光电传感器原理(精辟)
光电传感器工作原理
光电传感器工作原理光电传感器是一种利用光电效应将光信号转化为电信号的器件,广泛应用于各个领域,如工业自动化、光学通信、医疗设备等。
了解光电传感器的工作原理对于正确选择和使用光电传感器至关重要。
本文将详细介绍光电传感器的工作原理。
一、光电效应光电传感器的工作原理基于光电效应。
光电效应是指当光照射到某些物质表面时,会产生电子的释放或者挪移。
光电效应的基本原理分为三种类型:光电发射效应、光电吸收效应和内光效应。
1. 光电发射效应光电发射效应是指当光照射到金属表面时,金属表面的电子会被激发,从而从金属表面逸出。
这种效应主要用于光电传感器中的光电二极管。
2. 光电吸收效应光电吸收效应是指当光照射到某些物质表面时,物质会吸收光的能量,产生电子的激发或者挪移。
这种效应主要用于光电传感器中的光电三极管和光敏电阻。
3. 内光效应内光效应是指当光照射到半导体材料中时,会产生电子和空穴的激发和挪移。
这种效应主要用于光电传感器中的光电二极管和光电三极管。
二、光电传感器的组成光电传感器通常由光源、光电元件和信号处理电路组成。
1. 光源光源是光电传感器的重要组成部份,它提供光照射到光电元件上。
常见的光源有发光二极管(LED)、激光二极管等。
不同的应用场景需要选择不同类型的光源。
2. 光电元件光电元件是光电传感器的核心部份,它负责将光信号转化为电信号。
常见的光电元件有光电二极管、光电三极管和光敏电阻等。
- 光电二极管是最常见的光电元件之一,它基于光电发射效应工作。
当光照射到光电二极管上时,光电二极管的导电能力会发生变化,从而产生电信号。
- 光电三极管是一种具有放大功能的光电元件,它基于光电吸收效应或者内光效应工作。
光电三极管能够将光信号转化为电信号,并放大电信号的幅度。
- 光敏电阻是一种基于光电吸收效应的光电元件,它的电阻值会随着光照射的强度变化而变化。
光敏电阻常用于光强检测和光敏电路的控制。
3. 信号处理电路信号处理电路负责将光电元件输出的电信号进行处理,使其能够满足特定的应用需求。
光电传感器的工作原理
光电传感器的工作原理光电传感器是一种能够将光信号转换为电信号的器件,广泛应用于自动化控制、光电测量、光通信等领域。
光电传感器的工作原理主要涉及光电效应、光电二极管和光敏电阻等基本原理。
一、光电效应光电效应是指当光照射到物质表面时,物质中的电子会因为光能的作用而发生运动。
光电效应的发生需要光子的能量大于物质的电离能,光子的能量越大,电子获得的能量越大,运动速度越快。
光电效应是光电传感器工作的基础。
二、光电二极管光电二极管是一种能够将光信号转换为电信号的光电器件。
它由一个PN结构组成,当光照射到PN结上时,光子的能量被电子吸收,使得电子从价带跃迁到导带,产生电流。
光电二极管的工作原理是基于光电效应,通过光子的能量转换为电子的能量,进而产生电流信号。
三、光敏电阻光敏电阻是一种能够根据光照强度变化而改变电阻值的器件。
光敏电阻的工作原理是基于光电效应,当光照射到光敏电阻上时,光子的能量被电子吸收,使得电子从价带跃迁到导带,改变了电阻值。
光敏电阻的电阻值随着光照强度的增加而减小,反之则增大。
四、光电传感器的工作原理光电传感器的工作原理是基于光电二极管或光敏电阻的光电效应。
当光照射到光电传感器上时,光子的能量被光电二极管或光敏电阻吸收,产生电流或改变电阻值。
通过测量电流或电阻值的变化,可以获取光照强度、光照位置或其他与光相关的信息。
光电传感器通常由光电二极管或光敏电阻、信号处理电路和输出接口组成。
光电二极管或光敏电阻负责将光信号转换为电信号,信号处理电路负责放大、滤波和处理电信号,输出接口将处理后的信号输出给其他设备或系统。
光电传感器的应用非常广泛。
在自动化控制领域,光电传感器可以用于检测物体的存在、位置和运动状态,实现自动化生产线的控制。
在光电测量领域,光电传感器可以用于测量光强、光电流、光功率等参数,实现对光学器件和光学系统的性能评估。
在光通信领域,光电传感器可以用于接收光信号,实现光纤通信的数据传输。
总之,光电传感器是一种基于光电效应的器件,能够将光信号转换为电信号。
光电传感器工作原理
光电传感器工作原理光电传感器是一种能够将光信号转换为电信号的装置,广泛应用于光电检测、自动控制、光通信等领域。
它利用光电效应,通过光电元件将光信号转化为电信号,实现对光信号的检测和测量。
一、光电传感器的基本原理光电传感器的基本原理是光电效应,即光能转化为电能的现象。
光电传感器通常由光源、光电元件和信号处理电路组成。
1. 光源:光源是产生光信号的部分,常见的光源包括发光二极管(LED)、激光二极管(LD)等。
光源的选择需要根据具体应用需求来确定。
2. 光电元件:光电元件是将光信号转换为电信号的核心部分。
常见的光电元件有光敏电阻、光敏二极管、光电二极管、光电三极管等。
光电元件的选择需要考虑光电转换效率、响应速度、灵敏度等因素。
3. 信号处理电路:信号处理电路负责将光电元件输出的微弱电信号放大、滤波、调理,以便于后续的信号处理和分析。
信号处理电路通常包括放大器、滤波器、模数转换器等。
二、光电传感器的工作原理光电传感器的工作原理可以分为两种基本模式:发射模式和接收模式。
1. 发射模式:在发射模式下,光电传感器的光源发出光信号,经过传输介质(如空气、光纤等)照射到目标物体上,然后由光电元件接收反射回来的光信号。
光电元件将接收到的光信号转换为电信号,经过信号处理电路处理后输出。
2. 接收模式:在接收模式下,光电传感器的光源发出光信号,经过传输介质照射到目标物体上,被目标物体吸收或散射后,由光电元件接收到一部分光信号。
光电元件将接收到的光信号转换为电信号,经过信号处理电路处理后输出。
三、光电传感器的应用领域光电传感器广泛应用于各个领域,以下是一些常见的应用领域:1. 工业自动化:光电传感器在工业自动化中起到非常重要的作用。
例如,光电传感器可以用于检测物体的存在与否,实现自动化生产线上的物体检测、计数、定位等功能。
2. 机器人技术:光电传感器在机器人技术中用于实现机器人的视觉感知能力。
通过光电传感器,机器人可以检测周围环境的光线强度、颜色等信息,从而实现目标物体的识别和定位。
光电式传感器工作原理
光电式传感器工作原理
光电式传感器利用光电效应的原理来感知物体的存在或测量物体的位置、距离等信息。
其工作原理如下:
1. 光电效应:光电效应是指当光线照射到某些物质表面时,能够使物质中的电子获得足够的能量从而从原子或分子中脱离出来。
这些脱离的电子称为光电子。
2. 光电传感器结构:光电式传感器通常由光源、探测器和信号处理电路组成。
光源一般为发光二极管(LED)或激光二极管(LD),用来发射光束。
探测器一般为光敏元件,如光敏电阻、光敏二极管、光电二极管等,用来接收光束。
信号处理电路则用来处理探测器接收到的光强信号,并将其转化为电信号输出。
3. 功能原理:光电式传感器的工作原理可以分为两种不同的方式。
- 光电隔离式:光源和探测器分别位于传感器的两侧,通过
光束在两侧之间的遮挡来感知物体的存在。
当物体遮挡了光束,探测器接收到的光强就会减弱,从而触发传感器输出信号。
这种方式常用于物体检测、计数和测量等应用。
- 反射式:光源和探测器位于同一侧,通过物体对光线的反
射来感知物体的存在或测量物体的位置。
当光束照射到物体上并反射回探测器时,探测器接收到的光强会发生变化,从而触发传感器输出信号。
这种方式常用于物体的位置检测和距离测
量等应用。
总的来说,光电式传感器利用光电效应,通过光源和探测器的组合来感知物体的存在或测量物体的位置、距离等信息。
不同的工作方式可以适用于不同的应用场景。
光电传感器的工作原理
光电传感器的工作原理光电传感器是一种能够将光信号转化为电信号的设备,广泛应用于工业自动化、光电测量、光通信等领域。
它通过感知光的强度、波长和位置等信息,实现对目标物体的检测和测量。
下面将详细介绍光电传感器的工作原理。
一、光电传感器的基本构成光电传感器主要由光源、光敏元件和信号处理电路组成。
1. 光源:光源通常采用发光二极管(LED)或者激光二极管(LD),用来发射特定波长的光束。
2. 光敏元件:光敏元件是光电传感器的核心部件,用来接收光信号并转化为电信号。
常见的光敏元件有光电二极管(PD)、光敏电阻(LDR)、光电二极管阵列(PD Array)等。
3. 信号处理电路:信号处理电路用来放大、滤波和解调光敏元件输出的电信号,以便得到目标物体的相关信息。
二、光电传感器的工作原理光电传感器的工作原理可以分为反射式、透射式和散射式三种。
1. 反射式光电传感器:反射式光电传感器通过光源发射的光束被目标物体反射后,由光敏元件接收。
当目标物体挨近或者远离传感器时,反射光的强度会发生变化,光敏元件输出的电信号也会相应变化。
通过检测电信号的变化,可以判断目标物体的存在、距离和位置等信息。
2. 透射式光电传感器:透射式光电传感器将光源和光敏元件分别安装在传感器的两侧,目标物体位于光源和光敏元件之间。
当目标物体遮挡光源发出的光束时,光敏元件接收到的光强度会降低,从而输出电信号的变化。
通过检测电信号的变化,可以判断目标物体的存在、透过程度和位置等信息。
3. 散射式光电传感器:散射式光电传感器将光源和光敏元件安装在传感器的同一侧,目标物体位于光源和光敏元件之间。
当目标物体散射光源发出的光束时,光敏元件接收到的光强度会发生变化,从而输出电信号的变化。
通过检测电信号的变化,可以判断目标物体的存在、形状和位置等信息。
三、光电传感器的应用领域光电传感器在工业自动化、光电测量和光通信等领域具有广泛的应用。
1. 工业自动化:光电传感器可用于物体检测、位置测量、计数和速度测量等方面。
光电传感器工作原理
光电传感器工作原理光电传感器是一种能够将光信号转换为电信号的装置,广泛应用于光电测量、自动控制、光通信等领域。
它通过感受光的特性来实现对环境的检测和测量,从而实现自动化控制和监测。
光电传感器的工作原理主要包括光电效应、光电二极管和光电三极管。
1. 光电效应:光电效应是光电传感器工作的基础。
根据爱因斯坦的光电效应理论,当光照射到金属表面时,光子的能量可以激发金属中的自由电子,使其跃迁到导带中,形成电流。
这种现象被称为外光电效应。
内光电效应是指当光照射到半导体材料中时,光子的能量可以激发价带中的电子跃迁到导带中,形成电流。
2. 光电二极管:光电二极管是一种基于外光电效应工作的光电传感器。
它由一个P型半导体和一个N型半导体组成,中间有一个PN结。
当光照射到PN结上时,光子的能量可以激发PN结中的载流子,使其在电场的作用下产生电流。
光电二极管具有快速响应、高灵敏度和宽波长响应范围等特点,广泛应用于光电测量和光通信领域。
3. 光电三极管:光电三极管是一种基于内光电效应工作的光电传感器。
它由一个N型半导体和两个P型半导体组成,中间有两个PN结。
当光照射到光电三极管的基区时,光子的能量可以激发基区中的载流子,使其在电场的作用下产生电流。
光电三极管具有高增益、低噪声和高速度等特点,适用于光电测量、光通信和光电控制等领域。
除了以上两种光电传感器,还有其他类型的光电传感器,如光电二极管阵列、光电开关、光电编码器等。
它们的工作原理基本类似,都是通过光电效应将光信号转换为电信号,实现对光的检测和测量。
光电传感器的应用非常广泛。
在工业生产中,光电传感器可以用于检测物体的位置、颜色和形状,实现自动化生产和装配。
在安防领域,光电传感器可以用于监测入侵和火灾,提高安全性。
在医疗设备中,光电传感器可以用于血糖检测和心率监测,提供准确的医疗数据。
在交通领域,光电传感器可以用于交通信号灯和车辆检测,提高交通效率和安全性。
总结起来,光电传感器是一种将光信号转换为电信号的装置,利用光电效应实现对光的检测和测量。
光电传感器的基本原理及分类
光电传感器的基本原理及分类一、引言光电传感器是一种能够将光信号转化为电信号的设备,广泛应用于工业自动化、机器人技术、医疗仪器等领域。
本文将从基本原理和分类两个方面介绍光电传感器的知识。
二、光电传感器的基本原理1. 光电效应原理光电效应是指当金属或半导体表面受到光照射时,会产生电子的现象。
这种现象可以用经典物理学或量子力学来解释,但无论采用哪种解释方式,都不能完全符合实验结果。
根据实验结果,可以得出以下结论:当光子能量大于物质表面材料的束缚能时,就会发生外逸电子现象。
利用这个原理,可以制作出具有灵敏度高、响应速度快等优点的光电传感器。
2. 光敏元件原理在光电传感器中,最重要的部分就是光敏元件。
常见的光敏元件有四种:硅太阳能电池、硒太阳能电池、气体放大管和半导体二极管。
其中最常见的是半导体二极管,其工作原理是基于PN结的光电效应。
当光照射到PN结上时,会产生电子和空穴对,从而导致PN结区域的电流变化。
这种变化可以被检测到,并通过信号处理器转化为数字信号输出。
3. 光电传感器的工作原理光电传感器的工作原理是将光信号转化为电信号。
当物体进入传感器检测范围内时,会反射出一定程度的光线,这些光线被接收器接收后经过放大和滤波处理后转化为数字信号输出。
根据不同的应用需求,可以选择不同类型的光电传感器来实现不同功能。
三、光电传感器的分类1. 按照检测目标分类根据检测目标的不同,可以将光电传感器分为接近式、距离式和透明式三种类型。
(1)接近式:主要用于检测物体是否在一定距离范围内,并且可以识别物体是否有金属或非金属等特殊属性。
(2)距离式:主要用于测量物体与传感器之间的距离,并且可以精确地计算出物体与传感器之间的距离。
(3)透明式:主要用于检测透明或半透明物体的存在与否,例如检测玻璃板是否存在。
2. 按照工作原理分类根据工作原理的不同,可以将光电传感器分为反射式、散射式、直接式和光栅式四种类型。
(1)反射式:传感器和物体之间有一定距离,通过物体反射的光信号来检测物体的存在与否。
光电传感器的原理
光电传感器的原理光电传感器是一种利用光电效应来实现物理量探测的器件。
它可以将光信号转换成电信号,从而实现对光线、颜色、位置、距离等物理量的测量和控制。
在工业自动化、机器人、医疗设备、汽车电子、安防监控等领域中,光电传感器得到了广泛的应用和发展。
一、光电效应的基本原理光电效应是指当光线照射到金属表面时,金属中的自由电子被激发出来,形成电子流,从而产生电流。
这种现象被称为外光电效应。
内光电效应则是指光线照射到半导体材料上时,激发出电子-空穴对,从而产生电子流和空穴流。
光电效应的基本原理可以用光子能量和电子结构来解释。
光子能量与光的频率有关,当光子能量达到或超过金属或半导体的电子结构中的某个能级时,就可以激发出电子,使其脱离原子或分子,从而形成电子流。
这个能级被称为电离能级或导带底部能级。
二、光电传感器的基本结构和工作原理光电传感器的基本结构可以分为光源、光电转换器、信号处理电路和输出部分。
光源通常采用LED或激光器,发出光线照射到被测物体上,被测物体反射或散射出的光线再经过光电转换器,被转换成电信号,经过信号处理电路进行放大、滤波、积分等处理后,输出给控制系统或显示器。
光电传感器的工作原理主要是基于光电效应和光散射效应。
当光线照射到被测物体上时,被测物体会反射、散射或吸收部分光线,这些光线经过光电转换器后被转换成电信号,从而实现对被测物体的测量和控制。
光电传感器可以根据测量物理量的不同分为光电开关、光电编码器、光电距离传感器、光电颜色传感器、光电反射式传感器等类型。
其中,光电开关是最常见的一种光电传感器,它可以实现对物体的存在、位置、形状等特征的检测和控制,广泛应用于工业自动化、机器人、安防监控等领域。
三、光电传感器的应用和发展趋势光电传感器具有快速、高精度、无接触、可靠等优点,被广泛应用于工业自动化、机器人、医疗设备、汽车电子、安防监控等领域。
随着科技的不断进步和应用需求的不断增加,光电传感器的应用和发展也呈现出以下几个趋势:1. 多功能化:光电传感器不仅可以实现对物体的测量和控制,还可以实现对物体的识别、分类、定位等功能,将更多的智能化和自主化功能集成在一起,提高系统的效率和可靠性。
光电传感器工作原理
光电传感器工作原理光电传感器是一种能够将光信号转换为电信号的装置,广泛应用于自动控制、光电检测和光电测量等领域。
它的工作原理是基于光电效应和光电二极管的特性。
一、光电效应光电效应是指当光照射到物质表面时,物质中的电子会被光子激发,从而产生电流或电压的现象。
根据光电效应的不同,光电传感器可以分为光电导、光电发射和光电反射三种类型。
1. 光电导型传感器光电导型传感器是利用光电导效应工作的传感器。
当光照射到光电导材料上时,光子的能量会激发光电导材料中的自由电子,使其在材料内部移动。
通过测量光电导材料上的电流变化,可以得到光照强度的信息。
2. 光电发射型传感器光电发射型传感器是利用光电发射效应工作的传感器。
它由光电发射管和接收器组成。
光电发射管在受到电流激励时会发射光,光照射到接收器上时,会产生电流。
通过测量接收器上的电流变化,可以得到光照强度的信息。
3. 光电反射型传感器光电反射型传感器是利用光电反射效应工作的传感器。
它由光电发射管、接收器和反射器组成。
光电发射管发射的光照射到反射器上后,会被反射回来,并被接收器接收到。
通过测量接收器上的电流变化,可以得到光照强度的信息。
二、光电二极管光电二极管是一种具有光电效应的二极管。
当光照射到光电二极管的P-N结上时,光子的能量会激发P-N结中的载流子,从而产生电流。
光电二极管的工作原理与普通二极管类似,但其灵敏度更高,能够更好地转换光信号为电信号。
三、光电传感器的应用光电传感器在工业自动化、光电测量和光电检测等领域有着广泛的应用。
1. 工业自动化光电传感器可以用于工业自动化中的物体检测、位置检测和计数等任务。
例如,在流水线上,通过安装光电传感器可以实现对物体的自动检测和定位,从而实现自动化生产。
2. 光电测量光电传感器可以用于光电测量领域,如测量光照强度、光强度分布和光谱分析等。
通过选择不同波长的光电传感器,可以实现对不同光信号的测量和分析。
3. 光电检测光电传感器可以用于光电检测领域,如光电开关和光电传感器等。
光电传感器工作原理
光电传感器工作原理一、概述光电传感器是一种能够将光信号转换为电信号的设备,广泛应用于工业自动化、仪器仪表、通信、医疗等领域。
其工作原理是基于光电效应,通过光电二极管或光敏电阻等光电元件对光信号进行感应,并将其转换为电信号输出。
二、光电效应光电效应是指当光照射到某些物质表面时,会引发电子的发射或吸收现象。
根据光电效应的不同特点,可将光电传感器分为光电二极管、光敏电阻、光电三极管等几种类型。
1. 光电二极管光电二极管是一种将光能转换为电能的器件。
它的工作原理是当光照射到PN结上时,光子的能量会激发电子从价带跃迁到导带,产生电流。
光电二极管的输出电流与光照强度呈线性关系,可用于检测光强度、测量光功率等应用。
2. 光敏电阻光敏电阻是一种光电传感器,其电阻值随光照强度的变化而变化。
光敏电阻的工作原理是当光照射到其表面时,光子的能量会使光敏电阻的电阻值发生变化。
光敏电阻常用于光控开关、光敏电阻式光强度测量等应用。
3. 光电三极管光电三极管是一种光电传感器,其工作原理是光照射到基极时,会引发电子从基极跃迁到集电极,形成电流。
光电三极管的灵敏度较高,可用于光电开关、光电隔离等应用。
三、光电传感器的应用光电传感器在工业自动化、仪器仪表、通信、医疗等领域有着广泛的应用。
1. 工业自动化光电传感器可用于物体检测、位置测量、速度测量等方面。
例如,光电开关可用于检测物体的存在与否,实现自动化生产线的控制;光电编码器可用于测量物体的位置和速度,实现精确的运动控制。
2. 仪器仪表光电传感器在仪器仪表中常用于测量光强度、光功率、光谱分析等方面。
例如,光电二极管可用于光强度的测量,光敏电阻可用于光功率的测量,光电三极管可用于光谱分析。
3. 通信光电传感器在通信领域中常用于光纤通信、光纤传感等方面。
例如,光电二极管可用于接收光纤信号,将光信号转换为电信号;光电三极管可用于光纤传感,实现对光纤中光信号的检测和放大。
4. 医疗光电传感器在医疗设备中常用于血氧测量、心率监测等方面。
光电传感器的原理和应用
光电传感器的原理和应用近年来随着科技的快速发展,光电传感器作为一种高科技产品,逐渐被广泛应用于各个领域。
那么什么是光电传感器?它有哪些原理和应用呢?一、光电传感器的原理光电传感器是一种能够将物理量转化为电磁信号的装置。
它是由发光二极管、光敏二极管以及电路组成的。
首先让我们了解一下发光二极管(LED)的原理。
当施加电压时,LED将会发出光。
其原理是基于半导体材料的特定性质,在电场作用下电子从高能级跃迁至低能级时,会放出能量。
能量释放形式的不同导致了不同颜色的光,从而产生不同种类的LED。
接下来要提到的是光敏二极管(PD)。
光敏二极管是一种能够将光信号转化成电信号的半导体器件。
简单来说,它就是一个特殊的二极管,能够将光线中的电子转换成电信号,并通过电路输出。
光敏二极管的工作原理是基于内部PN结上发生光电效应。
结合LED和PD,光电传感器的工作原理就很容易理解了:当光线照射到PD上时,电流会发生明显变化。
在这种情况下,我们只需要将PD接到一个放大电路上,就可以将这一变化转化为信号输出,从而实现光电转换。
二、光电传感器的应用1. 工业生产现在的工业生产线上利用光电传感器进行平衡、配线等现代化的工作,通过变电、自动化、自适应等手段,提高了生产效率并大幅度削减了静电带来的损失。
所以,光电传感器的应用已经成为很多工业生产线的必备工具之一。
2. 安防系统光电传感器还广泛应用于安防领域。
通过红外线、图像识别等方法,建立起一个完整的安防防护系统,从而保障人们的财产和安全。
光电传感器在这个领域的应用还在不断扩大,可以极大地提升安防系统的智能化和自动化程度。
3. 医疗健康在量化医疗方面,光电传感器也扮演着重要角色。
像脉搏、血氧以及体温等信息都能通过光电传感器进行测量和分析。
随着移动互联网技术的发展以及智能穿戴、健康监测等产品的出现,人们也能直接以便携的方式接受相关信息。
4. 交通运输光电传感器也在交通运输行业得到了广泛应用。
光电传感器工作原理
光电传感器工作原理光电传感器是一种能够将光信号转化为电信号的装置,广泛应用于光电检测、光电测量、光电控制等领域。
它通过感受光的强度、波长等特性,将光信号转换为电信号,从而实现对光的检测和控制。
一、光电传感器的基本原理光电传感器的基本原理是光电效应。
光电效应是指当光照射到物质表面时,光子与物质中的电子相互作用,将光能转化为电能的现象。
光电传感器利用光电效应,将光信号转化为电信号,实现对光的检测和测量。
光电传感器通常由光源、光敏元件和信号处理电路组成。
光源发出光信号,光敏元件接收光信号并产生电信号,信号处理电路对电信号进行放大、滤波等处理,最终输出一个与光信号相关的电信号。
二、光电传感器的工作原理1. 光敏元件的工作原理光敏元件是光电传感器的核心部份,常见的光敏元件有光敏电阻、光敏二极管、光电二极管、光电三极管、光电晶体管等。
以光敏电阻为例,它是一种能够根据光强度变化而改变电阻值的元件。
光敏电阻的内部结构是一个光敏材料和两个电极。
当光照射到光敏电阻上时,光敏材料中的电子会被激发,电子的运动会导致电阻值的变化。
光敏电阻的电阻值与光照强度成反比,当光照强度增加时,电阻值减小;当光照强度减小时,电阻值增大。
光敏二极管和光敏三极管的工作原理类似,它们通过光照射到半导体结构上,产生光生电流或者光生电压,从而实现对光信号的检测。
2. 光电传感器的工作原理光电传感器通常包含一个光敏元件和一个信号处理电路。
光敏元件接收光信号并产生电信号,信号处理电路对电信号进行放大、滤波等处理,最终输出一个与光信号相关的电信号。
光电传感器的工作原理可以分为两种类型:光电开关和光电传感器。
- 光电开关:光电开关通过检测光的有无来实现对物体的检测。
当物体遮挡光电开关的光束时,光敏元件接收到的光信号减弱或者消失,信号处理电路检测到光信号的变化,输出一个开关信号,表示物体被检测到。
光电开关常用于自动控制、物体计数、物体定位等应用场景。
- 光电传感器:光电传感器通过检测光的强度、波长等特性来实现对物体的检测。
光电传感器的工作原理
光电传感器的工作原理光电传感器是一种能够将光信号转换为电信号的装置,广泛应用于工业自动化、电子设备和光学仪器等领域。
它通过感知光的强度、频率和波长等特性,实现对环境的监测和控制。
下面将详细介绍光电传感器的工作原理。
一、光电传感器的基本组成光电传感器主要由光源、传感器和信号处理器三部份组成。
1. 光源:光源是产生光信号的装置,常见的光源有发光二极管(LED)和激光二极管(LD)等。
光源的选择取决于应用需求,如需要长距离传输信号则选择激光二极管。
2. 传感器:传感器是光电传感器的核心部份,用于感知光信号并将其转换为电信号。
常见的光电传感器有光敏电阻(LDR)、光电二极管(PD)和光电三极管(PT)等。
光敏电阻是一种利用光照强度改变电阻值的元件,光电二极管和光电三极管则是利用光照射后产生电流的元件。
3. 信号处理器:信号处理器用于对传感器输出的电信号进行处理和分析,常见的信号处理器有运算放大器、比较器和模数转换器等。
信号处理器可以根据应用需求对信号进行放大、滤波、计数等处理,以获得更准确的结果。
二、光电传感器的工作原理光电传感器的工作原理基于光的电磁性质和光与物质的相互作用。
1. 光的电磁性质:光是一种电磁波,具有波粒二象性。
在光电传感器中,光被看做是由光子组成的粒子流,它具有能量和动量。
2. 光与物质的相互作用:光与物质相互作用时,会发生吸收、散射、透射和反射等现象。
光电传感器利用物质对光的吸收、散射和反射等特性,来感知环境的光信号。
光电传感器的工作过程如下:1. 光源发出光信号,光信号经过透镜等光学元件聚焦后照射到被测物体上。
2. 被测物体对光信号产生吸收、散射或者反射等作用,改变光信号的特性。
3. 光信号经过传感器感知元件的作用,转换为电信号。
4. 传感器输出的电信号经过信号处理器进行放大、滤波和分析等处理。
5. 处理后的电信号被转换为数字信号,通过数字接口传输给其他设备,如计算机或者控制器。
三、光电传感器的应用领域光电传感器由于其快速、精确、可靠的特点,在许多领域得到广泛应用。
光电传感器的工作原理
光电传感器的工作原理标题:光电传感器的工作原理引言概述:光电传感器是一种能够将光信号转换为电信号的传感器,广泛应用于工业自动化、光学测量、医疗设备等领域。
本文将详细介绍光电传感器的工作原理。
一、光电传感器的基本组成1.1 光源:光电传感器中的光源通常为LED或激光二极管,用于发射光信号。
1.2 接收器:光电传感器中的接收器用于接收光信号并转换为电信号。
1.3 信号处理电路:信号处理电路用于处理接收到的电信号,提取所需的信息。
二、光电传感器的工作原理2.1 发射光源发射光信号:光电传感器中的光源发射光信号,照射到被测物体表面。
2.2 光信号被反射或透过:被测物体表面对光信号的反射或透过会使接收器接收到不同的光信号。
2.3 接收器转换为电信号:接收器接收到的光信号会被转换为电信号,通过信号处理电路进行处理。
三、光电传感器的工作模式3.1 透射式:光源和接收器在被测物体的两侧,当被测物体遮挡光信号时,接收器接收到的光信号减弱。
3.2 反射式:光源和接收器在同一侧,当被测物体反射光信号时,接收器接收到的光信号增强。
3.3 漫反射式:光源和接收器在同一侧,通过被测物体表面的漫反射光信号进行检测。
四、光电传感器的应用领域4.1 工业自动化:光电传感器可用于检测物体的位置、颜色、形状等信息,实现自动化生产。
4.2 光学测量:光电传感器可用于测量光学器件的反射率、透射率等参数。
4.3 医疗设备:光电传感器可用于医疗设备中的血氧检测、心率监测等功能。
五、光电传感器的发展趋势5.1 小型化:随着技术发展,光电传感器越来越小型化,适用于更多复杂环境。
5.2 高精度:光电传感器的精度不断提高,可以满足更高要求的应用场景。
5.3 多功能化:光电传感器的功能越来越多样化,可以实现更多复杂的检测任务。
总结:光电传感器作为一种重要的传感器技术,在各个领域都有着广泛的应用。
通过了解光电传感器的工作原理,可以更好地理解其在实际应用中的作用和优势。
光电传感器的原理及应用
光电传感器的原理及应用一、光电传感器的原理光电传感器是一种能将光信号转化为电信号的装置,其原理基于光电效应的作用。
通过光电效应,当光照射到光电传感器的光敏区域时,光子的能量被吸收,产生电子-空穴对。
这些电子-空穴对在光电传感器的材料中移动,产生电信号。
光电传感器的原理可以分为以下几种常见类型:1.光电二极管光电二极管是一种基于半导体材料的光电传感器。
它利用PN结的特性,当光照射到PN结时,会产生光电流。
光电二极管的工作原理简单,响应速度快,并且具有较高的灵敏度。
它被广泛应用于光电开关、光电编码器等领域。
2.光敏电阻光敏电阻是一种基于光敏材料的光电传感器。
它的电阻值会随光照强度的变化而变化。
当光照射到光敏电阻上时,光子能量激发了材料中的载流子,使其导电性发生变化,导致电阻值的变化。
光敏电阻具有价格低廉、结构简单的优势,被广泛应用于光控开关、照度检测等场景。
3.光电二极管阵列光电二极管阵列是一种由多个光电二极管组成的矩阵结构。
它可以分析和处理光信号,用于实现图像捕捉和识别。
光电二极管阵列在摄像头、扫描仪等设备中得到了广泛应用。
二、光电传感器的应用光电传感器作为一种将光信号转化为电信号的装置,其应用领域十分广泛。
下面列举了几个常见的光电传感器应用:1.工业自动化光电传感器在工业自动化中有广泛的应用。
例如,光电开关可以用于物体检测、位置检测等任务;光电编码器可用于测量转速、位置等信息。
通过光电传感器的应用,可以实现生产线上的自动化控制。
2.机器人导航光电传感器可以被用于机器人导航系统中。
通过光电传感器感知环境中的光线强度和方向,机器人可以根据这些信息确定自己的位置和朝向,实现准确的导航。
3.智能家居光电传感器在智能家居中扮演着重要的角色。
光敏电阻可以用于自动调节室内照明,实现智能化的照明控制。
同时,光电传感器还可用于检测窗户、门等是否关闭,提高家居安全性。
4.环境监测光电传感器可以用于环境监测领域。
例如,光电二极管阵列可以用于太阳能光伏系统中,实时监测太阳光线的强度和方向,优化能量收集效率。
光电传感器的工作原理
光电传感器的工作原理光电传感器是一种能够将光信号转化为电信号的设备,广泛应用于工业自动化、光电测量、光电控制和电光通信等领域。
本文将从光电传感器的工作原理、分类以及应用等方面进行详细阐述。
一、光电传感器的工作原理1. 光电效应:光电传感器的工作原理基于光电效应,即当光线照射到光电传感器上时,光能会激发光电器件(如光电二极管、光电三极管等)中的光电子,并产生电流。
2. 光电器件:光电传感器中常用的光电器件包括光电二极管、光电三极管和光敏电阻等。
光电二极管是一种半导体器件,具有单向导电性,其PN结会在光线照射下产生电流。
光电三极管是一种三极管,通过光电效应控制其电流放大倍数。
光敏电阻则是通过光敏电阻的阻值变化来检测光线强度。
3. 输出信号:光电传感器的输出信号可以是模拟信号或数字信号。
模拟信号通常是通过电压或电流来表示光强度的变化,而数字信号则是通过编码的方式传输光信号的强弱。
4. 工作方式:根据应用需求,光电传感器可以采用不同的工作方式,如接近式、间隔式、透明式和断续式等。
接近式光电传感器可以检测物体的接近与否,间隔式光电传感器则可检测两物体之间的距离。
二、光电传感器的分类1. 按工作原理分类:光电传感器可以分为光电二极管型、光电三极管型和光敏电阻型等。
其中,光电二极管型适用于检测光的存在与否,光电三极管型可实现对光信号的放大,而光敏电阻型则常用于光强度检测。
2. 按检测对象分类:光电传感器可以根据检测对象的不同进行分类,如红外光电传感器、紫外光电传感器、可见光电传感器等。
3. 按应用场景分类:根据光电传感器的应用场景和需求,也可以将其分为接近传感器、光栅传感器、反射式传感器、透射式传感器等。
三、光电传感器的应用1. 工业自动化:光电传感器在工业自动化领域中有着广泛的应用,如物体检测、位置检测、计数等。
例如,在流水线上,通过光电传感器可以实现对物体的检测和定位,从而实现自动化生产。
2. 光电测量:光电传感器可以用于光强度的测量和校准。
光电传感器的工作原理
光电传感器的工作原理光电传感器是一种能够将光信号转化为电信号的装置,广泛应用于工业自动化、光电测量、光学通信、无线电通信等领域。
它通过感知光信号的强度、频率、波长等特征,将其转化为电信号,从而实现对光信号的检测和测量。
一、光电传感器的基本原理光电传感器的基本原理是利用光电效应,即光照射到光敏元件上时,会产生电信号。
光电传感器通常由光源、光敏元件和信号处理电路组成。
1. 光源:光源是光电传感器中的发光元件,常用的光源有激光二极管、发光二极管、红外线二极管等。
光源的选择要根据具体的应用需求来确定。
2. 光敏元件:光敏元件是光电传感器中的接收元件,它能够将光信号转化为电信号。
常用的光敏元件有光电二极管、光敏电阻、光电二极管阵列等。
光敏元件的选择要考虑到光源的波长、光强度等因素。
3. 信号处理电路:信号处理电路用于放大、滤波和解调光敏元件输出的电信号,以便进行后续的信号处理和分析。
信号处理电路的设计要根据具体的应用需求来确定。
二、光电传感器的工作原理可以分为直接检测和间接检测两种方式。
1. 直接检测:直接检测是指光电传感器直接接收被测物体反射或透过的光信号。
当被测物体反射或透过的光信号照射到光敏元件上时,光敏元件产生电信号,经过信号处理电路的放大和滤波,最终输出检测结果。
2. 间接检测:间接检测是指光电传感器通过测量光信号与被测物体之间的相互作用来检测被测物体的某些特性。
常见的间接检测方式有光散射、光吸收、光透射等。
三、光电传感器的应用光电传感器在工业自动化中有着广泛的应用。
以下是一些常见的应用领域:1. 物体检测:光电传感器可以用于检测物体的存在、位置和形状等信息。
例如,在生产线上,光电传感器可以用来检测产品的到位、缺陷等。
2. 计数和测量:光电传感器可以用于对物体进行计数和测量。
例如,在包装行业中,光电传感器可以用来计数产品数量,确保包装的准确性。
3. 位置和速度测量:光电传感器可以用于测量物体的位置和速度。
光电传感器原理
光电传感器原理光电传感器是一种能够将光能转化为电能的设备,广泛应用于光电检测、自动化控制和信息处理等领域。
本文将介绍光电传感器的工作原理和应用。
一、光电传感器的工作原理光电传感器的工作原理基于光电效应和光电二极管的特性。
光电效应指的是当光线照射到物质表面时,光子能量可被电子吸收,并使其获得足够的能量跃迁到导带中。
光电传感器中常用的光电二极管,其双极性导体材料会产生光电效应,从而产生电流。
光电传感器通常由光源、光接收单元和信号处理电路组成。
光源发出光线,光线经过目标物体后反射或被吸收。
光接收单元将光线转换为电流信号,并经过信号处理电路进行放大和滤波,最终转换为数字电信号输出。
二、光电传感器的应用1. 光电检测光电传感器在工业自动化领域中广泛应用于物体检测和位置测量。
通过测量光线是否被物体遮挡,可以实现对物体的检测和计数。
光电传感器还可用于测量物体的位置,如在流水线上检测产品的位置,实现准确的定位。
2. 反射式光电传感器反射式光电传感器通过光源和接收单元位于同一侧,利用被测物体对光线的反射来判断物体的存在。
这种传感器常用于自动门、流水线等场合,用于检测物体是否通过或停留。
3. 透射式光电传感器透射式光电传感器由光源和接收单元分别位于物体的两侧,通过测量光线是否被物体遮挡来判断物体的存在。
透射式光电传感器可以应用在包装、印刷和纺织等行业,用于检测物体的位置、长度或厚度等参数。
4. 光电开关光电开关是一种能够将光信号转换为电信号,用于控制电路的开关装置。
光电开关常用于自动门、照明系统和安防设备中,通过物体对光线的遮挡或接触来触发电路,实现自动控制。
三、光电传感器的发展趋势随着科技的不断进步,光电传感器在性能和应用方面也不断完善。
目前,一些新型的光电传感器已经采用了微纳技术和光纤传输技术,使其在体积、灵敏度和稳定性方面有了较大的提升。
同时,光电传感器正在与其他技术相结合,如无线通信技术和人工智能等。
这将使光电传感器在智能家居、智能制造和自动驾驶等领域有更广泛的应用。
光电传感器工作原理
光电传感器工作原理光电传感器是一种能够将光信号转化为电信号的装置,广泛应用于光电检测、光电测量、光电控制等领域。
它通过感知光的强度、颜色、位置等特征,将光信号转化为电信号,从而实现对光信号的检测和测量。
一、光电传感器的基本原理光电传感器的基本原理是光电效应。
光电效应是指当光照射到某些物质表面时,会引起电子的发射或电子的吸收,从而产生电流或电压。
光电传感器利用光电效应实现光信号到电信号的转换。
光电传感器通常由光源、光电转换器和信号处理电路组成。
光源发出光线,光线经过光电转换器后,产生电信号,信号处理电路对电信号进行放大、滤波等处理,最终输出可用的电信号。
二、光电传感器的工作原理光电传感器的工作原理主要有光电导、光电二极管和光电三极管等。
1. 光电导式传感器:光电导式传感器是利用光电导效应工作的传感器。
光电导效应是指当光照射到光电导材料上时,光子能量被吸收并转化为电子能量,电子在材料中传导形成电流。
光电导式传感器通常由光源、光电导材料和电流检测电路组成。
光源发出光线,光线照射到光电导材料上,产生电流,电流检测电路对电流进行检测和处理。
2. 光电二极管式传感器:光电二极管式传感器是利用光电二极管工作的传感器。
光电二极管是一种具有光电效应的二极管,当光照射到光电二极管的PN结上时,会产生电流。
光电二极管式传感器通常由光源、光电二极管和电流检测电路组成。
光源发出光线,光线照射到光电二极管的PN结上,产生电流,电流检测电路对电流进行检测和处理。
3. 光电三极管式传感器:光电三极管式传感器是利用光电三极管工作的传感器。
光电三极管是一种具有光电效应的三极管,当光照射到光电三极管的发射区时,会产生电流。
光电三极管式传感器通常由光源、光电三极管和电流检测电路组成。
光源发出光线,光线照射到光电三极管的发射区,产生电流,电流检测电路对电流进行检测和处理。
三、光电传感器的应用领域光电传感器广泛应用于工业自动化、机器人、安防监控、医疗设备、光电测量、光电控制等领域。
一文搞懂光电传感器的原理,对射、漫反、镜反等案例
一文搞懂光电传感器的原理,对射、漫反、镜反等案例1、什么是光电传感器?所谓光电传感器,就是通过感应自身投射光的受光量(遮光量),实现非接触式的检测物体的有/无的传感器。
如图所示,左边投光器投射出光线,右边的受光器接收到足够的光亮(受光量)时判断为ON,否则判定为OFF。
2、光电传感器的特点是什么?可以非接触检测长距离检测可以检测微小物体响应速度高大部分物体都可以检测缺点是容易受到油污/粉尘的影响。
3、常见的光电传感器检测类型分类和应用举例对射型:发射器和接收器分离。
主要以「投射的光线是否被遮挡阻断」为检测依据,因此不收检测物体的形状、颜色、倾斜等影响。
案例在食品包装生产线上,很多食品的密封包装是透明材质,使用传感器透过透明包装材质可以检测包装内是否有封装入食品。
镜发射型:该型光电传感器配置为一个发射和接收一体的本体和一个反光镜,主要是以「传感器发射向反光镜的光线是否被遮挡阻断」为检测依据。
因为只有一个传感器本体相比对射式光电传感器布线要简单,相对成本要低一点。
案例可以通过镜反射光电传感器检测物品在生产线上的有无,并且仅用在一侧布线另一侧安装反光板即可。
漫反射型:该型光电传感器配置为一个发射和接收一体的本体。
发射的光线经过被测物体反射到接受端上。
但这类传感器容易受到物体的形状、颜色、倾斜等影响使用时一定要注意。
案例金属加工过程中可以用到漫反射型光电传感器,确认金属加工过程中的打孔是否有无。
如果发射的光线投射到孔洞中就不会发射给传感器,没有打孔则会发射给传感器,这样可以非常方便的检测出加工孔的有无。
背景抑制型:该类传感器采用PSD/C-MOS感光原件,以距离而不是受光量作为检测依据。
因此可以有效的避免普通漫反射型光电传感器容易受到检测物体颜色的影响。
该型传感器检测距离比普通漫反射型相对较短。
案例检测托盘内物品的有无。
通过检测高度差来确认托盘内物品的有无,即使物品和托盘发生颜色改变也可以稳定的检测,而无需进行调整。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
光电传感器原理2007年05月21日星期一13:441.光电传感器原理光电传感器是指能够将可见光转换成某种电量的传感器。
光敏二极管是最常见的光传感器。
光敏二极管的外型与一般二极管一样,只是它的管壳上开有一个嵌着玻璃的窗口,以便于光线射入,为增加受光面积,PN结的面积做得较大,光敏二极管工作在反向偏置的工作状态下,并与负载电阻相串联,当无光照时,它与普通二极管一样,反向电流很小(<µA),称为光敏二极管的暗电流;当有光照时,载流子被激发,产生电子-空穴,称为光电载流子。
在外电场的作用下,光电载流子参于导电,形成比暗电流大得多的反向电流,该反向电流称为光电流。
光电流的大小与光照强度成正比,于是在负载电阻上就能得到随光照强度变化而变化的电信号。
光敏三极管除了具有光敏二极管能将光信号转换成电信号的功能外,还有对电信号放大的功能。
光敏三级管的外型与一般三极管相差不大,一般光敏三极管只引出两个极——发射极和集电极,基极不引出,管壳同样开窗口,以便光线射入。
为增大光照,基区面积做得很大,发射区较小,入射光主要被基区吸收。
工作时集电结反偏,发射结正偏。
在无光照时管子流过的电流为暗电流Iceo=(1+β)Icbo(很小),比一般三极管的穿透电流还小;当有光照时,激发大量的电子-空穴对,使得基极产生的电流Ib增大,此刻流过管子的电流称为光电流,集电极电流Ic=(1+β)Ib,可见光电三极管要比光电二极管具有更高的灵敏度2.光电传感器应用光电传感器是一种小型电子设备,它可以检测出其接收到的光强的变化。
早期的用来检测物体有无的光电传感器是一种小的金属圆柱形设备,发射器带一个校准镜头,将光聚焦射向接收器,接收器出电缆将这套装置接到一个真空管放大器上。
在金属圆筒内有一个小的白炽灯做为光源。
这些小而坚固的白炽灯传感器就是今天光电传感器的雏形。
LED(发光二极管)发光二极管最早出现在19世纪60年代,现在我们可以经常在电气和电子设备上看到这些二极管做为指示灯来用。
LED就是一种半导体元件,其电气性能与普通二极管相同,不同之处在于当给LED通电流时,它会发光。
由于LED是固态的,所以它能延长传感器的使用寿命。
因而使用LED 的光电传感器能被做得更小,且比白炽灯传感器更可靠。
不象白炽灯那样,LED抗震动抗冲击,并且没有灯丝。
另外,LED所发出的光能只相当于同尺寸白炽灯所产生光能的一部分。
(激光二极管除外,它与普通LED的原理相同,但能产生几倍的光能,并能达到更远的检测距离)。
LED能发射人眼看不到的红外光,也能发射可见的绿光、黄光、红光、蓝光、蓝绿光或白光。
经调制的LED传感器1970年,人们发现LED还有一个比寿命长更好的优点,就是它能够以非常快的速度来开关,开关速度可达到KHz。
将接收器的放大器调制到发射器的调制频率,那么它就只能对以此频率振动的光信号进行放大。
我们可以将光波的调制比喻成无线电波的传送和接收。
将收音机调到某台,就可以忽略其他的无线电波信号。
经过调制的LED发射器就类似于无线电波发射器,其接收器就相当于收音机。
人们常常有一个误解:认为由于红外光LED发出的红外光是看不到的,那么红外光的能量肯定会很强。
经过调制的光电传感器的能量的大小与LED光波的波长无太大关系。
一个LED发出的光能很少,经过调制才将其变得能量很高。
一个未经调制的传感器只有通过使用长焦距镜头的机械屏蔽手段,使接收器只能接收到发射器发出的光,才能使其能量变得很高。
相比之下,经过调制的接收器能忽略周围的光,只对自己的光或具有相同调制频率的光做出响应。
未经调制的传感器用来检测周围的光线或红外光的辐射,如刚出炉的红热瓶子,在这种应用场合如果使用其它的传感器,可能会有误动作。
如果一个金属发射出的光比周围的光强很多的话,那么它就可以被周围光源接收器可靠检测到。
周围光源接收器也可以用来检测室外光。
但是并不是说经调制的传感器就一定不受周围光的干扰,当使用在强光环境下时就会有问题。
例如,未经过调制的光电传感器,当把它直接指向阳光时,它能正常动作。
我们每个人都知道,用一块有放大作用的玻璃将阳光聚集在一张纸上时,很容易就会把纸点燃。
设想将玻璃替换成传感器的镜头,将纸替换成光电三极管,这样我们就很容易理解为什么将调制的接收器指向阳光时它就不能工作了,这是周围光源使其饱和了。
调制的LED改进了光电传感器的设计,增大了检测距离,扩展了光束的角度,人们逐渐接受了这种可靠易于对准的光束。
到1980年,非调制的光电传感器逐步就退出了历史舞台。
红外光LED是效率最高的光束,同时也是在光谱上与光电三极管最匹配的光束。
但是有些传感器需要用来区分颜色(如色标检测),这就需要用可见光源。
在早期,色标传感器使用白炽灯做光源,使用光电池接收器,直到后来发明了高效的可见光LED。
现在,多数的色标传感器都是使用经调制的各种颜色的可见光LED发射器。
经调制的传感器往往牺牲了响应速度以获取更长的检测距离,这是因为检测距离是一个非常重要的参数。
未经调制的传感器可以用来检测小的物体或动作非常快的物体,这些场合要求的响应速度都非常快。
但是,现在高速的调制传感器也可以提供非常快的响应速度,能满足大多数的检测应用。
超声波传感器声波传感器所发射和接收的声波,其振动频率都超过了人耳所能听到的范围。
它是通过计算声波从发射,经被测物反射回到接收器所需要的时间,来判断物体的位置。
对于对射式超声波传感器,如果物体挡住了从发射器到接收器的声波,则传感器就会检测到物体。
与光电传感器不同,超声波传感器不受被测物透明度和反光率的影响,因此在许多使用超声波传感器的场合就不适合使用光电传感器来检测。
光纤安装空间非常有限或使用环境非常恶劣的情况下,我们可以考虑使用光纤。
光纤与传感器配套使用,是无源元件,另外,光纤不受任何电磁信号的干扰,并且能使传感器的电子元件与其他电的干扰相隔离。
光纤有一根塑料光芯或玻璃光芯,光芯外面包一层金属外皮。
这层金属外皮的密度比光芯要低,因而折射率低。
光束照在这两种材料的边界处(入射角在一定范围内,),被全部反射回来。
根据光学原理,所有光束都可以由光纤来传输。
两条入射光束(入射角在接受角以内)沿光纤长度方向经多次反射后,从另一端射出。
另一条入射角超出接受角范围的入射光,损失在金属外皮内。
这个接受角比两倍的最大入射角略大,这是因为光纤在从空气射入密度较大的光纤材料中时会有轻微的折射。
光在光纤内部的传输不受光纤是否弯曲的影响(弯曲半径要大于最小弯曲半径)。
大多数光纤是可弯曲的,很容易安装在狭小的空间。
玻璃光纤玻璃光纤由一束非常细(直径约50μm)的玻璃纤维丝组成。
典型的光缆由几百根单独的带金属外皮玻璃光纤组成,光缆外部有一层护套保护。
光缆的端部有各种尺寸和外形,并且浇注了坚固的透明树脂。
检测面经过光学打磨,非常平滑。
这道精心的打磨工艺能显著提高光纤束之间的光耦合效率。
玻璃光纤内的光纤束可以是紧凑布置的,也可随意布置。
紧凑布置的玻璃光纤通常用在医疗设备或管道镜上。
每一根光纤从一端到另一端都需要精心布置,这样才能在另一端得到非常清晰的图像。
由于这种光纤费用非常昂贵并且多数的光纤应用场合并不需要得到一个非常清晰的图像,所以多数的玻璃光纤其光纤束是随意布置的,这种光纤就非常便宜了,当然其所得到的图像也只是一些光。
玻璃光纤外部的保护层通常是柔性的不锈钢护套,也有的是PVC或其他柔性塑料材料。
有些特殊的光纤可用于特殊的空间或环境,其检测头做成不同的形状以适用于不同的检测要求。
玻璃光纤坚固并且性能可靠,可使用在高温和有化学成分的环境中,它可以传输可见光和红外光。
常见的问题就是由于经常弯曲或弯曲半径过小而导致玻璃丝折断,对于这种应用场合,我们推荐使用塑料光纤。
塑料光纤塑料光纤由单根的光纤束(典型光束直径为0.25到1.5mm)构成,通常有PVC外皮。
它能安装在狭小的空间并且能弯成很小的角度。
多数的塑料光纤其检测头都做成探针形或带螺纹的圆柱形,另一端未做加工以方便客户根据使用将其剪短。
邦纳公司的塑料光纤都配有一个光纤刀。
不像玻璃光纤,塑料光纤具有较高的柔性,带防护外皮的塑料光纤适于安装在往复运动的机械结构上。
塑料光纤吸收一定波长的光波,包括红外光,因而塑料光纤只能传输可见光。
与玻璃光纤相比,塑料光纤易受高温,化学物质和溶剂的影响。
对射式和直反式光纤玻璃光纤和塑料光纤既有“单根的”-对射式,也有“分叉的”-直反式。
单根光纤可以将光从发射器传输到检测区域,或从检测区域传输到接收器。
分叉式的光纤有两个明显的分支,可分别传输发射光和接收光,使传感器既可以通过一个分支将发射光传输到检测区域,同时又通过另一个分支将反射光传输回接收器。
直反式的玻璃光纤,其检测头处的光纤束是随意布置的。
直反式的塑料光纤,其光纤束是沿光纤长度方向一根挨一根布置。
光纤的特殊应用由于光纤受使用环境影响小并且抗电磁干扰,因而能被用在一些特殊的场合,如:适用于真空环境下的真空传导光纤(VFT)和适用于爆炸环境下的光纤。
在这两个应用中,特制的光纤安装在特殊的环境中,经一个法兰引出来接到外面的传感器上,光纤和法兰的尺寸多种多样。
本安型传感器,如NAMUR型的传感器,可直接用在特殊或有爆炸性危险的环境。