数模 全国一等奖 A题 储油罐的变位识别与罐容表标定

合集下载

数模全国一等奖储油罐的变位识别与罐容表标定

数模全国一等奖储油罐的变位识别与罐容表标定

储油罐的变位识别与罐容表的标定摘要本文研究储油罐的变位识别与罐容表的标定。

分别以小椭圆型油罐和实际卧式储油罐为研究对象,运用高等数学的积分的知识,分别建立罐体变位前后罐内油体积与油高读数之间的积分模型,使用Matlab 软件得出结论。

对于问题一,以小椭圆型储油罐为研究对象,在无变位时,小椭圆型储油罐为规则的椭球柱体,可利用解析几何与高等数学的知识建立油罐内体积与油高读数之间的积分模型,得出罐体无变位时的理论值。

当罐体发生纵向变位时,小椭圆型储油罐的截面不再是规则的几何形体,但根据倾角α及所给小椭圆型罐体的尺寸,可得其截面面积的表达式,利用高等数学中积分的方法,根据不同油高,建立了模型一,得到了储油量和油高的关系公式。

最后,根据实验数据的处理,用拟合的方法,修正了某些系统误差的影响,计算出罐体变位后油位高度间隔1cm 的罐容表的标定值。

对于问题二,由于实际储油罐内没油的高度不同,我们将其分为五种情况分别讨论,并对每种情况建立积分公式,得出罐内油体积与油位高度及变位参数(纵向倾斜角α和横向偏转角β)之间的函数关系式,利用所给的实验数据,运用最小二乘法,建立非线性规划模型212arg ,(((,,)(,,)))min (,,)nii i i V H V HOilData error OilData αβαβαβαβ-==--∑用Matlab 非线性规划求解得出使得总体误差最小的α与β值:α=2.12°,β=4.06°。

通过α与β的数值计算出出油量理论值与实测值的平均相对误差小于0.5% 。

对模型进行了较为充分的正确性验证和稳定性验证:在α与β的值为0时,其计算出来的罐容值与理论值完全吻合,说明模型在体积计算上是正确的;当对油高进行0.1%的扰动时,α的值变化也在0.1%左右,说明α的稳定性很好,但是β的值从4.06°变成了3.75°,变化了大约8%,所以我们详细分析了β的数学表达式,从理论上分析了影响其稳定性的因素。

全国大学生数学建模竞赛A题获奖—储油罐的变位识别与罐容表标定收集资料

全国大学生数学建模竞赛A题获奖—储油罐的变位识别与罐容表标定收集资料

2010高教社杯全国大学生数学建模竞赛承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则。

我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。

如有违反竞赛规则的行为,我们将受到严肃处理。

我们参赛选择的题号是:A题储油罐的变位识别与罐容表标定我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):参赛队员(打印并签名):1.2.3.指导教师或指导教师组负责人(打印并签名):日期:2010年9月12日赛区评阅编号(由赛区组委会评阅前进行编号):2010高教社杯全国大学生数学建模竞赛编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):储油罐的变位识别与罐容表标定摘要本文通过对储油罐中油位高度及变位参数之间的不同情形的储油量进行分析并建立相应的数学模型,在该过程中先利用投影法、截面法及微元法得出储油量与油位高度及变位参数的函数关系。

再由Matlab编程可知各高度储油量的理论数据,最后分析误差及评价模型的合理性。

对于问题一的任一种情形,我们均建立笛卡尔坐标系,当储油罐无变位时,利用微元法得到体积关于h的公式,当储油罐发生变位时,根据储油罐中油量的多少分成三种情形,就每一类利用微元法得到体积关于h的公式。

代人附件1实验数据中的高度得到储油罐中的理论油量V。

根据理论油量及实际油量得出误差,判断误差所服从的分布,再利用相对误差进行误差分析并评价模型的合理性。

由上述得到储油罐发生变位时体积关于h的公式我们给出了罐体变位后油位高度间隔为1cm的罐容表标定值(即进/出油量与罐内油位高度的表格)。

2010年“高教社杯”全国大学生数学建模竞赛获奖作品——储油罐变位识别与罐容表标定

2010年“高教社杯”全国大学生数学建模竞赛获奖作品——储油罐变位识别与罐容表标定

【关键词】变位识别;罐容表标定;纵向倾斜;横向偏转 ;分割;微元; 最小二乘法 ;误差分析
一、问题分析 通常加油站都有若干个储存燃油的地下储油罐, 并且一般都有与之配套 “油位计量管理 系统”,采用流量计和油位计来测量进/出油量与罐内油位高度等数据,通过预先标定的罐 容表(即罐内油位高度与储油量的对应关系)进行实时计算,以得到罐内油位高度和储油量 的变化情况。许多储油罐在使用一段时间后,由于地基变形等原因,使罐体的位置会发生纵 向倾斜和横向偏转等变化(以下称为变位),从而导致罐容表发生改变。按照有关规定, 需 要定期对罐容表进行重新标定。 首先, 我们可以用微积分的基本思想对小椭圆型储油罐未发 生变位时罐体中的储油量与油位高度的关系进行分析与研究。 然而由于储油罐变位后的油的 体积形状不统一, 因此我们需要对由油位高度的不同导致储油罐中几种不同情形的体积状态 进行分类讨论, 在建立三种相应的积分模型的过程中, 我们还可以对这三种情况进行联系和 区分。 为了掌握罐体变位后对罐容表的影响, 对储油罐变位前和变位后的误差分析是必须的, 这里通过选取不同范围内的数据, 对实测值和理论上数据的多次比较, 来体会和分析产生误 差的原因。之后利用罐体变位后的具体模型,可以求解出油位高度间隔为1cm的罐容表标定 值。 因为储油罐的形状为带冠状的储油罐体, 而单独求解每个冠状体中油的体积是不方便的, 因而我们可以利用分割的思想将储油罐体分成三个部分(两个冠状体和一个椭圆柱体), 两 个冠状体合并成一个椭球体,通过这种方法求解会简便许多。而当储油罐发生变位时,会出 现纵向倾斜和横向偏转, 为了模型的包容度, 我们将讨论只发生纵向倾斜、 只发生横向偏转, 既发生纵向倾斜又发生横向偏转的三种不同情况来总结罐内储油量与油位高度及变位参数 (纵向倾斜角度和横向偏转角度 ) 之间的一般关系。 在确定所求模型中的变位参数方面, 我们将根据实测数据进行相应的误差分析, 如果模型推导式比较复杂, 我们将估计变位参数 的值, 采用最小二乘的方法向实测数据进行逼近, 来使得实测值与理论值的误差的平方和达 到最小,此时的变位参数即被确定。当变位参数确定后,我们将根据模型求解出罐体变位后 油位高度间隔为10cm的罐容表标定值, 接着与实际数据相结合, 通过误差分析来验证模型的

全国数学建模大赛题目

全国数学建模大赛题目
附件1:小椭圆储油罐的实验数据
附件2:实际储油罐的检测数据
2010高教社杯全国大学生数学建模竞赛题目
(请先阅读“全国大学生数学建模竞赛论文格式规范”)
B题 2010年上海世博会影响力的定量评估
2010年上海世博会是首次在中国举办的世界博览会。从1851年伦敦的“万国工业博览会”开始,世博会正日益成为各国人民交流历史文化、展示科技成果、体现合作精神、展望未来发展等的重要舞台。请你们选择感兴趣的某个侧面,建立数学模型,利用互联网数据,定量评估2010年上海世博会的影响力。
许多储油罐在使用一段时间后,由于地基变形等原因,使罐体的位置会发生纵向倾斜和横向偏转等变化(以下称为变位),从而导致罐容表发生改变。按照有关规定,需要定期对罐容表进行重新标定。图1是一种典型的储油罐尺寸及形状示意图,其主体为圆柱体,两端为球冠体。图2是其罐体纵向倾斜变位的示意图,图3是罐体横向偏转变位的截面示意图。
(2)对于图1所示的实际储油罐,试建立罐体变位后标定罐容表的数学模型,即罐内储油量与油位高度及变位参数(纵向倾斜角度和横向偏转角度)之间的一般关系。请利用罐体变位后在进/出油过程中的实际检测数据(附件2),根据你们所建立的数学模型确定变位参数,并给出罐体变位后油位高度间隔为10cm的罐容表标定值。进一步利用附件2中的实际检测数据来分析检验你们模型的正确性与方法的可靠性。
请你们用数学建模方法研究解决储油罐的变位识别与罐容表标定的问题。
(1)为了掌握罐体变位后对罐容表的影响,利用如图4的小椭圆型储油罐(两端平头的椭圆柱体),分别对罐体无变位和倾斜角为=4.10的纵向变位两种情况做了实验,实验数据如附件1所示。请建立数学模型研究罐体变位后对罐容表的影响,并给出罐体变位后油位高度间隔为1cm的罐容表标定值。

全国大学生数学建模竞赛A题获奖—储油罐的变位识别与罐容表标定

全国大学生数学建模竞赛A题获奖—储油罐的变位识别与罐容表标定

2010高教社杯全国大学生数学建模竞赛承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则。

我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。

如有违反竞赛规则的行为,我们将受到严肃处理。

我们参赛选择的题号是:A题储油罐的变位识别与罐容表标定我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):参赛队员(打印并签名):1.2.3.指导教师或指导教师组负责人(打印并签名):日期:2010年9月12日赛区评阅编号(由赛区组委会评阅前进行编号):2010高教社杯全国大学生数学建模竞赛编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):储油罐的变位识别与罐容表标定摘要本文通过对储油罐中油位高度及变位参数之间的不同情形的储油量进行分析并建立相应的数学模型,在该过程中先利用投影法、截面法及微元法得出储油量与油位高度及变位参数的函数关系。

再由Matlab编程可知各高度储油量的理论数据,最后分析误差及评价模型的合理性。

对于问题一的任一种情形,我们均建立笛卡尔坐标系,当储油罐无变位时,利用微元法得到体积关于h的公式,当储油罐发生变位时,根据储油罐中油量的多少分成三种情形,就每一类利用微元法得到体积关于h的公式。

代人附件1实验数据中的高度得到储油罐中的理论油量V。

根据理论油量及实际油量得出误差,判断误差所服从的分布,再利用相对误差进行误差分析并评价模型的合理性。

由上述得到储油罐发生变位时体积关于h的公式我们给出了罐体变位后油位高度间隔为1cm的罐容表标定值(即进/出油量与罐内油位高度的表格)。

全国大学生数学建模竞赛A题获奖—储油罐的变位识别与罐容表标定

全国大学生数学建模竞赛A题获奖—储油罐的变位识别与罐容表标定

全国大学生数学建模竞赛A题获奖—储油罐的变位识别与罐容表标定2010高教社杯全国大学生数学建模竞赛承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则。

我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。

如有违反竞赛规则的行为,我们将受到严肃处理。

我们参赛选择的题号是:A题储油罐的变位识别与罐容表标定我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):参赛队员(打印并签名):1.2.3.指导教师或指导教师组负责人(打印并签名):日期:2010年9月12日赛区评阅编号(由赛区组委会评阅前进行编号):2010高教社杯全国大学生数学建模竞赛编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):储油罐的变位识别与罐容表标定摘要本文通过对储油罐中油位高度及变位参数之间的不同情形的储油量进行分析并建立相应的数学模型,在该过程中先利用投影法、截面法及微元法得出储油量与油位高度及变位参数的函数关系。

再由Matlab编程可知各高度储油量的理论数据,最后分析误差及评价模型的合理性。

对于问题一的任一种情形,我们均建立笛卡尔坐标系,当储油罐无变位时,利用微元法得到体积关于h的公式,当储油罐发生变位时,根据储油罐中油量的多少分成三种情形,就每一类利用微元法得到体积关于h的公式。

代人附件1实验数据中的高度得到储油罐中的理论油量V。

根据理论油量及实际油量得出误差,判断误差所服从的分布,再利用相对误差进行误差分析并评价模型的合理性。

(推荐)数学建模A题--储油罐的变位识别与罐容表标定的论

(推荐)数学建模A题--储油罐的变位识别与罐容表标定的论

储油罐的变位识别与罐容表标定摘要本文主要探讨了储油罐的变位识别与罐容表标定的问题。

本文通过建立合适的坐标系,使用二重积分的方法和近似积分、坐标变换等技巧,求解了小椭圆储油罐和实际储油罐在发生变位时储油量与油高变化的函数关系,从而分析了罐体变位后对罐容表的影响,并对数据结果和误差进行了详实的分析。

本文在模型的建立与求解的过程中始终遵循化繁为简的原则,最先考虑简化的基本模型,再通过变换推导出实际的模型。

在第一问中,我们首先假设油罐壁的厚度为零,并通过二重积分的计算了小椭圆储油罐在无变位情况下的理论储油量。

其次我们通过运用几何原理通过坐标变换利用现有模型计算了小椭圆储油罐在纵向倾斜后的理论储油量。

在进行误差分析时,我们发现误差非线性,且误差数量级较大,得出油罐壁的厚度应不为零的结论,且经过理论分析油量3()V O d =,故我们用三次多项式拟合误差曲线()f H ,并通过'()()()V H V H f H =-修正了油量的计算公式。

经检验,修正后模型的计算值与实际值十分吻合,模型准确度很高。

并且,我们用修正后的模型V'(H)对油罐进行了标定。

在第二问中,我们利用了问题一中的模型求解罐身中的油量体积,并通过二重积分给出了油罐凸头部分油量的计算公式,其中,在油罐发生纵向倾斜时,我们队凸头部分的油量进行了合理的近似计算。

并且,我们通过坐标变换,给出了211()((,,((),))V H f f H f H αββα==))的变位参数修正形式。

在求解变为参数α、β时,我们通过最小二乘法拟合()V H ,求出了 2.1258, 4.6814αβ︒︒==。

将此变位参数代入模型中进行检验,得出理论计算值与实际值的相对误差限为5.006%,平均相对误差为0.029%,模型准确可靠。

最后我们用所得模型对油罐进行了标定。

关键词:储油罐 油量 倾斜 标定问题的重述与分析1、问题重述通常加油站都有若干个储存燃油的地下储油罐,并且一般都有与之配套的“油位计量管理系统”,采用流量计和油位计来测量进/出油量与罐内油位高度等数据,通过预先标定的罐容表(即罐内油位高度与储油量的对应关系)进行实时计算,以得到罐内油位高度和储油量的变化情况。

储油罐的变位识别与罐容表标定的优化算法(获国家奖)

储油罐的变位识别与罐容表标定的优化算法(获国家奖)

储油罐的变位识别与罐容表标定的优化算法摘要: 本文针对不同卧式储油罐装置以及罐体纵向、横向变位等多个方面进行分析,应用微积分知识,并在计算球冠体时采用割补思想做近似计算,建立各种条件下储油罐内油的体积与所测油高的关系,并根据所给数据对所建模型做误差分析,最后利用优化搜索算法对参数进行估计,得到估计参数值为005730.0,2918.2==βα.关键词:卧式储油罐 体积计算模型 误差分析 优化算法 参数估计1.引言卧式储油罐由于使用方便等因素,广泛地被用于加油站储存燃油,储油罐的油量有专门的“油位计量管理系统”进行测定。

但在实际生活中,由于罐体材料以及周围环境的影响,探测装置往往会发生一定的偏差,导致装置测定值产生误差,不能准确反映出罐体内油品变化量,因此利用科学的方法对罐容表进行校正就显得非常重要。

本文在机理分析基础上给出了各种情况下储油罐实际油量与液面高度的具体计算模型,同时又应用相关数据对参数进行了估计,实际表明效果较好。

2.模型的建立2.1 无变位储油罐体积公式的推导针对问题一中两端平头的椭圆柱体,只需求出罐身中油的体积和油浮子高度的关系,可在后面模型中作为公式运用,根据参考文献[1]提供方法做近似推导。

由椭圆标准方程及油面高度的限制得到油的面积微分方程:dy y b b a s b h b⎰---=222 (1) 再由柱体体积与面积之间关系l s V ⋅=,得罐身中油体积计算公式如下:()⎥⎦⎤⎢⎣⎡+-⋅+--=2arcsin 2222b b b h b h bh b h b al V π (2) 2.2小椭圆储油罐有纵向倾斜时体积的计算模型当油罐纵向倾斜α角度后,可将总体体积分成若干个截面椭圆中的面积在求微分和,油面高度分为以下三种情形:⎪⎩⎪⎨⎧≤≤⋅-⋅-<<⋅⋅≤≤bh d b d b h l l h 2)tan 2()tan 2(tan tan 01111αααα (3)对应三种情形对应的示意图如下所示(图1),其中'h 为取任意位置处垂直于油罐底面的垂直油面高度:探针油浮子h 'αα探针油浮子h 'h 'α油浮子探针情况1 情况2 情况3图1 不同油面高度示意图1) 当)tan 2(tan 11αα⋅-<<⋅d b h l 时垂直油面高度为'h (图1 情况2),αtan )('z d h h -+= (4) 此椭圆截面上对应面积可似公式(1)得到,进而体积计算公式为:⎰⎰---=l b h b dy y b dz ba V 022'2 =()()dz b b b h b bh b b h b a l ⎰⎥⎦⎤⎢⎣⎡+-⋅+---02'22'2'2arcsin π (5)令bbh w -=',又由(4)式,可得:ααtan tan bwb d h z --⋅+=(6)则有:⎥⎦⎤⎢⎣⎡++--=⎰⎰⎰1010102arcsin 1tan 22w w w w w w dw wdw dw w w ab V πα =⎩⎨⎧-++⎥⎦⎤⎢⎣⎡-----)1arcsin ()1()1(31tan 2111232023212w w w w w ab α⎭⎬⎫⋅--+-απtan 2)1arcsin (2000b lw w w (7) 其中,b b d h w -⋅+=αtan 0; bbl d h w -⋅-+=αtan )(12)当αtan 01⋅≤≤l h 时,此时(7)式中11-=w ,得:⎭⎬⎫⎩⎨⎧⋅--+-+--=αππαtan 2)1arcsin (23)1(31tan 20023202b l w w w w ab V (8) 3)当b h d b 2)tan 2(1≤≤⋅-α时,1'V V V +=, 'V 为左边椭圆柱体体积,1V 为右边纵截面为梯形时油的体积,其中:()⎥⎦⎤⎢⎣⎡--=απtan 2'h b d ab V (9) 1V 仍然为(7)式,只是其积分下界值0w 变为1。

数学建模2010A题 储油罐的变位识别与罐容表标定 论文资料

数学建模2010A题 储油罐的变位识别与罐容表标定 论文资料

承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。

如有违反竞赛规则的行为,我们将受到严肃处理。

我们参赛选择的题号是(从A/B/C/D中选择一项填写):我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):参赛队员(打印并签名) :1.2.3.指导教师或指导教师组负责人(打印并签名):日期:年月日赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):A题储油罐的变位识别与罐容表标定摘要本文通过对储油罐中油位高度及变位参数之间的不同情形的储油量进行分析并建立相应的数学模型,利用数据拟合、截面法及投影法得出储油量与油位高度及变位参数的函数关系。

再由Matlab编程可知各高度储油量的理论数据,最后分析误差及评价模型的合理性。

首先,在问题一中,对于平放的罐体,我们建立出测量无变位时候的油量容积的模型,表达出了油量容积V、截面积S和高度h之间的关系,然后对此模型进行优化,建立了能测量变位时候小椭圆罐体内油量容积的模型,把油罐内部分成5个不同的区域,分别求粗V(h)和h间的数值关系,并通过MATLAB编程,与理论结果比较得到绝对误差小于7×10-3m3,并绘制出误差拟合二次曲线,从而对精度进行了分析,最终求得罐体变位后油位高度间隔为1cm的罐容表标定值。

对于问题二的实际罐体,我们创造性的采用了旋转坐标系的思想,在问题一的基础上,在把罐体分为左球冠体、中椭圆柱和右球冠体三大部分的同时,依然将罐体内部分成五个区域,在旋转后的坐标系中对变量x和y二重积分,存在两个变位参数α和β(纵向倾斜角度α和横向偏转角度β)情况下罐内储油量与油位高度及变位参数之间的关系V=Vh(h,α,β),以进出油量ΔV和油位高度h作出拟合曲线V0+ΔV=g(h)与理论曲线V=Vh(h,α,β)的总绝对误差最小为准则求出两个变位参数α=2.1170,β=4.22460 。

全国大学生数学建模竞赛A题获奖—储油罐的变位识别与罐容表标定精品

全国大学生数学建模竞赛A题获奖—储油罐的变位识别与罐容表标定精品

2010高教社杯全国大学生数学建模竞赛承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则。

我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。

如有违反竞赛规则的行为,我们将受到严肃处理。

我们参赛选择的题号是:A题储油罐的变位识别与罐容表标定我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):参赛队员(打印并签名):1.2.3.指导教师或指导教师组负责人(打印并签名):日期:2010年9月12日赛区评阅编号(由赛区组委会评阅前进行编号):2010高教社杯全国大学生数学建模竞赛编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):储油罐的变位识别与罐容表标定摘要本文通过对储油罐中油位高度及变位参数之间的不同情形的储油量进行分析并建立相应的数学模型,在该过程中先利用投影法、截面法及微元法得出储油量与油位高度及变位参数的函数关系。

再由Matlab编程可知各高度储油量的理论数据,最后分析误差及评价模型的合理性。

对于问题一的任一种情形,我们均建立笛卡尔坐标系,当储油罐无变位时,利用微元法得到体积关于h的公式,当储油罐发生变位时,根据储油罐中油量的多少分成三种情形,就每一类利用微元法得到体积关于h的公式。

代人附件1实验数据中的高度得到储油罐中的理论油量V。

根据理论油量及实际油量得出误差,判断误差所服从的分布,再利用相对误差进行误差分析并评价模型的合理性。

由上述得到储油罐发生变位时体积关于h的公式我们给出了罐体变位后油位高度间隔为1cm的罐容表标定值(即进/出油量与罐内油位高度的表格)。

数学建模储油罐的变位识别与罐容表的标定

数学建模储油罐的变位识别与罐容表的标定

储油罐的变位识别与罐容表的标定摘要本文运用定积分、重积分,数理统计等知识研究储油罐变位后对罐容表的影响。

观测油罐探针的变化,分情况讨论变位油罐进/出油的罐内油液体积。

采用图形结合建立数学模型。

用定积分求解椭圆面积,进而求出油位高对应储油罐(无变位)的油容量的对应关系,利用数理统计与Excel 2003对数据分析并绘制图形,建立当前最优的实验储油罐无变位模型(模型一)。

模型二即是实验储油罐纵向倾斜(固定角)的数学模型。

对模型一、二两组数据进行对比,估算出油位高度相同时不变位以及变位后储油罐内油容量,再将两部分的油容量相减可算出油位高度和油容量的函数,得出罐体变位后油位高度间隔为1厘米的罐容表的标度。

模型四采用大量图形分析和数学知识,建立空间直角坐标系,将问题分出四种情况讨论。

建立当前最优的实际储油罐无变位模型(模型三),并与模型四进行对比可得关于油位高度和油容量的函数,那么将相隔10cm油位高的油容量代入模型即求得。

关键词:定积分重积分数理统计图形结合一、问题重述加油站的储油罐是大家非常熟悉的一种储油罐,就目前世界各地来看,它不能脱离我们的现实生活。

所以我们有必要对储油罐进行彻底的了解。

根据我们所学的知识,用数学模型方法研究解决储油罐的变位识别与罐容表标定的问题。

通常加油站的储油罐都有与之配套的“油位计量管理系统”,采用专业的测量仪器测出罐内的储油体积与罐内油位高度,通过预先标定的罐容表(罐内油位高度与储油量的对应关系)进行实时计算,以得到罐内油位高度和储油量的变化情况。

但是,许多储油罐在使用一段时间后,罐体的位置会地基变形发生纵向倾斜和横向偏转等变化(称为变位),从而导致罐容表发生改变。

根据以上的情况,为了掌握罐体变位后对罐容体的影响,利用小椭圆型储油罐(两端平头的圆柱体)做了罐体无变位和倾斜角为一定角的纵向变位两种情况的实验,且得到了实验数据。

在实验图形的基础上,我们深入了实际油罐的变位分析。

2010储油罐的变位识别与储容罐的定位标定全国一等奖

2010储油罐的变位识别与储容罐的定位标定全国一等奖

储油罐的变位识别与储容罐的定位标定摘要为了解决储油罐纵向倾斜和横向偏转对罐容表读数的影响,本文分别介绍了不同变位条件下罐内储油量与油位高度及纵向倾斜和横向偏移参数αβ、之间的模型,然后根据所得理论值与实验所给数据做比较,进行误差分析;根据误 差分析结果对罐容表进行校核,从而达到准确计量目的。

针对问题一,对于纵向变位后的储油罐,我们根据实际情况,针对不同油位高度采用微元法及几何法建立了罐内储油量与纵向倾斜角α及h 之间的模型,通过将理论值与附表中实验值作容积曲线及残差图来做比较、分析误差,根据误差分析结果,代入待标定的高度序列,给出了罐容表重新标定模型2387582.965124.06i i i i i i V V e e h h =-=-+-,其中为了进一步证明了理论模型的准确性,最后利用Matlab 通过空间坐标变换的方法模拟储油罐中油面的上升过程,得到了容积曲线从而证明了理论模型的准确性,并对变位参数进行了灵敏度分析。

针对问题二,我们利用微元法和几何法在第一问所建模型的基础上,将油罐分为圆柱体和两个球冠端面,把圆柱体分成五段积分,球冠端面分成两个部分,结合纵向倾斜和横向偏移参数αβ、,得到储油量与αβ、及h 的一般关系。

为了利用所建模型确定变位参数,我们采用差分最小二乘法及网格搜索算法,得到了 2.0072, 1.903185a b ==o o ,使2111([(,,)(,,)](,))nti t i r i i i V hV h V h h αβαβ++=--∆∑最小,并以该变位参数计算了以10cm 为间隔的罐容表(见后文),最后根据附表2中实际出油值、显示高度与计算出的理论值进行比较,对模型的正确性与方法的可靠性进行了检验。

关键词:分段切割 微元法积分 网格搜索 计算机模拟 差分最小二乘拟合一、问题重述储油罐使用一段时间后,不可避免的会发生纵向倾斜和横向偏转等问题,从而导致罐容表发生改变,按照有关规定,需重新对罐容表进行标定,本论文要求我们解决以下问题:(1)为了掌握罐体变位后对罐容表的影响,利用如图4的小椭圆型储油罐(两端平头的椭圆柱体),分别对罐体无变位和倾斜角为α=4.10的纵向变位两种情况做了实验,实验数据如附件1所示。

数学建模优秀论文 储油罐的变位识别与罐容表标定

数学建模优秀论文 储油罐的变位识别与罐容表标定

储油罐的变位识别与罐容表标定专家点评:本文基于所给数据准确、罐体几何形状因有附属构件而含有误差进而导致推导的罐容与油位高度之间函数关系的理论公式含有较大偏差的理解下,通过对理论公式计算结果与实测数据的偏差的曲线拟合,对小椭圆型储油罐给出了修正的罐容表。

文中分析研究了无变位和有纵向变位的小椭圆型储油罐的罐容与油位高度的函数表达式、有纵向变位和横向变位的实际储油罐罐容与油位高度的函数表达式、以储油罐中油量随高度的变化率为依据识别纵向倾斜角度和横向偏转角度,由此给出了罐容表的标定、检验了所给出的数学模型的正确性和可靠性,思路正确、方法有效、所得结果合理,但是,对问题一利用祖暅原理将有变位近似转换为无变位的方法略欠妥当。

中国海洋大学曹圣山教授摘要对于两端平头的小椭圆型储油罐与实际球冠封口的储油罐,本文分别建立了相应的数学模型,解决了储油罐变位后的识别和罐容表的标定的相关问题。

在建立两个模型的过程中充分的运用了MATLAB和EXCEL两个软件,利用祖暅原理将变位容积计算转换为未变位时的计算,在保证精度情况下,避免了复杂的积分运算。

对于模型1,首先,我们通过积分,得出无变位时的储油量与油位高度关系,此时,所得理论容积与实测容积出现由罐内附属构件占有一定体积造成的偏差,及时的运用曲线拟合的方法获得了其偏差函数,对模型1的公式进行了修正,获得了很好的结果。

在变位条件下,依据油位高度,对变位后的小椭圆形储油罐划分了三种高度条件来讨论了其罐容标定,然后利用几何关系将高度转化为无变位条件下的高度来计算容积。

对于模型2,无变位时,同样,我们先积分,积出无变位情况下实际油罐的储油量与油位高度表达式;变位时,我们依然依据油位高度,对实际的球冠封口的储油罐划分为三种情况来讨论,同样采用一些转化将高度转化为无变位条件下的高度来计算容积;在求解α,β的过程中,利用导数间的关系建立了油位高度的关系,编写了导数返查的MATLAB 程序以及依据数值逼近思想所利用的2)(1nn n n x x f x x --=+迭代公式和最小二乘法的线性拟合,精确地计算出了α,β的值 ,进而促成模型2的正确建立,然后利用模型计算出罐容标定表并利用给定数据分析检验。

全国数学建模历年赛题

全国数学建模历年赛题

2010年全国大学生数学建模竞赛题目A题储油罐的变位识别与罐容表标定通常加油站都有若干个储存燃油的地下储油罐,并且一般都有与之配套的“油位计量管理系统”,采用流量计和油位计来测量进/出油量与罐内油位高度等数据,通过预先标定的罐容表(即罐内油位高度与储油量的对应关系)进行实时计算,以得到罐内油位高度和储油量的变化情况。

许多储油罐在使用一段时间后,由于地基变形等原因,使罐体的位置会发生纵向倾斜和横向偏转等变化(以下称为变位),从而导致罐容表发生改变。

按照有关规定,需要定期对罐容表进行重新标定。

图1是一种典型的储油罐尺寸及形状示意图,其主体为圆柱体,两端为球冠体。

图2是其罐体纵向倾斜变位的示意图,图3是罐体横向偏转变位的截面示意图。

请你们用数学建模方法研究解决储油罐的变位识别与罐容表标定的问题。

(1)为了掌握罐体变位后对罐容表的影响,利用如图4的小椭圆型储油罐(两端平头的椭圆柱体),分别对罐体无变位和倾斜角为a=4.10的纵向变位两种情况做了实验,实验数据如附件1所示。

请建立数学模型研究罐体变位后对罐容表的影响,并给出罐体变位后油位高度间隔为1cm的罐容表标定值。

(2)对于图1所示的实际储油罐,试建立罐体变位后标定罐容表的数学模型,即罐内储油量与油位高度及变位参数(纵向倾斜角度a和横向偏转角度b)之间的一般关系。

请利用罐体变位后在进/出油过程中的实际检测数据(附件2),根据你们所建立的数学模型确定变位参数,并给出罐体变位后油位高度间隔为10cm的罐容表标定值。

进一步利用附件2中的实际检测数据来分析检验你们模型的正确性与方法的可靠性。

B题2010年上海世博会影响力的定量评估2010年上海世博会是首次在中国举办的世界博览会。

从1851年伦敦的“万国工业博览会”开始,世博会正日益成为各国人民交流历史文化、展示科技成果、体现合作精神、展望未来发展等的重要舞台。

请你们选择感兴趣的某个侧面,建立数学模型,利用互联网数据,定量评估2010年上海世博会的影响力。

储油罐的变位识别与罐容表标定

储油罐的变位识别与罐容表标定

承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。

如有违反竞赛规则的行为,我们将受到严肃处理。

我们参赛选择的题号是(从A/B/C/D中选择一项填写): A我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):参赛队员(打印并签名) :1. 孟龙2. XXX3. XX指导教师或指导教师组负责人(打印并签名):日期:年月日赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国评阅编号(由全国组委会评阅前进行编号):储油罐的变位识别与罐容表标定摘要通常加油站都有若干个储存燃油的地下储油罐,并且一般都有与之配套的“油位计量管理系统”。

储油罐在使用一段时间后,由于地基变形等原因,使罐体发生变位,现通过建立模型求解罐体油位高度与罐容表标定值之间的关系。

本文针对涉及到的3个问题,进行了合理的解答。

我们对问题一第1问使用了高等数学中求定积分的方法求解。

对问题一第2问借用第1问的解可类似的使用定积分的方法求解。

对第二问可使用分解求积的方法求解。

对于问题一第1问我们使用高等数学中的定积分法首先建立了无变位模型。

以小椭圆油罐的侧面为横截面,首先借助MATLAB软件寻找横截面积S与油位高度h之间的函数关系。

然后对油罐的长度l进行积分从而得到油罐储油量V和油位高度h之间的函数关系,通过和无变位的实验数据通过百分误差进行判断,可以得出最终模型为对于问题一第2问我们仍然使用定积分的方法建立纵向变位模型。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则。

我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。

如有违反竞赛规则的行为,我们将受到严肃处理。

我们参赛选择的题号是:A题储油罐的变位识别与罐容表标定我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):参赛队员(打印并签名):1.2.3.指导教师或指导教师组负责人(打印并签名):日期:2010年9月12日赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):储油罐的变位识别与罐容表的标定摘要本文研究储油罐的变位识别与罐容表的标定。

分别以小椭圆型油罐和实际卧式储油罐为研究对象,运用高等数学的积分的知识,分别建立罐体变位前后罐内油体积与油高读数之间的积分模型,使用Matlab 软件得出结论。

对于问题一,以小椭圆型储油罐为研究对象,在无变位时,小椭圆型储油罐为规则的椭球柱体,可利用解析几何与高等数学的知识建立油罐内体积与油高读数之间的积分模型,得出罐体无变位时的理论值。

当罐体发生纵向变位时,小椭圆型储油罐的截面不再是规则的几何形体,但根据倾角α及所给小椭圆型罐体的尺寸,可得其截面面积的表达式,利用高等数学中积分的方法,根据不同油高,建立了模型一,得到了储油量和油高的关系公式。

最后,根据实验数据的处理,用拟合的方法,修正了某些系统误差的影响,计算出罐体变位后油位高度间隔1cm 的罐容表的标定值。

对于问题二,由于实际储油罐内没油的高度不同,我们将其分为五种情况分别讨论,并对每种情况建立积分公式,得出罐内油体积与油位高度及变位参数(纵向倾斜角α和横向偏转角β)之间的函数关系式,利用所给的实验数据,运用最小二乘法,建立非线性规划模型212arg ,(((,,)(,,)))min (,,)n ii i i V H V H OilData error OilData αβαβαβαβ-==--∑用Matlab 非线性规划求解得出使得总体误差最小的α与β值:α=2.12°,β=4.06°。

通过α与β的数值计算出出油量理论值与实测值的平均相对误差小于0.5% 。

对模型进行了较为充分的正确性验证和稳定性验证:在α与β的值为0时,其计算出来的罐容值与理论值完全吻合,说明模型在体积计算上是正确的;当对油高进行0.1%的扰动时,α的值变化也在0.1%左右,说明α的稳定性很好,但是β的值从4.06°变成了3.75°,变化了大约8%,所以我们详细分析了β的数学表达式,从理论上分析了影响其稳定性的因素。

根据得到的变位参数计算出实际罐体变位后油位高度间隔为10cm 的罐容表的标定值。

最后,本文对模型的优缺点进行了评价,并讨论模型的推广。

关键字:储油罐;变位识别;罐容表标定;非线性规划一.问题重述通常加油站都有若干个储存燃油的地下储油罐,并且一般都有与之配套的“油位计量管理系统”,采用流量计和油位计来测量进/出油量与罐内油位高度等数据,通过预先标定的罐容表(即罐内油位高度与储油量的对应关系)进行实时计算,以得到罐内油位高度和储油量的变化情况。

许多储油罐在使用一段时间后,由于地基变形等原因,使罐体的位置会发生纵向倾斜和横向偏转等变化(以下称为变位),从而导致罐容表发生改变。

按照有关规定,需要定期对罐容表进行重新标定。

根据上述所述,求解下列问题:(1)为了掌握罐体变位后对罐容表的影响,利用小椭圆型储油罐(两端平头的椭圆柱体),分别对罐体无变位和倾斜角为α=4.1°的纵向变位两种情况做了实验。

请建立数学模型研究罐体变位后对罐容表的影响,并给出罐体变位后油位高度间隔为1cm的罐容表标定值。

(2)对于实际储油罐,试建立罐体变位后标定罐容表的数学模型,即罐内储油量与油位高度及变位参数(纵向倾斜角度α和横向偏转角度β)之间的一般关系。

请利用罐体变位后在进/出油过程中的实际检测数据,根据你们所建立的数学模型确定变位参数,并给出罐体变位后油位高度间隔为10cm的罐容表标定值。

进一步利用实际检测数据来分析检验你们模型的正确性与方法的可靠性。

二.问题分析本文研究罐容表的读数与储油罐的变位的关系。

借助高等数学积分的方法,求出储油量与油高读数的函数关系式,并对倾斜的储油罐进行容量标定。

1.对问题一的分析问题一中用小椭圆储油罐分别对罐体无变位和纵向倾斜进行实验,研究变位对罐容表的影响,因此我们分别建立变位前和变位后的罐容表读数与罐内油体积的函数关系式,通过函数关系式计算出理论值,再与所给的实际值相比较,得出其相对误差,然后通过分析系统误差进行修正,出罐体变位后油位高度间隔为1cm的罐容表的标定值。

2.对问题二的分析问题二中是以实际储油罐为研究对象,不仅考虑了储油罐的纵向倾斜,而且还考虑了横向偏转,为了使问题简化,我们先只考虑纵向倾斜,由于储油罐的形体不规则,所以我们将它分成如图1所示的三部分,分别算出每部分的体积与罐容表读数的函数关系式,然后对其求和。

再考虑横向偏转,建立它与所给的油高的函数关系式。

然后将二者进行综合考虑得出变位后罐容表读数与储油罐内油体积的函数关系式,通过关系式和所给数据,运用最小二乘法,通过MATLAB程序,搜索出α和β的最小误差解,再对模型的稳定性和正确性进行评定,最后给出高度间隔10cm的罐容表的标定值。

图1 油罐分区域积分示意图三.模型假设假设一:数据是储油罐的内壁参数。

假设二:忽略温度、压力对汽油的密度的影响。

假设三:储油罐在偏移的过程中,油位探针始终与油罐底面垂直。

假设四:对卧式储油罐来说,不考虑其长期埋在地下所发生的蠕变。

假设五:累加进出油量数据是准确可靠的。

四.符号说明H: 对应于罐容表读数的液面实际高度。

H: 球冠中与油罐圆柱左侧底面距离为x处的油高。

1R: 球冠中与油罐左侧底面相距为x处的小圆半径。

2H:球冠中与油罐圆柱右侧底面距离为x处的油高。

2R:球冠中与油罐右侧底面相距为x处的小圆半径。

3R: 储油罐圆柱部分的底面半径。

1R: 球冠所在球体的大圆半径。

H:第i条数据所对应的罐容表读数。

iOilData:用于分析的油量进出数据。

a: 椭圆长半轴长。

b: 椭圆短半轴长。

n: 用于分析的进出油测量数据个数。

h:罐容表读数。

五. 模型的建立与求解5.1 模型一的建立与求解问题一要求研究罐体变位后对罐容表的影响,并给出罐体变位后油位高度间隔为1cm 的罐容表标定值。

5.1.1 计算未变位和变位的理论罐内油位高度与储油量的关系利用高等数学中微元法求体积的方法建立罐容表读数与罐内油体积的函数关系式的模型。

(1) 在无变位的情况下,储油罐内的油所占空间为柱体,其体积为V S L =(1) 其中S 为柱体底面面积,L 为柱体的长度。

2hb S x dy -=⎰(2) 底面椭圆方程为 22221x y a b +=(3) 22a x b y b =-(4) 将(4)代入(2),得到222h b aS b y dy b -=-⎰(5) 其积分解析表达式为22221(arcsin )2ah S h b h b b b b π=-++(6) 其中,h H b =-(7)如图图2微元法求椭圆切面面积221[()(2)arcsin(1)]2a H S H b H b H b b b b π=--+-+ (8)221[()(2)arcsin(1)]2a H V L H b H b H b b b b π=--+-+ (9)图3 油罐无倾斜时示意图(2)当油罐发生纵向偏转时,油罐中油所占空间为一倾斜柱体,如图4所示:图4 油罐偏移示意图如图4所示,根据几何关系可知,'(0.4)tan h H x α=-- (10) 又根据油面的高度不同,可分为以下三种情况:图5 情况1:低油位若油面位于图5所示位置,则: 221022[(0.4tan tan )(0.4tan )0.4tan tan 1arcsin ]2a V H x b b H b b H x b b b dxb αααααααπ=+---+-++--+⎰(H+0.4tan )/tan (11)图6 情况2:正常油位若油面位于图6所示位置,则:2.45222022[(0.4tan tan )(0.4tan )0.4tan tan 1arcsin ]2a V H x b b H b b H x b b b dxb αααααπ=+---+-++--+⎰(12)图7 情况3高油位若油面位于图7位置,则:2.4530.4(1.2H)/tan 22[(tan tan 1arcsin ]2a V abL x b b x b b b dx b απααπ--=---+⎰ (13)由上述公式知,油罐的变位会对罐内油高与储油量的对应关系(罐容表),产生较大的影响。

综合式(11)-(13),可以得到模型1如下:()0222.4502[(0.4tan tan 0.4tan tan 1arcsin ] H<2.05*tan 2[(0.4tan tan ()arcsin a H x b b H x b b b dx b a H x b b V H H b ααααααπααα+--+--+++--=++⎰⎰(H+0.4tan )/tan ,当0<22.450.4(1.2H)/tan 220.4tan tan 1] (H 1.2-0.4tan )2[(tan tan 1arcsin ] (H 1.2)2x b b dx b a abL x b b x b b b dx b αααπααπααπα--⎧⎪⎪⎪⎪⎨--+≤≤---++≤⎰,当2.05*tan ,当1.2-0.4tan <⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩(14)5.1.2 应用试验数据对理论关系式进行修正当无变位进油时,我们可以根据式(9)221[(arcsin(1)]2a H V L Hb b b b b π=--+ 对每一个油位高度求出其理论储油量;另根据累加进油量和罐内油量初值,可求得实际储油量。

由于理论储油量和实测数据之间存在一定的系统误差,所以我们用线性回归方式得到修正系数 m = 1.035。

因此,无变位实际体积的修正计算公式为:221[(arcsin(1)]/2f a H V L H b b b m b b π=--+ (15) 对不同高度用式(14)计算对应的体积f V 和实测值进行对比验证,平均误差为0.01%,达到较好的计算精度(图8)。

相关文档
最新文档