用MATLAB实现共轭梯度法求解实例(精编文档).doc
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【最新整理,下载后即可编辑】
用MATLAB 实现共轭梯度法求解实例
康福 201103710031
一.无约束优化方法
1.1 无约束优化方法的必要性
一般机械优化设计问题,都是在一定的限制条件下追求某一指标为最小,它们都属于约束优化问题。但是为什么要研究无约束优化问题?
(1)有些实际问题,其数学模型本身就是一个无约束优化问题。
(2)通过熟悉它的解法可以为研究约束优化问题打下良好的基础。
(3)约束优化问题的求解可以通过一系列无约束优化方法来达
到。所以无约束优化问题的解法是优化设计方法的基本组成部分,也是优化方法的基础。
(4)对于多维无约束问题来说,古典极值理论中令一阶导数为零,
但要求二阶可微,且要判断海赛矩阵为正定才能求得极小点,这种方法有理论意义,但无实用价值。和一维问题一样,若多元函数F(X)不可微,亦无法求解。但古典极值理论是无约束优化方法发展的基础。
1.2共轭梯度法
目前已研究出很多种无约束优化方法,它们的主要不同点在于构造搜索方向上的差别。
(1)间接法——要使用导数,如梯度法、(阻尼)牛顿法、变尺
度法、共轭梯度法等。
(2)直接法——不使用导数信息,如坐标轮换法、鲍威尔法单纯形法等。
用直接法寻找极小点时,不必求函数的导数,只要计算目标函数值。这类方法较适用于解决变量个数较少的(n ≤20)问题,一般情况下比间接法效率低。间接法除要计算目标函数值外,还要计算目标函数的梯度,有的还要计算其海赛矩阵。
1(0,1,2,)k k k k s k α+=+=x x
搜索方向的构成问题乃是无约束优化方法的关键。
共轭梯度法是沿着共轭方向进行搜索,属于共轭方向法中的一种,该方法中每一个共轭向量都是依赖于迭代点处的负梯度而构造出来。共轭梯度法作为一种实用的迭代法,它主要有下面的优点:
(1)算法中,系数矩阵A的作用仅仅是用来由已知向量P产生向量W=AP,这不仅可充分利用A的稀疏性,而且对某些提供
矩阵A较为困难而由已知向量P产生向量W=AP又十分方便
的应用问题是很有益的。
(2)不需要预先估计任何参数就可以计算,这一点不像SOR等;(3)每次迭代所需的计算,主要是向量之间的运算,便于并行化。
共轭梯度法原理的知识较多,请详见《机械优化设计》第四章的第四、五节。
图1为共轭梯度法的程度框图
图1为共轭梯度法的程度框图
二.设计题目及要求
2.1设计题目
用共轭梯度法求二次函数
2
21212112(,)242f x x x x x x x =+--
的极小点及极小值。
2.2设计要求
(1)使用matlab 编写程序,熟练撑握matlab 编程方法。
(2)学习并撑握共轭梯度法的原理、方法及应用,并了解不同无
约束优化方法的区别、优缺点及特殊要求。
(3)编写程序,计算出二次函数的极小点及极小值,并适当选取
不同的初始点及迭代精度精度,分析比较结果。
三.计算步骤
3.1计算求解
解:已知初始点[1,1]T 迭代精度 0.001ε=
1)第一次沿负梯度方向搜寻
计算初始点处的梯度:
为一维搜索最佳步长,应满足
得:
2)第二次迭代
代入目标函数
120212244()422x x f x x ---⎡⎤⎡⎤∇==⎢⎥⎢⎥-⎣⎦⎣⎦x x 010000014141212αααα+⎡⎤⎡⎤⎡⎤=+=+=⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦x x d 1002()min ()min(40203)f f ααααα=+=--x x d 00.25α=120.5⎡⎤=⎢⎥⎣⎦x 11()2f -⎡⎤∇=⎢⎥-⎣⎦x 21200()50.2520()f f β∇===∇x x 11002() 1.5f β⎡⎤=-∇+=⎢⎥⎣⎦
d x d 21122220.5 1.50.5 1.5αααα+⎡⎤⎡⎤⎡⎤=+=+=⎢⎥⎢⎥⎢⎥+⎣⎦⎣⎦⎣⎦x x d 22()(22)2(0.5 1.5)2(22)(0.5 1.5)4(22)()
f x αααααφα=+++-
++-+=
由 得 从而有:
因
收敛。
3.2运行与程序
运行:打开matlab,确定conjugate_grad_2d.m 文件夹为当前目录。
在命令窗中输入:f=conjugate_grad_2d([1,1],0.001)
选择不同的初始点坐标[0,0],[0,1],[1,0],和迭代精度0.01,
0.0001,进行运行时,需要多次调用conjugate_grad_2d 函
数。
程序及说明:
function f=conjugate_grad_2d(x0,t)
%用共轭梯度法求已知函数f(x1,x2)=x1^2+2*x2^2-4*x1-2*x1*x2的极值点
%已知初始点坐标:x0
%已知收敛精度:t
%求得已知函数的极值:f
x=x0;
syms xi yi a; %定义自变量,步长为符号变量
f=xi^2+2*yi^2-4*xi-2*xi*yi; %创建符号表达式f
fx=diff(f,xi); %求表达式f 对xi 的一阶求导
fy=diff(f,yi); %求表达式f 对yi 的一阶求导
fx=subs(fx,{xi,yi},x0); %代入初始点坐标计算对xi 的一阶求导实值 fy=subs(fy,{xi,yi},x0); %代入初始点坐标计算对yi 的一阶求导实值 fi=[fx,fy]; %初始点梯度向量
()0φα'=1
α=22240,()8,()20f f ⎡⎤⎡⎤==-∇=⎢⎥⎢⎥⎣⎦⎣⎦x x x 2()0f ε∇=