不等式2x 2+ax+b <0的解集为A ∪B ,求a ,b 的值.【来源】2013-2014学年广东阳东广雅、阳春实验中学高二上期末文数学卷(带解析) 【答案】(1){x |3x 2}-<<(2)2,24a b ==- 34.已知数列{}n a 满足11a =,()111n n n a na n ++-=+. (1)求数列{}n a 的通项公式; (2)n S 为数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和,求证:223n S ≤<. 【来源】2020届山西省吕梁市高三上学期第一次模拟考试数学(文)试题【答案】(1)12n n a +=(2)证明见解析 35.在ABC V 中,a ,b ,c 分别为内角A ,B ,C的对边,且满()(sin sin )sin )b a B A c B C -+=-.(1)求A 的大小;(2)再在①2a =,②4B π=,③=c 这三个条件中,选出两个使ABC V 唯一确定的条件补充在下面的问题中,并解答问题.若________,________,求ABC V 的面积. 【来源】2020届山东省滨州市高三上学期期末考试数学试题 【答案】(1)6A π=;(2)见解析36.设函数()22sin cos 3x x f x π⎛⎫=+⎪⎝⎭. (1)若0,2x π⎡⎤∈⎢⎥⎣⎦,求()f x 的单调递增区间;(2)在ABC ∆中,1AB =,2AC =,()2f A =-,且A 为钝角,求sin C 的值. 【来源】2020届浙江省嘉兴市高三上学期期末考试数学试题【答案】(1)5,122ππ⎡⎤⎢⎥⎣⎦(2)1437.在四边形ABCD 中,120BAD ︒∠=,60BCD ︒∠=,1cos 7D =-,2AD DC ==.(1) 求cos DAC ∠及AC 的长; (2) 求BC 的长.【来源】2020届宁夏石嘴山市第三中学高三上学期期末考试数学(文)试题【答案】(1) cos 7DAC ∠=,7AC =;(2) 3 38.在ABC V 中,内角A B C ,,所对的边分别为a b c ,,,已知sin cos 2sin cos A B c bB A b-=.(1)求A ;(2)设5b =,ABC S =V 若D 在边AB 上,且3AD DB =,求CD 的长. 【来源】2020届福建省莆田市(第一联盟体)学年上学期高三联考文科数学试题【答案】(1)3π;(239.在ABC ∆中,45,B AC ︒∠==cos C =. (1)求BC 边长;(2)求AB 边上中线CD 的长.【来源】北京101中学2018-2019学年下学期高一年级期中考试数学试卷【答案】(1)(240.已知函数2()2()f x x mx m R =-++∈,()2x g x =. (1)当2m =时,求2()(log )f x g x >的解集;(2)若对任意的1[1,1]x ∈-,存在2[1,1]x ∈-,使不等式12()()f x g x ≥成立,求实数m 的取值范围.【来源】重庆市七校(渝北中学、求精中学)2019-2020学年高一上学期期末联考数学试题【答案】(1)(0,2)(2)11[,]22-41.已知1x =是函数2()21g x ax ax =-+的零点,()()g x f x x=. (Ⅰ)求实数a 的值;(Ⅱ)若不等式(ln )ln 0f x k x -≥在2,x e e ⎡⎤∈⎣⎦上恒成立,求实数k 的取值范围;(Ⅲ)若方程()3213021xxf k k ⎛⎫⎪-+-= ⎪-⎝⎭有三个不同的实数解,求实数k 的取值范围.【来源】天津市滨海新区2018-2019学年高一上学期期末检测数学试题【答案】(Ⅰ)1;(Ⅱ)(],0-∞;(Ⅲ)103k -<<.42.在ABC ∆中,内角,,A B C 所对的边分别为,,a b c ,cos sin C c B =. (1)求角C 的大小(2)若c =ABC ∆的面积为,求ABC ∆的周长.【来源】天津市蓟州等部分区2019届高三上学期期末联考数学(文)试题【答案】(Ⅰ)3C π=.(Ⅱ)10+43.已知等差数列{}n a 中,首项11a =,523a a =.(1)求{}n a 的通项公式;(2)若等比数列{}n b 满足13b =,2123b a a a =++,求{}n b 的前n 项和n S . 【来源】重庆市松树桥中学2018-2019学年高一下学期期末数学试题【答案】(1) 21n a n =-;(2) 1332n n S +-= 44.对于正项数列{}n a ,定义12323nn a a a na G n+++⋅⋅⋅+=为数列{}n a 的“匀称”值.(1)若当数列{}n a 的“匀称”值n G n =,求数列{}n a 的通项公式; (2)若当数列{}n a 的“匀称”值2n G =,设()()128141n n nb n a +=--,求数列{}n b 的前2n 项和2n S 及2n S 的最小值.【来源】重庆市松树桥中学2018-2019学年高一下学期期末数学试题【答案】(1) 21n n a n -=;(2)21141n S n =-+,4545.在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,且2sin tan c B b C =.(1)求角C 的值;(2)若c =3a b =,求ABC ∆的面积.【来源】重庆市松树桥中学2018-2019学年高一下学期期末数学试题【答案】(1)3C π=,(2)ABC S ∆=46.在ABC V 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且满足1cos cos a cB C b b-=-. (1)求角C 的大小;(2)若2c =,a b +=ABC V 的面积.【来源】2020届安徽省芜湖市高三上学期期末数学(文)试题【答案】(1)3C π=;(2)447.已知ABC V 的内角A ,B ,C 的对边分别为a ,b ,c ,且sin cos a B A =. (1)求A ;(2)若a =,ABC V 的面积为ABC V 的周长.【来源】2020届福建省三明市高三上学期期末质量检测文科数学试题试卷第11页,总11页 【答案】(1)3A π=(2)7+48.在正项数列{}n a中,11a =,()()2211121n n n n a a a a ++-=-,1n n nb a a =-. (1)求数列{}n a 与{}n b 的通项公式;(2)求数列(){}22n n n a b -的前n 项和nT . 【来源】2020届吉林省通化市梅河口市第五中学高三上学期期末数学(理)试题【答案】(1)22n n a +=,2n n b =,(2)()()13144219n n n T n n +-+=++49.在ABC ∆中,10a b +=,cos C 是方程22320x x --=的一个根,求ABC ∆周长的最小值。

新人教版2017—2018学年度上学期期末教学质量监测九年级数学试卷

新人教版2017—2018学年度上学期期末教学质量监测九年级数学试卷

新⼈教版2017—2018学年度上学期期末教学质量监测九年级数学试卷2017—2018学年度上学期期末教学质量监测九年级数学试卷(考试时间90分钟,试卷满分120分)⼀、选择题:(每题3分,计24分)1、⼀元⼆次⽅程2280x -=的解是()1212. 2 . 2 . 2, 2 . A x B x C x x D x x ==-==-==2、在平⾯直⾓坐标系中,点P (2,⼀ 4)关于原点对称的点的坐标是() A.(2,4 ) B.(⼀2,4) C.(⼀2,⼀4) D.(⼀4,2) 3、下列说法中,正确的是()A. 随机事件发⽣的概率为1B.. 概率很⼩的事件不可能发⽣C. 不可能事件发⽣的概率为0D. 投掷⼀枚质地均匀的硬币1000次,正⾯朝上的次数⼀定是500次 4、如图,AB 是⊙O 的直径,CD 是⊙O 的弦,连接AC ,AD,若∠ADC=55°,则∠CAB 的度数为() A.35° B.45° C.55° D.65°5、⼀个不透明的袋中装有除颜⾊外均相同的5个红球和n 个黄球,从中随机摸出⼀个,摸到红球的概率是58,则n 是() A.5 B.8C.3D.136、如图,⊙O 与正⽅形ABCD 的边AB,AD 相切,且DE 与⊙O 相切与点E 。

若⊙O 的半径为5,且AB=12,则DE=()(4题图)A.5B. 6C.7D. 1727、“赶陀螺”是⼀项深受⼈们喜爱的运动,如图所⽰是⼀个陀螺的⽴体结构图,已知底⾯圆的直径AB=6cm ,圆柱体部分的⾼BC=5cm,圆锥体部分的⾼CD=4cm,则这个陀螺的表⾯积是()A. 284cm πB.245cm πC. 274cm πD.254cm π8、已知⼆次函数221y ax ax =--(a 是常数,0a ≠),下列结论正确的是() A.当a = 1时,函数图像经过点(⼀1,0)B. 当a = ⼀2时,函数图像与x 轴没有交点C. 若 0a <,函数图像的顶点始终在x 轴的下⽅D. 若 0a﹥,则当1x ≥时,y 随x 的增⼤⽽增⼤⼆、填空题(每⼩题3分,共21分)9、若m 是⽅程210x x +-=的⼀个根,则代数式22018m m +-=_______________ 10、将抛物线24y x =向左平移3个单位长度,再向下平移2个单位长度,得到的抛物线的解析式_____________________11、在4张完全相同的卡⽚上分别画上①、②、③、④。

福州市2017-2018学年第一学期高三期末考试文科数学试卷(有答案)

福州市2017-2018学年第一学期高三期末考试文科数学试卷(有答案)

福州市2017-2018学年第一学期高三期末考试文科数学试卷(有答案)福州市2017-2018学年第一学期高三期末考试文科数学试卷(有答案)本试题卷共23题,分为第I卷和第II卷,共计150分,考试时间120分钟。

第I卷一、选择题(共12小题,每小题5分,共60分)1.已知集合A={x(x-6)(x+1)0},则A∩B=(C)。

2.若复数z=a1为纯虚数,则实数a=(B)。

3.已知a=(12),b=(-1,1),c=2a-b,则|c|=(B)。

4.3cos15°-4sin215°cos15°=(D)。

5.已知双曲线C的两个焦点F1F2都在x轴上,对称中心为原点,离心率为3,若点M在C 上,且MF1MF2M到原点的距离为3,则C的方程为(C)。

6.已知圆柱的高为2,底面半径为3,若该圆柱的两个底面的圆周都在同一个球面上,则这个球的表面积等于(B)。

7.右面的程序框图的算法思路源于我国古代著名的《孙子剩余定理》。

图中的Mod(N,m)=n表示正整数N除以正整数m后的余数为n,例如Mod(10,3)=1.执行该程序框图,则输出的i等于(C)。

8.将函数y=2sinx+cosx的图象向右平移1个周期后,所得图象对应的函数为(D)。

二、填空题(共3小题,每小题10分,共30分)9.已知函数y=ln(1-x),则y''=(B)。

10.已知函数f(x)=x+sinx,则f'(π)的值为(C)。

11.已知函数f(x)=x+sinx,则f(x)在[0,π]上的最小值为(A)。

三、解答题(共8小题,每小题10分,共80分)12.解方程log2(x+1)+log2(x-1)=1.13.已知函数f(x)=x^3-3x^2+2x+1,求f(x)的单调递减区间。

14.已知函数f(x)=x^3-3x^2+2x+1,求f(x)的极值和极值点。

15.已知函数f(x)=x^3-3x^2+2x+1,求f(x)的图象在点(1,1)处的切线方程。

人教版2017~2018学年度初三第一学期期末考试数学试题附详细答案

人教版2017~2018学年度初三第一学期期末考试数学试题附详细答案

E D CBA2017-2018学年第一学期期末测试卷初三数学一、选择题(本题共30分,每小题3分)1.⊙O 的半径为R ,点P 到圆心O 的距离为d ,并且d ≥ R ,则P 点 A.在⊙O 内或圆周上 B.在⊙O 外C.在圆周上D.在⊙O 外或圆周上2. 把10cm 长的线段进行黄金分割,则较长线段的长(236.25≈, 精确到0.01)是A .3.09cmB .3.82cmC .6.18cmD .7.00cm 3.如图,在△ABC 中,DE ∥BC ,DE 分别与AB 、AC 相交于点D 、E , 若AD =4,DB =2,则AE ︰EC 的值为 A . 0.5 B . 2 C . 32 D . 23 4. 反比例函数xky =的图象如图所示,则K 的值可能是 A .21B . 1C . 2D . -1 5. 在Rt △ABC 中,∠C =90°,BC =1,那么AB 的长为A .sin AB .cos AC .1cos AD . 1sin A6.如图,正三角形ABC 内接于⊙O ,动点P 在圆周的劣弧AB 上, 且不与A,B 重合,则∠BPC 等于A .30︒B .60︒ C. 90︒ D. 45︒ 7.抛物线y=21x 2的图象向左平移2个单位,在向下平移1个单位,得到的函数表达式为 A . y =21x 2+ 2x + 1 B .y =21x 2+ 2x - 2C . y =21x 2 - 2x - 1 D. y =21x 2- 2x + 18. 已知二次函数)0(2≠++=a c bx ax y 的图象如图所示,有下列5个结论:① 0>abc ;② c a b +<;③ 024>++c b a ; ④ b c 32<; ⑤ )(b am m b a +>+,(1≠m 的实数)其中正确的结论有 A. 2个 B. 3个C. 4个D. 5个9. 如图所示,在正方形ABCD 中,E 是BC 的中点,F 是CD 上的一点,AE ⊥EF ,下列结论:①∠BAE =30°;②CE 2=AB·CF ;③CF =31FD ;④△ABE ∽△AEF .其中正确的有A. 1个B. 2个C. 3个D. 4个10.如图,已知△ABC 中,BC =8,BC 边上的高h =4,D 为BC 边上一个动点,EF ∥BC ,交AB 于点E ,交AC 于点F ,设E 到BC 的距离为x ,△DEF 的面积为y ,则y 关于x 的函数图象大致为A. B. C. D.二、填空题(本题共18分, 每小题3分) 11.若5127==b a ,则32ba -= . 12. 两个相似多边形相似比为1:2,且它们的周长和为90,则这两个相似多边形的周长分别 是 , . 13.已知扇形的面积为15πcm 2,半径长为5cm ,则扇形周长为 cm .14. 在Rt △ABC 中,∠C =90°,AC =4, BC =3,则以2.5为半径的⊙C 与直线AB 的位置关系 是 .15. 请选择一组你喜欢的a,b,c 的值,使二次函数)0(2≠++=a c bx ax y 的图象同时满16. 点是 17.18.如图:在Rt△ABC中,∠C=90°,BC=8,∠B=60°, 解直角三角形.19.已知反比例函数x 1k y -=图象的两个分支分别位于第一、第三象限.(1)求k的取值范围;(2)取一个你认为符合条件的K值,写出反比例函数的表达式,并求出当x=﹣6时反比例函数y的值;20.已知圆内接正三角形边心距为2cm,求它的边长.24.密苏里州圣路易斯拱门是座雄伟壮观的抛物线形的建筑物,是美国最高的独自挺立的纪念碑,如图.拱门的地面宽度为200米,两侧距地面高150米处各有一个观光窗,两窗的水平距离为100米,求拱门的最大高度.25. 如图,已知⊙O 是△ABC 的外接圆,AB 是⊙O 的直径, D 是AB 的延长线上的一点,AE ⊥DC 交DC 的延长线 于点E ,且AC 平分∠EAB . 求证:DE 是⊙O 的切线.26. 已知:抛物线y=x 2+bx+c 经过点(2,-3)和(4,5)(1)求抛物线的表达式及顶点坐标;(2)将抛物线沿x 轴翻折,得到图象G ,求图象G 的表达式;(3)在(2)的条件下,当-2<x <2时, 直线y =m 与该图象有一个公共点,求m 的值或取值范围.27. 如图,已知矩形ABCD 的边长3cm 6cm AB BC ==,.某一时刻,动点M 从A 点 出发沿AB 方向以1c m /s 的速度向B 点匀速运动;同时,动点N 从D 点出发沿DA 方 向以2c m /s 的速度向A 点匀速运动,问:(1)经过多少时间,AMN △的面积等于矩形ABCD 面积的19? (2)是否存在时刻t ,使以A,M,N 为顶点的三角形与ACD △相似?若存在,求t 的 值;若不存在,请说明理由.()28.(1)探究新知:如图1,已知△ABC 与△ABD 的面积相等,试判断AB 与CD 的位置 关系,并说明理由.(2)结论应用:① 如图2,点M ,N 在反比例函数xky =(k >0)的图象上,过点M 作ME ⊥y 轴,过点N 作NF ⊥x 轴,垂足分别为E ,F .试证明:MN ∥EF .② 若①中的其他条件不变,只改变点M ,N 的位置如图3所示,请判断 MN 与 EF 是否平行?请说明理由.29. 设a ,b 是任意两个不等实数,我们规定:满足不等式a ≤x ≤b 的实数x 的所有取值的全体叫做闭区间,表示为[a ,b ].对于一个函数,如果它的自变量x 与函数值y 满足:当m ≤x ≤n 时,有m ≤y ≤n ,我们就称此函数是闭区间[m .n ]上的“闭函数”.如函数4y x =-+,当x =1时,y =3;当x =3时,y =1,即当13x ≤≤时,有13y ≤≤,所以说函数4y x =-+是闭区间[1,3]上的“闭函数”.(1)反比例函数y =x 2016是闭区间[1,2016]上的“闭函数”吗?请判断并说明理由; (2)若二次函数y =22x x k --是闭区间[1,2]上的“闭函数”,求k 的值;(3)若一次函数y =kx +b (k ≠0)是闭区间[m ,n ]上的“闭函数”,求此函数的表达式(用含 m ,n 的代数式表示).图 3一、选择题:(本题共30分,每小题3分)二、填空题(本题共18分, 每小题3分)三、计算题:(本题共72分,第17—26题,每小题5分,第27题7分,第28题7分, 第29题8分)17. 4sin 304560︒︒︒.解:原式=33222214⨯+⨯-⨯--------------------- 4分 =2-1+3 =4--------------------- 5分18. 解:∵在Rt △ABC 中,∠C =90°,∠B =60°∵∠A=90°-∠B =30°--------------------- 1分∴AB==16--------------------- 3分∴AC=BCtanB=8.--------------------- 5分19. 解:(1)∵反比例函数图象两支分别位于第一、三象限,∴k ﹣1>0,解得:k >1;---------------- 2分(2)取k=3,∴反比例函数表达式为x2y = ---------------- 4分当x=﹣6时,3162x 2y -=-==;---------------------5分 (答案不唯一)20. 解: 如图:连接OB,过O 点作OD ⊥BC 于点D ---------------- 1分在Rt △OBD 中,∵∠BOD =︒︒=606360---------------- 2分 ∵ BD=OD ·tan60°---------------- 3分 =23---------------- 4分 ∴BC=2BD=43∴三角形的边长为43 cm ---------------- 5分B21.证明∵△ABC ∽△ADE ,∴∠BAC =∠DAE ,∠C =∠E ,---------------- 1分 ∴∠BAC -∠DAC =∠DAE -∠DAC ,∴∠1=∠3, ------------------------------ 2分 又∵∠C =∠E ,∠DOC =∠AOE ,∴△DOC ∽△AOE ,----------------------------3分 ∴∠2=∠3 , ----------------------------4分 ∴∠1=∠2=∠3. ----------------------------5分22. 解:过P 作PD ⊥AB 于D ,---------------- 1分在Rt △PBD 中,∠BDP =90°,∠B =45°, ∴BD =PD . ---------------- 2分在Rt △PAD 中,∠ADP =90°,∠A =30°, ∴AD =PD =PD=3PD ,--------------------3分 ∴PD =13100+≈36.6>35, 故计划修筑的高速公路不会穿过保护区.----------------------------5分23.解:(1)不同类型的正确结论有:①BE=CE ;②BD=CD ;③∠BED=90°;④∠BOD=∠A ;⑤AC//OD ;⑥AC ⊥BC ;⑦222OE +BE =OB ;⑧OE BC S ABC ∙=∆;⑨△BOD 是等腰三角形;⑩ΔBOE ΔBAC ~;等等。

2017-2018年福建省福州市高一(下)期末物理试卷及参考答案

2017-2018年福建省福州市高一(下)期末物理试卷及参考答案

2017-2018 学年福建省福州市高一(下)期末物理试卷一、选择题(本题共 10 小题,每小题 4 分,共 40 分.在每小题给出的四个选项中第 1-7 题只有一项正确, 第 8-10 题不止一个选项正确. 全部选对的得 4 分,选对但不全的得 2 分, 有选错或不选的得 0 分)1.(4 分)中国海军护航编队“巢湖”舰、 “千岛湖”舰历经 36h 、航行约 8330km ,护送 13艘货轮顺利抵达亚丁湾西部预定海域,如图所示,下列说法正确的是( )A .“8330km ”指的是护航舰艇发的位移B .平均速度时可将“千岛湖”舰看作质点C .此次护航过程的平均速度大约是 231.4km/hD .以“千岛湖”舰为参考系, “巢湖”舰一定是静止的2.(4 分)在某活动中引入了户外风洞飞行体验装置,体验者在风力作用下漂浮在半空.若 增大风力,体验者在加速上升过程中( )A .超重且机械能增加 C .失重且机械能增加B .超重且机械能减少 D .失重且机械能减少3.(4 分)如图所示,两端封闭的真空玻璃管内有一金属片,用电磁铁吸在上端。

切断电磁铁电源的同时,让玻璃管水平向右匀速移动,则管内金属片的运动轨迹可能是( )4.(4 分)登上火星是人类的梦想,地球和火星公转视为匀速圆周运动,两者公转的轨道半 径关系是 r 火=1.5r 地,忽略行星自转影响。

与地球相比,火星做圆周运动的( ) A .加速度较小 B .公转周期较小B .D .A .C .C.线速度较大 D.角速度较大5.(4 分)如图所示,在 M 点分别以不同的速度将两小球水平抛出.两小球分别落在水平地面上的 P 点、Q 点.已知 O 点是 M 点在地面上的竖直投影, OP:PQ=1:3,且不考虑空气阻力的影响.下列说法中正确的是( )A.两小球的下落时间之比为 1:3B.两小球的下落时间之比为 1:4C.两小球的初速度大小之比为 1:3D.两小球的初速度大小之比为 1:46.(4 分)如图所示,半球形容器固定在水平面上, O 为圆心,一质量为 m 的小滑块静止在P 点,水平方向的夹角为 9,若滑块所受支持力为 F N,摩擦力为 f,下列关系正确的是( )A.F N=B.F N=mgcos9C.f=D.f=mgcos97.(4 分)如图所示,在轻弹簧的下端悬挂一个质量为 m 的小球 A,若将小球 A 从弹簧原长位置由静止释放,小球 A 能够下降的最大高度为 h.若将小球 A 换为质量为 2m 的小球 B,仍从弹簧原长位置由静止释放,则小球 B 下降 h 时的速度为(重力加速度为 g,不计空气阻力) ( A.)D.0C.B.8.(4 分)一质点做匀速圆周运动,其线速度大小为 4m/s,转动周期为 2s,则下列不正确的是( )A.角速度为 0.5 rad/s B.转速为 0.5 r/sC.轨迹半径为m D.加速度大小为4π m/s29.(4 分)如图为一质点做直线运动的 v ﹣ t 图象,下列说法正确是( )A.在 18s~22s 时间内,质点的位移为 24mB.18 秒时质点速度反向C.整个过程中, E 点处质点离出发点最远D.整个过程中, CE 段的加速度最大10.(4 分) 一质量为 2kg 的物体,在水平恒定拉力的作用下以某一速度在粗糙的水平面上做匀速运动,当运动一段时间后,拉力逐渐减小,且当拉力减小到零时,物体刚好停止运动,图中给出了拉力随位移变化的关系图象.已知重力加速度 g=10m/s2.根据以上信息能精确得出或估算得出的物理量有( )A.物体与水平面间的动摩擦因数B.合外力对物体所做的功C.物体匀速运动时的速度D.物体运动的时间二、实验题(本大题有 2 个小题,每空 2 分,共 16 分.请按题目的要求作答或画图) 11.(6 分)某同学在“探究弹力和弹簧伸长的关系”时:(1)实验装置如图甲、乙所示,让刻度尺零刻度与弹簧上端平齐,在弹簧下端挂 1 个钩码,静止时弹簧长度为 l1,可读出其示数 l1=cm。

平面向量高考真题精选

平面向量高考真题精选
22.已知向量 , , .若 ,则 ________.
【来源】2018年全国卷Ⅲ理数高考试题文档版
【答案】
【解析】
【分析】
由两向量共线的坐标关系计算即可。
【详解】
由题可得
,即
故答案为
【点睛】
本题主要考查向量的坐标运算,以及两向量共线的坐标关系,属于基础题。
【来源】2019年江苏省高考数学试卷
【答案】 .
【解析】
【分析】
由题意将原问题转化为基底的数量积,然后利用几何性质可得比值.
【详解】
如图,过点D作DF//CE,交AB于点F,由BE=2EA,D为BC中点,知BF=FE=EA,AO=OD.

得 即 故 .
【点睛】
本题考查在三角形中平面向量的数量积运算,渗透了直观想象、逻辑推理和数学运算素养.采取几何法,利用数形结合和方程思想解题.
【详解】
根据题意,设E(0,a),F(0,b);
∴ ;
∴a=b+2,或b=a+2;
且 ;
∴ ;
当a=b+2时, ;
∵b2+2b﹣2的最小值为 ;
∴ 的最小值为﹣3,同理求出b=a+2时, 的最小值为﹣3.
故答案为:﹣3.
【点睛】
考查根据点的坐标求两点间的距离,根据点的坐标求向量的坐标,以及向量坐标的数量积运算,二次函数求最值的公式.
A.3B.2 C. D.2
【来源】2017年全国普通高等学校招生统一考试理科数学(新课标3卷精编版)
【答案】A
【解析】
如图所示,建立平面直角坐标系.
设 ,
易得圆的半径 ,即圆C的方程是 ,
,若满足 ,
则 , ,所以 ,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017-2018学年福建省福州市高一下学期期末质量检查数学试题第Ⅰ卷(选择题 共60分)一、选择题(本大题共12题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,在直角坐标系xOy 中,射线OP 交单位圆O 于点P ,若AOP θ∠=,则点P 的坐标是( )A .(cos ,sin )θθB .(cos ,sin )θθ-C .(sin ,cos )θθD .(sin ,cos )θθ-2.已知向量(1,)a m =,(,2)b m =,若//a b ,则实数m 等于( )A ...03.cos 20cos10sin 2010︒︒-︒︒的值为( )A .- D .4.设向量(1,3)a =-,(2,4)b =-,(1,2)c =--,若表示向量4a ,42b c -,2()a c -,d 的有向线段首尾相连能构成四边形,则向量d =( )A .(2,6)B .(2,6)-C .(2,6)-D .(2,6)--5.若sin tan 0αα<,且cos 0tan αα<,则角α是( ) A .第一象限角 B .第二象限角 C .第三象限角 D .第四象限角6.若函数()sin()f x x ωϕ=+(0,)2πωϕ><的部分图象如图所示,则有( )A .1ω=,3πϕ=B .1ω=,3πϕ=-C .12ω=,6πϕ=D .12ω=,6πϕ=- 7.已知向量(2,1)AB =,点(1,0)C -,(4,5)D ,则向量AB 在CD 方向上的投影为( )A ..- C D . 8.要得到函数sin 43y x π⎛⎫=-⎪⎝⎭的图象,只需将函数sin 4y x =的图象( ) A .向左平移12π个单位 B .向右平移12π个单位 C .向左平移3π个单位 D .向右平移3π个单位 9.如图,O 在ABC ∆的内部,D 为AB 的中点,且20OA OB OC +==,则ABC ∆的面积与AOC ∆的面积的比值为( )A .3B .4C .5D .610. )A .2sin 3-B .2cos3-C .2sin 3D .2cos311.设偶函数()sin()f x A x ωϕ=+(0,0,0)A ωϕπ>><<的部分图象如图所示,KLM ∆为等腰直角三角形,90KML ∠=︒,1KL =,则16f ⎛⎫ ⎪⎝⎭的值为( )A ..14- C .12- D 12.已知平面内的向量OA ,OB 满足:1OA =,()()0OA OB OA OB +⋅-=,且OA 与OB 的夹角为120︒,又12OP OA OB λλ=+,101λ≤≤,213λ≤≤,则由满足条件的点P 所组成的图形面积是( )A .2B .1 D 第Ⅱ卷(非选择题 共90分)二、填空题(本题共4题,每小题5分,共20分)13.已知(,2)a m =,(1,)b n =,0m >,0n >,且4a =,2b =,则向量a 与b 的夹角是 .14.cos3502sin160sin(190)︒-︒=-︒ . 15.如图,在半径为2的圆C 中,A 为圆上的一个定点,B 为圆上的一个动点.若点A 、B 、C 不共线,且AB t AC BC -≥对(0,)t ∈+∞恒成立,则AB AC ⋅= .16.设函数()sin()cos()3f x a x b x παπβ=++++(其中a 、b 、α、β为非零实数),若(2001)5f =,则(2018)f 的值是 .三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知tan 2α=. (Ⅰ)求tan 4πα⎛⎫+⎪⎝⎭的值; (Ⅱ)求2sin 2sin sin cos cos 21ααααα+--的值. 18.已知向量a 与b 的夹角为120︒,且2a =,4b =. (Ⅰ)计算:42a b -;(Ⅱ)当k 为何值时,(2)()a b ka b +⊥-.19.已知O ,A ,B 是不共线的三点,且(,)OP mOA nOB m n R =+∈. (Ⅰ)若1m n +=,求证:A ,P ,B 三点共线;(Ⅱ)若A ,P ,B 三点共线,求证:1m n +=.20.已知函数2())2sin ()612f x x x ππ=-+-.(Ⅰ)求函数()f x 的最小正周期;(Ⅱ)求使函数()3f x ≥的解集. 21.函数()cos()02f x x ππϕϕ⎛⎫=+<< ⎪⎝⎭的部分图象如图所示.(Ⅰ)求ϕ及图中0x 的值;(Ⅱ)设1()()3g x f x f x ⎛⎫=++ ⎪⎝⎭,求函数()g x 在区间11,23⎡⎤-⎢⎥⎣⎦上的最大值和最小值. 22.已知向量33(cos ,sin )22a x x =,(cos ,sin )22x x b =-,且[0,]2x π∈. (Ⅰ)求:a b ⋅及a b +;(Ⅱ)若()2f x a b a b λ=⋅-+的最小值是32-,求实数λ的值.2018年福州市高一第二学期期末质量检测数学试卷参考答案一、选择题1-5: ACADC 6-10: CCBBB 11、12:DB二、填空题13. 30︒三、解答题17.解:(Ⅰ)tan tan 4tan 41tan tan 4παπαπα+⎛⎫+= ⎪⎝⎭-213121+==--⨯. (Ⅱ)2sin 2sin sin cos cos 21ααααα+-- 222sin cos sin sin cos 2cos αααααα=+- 22tan tan tan 2ααα=+-221422⨯==+-. 18. 解:由已知得,12442a b ⎛⎫⋅=⨯⨯-=- ⎪⎝⎭. (Ⅰ)∵2222a b a a b b +=+⋅+42(4)1612=+⨯-+=,∴23a b +=. ∵2224216164a b a a b b -=-⋅+16416(4)416192=⨯-⨯-+⨯=, ∴4283a b -=.(Ⅱ)∵(2)()a b ka b +⊥-,∴(2)()0a b ka b +⋅-=,∴22(21)20ka k a b b +-⋅-=,即1616(21)2640k k ---⨯=,∴7k =-.即7k =-时,2a b +与ka b -垂直.19. 解:(Ⅰ)若1m n +=,则(1)OP mOA m OB =+- ()OB m OA OB =+-,∴()OP OB m OA OB -=-,即BP mBA =,∴BP 与BA 共线.又∵BP 与BA 有公共点B ,∴A ,P ,B 三点共线.(Ⅱ)若A ,P ,B 三点共线,存在实数λ,使BP BA λ=,∴()OP OB OA OB λ-=-,又OP mOA nOB =+.故有(1)mOA n OB OA OB λλ+-=-,即()(1)0m OA n OB λλ-++-=.∵O ,A ,B 不共线,∴OA ,OB 不共线,∴010m n λλ-=⎧⎨+-=⎩,∴1m n +=.20.解:(Ⅰ)2())2sin ()612f x x x ππ=-+-)1cos(2)66x x ππ=-+-- 2sin(2)166x ππ=--+ 2sin(2)13x π=-+, ∴22T ππ==. (Ⅱ)由(Ⅰ)()2sin(2)12133f x x π=-+≤+=,故只有当()f x 取最大值时,()3f x ≥, ∴sin(2)13x π-=,有2232x k πππ-=+, 即5()12x k k Z ππ=+∈, ∴所求x 的集合为5,12x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭.21.解:(Ⅰ)由题图得(0)2f =,所以cos 2ϕ=, 因为02πϕ<<,故6πϕ=,所以()cos()6f x x ππ=+.由于()f x 的最小正周期22T ππ==,所以由题图可知012x <<,故0713666x ππππ<+<,由0()2f x =得0cos 6x ππ⎛⎫+= ⎪⎝⎭, 所以01166x πππ+=,053x =. (Ⅱ)因为11cos 336f x x ππ⎡⎤⎛⎫⎛⎫+=++⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦cos sin 2x x πππ⎛⎫=+=- ⎪⎝⎭, 所以1()()3g x f x f x ⎛⎫=++ ⎪⎝⎭cos sin 6x x πππ⎛⎫=+- ⎪⎝⎭cos cos sin sin sin 66x x x πππππ=--3cos sin 22x x ππ=-6x ππ⎛⎫=- ⎪⎝⎭. 当11,23x ⎡⎤∈-⎢⎥⎣⎦时,2663x ππππ-≤-≤. 所以1sin 126x ππ⎛⎫-≤-≤ ⎪⎝⎭,故62x πππ-=,即13x =-时,()g x当66x πππ-=-,即13x =时,()g x 取得最小值22.解:(Ⅰ)33cos cos sin 222x a b x x ⋅=⋅-sin cos 22x x ⋅=,a b +==, ∵[0,]2x π∈,∴cos 0x ≥,∴2cos a b x +=.(Ⅱ)()cos 24cos f x x x λ=-,即22()2(cos )12f x x λλ=---. ∵[0,]2x π∈,∴0cos 1x ≤≤.(1)当0λ<时,当且仅当cos 0x =时,()f x 取得最小值-1,这与已知矛盾;(2)当01λ≤≤时,当且仅当cos x λ=时,()f x 取得最小值212λ--,由已知得23122λ--=-,解得12λ=; (3)当1λ>时,当且仅当cos 1x =时,()f x 取得最小值14λ-,由已知得3142λ-=-, 解得58λ=,这与1λ>矛盾. 综上所述,12λ=为所求.。

相关文档
最新文档