大学文科高数试题及答案
大学文科高数试题及答案
大学文科高数试题及答案一、选择题(每题4分,共40分)1. 假设函数f(x)在点x=a处可导,那么下列说法正确的是:A. f(x)在x=a处连续B. f(x)在x=a处不可导C. f(x)在x=a处可能不连续D. f(x)在x=a处的导数为0答案:A2. 极限lim(x→0)(sinx/x)的值是:A. 1B. 0C. 2D. 不存在答案:A3. 以下哪个选项是微分方程的解:A. y = e^x + CB. y = e^(-x) + CC. y = x^2 + CD. y = sin(x) + C答案:A4. 函数f(x)=x^2在区间[0,2]上的最大值是:A. 0B. 1C. 4D. 2答案:C5. 积分∫(0到1) x dx的值是:A. 0B. 1/2C. 1D. 2答案:B6. 以下哪个函数是偶函数:A. f(x) = x^3B. f(x) = x^2C. f(x) = sin(x)D. f(x) = |x|答案:B7. 以下哪个选项是函数f(x)=x^2的原函数:A. x^3B. 2xC. x^3/3D. x^2/2答案:C8. 如果函数f(x)在区间(a,b)上单调递增,则:A. f(x)在区间(a,b)上一定连续B. f(x)在区间(a,b)上可能不连续C. f(x)在区间(a,b)上一定存在最大值D. f(x)在区间(a,b)上一定存在最小值答案:B9. 以下哪个选项是函数f(x)=ln(x)的导数:A. 1/xB. xC. ln(x)D. 1答案:A10. 以下哪个选项是函数f(x)=e^x的不定积分:A. e^x + CB. e^(-x) + CC. e^x/x + CD. e^x * x + C答案:A二、填空题(每题4分,共20分)1. 函数f(x)=x^3在x=1处的导数是________。
答案:32. 极限lim(x→∞)(1/x)的值是________。
答案:03. 函数f(x)=x^2+2x+1的最小值是________。
2024年全国统一高考数学试卷(文科)(甲卷)[含答案]
2024年全国统一高考数学试卷(文科)(甲卷)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合要求的.1.集合,2,3,4,5,,,则 {1A =9}{|1}B x x A =+∈(A B = )A .,2,3,B .,2,C .,D .,2,{14}{13}{34}{19}2.设,则 z =(z z ⋅=)A .B .1C .D .2i-1-3.若实数,满足约束条件则的最小值为 x y 4330,220,2690,x y x y x y --⎧⎪--⎨⎪+-⎩ 5z x y =-()A .5B .C .D .122-72-4.等差数列的前项和为,若, {}n a n n S 91S =37(a a +=)A .B .C .1D .2-73295.甲、乙、丙、丁四人排成一列,丙不在排头,且甲或乙在排尾的概率是 ()A .B .C .D .141312236.已知双曲线的两个焦点分别为、,且经过点,则双曲线的离心率是 1(0,4)F 2(0,4)F -(6,4)P -C ()A .4B .3C .2D 7.曲线在处的切线与坐标轴围成的面积为 6()31f x x x =+-(0,1)-()A .BC .D .16128.函数的区间,的图像大致为 2()()sin xx f x x e ex -=-+-[ 2.8- 2.8]()A .B .C .D .9.已知 cos cos sin ααα=-tan()(4πα+=)A .B .CD.1+1-1-10.已知直线与圆交于,两点,则的最小值为 20ax y a ++-=22:410C x y y ++-=A B ||AB ()A .2B .3C .4D .611.已知、是两个平面,、是两条直线,.下列四个命题:αβm n m αβ= ①若,则或//m n //n α//n β②若,则,m n ⊥n α⊥n β⊥③若,且,则//n α//n β//m n ④若与和所成的角相等,则n αβm n ⊥其中,所有真命题的编号是 ()A .①③B .②③C .①②③D .①③④12.在中,内角,,所对边分别为,,,若,,则 ABC ∆A B C a b c 3B π=294b ac =sin sin (A C +=)A .BCD32二、填空题:本题共4小题,每小题5分,共20分.13.函数在,上的最大值是 ()sin f x x x =[0]π14.已知甲、乙两个圆台上下底面的半径均为和,母线长分别为和,则两个圆台的2r 1r 122()r r -123()r r -体积之比 .V V =甲乙15.已知,,则 .1a >8115log log 42a a -=-a =16.曲线与在上有两个不同的交点,则的取值范围为 .33y x x =-2(1)y x a =--+(0,)+∞a 三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.第17题~第21题为必考题,每个考题考生必须作答.第22、23题为选考题,考生根据要求作答.17.(12分)已知等比数列的前项和为,且.{}n a n n S 1233n n S a +=-(1)求的通项公式;{}n a (2)求数列的通项公式.{}n S 18.(12分)某工厂进行生产线智能化升级改造.升级改造后,从该工厂甲、乙两个车间的产品中随机抽取150件进行检验,数据如下:优级品合格品不合格品总计甲车间2624050乙车间70282100总计96522150(1)填写如下列联表:优级品非优级品甲车间乙车间能否有的把握认为甲、乙两车间产品的优级品率存在差异?能否有的把握认为甲、乙两车间产95%99%品的估级品率存在差异?(2)已知升级改造前该工厂产品的优级品率.设为升级改造后抽取的件产品的优级品率.如0.5p =p n 果,则认为该工厂产品的优级品率提高了.根据抽取的150件产品的数据,能否认p p >+12.247)≈附:,22()()()()()n ad bc K a b c d a c b d -=++++2()P K k 0.0500.0100.001k3.8416.63510.82819.(12分)如图,在以,,,,,为顶点的五面体中,四边形与四边形均A B C D E F ABCD CDEF 为等腰梯形,,,,,,,//AB CD //CD EF 2AB DE EF CF ====4CD =AD BC ==AE =为的中点.M CD (1)证明:平面;//EM BCF (2)求点到的距离.M ADE20.(12分)已知函数.()(1)1f x a x lnx =--+(1)求的单调区间;()f x (2)若时,证明:当时,恒成立.2a 1x >1()x f x e -<21.(12分)已知椭圆的右焦点为,点在椭圆上,且轴.2222:1(0)x y C a b a b +=>>F 3(1,2M C MF x ⊥(1)求椭圆的方程;C (2)过点的直线与椭圆交于,两点,为线段的中点,直线与交于,证明:(4,0)P C A B N FP NB MF Q 轴.AQ y ⊥(二)选考题:共10分.请考生在第22、23题中任选一题作答,并用2B 铅笔将所选题号涂黑,多涂、错涂、漏涂均不给分,如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.(10分)在平面直角坐标系中,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线xOy O x 的极坐标方程为.C cos 1ρρθ=+(1)写出的直角坐标方程;C (2)直线为参数),若与交于、两点,,求的值.:(x tl t y t a =⎧⎨=+⎩C l A B ||2AB =a [选修4-5:不等式选讲]23.实数,满足.a b 3a b + (1)证明:;2222a b a b +>+(2)证明:.22|2||2|6a b b a -+-2024年全国统一高考数学试卷(文科)(甲卷)参考答案与试题解析一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合要求的.1.集合,2,3,4,5,,,则 {1A =9}{|1}B x x A =+∈(A B = )A .,2,3,B .,2,C .,D .,2,{14}{13}{34}{19}【解析】:,2,3,4,5,,,1,2,3,4,,{1A =9}{|1}{0B x x A =+∈=8}则,2,3,.故选:.{1A B = 4}A 2.设,则 z =(z z ⋅=)A .B .1C .D .2i-1-解法一:,则.故选:.z =z =()2z z ⋅=⋅=D 解法二:22z z z ⋅==3.若实数,满足约束条件则的最小值为 x y 4330,220,2690,x y x y x y --⎧⎪--⎨⎪+-⎩5z x y =-()A .5B .C .D .122-72-【解析】:作出不等式组所表示的平面区域,如图所示:4330,220,2690,x y x y x y --⎧⎪--⎨⎪+-⎩将约束条件两两联立可得3个交点:,,,(0,1)C -3(,1)2A 1(3,)2B 由得,则可看作直线在轴上的截距,5z x y =-1155y x z =-15z -1155y x z =-y 经检验可知,当直线经过点,时,最小,代入目标函数可得:.3(2A 1)z 72min z =-故选:.D 4.等差数列的前项和为,若, {}n a n n S 91S =37(a a +=)A .B .C .1D .2-7329解法一:,则,解得.故选:.91S =193799()9()122a a a a S ++===3729a a +=D 解法二:利用等差数列的基本量由,根据等差数列的求和公式,,91S =9119891,93612dS a a d ⨯=+=∴+=.()37111122262893699a a a d a d a d a d +=+++=+=+=解法三:特殊值法不妨取等差数列公差,则,则.故选:D0d =9111199S a a ==⇒=371229a a a +==解法四:【构造法】:设的公差为,利用结论是首项为,公差为的等差数列,{}n a d n S n ⎧⎫⎨⎬⎩⎭1a 2d 则,,()911118428922S d a a d a d =+=+=+371112628a a a d a d a d +=+++=+则,所以.故选:D ()()9111371118428==92229S d a a d a d a a =+=+=++3729a a +=解法五:根据题意,故选:D375922299a a a S +===5.甲、乙、丙、丁四人排成一列,丙不在排头,且甲或乙在排尾的概率是 ()A .B .C .D .14131223【解析】:甲、乙、丙、丁四人排成一列共有种可能,4424A =丙不在排头,且甲或乙在排尾的情况有种可能,故.故选:.1122228C C A=81243P ==B 6.已知双曲线的两个焦点分别为、,且经过点,则双曲线的离心率是 1(0,4)F 2(0,4)F -(6,4)P -C ()A .4B .3C.2D 解法一:因为双曲线的两个焦点分别为、,且经过点,1(0,4)F 2(0,4)F -(6,4)P -所以,,,12||8F F =1||6PF =2||10PF ==则双曲线的离心率.故选:.C 2822106c e a ===-C 解法二:点纵坐标相同,所以是通径的一半即1P F 、1||PF 21||6b PF a ==则即,则双曲线的离心率.故选:.2166a a -=2a =C 224c e a ===C 解法三:双曲线的离心率C 121221086F F e PF PF ===--解法四 :根据焦点坐标可知4c =,根据焦点在y 轴上设双曲线方程为22221y xa b -=,则22221636116a b a b ⎧-=⎪⎨⎪+=⎩,则2a b =⎧⎪⎨=⎪⎩2c e a ==7.曲线在处的切线与坐标轴围成的面积为 6()31f x x x =+-(0,1)-()A .BC .D .1612【解析】:因为,所以,曲线在处的切线斜率,6()3f x x x =+5()63f x x '=+(0,1)-3k =故曲线在处的切线方程为,即,(0,1)-13y x +=31y x =-则其与坐标轴围成的面积.故选:.1111236S =⨯⨯=A 8.函数的区间,的图像大致为 2()()sin x x f x x ee x -=-+-[ 2.8-2.8]()A .B .C .D .解法一:,2()()sin x x f x x e e x -=-+-则,故为偶函数,故错误;22()()()sin()()sin ()x x x x f x x e e x x e e x f x ---=--+--=-+-=()f x AC (1),故错误,正确.f 1111111()sin11()sin 1062242e e e e e e eπ-=-+->-+-=-->->D B 故选:.B 解法二:函数为偶函数。
文科高考数学试卷及答案
一、选择题(每题5分,共40分)1. 已知函数f(x) = x^2 - 2x + 1,则f(3)的值为:A. 5B. 6C. 7D. 82. 若a,b是实数,且|a+b| ≤ 2,则|a-b|的最大值为:A. 2B. 3C. 4D. 53. 已知向量a = (2, 3),b = (1, -2),则|a+b|的值为:A. 3B. 4C. 5D. 64. 已知函数f(x) = log2(x+1),则f(3)的值为:A. 1B. 2C. 3D. 45. 若等差数列{an}的公差为d,首项为a1,则第10项与第15项之和为:A. 14a1 + 19dB. 15a1 + 19dC. 14a1 + 20dD. 15a1 + 20d6. 已知等比数列{bn}的公比为q,首项为b1,则第5项与第8项之积为:A. b1q^4B. b1q^7C. b1q^5D. b1q^87. 若三角形ABC的三边长分别为a,b,c,且满足a+b+c=12,则三角形ABC的面积最大值为:A. 18B. 24C. 36D. 488. 已知函数f(x) = e^x,则f(x)在x=0处的导数为:A. 1B. eC. e^2D. e^39. 已知函数f(x) = sin(x),则f'(π)的值为:A. 0B. 1C. -1D. sin(π)10. 若等差数列{an}的公差为d,首项为a1,则第n项与第2n项之差的平方为:A. n^2d^2B. (n+1)^2d^2C. (2n-1)^2d^2D. (n-1)^2d^2二、填空题(每题5分,共20分)11. 若函数f(x) = ax^2 + bx + c在x=1处的导数为0,则a+b+c=______。
12. 已知向量a = (2, 3),b = (1, -2),则a·b的值为______。
13. 若等差数列{an}的首项为a1,公差为d,则第n项an=______。
14. 已知等比数列{bn}的首项为b1,公比为q,则第n项bn=______。
2024全国高考真题 全国甲卷 文科数学+答案
三、解答题:共 70 分.解答应写出文字说明,证明过程或演算步骤.第 17 题第 21 题为必
考题,每个考题考生必须作答.第 22、23 题为选考题,考生根据要求作答.
(一)必考题:共 60 分.
15. 已知等比数列{ }的前项和为 ,且2 = 3+1 − 3.
(1)求{ }的通项公式;
【12 题答案】2
【13 题答案】64
【14 题答案】(−2,1)
三、解答题:
(一)必考题:共 60 分.
【15 题答案】
−1
(1) = (5)
3ห้องสมุดไป่ตู้
3 5
3
(2) ( ) −
2 3
2
【16 题答案】
(1)证明见详解;
6√13
(2)
13
【17 题答案】
(1)见解析
(2)见解析
【18 题答案】
)
)
C.
D.
9. 已知
cos
= 3 ,则tan ( + 4 ) =(
cos − sin
A. 2√3 + 1
B. 2√3 − 1
)
C.
√3
2
D. 1 − √3
10. 设、是两个平面,、是两条直线,且 ∩ = .下列四个命题:
.
①若//,则//或//
②若 ⊥ ,则 ⊥ , ⊥
(2)求点到的距离.
17 已知函数() = ( − 1) − + 1.
(1)求() 单调区间;
(2)若 ≤ 2时,证明:当 > 1时, f ( x ) e
18. 设椭圆:
的的
2
2
2
文科高数期末试题及答案
文科高数期末试题及答案【文科高数期末试题及答案】一、选择题1. 题目答案:A2. 题目答案:C3. 题目答案:B4. 题目答案:D5. 题目答案:A二、填空题1. 题目答案:22. 题目3. 题目答案:74. 题目答案:0.55. 题目答案:4三、解答题1. 题目解答:根据题目,首先我们可以列出方程为:2x + 3y = 103x - 4y = 5求解这个方程组,可以使用消元法,其中我们可以通过第二个方程乘以3和第一个方程乘以2,然后相加来消去y的变量:6x + 9y = 306x - 8y = 10然后我们可以消去x的变量,这样得到:17y = 20将y的值带入第一个方程,可以求出x的值:2x + 3 * (20/17) = 102x + 60/17 = 102x = 170/17 - 60/172x = 110/17x = 55/17所以方程组的解为 x = 55/17,y = 20/17。
2. 题目解答:根据题目,我们要求函数 f(x) = 3x^2 + 2x - 1 的最大值和最小值。
首先,我们可以通过求导数得到该函数的导函数 f'(x) = 6x + 2。
然后,我们可以令导函数等于0,求解x的值:6x + 2 = 06x = -2x = -1/3接着,我们可以求函数在该点的值,即 f(-1/3) = 3 * (-1/3)^2 + 2 * (-1/3) - 1 = -4/3 - 2/3 - 1 = -7/3所以,函数 f(x) = 3x^2 + 2x - 1 的最大值为 -7/3,最小值为无穷小。
四、解析几何题1. 题目解答:根据题目,我们要求通过点A(1, 2)和点B(4, 5)的直线方程。
首先,我们可以根据两点间的斜率公式来求解斜率k:k = (y2 - y1) / (x2 - x1)= (5 - 2) / (4 - 1)= 3/3= 1然后,我们可以利用点斜式来得到直线方程:y - y1 = k(x - x1)y - 2 = 1(x - 1)y - 2 = x - 1y = x + 1所以,通过点A(1, 2)和点B(4, 5)的直线方程为 y = x + 1。
高考文科数学试卷带答案
一、选择题(本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1. 函数f(x) = 2x - 3在定义域上的最大值为:A. 1B. 2C. 3D. 42. 已知等差数列{an}的前三项分别为1, 3, 5,则该数列的公差为:A. 1B. 2C. 3D. 43. 下列命题中正确的是:A. 平方根和算术平方根都是非负数B. 所有有理数的平方根都是实数C. 所有实数的平方根都是实数D. 所有无理数的平方根都是实数4. 下列函数中,y = ax² + bx + c(a ≠ 0)的图像开口向上的是:A. a = 1, b = 2, c = 3B. a = -1, b = -2, c = 3C. a = 1, b = -2, c = -3D. a = -1, b = 2, c = -35. 若复数z满足|z - 1| = |z + 1|,则复数z对应的点位于:A. 第一象限B. 第二象限C. 第三象限D. 第四象限6. 在三角形ABC中,若角A、B、C的对边分别为a、b、c,则下列等式中正确的是:A. a² + b² = c²B. b² + c² = a²C. a² + c² = b²D. a² + b² + c² = 07. 下列不等式中,恒成立的是:A. x² > 0B. x³ > 0C. x² > 1D. x³ > 18. 若函数y = f(x)的图像与直线y = kx(k ≠ 0)有唯一交点,则函数f(x)的图像可能是:A. 单调递增函数B. 单调递减函数C. 周期函数D. 反比例函数9. 下列事件中,属于随机事件的是:A. 抛掷一枚硬币,正面朝上B. 抛掷一枚骰子,得到6C. 抛掷一枚骰子,得到偶数D. 抛掷一枚骰子,得到奇数10. 下列命题中,正确的是:A. 对于任意实数x,x² ≥ 0B. 对于任意实数x,x³ ≥ 0C. 对于任意实数x,x² = 0D. 对于任意实数x,x³ = 011. 若等比数列{an}的前三项分别为a₁, a₂, a₃,且a₁ + a₂ + a₃ = 6,a₁a₂a₃ = 8,则该数列的公比为:A. 2B. 4C. 8D. 1612. 下列函数中,y = f(x)的图像为一条直线的是:A. y = x²B. y = 2x + 1C. y = 3x - 2D. y = x³二、填空题(本大题共8小题,每小题5分,共40分。
高考卷文科数学官方答案
高考卷文科数学官方答案一、选择题(本大题共10小题,每小题5分,共50分)1. 下列函数中,既是奇函数又是减函数的是()A. y = x^3B. y = x^2C. y = x^2D. y = x^32. 设集合A={x|0<x<2},集合B={x|x<1},则A∩B等于()A. {x|0<x<1}B. {x|0<x<2}C. {x|x<1}D. {x|x<0}3. 在等差数列{an}中,已知a1=1,a3+a7=22,则数列的公差d为()A. 3B. 4C. 5D. 64. 已知复数z满足|z|=1,则z的共轭复数z的模为()A. 0B. 1C. 2D. 无法确定5. 下列函数中,既是偶函数又是周期函数的是()A. y = sin(x)B. y = cos(x)C. y = tan(x)D. y = cot(x)6. 若向量a=(2,1),向量b=(x,3),且a与b共线,则x的值为()A. 6B. 3C. 3D. 67. 已知数列{an}是等比数列,a1=2,a3=8,则数列的公比q为()A. 2B. 3C. 4D. 58. 在三角形ABC中,若a=3,b=4,cosA=3/5,则三角形ABC的面积S为()A. 4B. 5C. 6D. 79. 已知函数f(x)=x^22x+1,则f(x)的最小值为()A. 0B. 1C. 2D. 310. 设平面直角坐标系中,点A(1,2),点B(2,3),则线段AB 的中点坐标为()A. (1/2,5/2)B. (1/2,5/2)C. (1/2,2)D. (1/2,2)二、填空题(本大题共5小题,每小题5分,共25分)11. 已知函数f(x)=2x+1,则f(3)的值为______。
12. 在等差数列{an}中,已知a1=1,d=2,则第10项的值为______。
13. 若复数z=3+4i,则z的共轭复数为______。
14. 在三角形ABC中,若a=5,b=7,cosB=3/5,则sinA的值为______。
2019年普通高等学校招全国生统一考试文科数学(全国卷Ⅰ)(含答案)
绝密★启用前2019年普通高等学校招生全国统一考试文科数学注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上.写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设3i12iz -=+,则z = A .2BCD .12.已知集合{}{}{}1,2,3,4,5,6,72,3,4,52,3,6,7U A B ===,,,则A .{}1,6B .{}1,7C .{}6,7D .{}1,6,73.已知0.20.32log 0.2,2,0.2a b c ===,则A .B .C .D .4≈0。
618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽.若某人满足上述两个黄金分割比例,且腿长为105 cm ,头顶至脖子下端的长度为26 cm ,则其身高可能是a b c <<a c b <<c a b <<b c a <<A .165 cmB .175 cmC .185 cmD .190cm5.函数f (x )=2sin cos x xx x ++在[—π,π]的图像大致为A .B .C .D .6.某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是 A .8号学生 B .200号学生C .616号学生D .815号学生7.tan255°= A .—2B .C .D .8.已知非零向量a ,b 满足a =2b ,且(a -b )⊥b ,则a 与b 的夹角为 A .π6B .π3C .2π3D .5π69.如图是求112122++的程序框图,图中空白框中应填入A .A =12A+ B .A =12A+C .A =112A+D .A =112A+10.双曲线C :22221(0,0)x y a b a b-=>>的一条渐近线的倾斜角为130°,则C 的离心率为A .2sin40°B .2cos40°C .1sin50︒D .1cos50︒11.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a sin A —b sin B =4c sin C ,cos A =-14,则b c=A .6B .5C .4D .312.已知椭圆C 的焦点为12(1,0),(1,0)F F -,过F 2的直线与C 交于A ,B 两点。
2024年高考数学甲卷 文科试卷 (含答案)
2024年普通高等学校招生全国统一考试文科数学(甲卷)一、选择题本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1、集合 A 1,2,3,4,5,9 , B |1x x A ,则A B =()A. 1,3,4B. 2,3,4C.1,2,3,4 D.0,1,2,3,4,92、设z ,则z z ()A.-2C. D.23、若实数,x y 满足约束条件43302202690x y x y x y,则5z x y 的最小值为()A.12B.0C.52D.724、等差数列 n a 的前n项和为S n ,若9S 1 ,则37a a =()A.-2B.73 C.1 D.295、甲、乙、丙、丁四人排成一列,丙不在排头,且甲或乙在排尾的概率是()A.14B.13C.12D.236、已知双曲线 2222C:10,0x y a b a b的左、右焦点分别为 1F 0,4、 2F 0,4 且经过点 P 6,4 ,则双曲线C 的离心率是()A.135B.137C.2D.37、曲线 631f x x x 在 01 ,处的切线与坐标轴围成的面积为()A.16B.2C.12D.28、函数2sin x x y x e e x 在区间 -2.82.8,的图像大致为()AB CD9、已知coscos sin a a a ,则tan 4a()A.1B.1C.2D.1 10、已知直线20ax y a 与圆22C 410x y y :交于A ,B 两点,则AB的最小值为()A.2B.3C.4D.611、设 , 为两个平面,m ,n 为两条直线,且m ,下述四个命题:①若//m n ,则//n 或//n ②若m n ,则n 或n ③若//n ,且//n ,则//m n ④若n 与 ,所成的角相等,则m n其中所有真命题的编号是()A.①③B.②④C.①②③D.①③④12、在△ABC 的内角A,B,C 的对边分别为a ,b ,c,已知B 3,294b ac,则sin sinA C ()A.13 B.13C.2D.13二、填空题:本题共4小题,每小题5分,共20分。
高考数学文科试题及答案
高考数学文科试题及答案一、选择题:1. 已知函数f(x)=2x-3,若f(a)=4,则a的值为:A. 1B. 2C. 3D. 42. 若a,b,c是三角形的三边长,且满足a^2 + b^2 = c^2,该三角形为:A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等边三角形3. 已知等差数列{an}的前n项和为S,若S5=75,S10=225,求S15的值:A. 375B. 405C. 435D. 465二、填空题:1. 函数y=x^2-4x+3的顶点坐标是______。
2. 若圆心在原点的圆的方程为x^2+y^2=r^2,当半径r=4时,圆的面积为______。
三、解答题:1. 已知函数g(x)=x^3-3x^2-9x+5,求函数g(x)的极值点。
2. 已知某商品的总成本函数为C(x)=0.5x^2-100x+1000,其中x表示商品的数量,求商品的平均成本。
答案一、选择题:1. 根据题目,我们有f(a)=2a-3=4,解得a=3.5。
因此正确答案是B。
2. 根据勾股定理的逆定理,若a^2 + b^2 = c^2,则三角形为直角三角形。
因此正确答案是B。
3. 由S5=75,我们可以得到5a1+10d=75,其中a1是首项,d是公差。
同理,由S10=225,我们得到10a1+45d=225。
解这两个方程,我们可以得到a1=3,d=2。
因此S15=15*3+105*2=435。
正确答案是C。
二、填空题:1. 对于函数y=x^2-4x+3,我们可以将其转化为顶点式y=(x-2)^2-1,因此顶点坐标为(2, -1)。
2. 圆的面积公式为A=πr^2,当r=4时,面积A=π*4^2=16π。
三、解答题:1. 求导得g'(x)=3x^2-6x-9,令g'(x)=0,解得x=-1或x=3。
检验发现x=-1是极大值点,x=3是极小值点。
2. 平均成本为C(x)/x=(0.5x^2-100x+1000)/x=0.5x-100+1000/x。
高数考试题库及答案解析
高数考试题库及答案解析一、选择题1. 函数f(x)=x^2-3x+2在区间[1,4]上的最大值是:A. 0B. 3C. 6D. 7答案:D解析:首先求导f'(x)=2x-3,令f'(x)=0,解得x=3/2。
在区间[1,4]上,f'(x)在x<3/2时为负,x>3/2时为正,说明f(x)在x=3/2处取得极小值。
计算f(3/2)=-1/4,再计算区间端点f(1)=0和f(4)=6,可知最大值为f(4)=6。
2. 若f(x)=sin(x)+cos(x),则f'(x)的表达式为:A. cos(x)-sin(x)B. cos(x)+sin(x)C. sin(x)-cos(x)D. sin(x)+cos(x)答案:A解析:根据导数的运算法则,f'(x)=[sin(x)]'+[cos(x)]'=cos(x)-sin(x)。
二、填空题1. 曲线y=x^3-6x^2+9x在点(2,0)处的切线斜率为______。
答案:-12解析:首先求导y'=3x^2-12x+9,将x=2代入y'得到切线斜率为-12。
2. 定积分∫(0,1) x^2 dx的值为______。
答案:1/3解析:根据定积分的计算公式,∫(0,1) x^2 dx = [x^3/3](0,1) = 1/3。
三、解答题1. 求函数f(x)=x^3-6x^2+11x-6的单调区间。
答案:函数f(x)的单调增区间为(1,3),单调减区间为(-∞,1)和(3,+∞)。
解析:首先求导f'(x)=3x^2-12x+11,令f'(x)=0解得x=1,3。
根据导数符号变化,可得单调区间。
2. 求曲线y=x^2-4x+3与直线y=2x平行的切线方程。
答案:切线方程为:x-y-1=0。
解析:曲线y=x^2-4x+3的导数为y'=2x-4,令y'=2得到x=3,此时切点坐标为(3,2)。
2020年高考真题——数学试卷(文科)(新课标Ⅱ)(解析版)
绝密★启用前2020 年普通高等学校招生全国统一考试文科数学注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号框涂黑.如需改动,用橡皮擦干净后,在选涂其它答案标号框.回答非选择题时,将答案写在答题卡上,写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共12 小题,每小题5 分,共60 分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={x||x|<3,x∈Z},B={x||x|>1,x∈Z},则A∩B=()A.∅B. {–3,–2,2,3)C. {–2,0,2}D. {–2,2}【答案】D【解析】【分析】解绝对值不等式化简集合A, B 的表示,再根据集合交集的定义进行求解即可.【详解】因为A ={x x < 3, x ∈Z}={-2, -1, 0,1, 2},B ={x x >1, x ∈Z}={x x >1或x <-1, x ∈Z},所以A B ={2, -2}.故选:D.【点睛】本题考查绝对值不等式的解法,考查集合交集的定义,属于基础题.2.(1–i)4=()A. –4B. 4C. –4iD. 4i【答案】A【解析】【分析】根据指数幂的运算性质,结合复数的乘方运算性质进行求解即可.【详解】(1-i)4= [(1-i)2 ]2= (1- 2i +i2 )2= (-2i)2=-4 .故选:A.【点睛】本题考查了复数的乘方运算性质,考查了数学运算能力,属于基础题.3.如图,将钢琴上的12 个键依次记为a1,a2,…,a12.设1≤i<j<k≤12.若k–j=3 且j–i=4,则称a i,a j,a k 为原位大三和弦;若k–j=4 且j–i=3,则称a i,a j,a k 为原位小三和弦.用这12 个键可以构成的原位大三和弦与原位小三和弦的个数之和为()A. 5B. 8C. 10D. 15【答案】C【解析】【分析】根据原位大三和弦满足k -j = 3, j -i = 4 ,原位小三和弦满足k -j = 4, j -i = 3从i = 1 开始,利用列举法即可解出.【详解】根据题意可知,原位大三和弦满足:k -j = 3, j -i = 4 .∴i =1, j = 5, k = 8 ;i = 2, j = 6, k = 9 ;i = 3, j = 7, k =10 ;i = 4, j = 8, k =11;i = 5, j = 9, k =12 .原位小三和弦满足:k -j = 4, j -i = 3 .∴i =1, j = 4, k = 8 ;i = 2, j = 5, k = 9 ;i = 3, j = 6, k =10 ;i = 4, j = 7, k =11 ;i = 5, j = 8, k =12 .故个数之和为10.故选:C.【点睛】本题主要考查列举法的应用,以及对新定义的理解和应用,属于基础题.4.在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200 份订单配货,由于订单量大幅增加,导致订单积压.为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压500 份订单未配货,预计第二天的新订单超过1600 份的概率为0.05,志愿者每人每天能完成50 份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者()A. 10 名B. 18 名C. 24 名D. 32 名【答案】B【解析】【分析】算出第二天订单数,除以志愿者每天能完成的订单配货数即可.【详解】由题意,第二天新增订单数为500 +1600 -1200 = 900 ,故需要志愿者900= 18 名. 50故选:B【点晴】本题主要考查函数模型的简单应用,属于基础题.5.已知单位向量a,b 的夹角为60°,则在下列向量中,与b 垂直的是()A. a+2bB. 2a+bC. a–2bD. 2a–b 【答案】D【解析】【分析】根据平面向量数量积的定义、运算性质,结合两平面向量垂直数量积为零这一性质逐一判断即可.【详解】由已知可得:a ⋅b=a ⋅b ⋅cos 60︒=1⨯1⨯1=1. 22A:因为(a + 2b) ⋅b =a ⋅b + 2b2 =1+ 2⨯1 =5≠ 0 ,所以本选项不符合题意;22B:因为(2a +b) ⋅b = 2a ⋅b+b2 = 2⨯1+1 = 2 ≠ 0 ,所以本选项不符合题意;2C:因(a - 2b) ⋅b =a ⋅b - 2b 2=1- 2⨯1 =-3≠ 0 ,所以本选项不符合题意;22D:因为(2a -b) ⋅b = 2a ⋅b -b2= 2⨯1-1 = 0 ,所以本选项符合题意. 2故选:D.a 1 1n【点睛】本题考查了平面向量数量积的定义和运算性质,考查了两平面向量数量积为零则这两个平面向量互相垂直这一性质,考查了数学运算能力.S n 6. 记 S n 为等比数列{a n }的前 n 项和.若 a 5–a 3=12,a 6–a 4=24,则=( )nA. 2n –1B. 2–21–nC. 2–2n –1D. 21–n –1【答案】B【解析】【分析】根据等比数列的通项公式,可以得到方程组,解方程组求出首项和公比,最后利用等比数列的通项公式和前n 项和公式进行求解即可. 【详解】设等比数列的公比为q ,⎧⎪a q 4 - a q 2 = 12⎧q = 2 由 a - a = 12, a - a = 24 可得: ⎨1 1 ⇒ ⎨ , 5 3 6 4 ⎪⎩a q 5- a q 3 = 24 ⎩a 1 = 1 n -1n -1a (1- q n ) 1- 2n n 所以a n = a 1q= 2 , S n = 1= = 2 -1,S 2n -1 因此 n = =2 - 21-n .1- q 1- 2a 2n -1故选:B.【点睛】本题考查了等比数列的通项公式的基本量计算,考查了等比数列前n 项和公式的应用,考查了数学运算能力.7. 执行右面的程序框图,若输入的 k =0,a =0,则输出的 k 为()A. 2B. 3C. 4D. 5【答案】C【解析】分析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出的k 值,模拟程序的运行过程,分析循环中各变量值的变化情况,即可求得答案.【详解】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出的k 值模拟程序的运行过程k = 0, a = 0第1 次循环,a = 2 ⨯ 0 +1 =1 , k = 0 +1 = 1,2 > 10 为否第2 次循环,a = 2 ⨯1+1 = 3 , k =1+1 = 2 ,3 >10 为否第3 次循环,a = 2 ⨯3 +1 = 7 , k = 2 +1 = 3 ,7 > 10 为否第4 次循环,a = 2 ⨯7 +1 =15 , k = 3 +1 = 4 ,15 >10 为是退出循环输出k = 4 .故选:C.【点睛】本题考查求循环框图的输出值,解题关键是掌握模拟循环语句运行的计算方法,考-2 5查了分析能力和计算能力,属于基础题.8. 若过点(2,1)的圆与两坐标轴都相切,则圆心到直线2x - y - 3 = 0 的距离为()A.55B. 2 55C. 3 55D. 4 55【答案】B【解析】【分析】由题意可知圆心在第一象限,设圆心的坐标为(a , a ), a > 0 ,可得圆的半径为a ,写出圆的标准方程,利用点(2,1) 在圆上,求得实数a 的值,利用点到直线的距离公式可求出圆心到直线2x - y - 3 = 0 的距离.【详解】由于圆上的点(2,1) 在第一象限,若圆心不在第一象限, 则圆与至少与一条坐标轴相交,不合乎题意,所以圆心必在第一象限,设圆心的坐标为(a , a ) ,则圆的半径为a ,圆的标准方程为( x - a )2+ ( y - a )2= a 2 . 由题意可得(2 - a )2 + (1- a )2= a 2 , 可得a 2 - 6a + 5 = 0 ,解得a = 1 或a = 5 ,所以圆心的坐标为(1,1) 或(5, 5) ,圆心到直线2x - y - 3 = 0 的距离均为d = =2 5 ; 5所以,圆心到直线2x - y - 3 = 0 的距离为 2 5. 5 故选:B.【点睛】本题考查圆心到直线距离的计算,求出圆的方程是解题的关键,考查计算能力,属于中等题.9. 设O 为坐标原点,直线x = a 与双曲线 x 2 y 2 C : - = 1(a > 0,b > 0) a 2 b2 的两条渐近线分别交于D ,E 两点,若 ODE 的面积为 8,则C 的焦距的最小值为()16 2 0)2 0)A. 4B. 8C. 16D. 32【答案】B【解析】【分析】x 2 -y2= > >y =± bxx = a因为C : a21(a b 20,b 0) ,可得双曲线的渐近线方程是 ,与直线 a联立方程求得 D , E 两点坐标,即可求得| ED | ,根据 的面积为 8 ,可得 ab 值,根据2c = 2 ,结合均值不等式,即可求得答案.【详解】 C : x a 2 - y 2= 1(a > 0,b > b∴双曲线的渐近线方程是 y =± bxa x = a x 2 y 2 C : - = 1(a > 0,b >直线与双曲线a2b20) 的两条渐近线分别交于 D , E 两点不妨设 D 为在第一象限, E 在第四象限⎧x = a ⎪ ⎧x = a 联立⎨y = b x ,解得⎨y = b⎪⎩ a ⎩故 D (a , b )⎧x = a⎪⎧x = a 联立⎨ y =- b x ,解得⎨y = -b⎪⎩ a ⎩故 E (a , -b )∴| ED |= 2b∴ ODE 面积为: S △ODE= 1a ⨯ 2b = ab = 82双曲线C : x a 2 - y 2= 1(a > 0,b > b∴其焦距为2c = 2 ≥ 2 = 2 = 8当且仅当a = b = 2 取等号∴ C 的焦距的最小值: 8ODE a 2 + b 2 a 2 + b 2 2ab 2 2 2【点睛】本题主要考查了求双曲线焦距的最值问题,解题关键是掌握双曲线渐近线的定义和均值不等式求最值方法,在使用均值不等式求最值时,要检验等号是否成立,考查了分析能力和计算能力,属于中档题.10.设函数f (x) =x3-1x3,则f (x) ()A. 是奇函数,且在(0,+∞)单调递增B. 是奇函数,且在(0,+∞)单调递减C. 是偶函数,且在(0,+∞)单调递增D. 是偶函数,且在(0,+∞)单调递减【答案】A【解析】【分析】根据函数的解析式可知函数的定义域为{x x ≠ 0},利用定义可得出函数f (x)为奇函数,再根据函数的单调性法则,即可解出.【详解】因为函数f (x)=x3-1 x3所以函数f (x)为奇函数.定义域为{x x ≠ 0},其关于原点对称,而f (-x)=-f (x),又因为函数y =x3在( 0, +? ) 上单调递增,在( -? , 0) 上单调递增,而y =1x3=x-3在( 0, +?) 上单调递减,在( -? , 0) 上单调递减,所以函数f (x)=x3-1x3在( 0, +?) 上单调递增,在( -? , 0) 上单调递增.故选:A.【点睛】本题主要考查利用函数的解析式研究函数的性质,属于基础题.11.已知△ABC 是面积为9 3 的等边三角形,且其顶点都在球O 的球面上.若球O 的表面积为416π,则O 到平面ABC 的距离为()A. B.3C. 1D.3 2 2【答案】C 【解析】3R 2 - r 2 3 9 3 a - 2 a 2 4 9 - 9 4 3 根据球O 的表面积和 ABC 的面积可求得球O 的半径 R 和 ABC 外接圆半径r ,由球的性质可知所求距离d = .【详解】设球O 的半径为 R ,则4π R 2 = 16π ,解得: R = 2 . 设 ABC 外接圆半径为 r ,边长为a ,ABC 是面积为 9 3 的等边三角形,41 2 2 ∴ a 2 ⨯ = ,解得: a = 3 ,∴r = ⨯ = ⨯ = ,2 2 4∴球心O 到平面 ABC 的距离d = 3 = 3= 1.故选:C.【点睛】本题考查球的相关问题的求解,涉及到球的表面积公式和三角形面积公式的应用;解题关键是明确球的性质,即球心和三角形外接圆圆心的连线必垂直于三角形所在平面.12. 若2x - 2y < 3-x - 3- y ,则()A. ln( y - x +1) > 0B. ln( y - x +1) < 0C. ln | x - y |> 0D.ln | x - y |< 0【答案】A【解析】【分析】将不等式变为 2x - 3-x < 2y - 3- y ,根据 f (t ) = 2t- 3-t的单调性知 x < y ,以此去判断各个选项中真数与1的大小关系,进而得到结果.【详解】由2x - 2y < 3-x - 3- y 得: 2x - 3-x < 2y - 3- y ,令 f (t ) = 2t- 3-t,y = 2x 为 R 上的增函数, y = 3-x 为 R 上的减函数,∴ f (t ) 为 R 上的增函数, ∴ x < y ,Q y - x > 0 ,∴ y - x +1 > 1,∴ln ( y - x +1) > 0 ,则A 正确,B 错误;R 2 - r 2 4 - 32Q x - y 与1的大小不确定,故 CD 无法确定.故选:A.【点睛】本题考查对数式的大小的判断问题,解题关键是能够通过构造函数的方式,利用函 数的单调性得到 x , y 的大小关系,考查了转化与化归的数学思想.二、填空题:本题共 4 小题,每小题 5 分,共 20 分.13. 若sin x =- ,则cos 2x =.31 【答案】 9【解析】【分析】直接利用余弦的二倍角公式进行运算求解即可.【详解】cos 2x = 1- 2sin 2 x = 1- 2⨯(- 2)2 = 1- 8 = 1. 3 9 9故答案为: 1.9【点睛】本题考查了余弦的二倍角公式的应用,属于基础题.14. 记 S n 为等差数列{a n } 的前 n 项和.若a 1 = -2,【答案】25 【解析】a 2 + a 6 = 2 ,则 S 10 =.【分析】因为{a n } 是等差数列,根据已知条件 a 2 + a 6 = 2 ,求出公差,根据等差数列前n 项和,即可求得答案.【详解】 {a n } 是等差数列,且a 1 = -2 , a 2 + a 6 = 2 设{a n } 等差数列的公差 d根据等差数列通项公式: a n = a 1 + (n -1)d 可得a 1 + d + a 1 + 5d = 2 即: -2 + d + (-2) + 5d = 2 整理可得: 6d = 6⎨ ⎩ 解得: d = 1根据等差数列前n 项和公式: S n= na 1+ n (n -1) d , n ∈ N *2可得: S 10= 10(-2) + 10⨯ (10 -1)= -20 + 45 = 252∴ S 10 = 25 .故答案为: 25 .【点睛】本题主要考查了求等差数列的前n 项和,解题关键是掌握等差数列的前n 项和公式,考查了分析能力和计算能力,属于基础题.⎧x + y ≥ -1 15. 若 x ,y 满足约束条件⎪x - y ≥ -1,则z = x + 2 y 的最大值是 .⎪2x - y ≤ 1,【答案】8 【解析】【分析】在平面直角坐标系内画出不等式组表示的平面区域,然后平移直线 y =- 1x ,在平面区域内2找到一点使得直线 y = - 1 x + 1z 在纵轴上的截距最大,求出点的坐标代入目标函数中即可.22【详解】不等式组表示的平面区域为下图所示:平移直线 y =- 1 x ,当直线经过点 A 时,直线 y = - 1 x + 1z 在纵轴上的截距最大,2⎧x - y = -1 2 2⎧x = 2此时点 A 的坐标是方程组⎨2x - y = 1 的解,解得: ⎨ y = 3 ,⎩ ⎩因此 z = x + 2 y 的最大值为: 2 + 2 ⨯ 3 = 8 .故答案为:8 .【点睛】本题考查了线性规划的应用,考查了数形结合思想,考查数学运算能力.16.设有下列四个命题:p1:两两相交且不过同一点的三条直线必在同一平面内. p2:过空间中任意三点有且仅有一个平面.p3:若空间两条直线不相交,则这两条直线平行.p4:若直线l ⊂平面α,直线m⊥平面α,则m⊥l.则下述命题中所有真命题的序号是.①p1∧p4②p1∧p2③⌝p2∨p3④⌝p3∨⌝p4【答案】①③④【解析】【分析】利用两交线直线确定一个平面可判断命题p1的真假;利用三点共线可判断命题p2的真假;利用异面直线可判断命题p3的真假,利用线面垂直的定义可判断命题p4的真假.再利用复合命题的真假可得出结论.【详解】对于命题p1,可设l1与l2相交,这两条直线确定的平面为α;若l3 与l1 相交,则交点A 在平面α内,同理,l3 与l2 的交点B 也在平面α内,所以,AB ⊂α,即l3⊂α,命题p1真命题;对于命题p2,若三点共线,则过这三个点的平面有无数个,命题p2为假命题;对于命题p3,空间中两条直线相交、平行或异面,命题 p 3 为假命题;对于命题 p 4 ,若直线m ⊥ 平面α ,则 m 垂直于平面α 内所有直线, 直线l ⊂ 平面α ,∴直线m ⊥ 直线l ,命题 p 4 为真命题.综上可知, p 1 ∧ p 4 为真命题, p 1 ∧ p 2 为假命题,⌝p 2 ∨ p 3 为真命题, ⌝p 3 ∨ ⌝p 4 为真命题.故答案为:①③④.【点睛】本题考查复合命题的真假,同时也考查了空间中线面关系有关命题真假的判断,考查推理能力,属于中等题.三、解答题:共 70 分.解答应写出文字说明、证明过程或演算步骤.第 17~21 题为必考题,每个试题考生都必须作答.第 22、23 题为选考题,考生根据要求作答. (一)必考题:共 60 分.17. △ABC 的内角 A ,B ,C 的对边分别为 a ,b ,c ,已知cos2( π + A ) + cos A = 5. 2 4(1)求 A ;(2)若b - c =3a ,证明:△ABC 是直角三角形. 3π【答案】(1)A = ;(2)证明见解析3【解析】【分析】( 1 ) 根据诱导公式和同角三角函数平方关系, cos 2⎛ π + A ⎫+ cos A = 5可化为 2 ⎪ 41- cos 2 A + cos A = 5,即可解出;4(2)根据余弦定理可得b 2 + c 2 - a 2 = bc ,将b - c =⎝ ⎭3 a 代入可找到a , b , c 关系,3再根据勾股定理或正弦定理即可证出.【详解】(1)因为cos 2⎛ π + A ⎫+ cos A = 5 ,所以sin 2 A + cos A = 5 ,2 ⎪ 4 4⎝⎭即1- cos 2 A + cos A = 5,4解得cos A = 1,又0 < A < π , 2所以 A = π;3πb 2 +c 2 - a 21 (2) 因为 A =,所以cos A ==,3即b 2 + c 2 - a 2 = bc ①,2bc2又b - c =3 a ②, 将②代入①得, b 2 + c 2 - 3(b - c )2= bc ,3即2b 2 + 2c 2 - 5bc = 0 ,而b > c ,解得b = 2c , 所以a = 3c ,故b 2 = a 2 + c 2 ,即 ABC 是直角三角形.【点睛】本题主要考查诱导公式和平方关系的应用,利用勾股定理或正弦定理,余弦定理判断三角形的形状,属于基础题.18. 某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加.为调查该地区某种野生动物的数量,将其分成面积相近的 200 个地块,从这些地块中用简单随机抽样的方法抽取 20 个作为样区,调查得到样本数据(x i ,y i )(i =1,2,…,20),其中 x i 和 y i 分别表示第 i 个样区2020的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得∑ x i = 60 , ∑ y i = 1200 ,i =1i =1202020∑(x - x )2 = 80 , ∑(y - y )2 = 9000 , ∑(x - x () y - y ) = 800 . ii =1ii =1iii =1(1) 求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);(2) 求样本(x i ,y i )(i =1,2,…,20)的相关系数(精确到 0.01);(3) 根据现有统计资料,各地块间植物覆盖面积差异很大.为提高样本的代表性以获得该地区∑i =12020(x - x ) ( y - y ) 2∑ 2iii =180 ⨯ 90002 ∑ i =1∑y 这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.附:相关系数 r =∑(x i - x () i =1y i - y ),=1.414.【答案】(1)12000 ;(2) 0.94 ;(3)详见解析【解析】【分析】(1) 利用野生动物数量的估计值等于样区野生动物平均数乘以地块数,代入数据即可;(2) 利用公式r =20(xi- x )( y i - y )i =1计算即可;(3) 各地块间植物覆盖面积差异较大,为提高样本数据的代表性,应采用分层抽样.1201【详解】(1)样区野生动物平均数为20 ∑ y i = 20⨯1200 = 60 ,地块数为 200,该地区这种野生动物的估计值为200 ⨯ 60 = 12000 (2)样本( x i , y i ) 的相关系数为20(x i- x )( y i- y )800 2r =i =1= = ≈ 0.943(3)由于各地块间植物覆盖面积差异较大,为提高样本数据的代表性,应采用分层抽样先将植物覆盖面积按优中差分成三层, 在各层内按比例抽取样本,在每层内用简单随机抽样法抽取样本即可.【点晴】本题主要考查平均数的估计值、相关系数的计算以及抽样方法的选取,考查学生数学运算能力,是一道容易题.19. 已知椭圆 C 1:x a 2 2+ = 1(a >b >0)的右焦点 F 与抛物线 C 2 的焦点重合,C 1 的中心与 C 2 的 b 2n ∑ in (x - x ) (y - y )i =12∑ in2i =12 ∑ i =12020(x - x ) ( y - y )2∑ 2iii =12顶点重合.过 F 且与 x 轴重直的直线交 C 1 于 A ,B 两点,交 C 2 于 C ,D 两点,且|CD |= 4|AB |.3(1) 求 C 1 的离心率;(2) 若 C 1 的四个顶点到 C 2 的准线距离之和为 12,求 C 1 与 C 2 的标准方程.1Cx 2 y 2C 2【答案】(1) 2 ;(2) 1 : += 1, 2 : y 16 12= 8x .【解析】【分析】(1) 根据题意求出C 2 的方程,结合椭圆和抛物线的对称性不妨设 A , C 在第一象限,运用代入法求出 A , B , C , D 点的纵坐标,根据| CD |= 4| AB | ,结合椭圆离心率的公式进行求解即可;3(2) 由(1)可以得到椭圆的标准方程,确定椭圆的四个顶点坐标,再确定抛物线的准线方程,最后结合已知进行求解即可;【详解】解:(1)因为椭圆C 1 的右焦点坐标为: F (c, 0) ,所以抛物线C 2 的方程为 y 2 = 4cx ,其中c =.A , CC x 2 y2不妨设 在第一象限,因为椭圆 1 的方程为: a 2 + b2 = 1,x = cc 2 y 2 b 2A ,B b 2 b 2所以当时,有 + = 1 ⇒ y = ± ,因此 的纵坐标分别为 , - ; a 2 b 2 a a a又因为抛物线C 2 的方程为 y 2 = 4cx ,所以当 x = c 时,有 y 2 = 4c ⋅ c ⇒ y = ±2c ,所以C , D 的纵坐标分别为2c , -2c ,故| AB |=2b 2 ,| CD |= 4c . a48b 2cc 2 c c 1由| CD |= | AB |得4c = ,即3⋅ = 2 - 2( ) ,解得 = -2 (舍去), = .3 3aa a a a 2 所以C 的离心率为 1.1 2x 2 y 2C (2)由(1)知a = 2c , b = 3c ,故C 1 : 4c 2 + 3c2 = 1,所以1 的四个顶点坐标分别为(2c , 0) , (-2c , 0) , (0, 3c ) , (0, - 由已知得3c + c + c + c = 12 ,即c = 2 .3c ) , C 2 的准线为 x = -c . a 2 - b 21 11 1 Cx 2 y 2C 2所以 1 的标准方程为+ = 1, 2 的标准方程为 y 16 12= 8x .【点睛】本题考查了求椭圆的离心率,考查了求椭圆和抛物线的标准方程,考查了椭圆的四个顶点的坐标以及抛物线的准线方程,考查了数学运算能力.20. 如图,已知三棱柱 ABC –A 1B 1C 1 的底面是正三角形,侧面 BB 1C 1C 是矩形,M ,N 分别为 BC ,B 1C 1 的中点,P 为 AM 上一点.过 B 1C 1 和 P 的平面交 AB 于 E ,交 AC 于 F .(1) 证明:AA 1//MN ,且平面 A 1AMN ⊥平面 EB 1C 1F ;(2) 设 O 为△A 1B 1C 1 的中心,若 AO =AB =6,AO //平面 EB 1C 1F ,且∠MPN =π,求四棱锥3B –EB 1C 1F 的体积.【答案】(1)证明见解析;(2) 24 . 【解析】【分析】(1)由M , N 分别为 BC ,B 1C 1 的中点,MN //CC 1 ,根据条件可得 AA 1 / / BB 1 ,可证 MN //AA 1 ,要证平面 EB 1C 1F ⊥ 平面 A 1 AMN ,只需证明 EF ⊥ 平面 A 1 AMN 即可;(2)根据已知条件求得 S 四边形EB C F 和 M 到 PN 的距离,根据椎体体积公式,即可求得V B - E B C F .【详解】(1)∴ MN //BB 1M , N 分别为 BC , B 1C 1 的中点,又 AA 1 / / BB 1∴ M N //AA 1MN //BB 1在等边 ABC 中, M 为 BC 中点,则 BC ⊥ AM 又 侧面 BB 1C 1C 为矩形,∴ BC ⊥ BB 1MN ⊥ BC由 MN ⋂ AM = M , MN , AM ⊂ 平面 A 1 A MN∴ BC ⊥ 平面 A 1 A MN又 B 1C 1 //BC ,且 B 1C 1 ⊄ 平面 ABC , BC ⊂ 平面 ABC ,∴ B 1C 1 // 平面 ABC又 B 1C 1 ⊂ 平面 EB 1C 1F ,且平面 EB 1C 1F ⋂ 平面 ABC = EF∴ B 1C 1 / / E F∴ EF //BC又 BC ⊥ 平面 A 1 AMN∴ EF ⊥ 平面 A 1 AMNEF ⊂ 平面 EB 1C 1F∴平面 EB 1C 1F ⊥ 平面 A 1 AMN(2)过 M 作 PN 垂线,交点为 H ,画出图形,如图3 3 3 ⨯ 63 3AO // 平面 EB 1C 1FAO ⊂ 平面 A 1 A MN ,平面 A 1AMN ⋂ 平面 EB 1C 1F = NP∴ AO //NP又NO //AP∴ AO = NP = 6O 为△A 1B 1C 1 的中心.∴ ON = 1 AC sin 60︒ = 1⨯ 6⨯sin 60︒ =3 1 1 3故: ON = AP = ,则 AM = 3AP = 3 ,平面 EB 1C 1F ⊥ 平面 A 1 A MN ,平面 EB 1C 1F ⋂ 平面 A 1 A MN = NP ,MH ⊂ 平面 A 1 AMN∴ MH ⊥ 平面 EB 1C 1F又 在等边 ABC 中EF =APBCAMAP ⋅ BC 即 EF === 2 AM由(1)知,四边形 EB 1C 1F 为梯形∴四边形 EB C F 的面积为: S=EF + B 1C 1⋅ NP = 2 + 6 ⨯ 6 = 241 1∴V= 1 S 四边形EB 1C 1F22⋅ h , B -EB 1C 1F3 四边形EB 1C 1Fh 为 M 到 PN 的距离 MH = 2 3 ⋅sin 60︒= 3 ,∴ V = 1⨯ 24⨯ 3 = 24 .3【点睛】本题主要考查了证明线线平行和面面垂直,及其求四棱锥的体积,解题关键是掌握面面垂直转为求证线面垂直的证法和棱锥的体积公式,考查了分析能力和空间想象能力,属于中档题.21. 已知函数 f (x )=2ln x +1.3(1)若f(x)≤2x+c,求c 的取值范围;f (x) -f (a)(2)设a>0 时,讨论函数g(x)=x -a的单调性.【答案】(1)c ≥-1 ;(2)g(x) 在区间(0, a) 和(a, +∞) 上单调递减,没有递增区间【解析】【分析】(1)不等式f (x) ≤ 2x +c 转化为f (x) - 2x -c ≤ 0 ,构造新函数,利用导数求出新函数的最大值,进而进行求解即可;(2)对函数g(x) 求导,把导函数g'(x)分子构成一个新函数m(x) ,再求导得到m'( x) ,根据m'( x) 的正负,判断m(x) 的单调性,进而确定g'(x) 的正负性,最后求出函数g(x) 的单调性.【详解】(1)函数f (x) 的定义域为:(0, +∞)f (x) ≤ 2x +c ⇒f (x) - 2x -c ≤ 0 ⇒ 2 ln x +1- 2x -c ≤ 0(*) ,设h(x) = 2 ln x +1- 2x -c(x > 0) ,则有h'(x) =2- 2 =2(1-x),x x当x > 1 时,h' (x) < 0, h(x) 单调递减,当0 <x < 1时,h' (x) > 0, h(x) 单调递增,所以当x = 1 时,函数h(x) 有最大值,即h(x)max=h(1) = 2 ln1+1- 2 ⨯1-c =-1-c ,要想不等式(*) 在(0, +∞) 上恒成立,只需h(x)max≤ 0 ⇒-1-c ≤ 0 ⇒c ≥-1 ;(2)g(x) =2 ln x +1- (2 ln a -1)=2(ln x - ln a)(x > 0 且x ≠a) x -a x -a因此g'(x) =2(x -a -x ln x +x ln a),设m(x) = 2(x -a -x ln x +x ln a) ,x(x -a)2则有m'(x) = 2(ln a - ln x) ,当x >a 时,ln x > ln a ,所以m' (x) < 0 ,m(x) 单调递减,因此有m(x) <m(a) = 0 ,即⎩ g '(x ) < 0 ,所以 g (x ) 单调递减;当0 < x < a 时, ln x < ln a ,所以m ' (x ) > 0 , m (x ) 单调递增,因此有m (x ) < m (a ) = 0 ,即g '(x ) < 0 ,所以 g (x ) 单调递减,所以函数 g (x ) 在区间(0, a ) 和(a , +∞) 上单调递减,没有递增区间.【点睛】本题考查了利用导数研究不等式恒成立问题,以及利用导数判断含参函数的单调性,考查了数学运算能力,是中档题.(二)选考题:共 10 分.请考生在第 22、23 题中选定一题作答,并用 2B 铅笔在 答题卡上将所选题目对应的题号方框涂黑.按所涂题号进行评分,不涂、多涂均按所答第一题评分;多答按所答第一题评分.[选修 4—4:坐标系与参数方程]⎧x = t + 1 ,⎧x = 4 cos 2 θ 22. 已知曲线 C 1,C 2 的参数方程分别为 C 1: ⎨ y = 4sin 2 θ⎪ t (θ 为参数),C 2: ⎨ (t ⎪ y = t - 1 ⎩ t为参数).(1) 将 C 1,C 2 的参数方程化为普通方程;(2) 以坐标原点为极点,x 轴正半轴为极轴建立极坐标系.设 C 1,C 2 的交点为 P ,求圆心在极轴上,且经过极点和 P 的圆的极坐标方程.【答案】(1) C 1 : x + y = 4 ; C 2 : x 2 - y 2 = 4 ;(2) ρ = 17 cos θ . 5【解析】【分析】(1) 分别消去参数θ 和t 即可得到所求普通方程;(2) 两方程联立求得点 P ,求得所求圆的直角坐标方程后,根据直角坐标与极坐标的互化即可得到所求极坐标方程.【详解】(1)由cos 2 θ + sin 2 θ = 1 得C 1 的普通方程为: x + y = 4 ;⎪⎩ 2 2 2 2 2 ⎧x = t + 1 ⎧x 2 = t 2 + 1 + 2 ⎪ t ⎪ t 2 C 2 2 由⎨ 1 得: ⎨ 1 ,两式作差可得 2 的普通方程为: x - y = 4 . ⎪ y = t - ⎪ y 2 = t 2 + - 2⎪⎩ t ⎪⎩t 2 ⎧x = 5 ⎧x + y = 4 ⎪ (2)由 得: 2 ,即 P ⎛ 5 , 3 ⎫; ⎨x 2 - y 2 = 4 ⎨ ⎪ ⎪ y = 3⎝ ⎭ ⎪⎩ 2设所求圆圆心的直角坐标为(a ,0) ,其中a > 0 ,⎛ 5 ⎫2 ⎛ 3 ⎫2 17 ∴ 17 则 a - 2 ⎪ + 0 - 2 ⎪ = a ,解得: a = , 10 所求圆的半径r = , 10 ⎝ ⎭ ⎝ ⎭ ∴⎛ 17 ⎫2 ⎛ 17 ⎫2 2 2 17 所求圆的直角坐标方程为: x - 10 ⎪ + y = 10 ⎪ ,即 x + y = x , 5 ⎝ ⎭ ⎝ ⎭ ∴所求圆的极坐标方程为 ρ = 17 cos θ .5【点睛】本题考查极坐标与参数方程的综合应用问题,涉及到参数方程化普通方程、直角坐标方程化极坐标方程等知识,属于常考题型. [选修 4—5:不等式选讲]23. 已知函数 f (x ) = x - a 2 + | x - 2a +1|.(1) 当a = 2 时,求不等式 f (x )…4 的解集;(2) 若 f (x )…4 ,求 a 的取值范围.【答案】(1) ⎧x x ≤ 3 或 x ≥ 11⎫ ;(2) (-∞, -1] [3, +∞) .⎨ ⎬ ⎩ ⎭ 【解析】【分析】(1) 分别在 x ≤ 3 、3 < x < 4 和 x ≥ 4 三种情况下解不等式求得结果;(2) 利用绝对值三角不等式可得到 f( x ) ≥ (a -1)2 ,由此构造不等式求得结果.【详解】(1)当a = 2 时, f (x ) = x - 4 + x - 3 . 22 2 当 x ≤3 时, f (x ) = 4 - x + 3 - x = 7 - 2x ≥ 4 ,解得: x ≤ 3 ; 2当3 < x < 4 时, f (x ) = 4 - x + x - 3 = 1 ≥ 4 ,无解; 当 x ≥ 4 时, f (x ) = x - 4 + x - 3 = 2x - 7 ≥ 4 ,解得: x ≥ 11 ;2 综上所述: f ( x ) ≥ 4 的解集为⎧x x ≤3 或 x ≥ 11⎫ . ⎨ ⎬ ⎩ ⎭ (2) f (x ) = x - a 2 + x - 2a +1 ≥ (x - a 2 ) - ( x - 2a +1) = -a 2 + 2a -1 = (a -1)2(当且 仅当2a -1 ≤ x ≤ a 2 时取等号),∴(a -1)2 ≥ 4 ,解得: a ≤ -1 或 a ≥ 3 ,∴a 的取值范围为(-∞, -1] [3, +∞) .【点睛】本题考查绝对值不等式的求解、利用绝对值三角不等式求解最值的问题,属于常考题型.。
高数I(文科)习题解答
x 2 sin x(sin x) 2 ln 2 sin 2x 2 ln 2
与 g ( x) arctan x arc cot x
(9) f ( x) x 与 g ( x) x x
3
答案:相同 答案:相同
(10) f ( x) x 与 g ( x) x
4
2
(11) f ( x) x 与 g ( x) x
5
2
x
答案:相同 答案:不同
(12) f ( x) x 与 g ( x) x
4
(2)当x 0时, sin 3x n是 x的4阶无穷小,则:n 4 解:当u 0时, sin u ~ u 当x 0时, sin 3xn ~ 3x n
是x的n阶无穷小,由条件有 n 4, 故填 4
(3)当x 0时,e
3x4
1是x的n 阶无穷小, 则:n 4
u 3x4
答案:D (1 , 2)
返回
b ln(x 2 3x 4)
2x 3 (6) y a ln( x 3x 4) b arccos 3
2
答案:D (1,3]
(7 ) y 2x 3 b arcsin 3 x2 1 bx
答案:D (1,3]
2.下列函数对中,哪些表 示相同函数? 哪些表示不同函数?
x a
sin k ( x a ) lim k xa xa
故填:k 2 a 2
导数与微分
一.基本知识 1、导数的定义 2、求导公式 3、导数的几何意义 4、基本微分公式 5、高阶导数 6、隐函数及由参数方程所确定的函数的求导法则
二.基本题型
1.导数的定义
(完整)高等数学考试题库(附答案)
高等数学考试题库(附答案)1. 解析:求函数 f(x) = x^2 在区间 [0, 2] 上的定积分。
2. 解析:求函数 f(x) = e^x 在区间 [1, 1] 上的定积分。
3. 解析:求函数 f(x) = sin(x) 在区间[0, π] 上的定积分。
4. 解析:求函数 f(x) = cos(x) 在区间[0, π/2] 上的定积分。
5. 解析:求函数 f(x) = ln(x) 在区间 [1, e] 上的定积分。
6. 解析:求函数 f(x) = x^3 在区间 [1, 1] 上的定积分。
7. 解析:求函数f(x) = √x 在区间 [0, 4] 上的定积分。
8. 解析:求函数 f(x) = 1/x 在区间 [1, 2] 上的定积分。
9. 解析:求函数 f(x) = tan(x) 在区间[0, π/4] 上的定积分。
10. 解析:求函数 f(x) = 1/(1 + x^2) 在区间 [0, 1] 上的定积分。
11. 解析:求函数 f(x) = x^2 + 1 在区间 [0, 1] 上的定积分。
12. 解析:求函数 f(x) = e^(x) 在区间 [0, 2] 上的定积分。
13. 解析:求函数 f(x) = sin^2(x) 在区间[0, π] 上的定积分。
14. 解析:求函数 f(x) = cos^2(x) 在区间[0, π/2] 上的定积分。
15. 解析:求函数 f(x) = 1/(1 + x^2) 在区间 [1, 1] 上的定积分。
16. 解析:求函数f(x) = √(1 x^2) 在区间 [1, 1] 上的定积分。
17. 解析:求函数 f(x) = x^3 3x^2 + 2x 在区间 [0, 2] 上的定积分。
18. 解析:求函数 f(x) = e^(2x) 在区间 [1, 1] 上的定积分。
19. 解析:求函数 f(x) = ln(x) 在区间 [1, e^2] 上的定积分。
20. 解析:求函数 f(x) = sin(x)cos(x) 在区间[0, π/2] 上的定积分。
2021年高考真题:数学(文科)(全国甲卷)【含答案及解析】
2021年普通⾼等学校招⽣全国统⼀考试(甲卷)⽂科数学一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设集合{}{}1,3,5,7,9,27M N x x ==>,则M N =I ()A.{}7,9 B.{}5,7,9 C.{}3,5,7,9 D.{}1,3,5,7,92. 为了解某地农村经济情况,对该地农户家庭年收入进行抽样调查,将农户家庭年收入的调查数据整理得到如下频率分布直方图:根据此频率分布直方图,下面结论中不正确的是()A.该地农户家庭年收入低于4.5万元的农户比率估计为6%B.该地农户家庭年收入不低于10.5万元的农户比率估计为10%C.估计该地农户家庭年收入的平均值不超过6.5万元D.估计该地有一半以上的农户,其家庭年收入介于4.5万元至8.5万元之间3. 已知2(1)32i z i -=+,则z =()A.312i --B.312i -+ C.32i -+ D.32i --4.下列函数中是增函数的为()A.()f x x=- B.()23xf x æö=ç÷èøC.()2f x x= D.()f x =5. 点()3,0到双曲线221169x y -=的一条渐近线的距离为()A.95B.85C.65D.456.青少年视力是社会普遍关注的问题,视力情况可借助视力表测量.通常用五分记录法和小数记录法记录视力数据,五分记录法的数据L 和小数记录表的数据V 的满足5lg L V =+.已知某同学视力的五分记录法的数据为4.9,则其视力的小数记录法的数据为()( 1.259»)A.1.5B.1.2C.0.8D.0.67. 在一个正方体中,过顶点A 的三条棱的中点分别为E ,F ,G .该正方体截去三棱锥A EFG -后,所得多面体的三视图中,正视图如图所示,则相应的侧视图是()A. B. C. D.8.在ABC V 中,已知120B =°,AC =,2AB =,则BC =()A.1B.C.D.39.记n S 为等比数列{}n a 的前n 项和.若24S =,46S =,则6S =()A. 7B. 8C. 9D. 1010.将3个1和2个0随机排成一行,则2个0不相邻的概率为()A. 0.3B. 0.5C. 0.6D. 0.811.若cos 0,,tan 222sin p a a a a æöÎ=ç÷-èø,则tan a =()A.15B.5C.3D.312. 设()f x 是定义域为R 的奇函数,且()()1f x f x +=-.若1133f æö-=ç÷èø,则53f æö=ç÷èø()A.53-B.13-C.13D.53二、填空题:本题共4小题,每小题5分,共20分.13.若向量,a b r r满足3,5,1a a b a b =-=×=r r r r r ,则b =r _________.14. 已知一个圆锥的底面半径为6,其体积为30p 则该圆锥的侧面积为________.15. 已知函数()()2cos f x x w j =+的部分图像如图所示,则2f p æö=ç÷èø_______________.16.已知12,F F 为椭圆C :221164x y+=的两个焦点,P ,Q 为C 上关于坐标原点对称的两点,且12PQ F F =,则四边形12PFQF 的面积为________.三、解答题:共70分.解答应写出交字说明、证明过程程或演算步骤,第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17. 甲、乙两台机床生产同种产品,产品按质量分为一级品和二级品,为了比较两台机床产品的质量,分别用两台机床各生产了200件产品,产品的质量情况统计如下表:一级品二级品合计甲机床15050200乙机床12080200合计270130400(1)甲机床、乙机床生产的产品中一级品的频率分别是多少?(2)能否有99%的把握认为甲机床的产品质量与乙机床的产品质量有差异?附:22()()()()()n ad bc K a b c d a c b d -=++++()2P K k ³0.0500.0100.001k3.8416.63510.82818.记n S 为数列{}n a 的前n 项和,已知210,3n a a a >=,且数列是等差数列,证明:{}na 是等差数列.19. 已知直三棱柱111ABC A B C -中,侧面11AA B B 为正方形,2AB BC ==,E ,F 分别为AC 和1CC 的中点,11BF A B ^.(1)求三棱锥F EBC -的体积;(2)已知D 为棱11A B 上的点,证明:BF DE ^.20.设函数22()3ln 1f x a x ax x =+-+,其中0a >.(1)讨论()f x 的单调性;(2)若()y f x =的图象与x 轴没有公共点,求a 的取值范围.21.抛物线C 的顶点为坐标原点O .焦点在x 轴上,直线l :1x =交C 于P ,Q 两点,且OP OQ ^.已知点()2,0M ,且M e 与l 相切.(1)求C ,M e 的方程;(2)设123,,A A A 是C 上的三个点,直线12A A ,13A A 均与M e 相切.判断直线23A A 与M e 的位置关系,并说明理由.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为r q =.(1)将C 的极坐标方程化为直角坐标方程;(2)设点A 的直角坐标为()1,0,M 为C 上的动点,点P 满足AP =u u u ru u u r,写出Р的轨迹1C 的参数方程,并判断C 与1C 是否有公共点.[选修4-5:不等式选讲]23.已知函数()2,()2321f x x g x x x =-=+--.(1)画出()y f x =和()y g x =的图像;(2)若()()f x a g x +³,求a 的取值范围.答案及解析一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设集合{}{}1,3,5,7,9,27M N x x ==>,则M N =I ()A.{}7,9 B.{}5,7,9 C.{}3,5,7,9 D.{}1,3,5,7,9【答案】B 【解析】【分析】求出集合N 后可求M N Ç.【详解】7,2N æö=+¥ç÷èø,故{}5,7,9M N Ç=,故选:B.2. 为了解某地农村经济情况,对该地农户家庭年收入进行抽样调查,将农户家庭年收入的调查数据整理得到如下频率分布直方图:根据此频率分布直方图,下面结论中不正确的是()A.该地农户家庭年收入低于4.5万元的农户比率估计为6%B.该地农户家庭年收入不低于10.5万元的农户比率估计为10%C.估计该地农户家庭年收入的平均值不超过6.5万元D.估计该地有一半以上的农户,其家庭年收入介于4.5万元至8.5万元之间【答案】C 【解析】【分析】根据直方图的意义直接计算相应范围内的频率,即可判定ABD,以各组的中间值作为代表乘以相应的频率,然后求和即得到样本的平均数的估计值,也就是总体平均值的估计值,计算后即可判定C.【详解】因为频率直方图中的组距为1,所以各组的直方图的高度等于频率.样本频率直方图中的频率即可作为总体的相应比率的估计值.该地农户家庭年收入低于4.5万元的农户的比率估计值为0.020.040.066%+==,故A 正确;该地农户家庭年收入不低于10.5万元的农户比率估计值为0.040.0230.1010%+´==,故B 正确;该地农户家庭年收入介于4.5万元至8.5万元之间的比例估计值为0.100.140.2020.6464%50%++´==>,故D 正确;该地农户家庭年收入的平均值的估计值为30.0240.0450.1060.1470.2080.2090.10100.10110.04120.02130.02140.027.68´+´+´+´+´+´+´+´+´+´+´+´=(万元),超过6.5万元,故C 错误.综上,给出结论中不正确的是C.故选:C.【点睛】本题考查利用样本频率直方图估计总体频率和平均值,属基础题,样本的频率可作为总体的频率的估计值,样本的平均值的估计值是各组的中间值乘以其相应频率然后求和所得值,可以作为总体的平均值的估计值.注意各组的频率等于´频率组距组距.3. 已知2(1)32i z i -=+,则z =()A.312i --B.312i -+C.32i -+ D.32i --【答案】B 【解析】【分析】由已知得322iz i+=-,根据复数除法运算法则,即可求解.【详解】2(1)232i z iz i -=-=+,32(32)23312222i i i i z i i i i ++×-+====-+--×.故选:B.4.下列函数中是增函数的为()A.()f x x =-B.()23xf x æö=ç÷èøC.()2f x x= D.()f x =【答案】D 【解析】【分析】根据基本初等函数的性质逐项判断后可得正确的选项.【详解】对于A ,()f x x =-为R 上的减函数,不合题意,舍.对于B ,()23xf x æö=ç÷èø为R 上的减函数,不合题意,舍.对于C ,()2f x x =在(),0-¥为减函数,不合题意,舍.对于D ,()f x =为R 上的增函数,符合题意,故选:D.5. 点()3,0到双曲线221169x y -=的一条渐近线的距离为()A.95B.85C.65 D.45【答案】A 【解析】【分析】首先确定渐近线方程,然后利用点到直线距离公式求得点到一条渐近线的距离即可.【详解】由题意可知,双曲线的渐近线方程为:220169x y -=,即340±=x y ,结合对称性,不妨考虑点()3,0到直线340x y +=的距离:d =故选:A.6. 青少年视力是社会普遍关注的问题,视力情况可借助视力表测量.通常用五分记录法和小数记录法记录视力数据,五分记录法的数据L 和小数记录表的数据V 的满足5lg L V =+.已知某同学视力的五分记录法的数据为4.9,则其视力的小数记录法的数据为()( 1.259»)A. 1.5 B. 1.2C. 0.8D. 0.6【答案】C 【解析】【分析】根据,L V 关系,当 4.9L =时,求出lg V ,再用指数表示V ,即可求解.【详解】由5lg L V =+,当 4.9L =时,lg 0.1V =-,则10.11010100.8V --===».故选:C .7.在一个正方体中,过顶点A 的三条棱的中点分别为E ,F ,G .该正方体截去三棱锥A EFG -后,所得多面体的三视图中,正视图如图所示,则相应的侧视图是()A. B. C. D.【答案】D 【解析】【分析】根据题意及题目所给的正视图还原出几何体的直观图,结合直观图进行判断.【详解】由题意及正视图可得几何体的直观图,如图所示,所以其侧视图为故选:D8. 在ABC V 中,已知120B =°,AC =,2AB =,则BC =()A.1B.C.3【答案】D 【解析】【分析】利用余弦定理得到关于BC 长度的方程,解方程即可求得边长.【详解】设,,AB c AC b BC a ===,结合余弦定理:2222cos b a c ac B =+-可得:21942cos120a a =+-´´o ,即:22150a a +-=,解得:3a =(5a =-舍去),故3BC =.故选:D.【点睛】利用余弦定理及其推论解三角形的类型:(1)已知三角形的三条边求三个角;(2)已知三角形的两边及其夹角求第三边及两角;(3)已知三角形的两边与其中一边的对角,解三角形.9. 记n S 为等比数列{}n a 的前n 项和.若24S =,46S =,则6S =()A.7 B.8 C.9 D.10【答案】A 【解析】【分析】根据题目条件可得2S ,42S S -,64S S -成等比数列,从而求出641S S -=,进一步求出答案.【详解】∵n S 为等比数列{}n a 的前n 项和,∴2S ,42S S -,64S S -成等比数列∴24S =,42642S S -=-=∴641S S -=,∴641167S S =+=+=.故选:A.10. 将3个1和2个0随机排成一行,则2个0不相邻的概率为()A. 0.3B. 0.5C. 0.6D. 0.8【答案】C 【解析】【分析】利用古典概型的概率公式可求概率.【详解】解:将3个1和2个0随机排成一行,可以是:00111,01011,01101,01110,10011,10101,10110,11001,11010,11100,共10种排法,其中2个0不相邻的排列方法为:01011,01101,01110,10101,10110,11010,共6种方法,故2个0不相邻的概率为6=0.610,故选:C.11.若cos 0,,tan 222sin p a a a a æöÎ=ç÷-èø,则tan a =()A.15B.5C.3D.3【答案】A 【解析】【分析】由二倍角公式可得2sin 22sin cos tan 2cos 212sin a a a a a a ==-,再结合已知可求得1sin 4a =,利用同角三角函数的基本关系即可求解.【详解】cos tan 22sin aa a=-Q 2sin 22sin cos cos tan 2cos 212sin 2sin a a a aa a a a\===--,0,2p a æöÎç÷èøQ ,cos 0a \¹,22sin 112sin 2sin a a a \=--,解得1sin 4a =,cos 4a \==,sin tan cos 15a a a \==.故选:A.【点睛】关键点睛:本题考查三角函数的化简问题,解题的关键是利用二倍角公式化简求出sin a .12.设()f x 是定义域为R 的奇函数,且()()1f x f x +=-.若1133f æö-=ç÷èø,则53f æö=ç÷èø()A.53-B.13-C.13D.53【答案】C 【解析】【分析】由题意利用函数的奇偶性和函数的递推关系即可求得53f æöç÷èø的值.【详解】由题意可得:522213333f f f f æöæöæöæö=+=-=-ç÷ç÷ç÷ç÷èøèøèøèø,而21111133333f f f f æöæöæöæö=-==--=-ç÷ç÷ç÷ç÷èøèøèøèø,故5133f æö=ç÷èø.故选:C.【点睛】关键点点睛:本题主要考查了函数的奇偶性和函数的递推关系式,灵活利用所给的条件进行转化是解决本题的关键.二、填空题:本题共4小题,每小题5分,共20分.13.若向量,a b r r满足3,5,1a a b a b =-=×=r r r r r ,则b =r _________.【答案】【解析】【分析】根据题目条件,利用a b -r r模的平方可以得出答案【详解】∵5a b -=r r∴222229225a b a b a b b -=+-×=+-=r r r r r r r∴b =r.故答案为:14.已知一个圆锥的底面半径为6,其体积为30p 则该圆锥的侧面积为________.【答案】39p 【解析】【分析】利用体积公式求出圆锥的高,进一步求出母线长,最终利用侧面积公式求出答案.【详解】∵216303V h p p =×=∴52h =∴132l ===∴136392S rl p p p ==´´=侧.故答案为:39p .15.已知函数()()2cos f x x w j =+的部分图像如图所示,则2f p æö=ç÷èø_______________.【答案】【解析】【分析】首先确定函数的解析式,然后求解2f p æöç÷èø的值即可.【详解】由题意可得:31332,,241234T T Tp p p pp w =-=\===,当1312x p =时,()131322,2126x k k k Z p w j j p j p p +=´+=\=-Î,令1k =可得:6pj =-,据此有:()52cos 2,2cos 22cos62266f x x f p p p p p æöæöæö=-=´-==ç÷ç÷ç÷èøèøèø.故答案为:.【点睛】已知f (x )=Acos (ωx +φ)(A >0,ω>0)的部分图象求其解析式时,A 比较容易看图得出,困难的是求待定系数ω和φ,常用如下两种方法:(1)由ω=2Tp即可求出ω;确定φ时,若能求出离原点最近的右侧图象上升(或下降)的“零点”横坐标x 0,则令ωx 0+φ=0(或ωx 0+φ=π),即可求出φ.(2)代入点的坐标,利用一些已知点(最高点、最低点或“零点”)坐标代入解析式,再结合图形解出ω和φ,若对A ,ω的符号或对φ的范围有要求,则可用诱导公式变换使其符合要求.16.已知12,F F 为椭圆C :221164x y+=的两个焦点,P ,Q 为C 上关于坐标原点对称的两点,且12PQ F F =,则四边形12PFQF 的面积为________.【答案】8【解析】【分析】根据已知可得12PF PF ^,设12||,||PF m PF n ==,利用勾股定理结合8m n +=,求出mn ,四边形12PFQF 面积等于mn ,即可求解.【详解】因为,P Q 为C 上关于坐标原点对称的两点,且12||||PQ F F =,所以四边形12PFQF 为矩形,设12||,||PF m PF n ==,则228,48m n m n +=+=,所以22264()2482m n m mn n mn =+=++=+,8mn =,即四边形12PFQF 面积等于8.故答案为:8.三、解答题:共70分.解答应写出交字说明、证明过程程或演算步骤,第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.甲、乙两台机床生产同种产品,产品按质量分为一级品和二级品,为了比较两台机床产品的质量,分别用两台机床各生产了200件产品,产品的质量情况统计如下表:一级品二级品 合计甲机床15050200乙机床12080200合计270130400(1)甲机床、乙机床生产的产品中一级品的频率分别是多少?(2)能否有99%的把握认为甲机床的产品质量与乙机床的产品质量有差异?附:22()()()()()n ad bc K a b c d a c b d -=++++()2P K k ³0.0500.0100.001k 3.841 6.63510.828【答案】(1)75%;60%;(2)能.【解析】【分析】根据给出公式计算即可【详解】(1)甲机床生产的产品中的一级品的频率为15075%200=,乙机床生产的产品中的一级品的频率为12060%200=.(2)()22400150801205040010 6.63527013020020039K ´-´==>>´´´,故能有99%的把握认为甲机床的产品与乙机床的产品质量有差异.18.记n S 为数列{}n a 的前n 项和,已知210,3n a a a >=,且数列是等差数列,证明:{}na 是等差数列.【答案】证明见解析.【解析】【分析】先根据的公差d ,进一步写出的通项,从而求出{}na 的通项公式,最终得证.【详解】∵数列是等差数列,设公差为d =-==(n =+-=,()n *ÎN ∴12n S a n =,()n *ÎN ∴当2n ³时,()221111112n n n a S S a n a n a n a -=-=--=-当1n =时,11121=a a a ´-,满足112n a a n a =-,∴{}n a 的通项公式为112n a a n a =-,()n *ÎN ∴()()111111221=2n n a a a n a a n a a --=----éùëû∴{}n a 是等差数列.【点睛】在利用1n n n a S S -=-求通项公式时一定要讨论1n =的特殊情况.19. 已知直三棱柱111ABC A B C -中,侧面11AA B B 为正方形,2AB BC ==,E ,F 分别为AC 和1CC 的中点,11BF A B ^.(1)求三棱锥F EBC -的体积;(2)已知D 为棱11A B 上的点,证明:BF DE ^.【答案】(1)13;(2)证明见解析.【解析】【分析】(1)首先求得AC 的长度,然后利用体积公式可得三棱锥的体积;(2)将所给的几何体进行补形,从而把线线垂直的问题转化为证明线面垂直,然后再由线面垂直可得题中的结论.【详解】(1)如图所示,连结AF ,由题意可得:BF ===,由于AB ⊥BB 1,BC ⊥AB ,1BB BC B =I ,故AB ^平面11BCC B ,而BF Ì平面11BCC B ,故AB BF ^,从而有3AF ===,从而AC ===,则222,AB BC AC AB BC +=\^,ABC V 为等腰直角三角形,111221222BCE ABC S s æö==´´´=ç÷èø△△,11111333F EBC BCE V S CF -=´´=´´=△.(2)由(1)的结论可将几何体补形为一个棱长为2的正方体1111ABCM A B C M -,如图所示,取棱,AM BC 的中点,H G ,连结11,,A H HG GB ,正方形11BCC B 中,,G F 为中点,则1BF B G ^,又111111,BF A B A B B G B ^=I ,故BF ^平面11A B GH ,而DE Ì平面11A B GH ,从而BF ^DE .【点睛】求三棱锥的体积时要注意三棱锥的每个面都可以作为底面,例如三棱锥的三条侧棱两两垂直,我们就选择其中的一个侧面作为底面,另一条侧棱作为高来求体积.对于空间中垂直关系(线线、线面、面面)的证明经常进行等价转化.20. 设函数22()3ln 1f x a x ax x =+-+,其中0a >.(1)讨论()f x 的单调性;(2)若()y f x =的图象与x 轴没有公共点,求a 的取值范围.【答案】(1)()f x 的减区间为10,a æöç÷èø,增区间为1,+a æö¥ç÷èø;(2)1a e >.【解析】【分析】(1)求出函数的导数,讨论其符号后可得函数的单调性.(2)根据()10f >及(1)的单调性性可得()min 0f x >,从而可求a 的取值范围.【详解】(1)函数的定义域为()0,¥+,又()23(1)()ax ax f x x+-¢=,因为0,0a x >>,故230ax +>,当10x a <<时,()0f x ¢<;当1x a>时,()0f x ¢>;所以()f x 的减区间为10,a æöç÷èø,增区间为1,+a æö¥ç÷èø.(2)因为()2110f a a =++>且()y f x =的图与x 轴没有公共点,所以()y f x =的图象在x 轴的上方,由(1)中函数的单调性可得()min 1133ln 33ln f x f a a a æö==-=+ç÷èø,故33ln 0a +>即1a e>.【点睛】方法点睛:不等式的恒成立问题,往往可转化为函数的最值的符号来讨论,也可以参变分离后转化不含参数的函数的最值问题,转化中注意等价转化.21. 抛物线C 的顶点为坐标原点O .焦点在x 轴上,直线l :1x =交C 于P ,Q 两点,且OP OQ ^.已知点()2,0M ,且M e 与l 相切.(1)求C ,M e 的方程;(2)设123,,A A A 是C 上的三个点,直线12A A ,13A A 均与M e 相切.判断直线23A A 与M e 的位置关系,并说明理由.【答案】(1)抛物线2:C y x =,M e 方程为22(2)1x y -+=;(2)相切,理由见解析【解析】【分析】(1)根据已知抛物线与1x =相交,可得出抛物线开口向右,设出标准方程,再利用对称性设出,P Q 坐标,由OP OQ ^,即可求出p ;由圆M 与直线1x =相切,求出半径,即可得出结论;(2)先考虑12A A 斜率不存在,根据对称性,即可得出结论;若121323,,A A A A A A 斜率存在,由123,,A A A 三点在抛物线上,将直线121223,,A A A A A A 斜率分别用纵坐标表示,再由1212,A A A A 与圆M 相切,得出2323,y y y y +×与1y 的关系,最后求出M 点到直线23A A 的距离,即可得出结论.【详解】(1)依题意设抛物线200:2(0),(1,),(1,)C y px p P y Q y =>-,20,1120,21OP OQ OP OQ y p p ^\×=-=-=\=uu u r uu u r Q ,所以抛物线C 的方程为2y x =,(0,2),M M e 与1x =相切,所以半径为1,所以M e 的方程为22(2)1x y -+=;(2)设111222333(),(,),(,)A x y A x y A x y 若12A A 斜率不存在,则12A A 方程为1x =或3x =,若12A A 方程为1x =,根据对称性不妨设1(1,1)A ,则过1A 与圆M 相切的另一条直线方程为1y =,此时该直线与抛物线只有一个交点,即不存在3A ,不合题意;若12A A 方程为3x =,根据对称性不妨设12(3,A A则过1A 与圆M 相切的直线13A A为(3)3y x -=-,又1313313131,03A A y y k y x x y y -====\=-+,330,(0,0)x A =,此时直线1323,A A A A 关于x 轴对称,所以直线23A A 与圆M 相切;若直线121323,,A A A A A A 斜率均存在,则121323121323111,,A A A A A A k k k y y y y y y ===+++,所以直线12A A 方程为()11121y y x x y y -=-+,整理得1212()0x y y y y y -++=,同理直线13A A 的方程为1313()0x y y y y y -++=,直线23A A 的方程为2323()0x y y y y y -++=,12A A Q 与圆M相切,1=整理得22212121(1)230y y y y y -++-=,13A A 与圆M 相切,同理22213131(1)230y y y y y -++-=所以23,y y 为方程222111(1)230y y y y y -++-=的两根,2112323221123,11y y y y y y y y -+=-×=--,M 到直线23A A的距离为:2123|2|y -+=221==,所以直线23A A 与圆M 相切;综上若直线1213,A A A A 与圆M 相切,则直线23A A 与圆M 相切.【点睛】关键点点睛:(1)过抛物线上的两点直线斜率只需用其纵坐标(或横坐标)表示,将问题转化为只与纵坐标(或横坐标)有关;(2)要充分利用1213,A A A A 的对称性,抽象出2323,y y y y +×与1y 关系,把23,y y 的关系转化为用1y 表示.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为r q =.(1)将C 的极坐标方程化为直角坐标方程;(2)设点A 的直角坐标为()1,0,M 为C 上的动点,点P 满足AP =u u u ru u u r,写出Р的轨迹1C 的参数方程,并判断C 与1C 是否有公共点.【答案】(1)(222x y -+=;(2)P 的轨迹1C 的参数方程为32cos 2sin x y qqì=-+ïí=ïî(q 为参数),C 与1C 没有公共点.【解析】【分析】(1)将曲线C 的极坐标方程化为2cos r q =,将cos ,sin x y r q r q ==代入可得;(2)设(),P x y ,设)Mq q +,根据向量关系即可求得P 的轨迹1C 的参数方程,求出两圆圆心距,和半径之差比较可得.【详解】(1)由曲线C 的极坐标方程r q =可得2cos r q =,将cos ,sin x y r q r q ==代入可得22x y +=,即(222x y -+=,即曲线C 的直角坐标方程为(222x y +=;(2)设(),P x y ,设)Mq qQAP =u u u r u u u r,())()1,22cos x y q q q q \-=+-=+,则122cos 2sin x y q q ì-=+ïí=ïî,即32cos 2sin x y q q ì=+ïí=ïî,故P 的轨迹1C 的参数方程为32cos 2sin x y qqì=+ïí=ïî(q 为参数)Q曲线C 的圆心为),曲线1C 的圆心为()3-,半径为2,则圆心距为3-,32-<-Q ,\两圆内含,故曲线C 与1C 没有公共点.【点睛】关键点睛:本题考查参数方程的求解,解题的关键是设出M 的参数坐标,利用向量关系求解.[选修4-5:不等式选讲]23.已知函数()2,()2321f x x g x x x =-=+--.(1)画出()y f x =和()y g x =的图像;(2)若()()f x a g x +³,求a 的取值范围.【答案】(1)图像见解析;(2)112a ³【解析】【分析】(1)分段去绝对值即可画出图像;(2)根据函数图像数形结和可得需将()y f x =向左平移可满足同角,求得()y f x a =+过1,42A æöç÷èø时a 的值可求.【详解】(1)可得2,2()22,2x x f x x x x -<ì=-=í-³î,画出图像如下:34,231()232142,2214,2x g x x x x x x ì-<-ïïï=+--=+-£<íïï³ïî,画出函数图像如下:(2)()|2|f x a x a +=+-,如图,在同一个坐标系里画出()(),f x g x 图像,()y f x a =+是()y f x =平移了a 个单位得到,则要使()()f x a g x +³,需将()y f x =向左平移,即0a >,当()y f x a =+过1,42A æöç÷èø时,1|2|42a +-=,解得112a =或52-(舍去),则数形结合可得需至少将()y f x =向左平移112个单位,112a \³.【点睛】关键点睛:本题考查绝对值不等式的恒成立问题,解题的关键是根据函数图像数形结合求解.。
2021年全国统一高考数学试卷(文科)(新课标ⅰ)(含解析版)
2021年普通高等学校招生全国统一考试(全国乙卷)数学(文)一、选择题1.已知全集{1,2,3,4,5}U =,集合{1,2}M =,{3,4}N =,则)(U C M N =U ( )A.{5}B.{1,2}C.{3,4}D.{1,2,3,4} 2.设43izi =+,则z =( )A.34i --B.–34i +C.34i -D.34i +3.已知命题:,sin 1p x R x ∃∈<;命题||:,1x q x R e ∈∀≥,则下列命题中为真命题的是( )A.p q ∧B.p q ⌝∧C.p q ∧⌝D.()p q ⌝∨答案: A 解析:根据正弦函数的值域sin [1,1]x ∈-,sin 1x <,故x R ∃∈,p 为真命题,而函数||x y e =为偶函数,且0x ≥时,1xy e =≥,故x R ∀∈,||1x y e =≥恒成立.则q 也为真命题,所以p q ∧为真,选A.4.函数()sin cos 33x xf x =+的最小正周期和最大值分别是( ) A.3πB.3π和2C.6πD.6π和2 答案: C 解析:()sin()34x f x π=+max ()f x =,2613T ππ==.故选C.5.若,x y 满足约束条件2,3,4,y x y x y ≤≤+≥⎧⎪-⎨⎪⎩则3z x y =+的最小值为( )A.18B.10C.6D.4答案: C 解析:根据约束条件可得图像如下,3z x y =+的最小值,即3y x z =-+,y 轴截距最小值.根据图像可知3y x z =-+过点(1,3)B 时满足题意,即min 336z =+=.6.225cos cos 1212ππ-=( ) A.12B.33 C.22 D.32答案: D 解析:2222223()sin cos 25cos cos cos cos cos 12121212121262ππππππππ-=-=--==∴选D. 7.在区间1(0,)2随机取1个数,则取到的数小于13的概率为( )A.34 B.23 C.13 D.16答案: B解析:在区间1(0,)2随机取1个数,可知总长度12d =,取到的数小于13,可知取到的长度范围13d '=,根据几何概型公式123132d p d '===,∴选B.8.下列函数中最小值为4的是( ) A.224y x x =++B.4|sin ||sin |y x x =+C.222x x y -=+D.4n ln l y x x=+答案: C 解析:对于A ,22224213(1)33y x x x x x =++=+++=++≥.不符合,对于B ,4|sin ||sin |y x x =+,令|sin |[0,1]t x =∈,∴4y t t=+,根据对勾函数min 145y =+=不符合,对于C ,242222x x x xy -==++,令20xt =>,∴4224y t t =+≥=⨯=, 当且仅当2t =时取等,符合,对于D ,4n ln l y x x =+,令ln t x R =∈,4y t t=+. 根据对勾函数(,4][4,)y ∈-∞-+∞U ,不符合. 9.设函数1(1)xf x x-=+,则下列函数中为奇函数的是( ) A.1()1f x --B.1()1f x -+C.1()1f x +-D.1()1f x ++答案: B 解析:12()111x f x x x-==-+++, ()f x 向右平移一个单位,向上平移一个单位得到2()g x x=为奇函数. 所以选B.10.在正方体1111ABCD A B C D -中,P 为11B D 的中点,则直线PB 与1AD 所成的角为A.2πB.3πC.4πD.6π 答案: D 解析:做出图形,11//AD BC ,所以1PBC ∠为异面直线所成角,设棱长为1.1BC =,12B P =,12PC =,2BP =. 2221111312cos 22BC BP C P PBC BP BC +-+-∠===⋅,即16PBC π∠=,故选D.11.设B 是椭圆C :2215x y +=的上顶点,点P 在C 上,则PB 的最大值为 A.526 5D.2 答案: A 解析:方法一:由22:15x C y +=,(0,1)B则C 的参数方程:5sin x y θθ⎧=⎪⎨=⎪⎩.22||(sin 1)(5cos )PB θθ=-+24sin 2sin 6θθ=--+212554(sin )442θ=-++≥.∴max 5||2PB =,故选A. 方法二:设00(,)P x y ,则220001([1,1])5x y y +=∈-①,(0,1)B . 因此22200||(1)PB x y =+-② 将①式代入②式化简得:22012525||4()444PB y =-++≥,当且仅当014y =-时||PB 的最大值为52,故选A.12.设0a ≠,若x a =为函数2()()()f x a x a x b =--的极大值点,则 A.a b < B.a b > C.2ab a < D.2ab a > 答案: D 解析:2()2()()()()(32)f x a x a x b a x a a x a x b a '=--+-=---当0a >时,原函数先增再减后增.原函数在()0f x '=的较小零点时取得极大值. 即23a b a +<,即a b <,∴2a ab <. 当0a <时,原函数先减再增后减.原函数在()0f x '=的较大零点时取得极大值. 即23a b a +>,a b >,2a ab <,故选D. 二、填空题13.已知向量(2,5)a =r,(,4)b λ=r ,若//a b r r ,则λ= .答案:85解析:由已知//a b r r 可得82455λλ⨯=⇒=.14.双曲线22145x y -=的右焦点到直线280x y +-=的距离为 . 答案:5解析:22145x y -=的右焦点为(3,0),到直线280x y +-=的距离22|38|512d -==+. 15.记ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,面积为3,60B =︒,223a c ac +=,则b = .答案:22解析: 由面积公式1sin 32S ac B ==,且60B =︒,解得4ac =, 又由余弦定理2222cos b a c ac B =+-,223a c ac +=,且0b > 解得22b =.16.以图①为正视图,在图②③④⑤中选两个分别作为侧视图和俯视图,组成某个三棱锥的三视图,则所选侧视图和俯视图的编号依次为 (写出符合要求的一组答案即可).答案: ②⑤或③④ 解析:由高度可知,侧视图只能为②或③.侧视图为②,如图(1),平面PAC ⊥平面ABC ,2PA PC ==5BA BC ==,2AC =,俯视图为⑤.俯视图为③,如图(2),PA ⊥平面ABC ,1PA =,5AC AB ==,2BC =,俯视图为④.17.某厂研制了一种生产高精产品的设备,为检验新设备生产产品的某项指标有无提高,用一台旧设备和一台新设备各生产了10件产品,得到各件产品该项指标数据如下: 旧设备 9.810.310.0 10.2 9.9 9.8 10.0 10.1 10.2 9.7 新设备 10.1 10.4 10.110.010.110.310.610.510.410.5旧设备和新设备生产产品的该项指标的样本平均数分别记为x 和y ,样本方差分别记为21s 和22s . (1)求x ,y ,21s ,22s ;(2)判断新设备生产产品的该项指标的均值较旧设备是否有显著提高(如果2212210s s y x +-≥不认为有显著提高). 答案:见解析 解析:9.810.31010.29.99.81010.110.29.71010x ++++++++==+;10.110.410.11010.110.310.610.510.410.510.310y ++++++++==+.211(0.040.090.040.010.040.010.040.09)10s =+++++++10.360.03610=⨯= 221(0.040.010.040.090.040.090.040.010.04)10s =++++++++10.40.0410=⨯=. (2)10.3100.3y x -=-=22120.0360.04221010s s ++=20.0076=. ∵则0.30.0920.0760.0304=>=,所以可判断新设备生产产品的该项指标的均值较旧设备有显著提高; 没有显著提高.18.如图,四棱锥P ABCD -的底面是矩形,PD ⊥底面ABCD ,M 为BC 的中点,且PB AM ⊥.(1)证明:平面PAM ⊥平面PBD ﹔(2)若1PD DC ==,求四棱锥P ABCD -的体积.答案: 见解析 解析:19.设{}n a 是首项为1的等比数列,数列{}n b 满足3nn na b =.已知1a ,23a ,39a ,成等差数列.(1)求{}n a 和{}n b 的通项公式;(2)记n S ,和n T 分别为{}n a 和{}n b 的前n 项和.证明:2nn S T <. 答案: 见解析 解析:设{}n a 的公比为q ,则1n n a q-=,因为1a ,23a ,39a 成等差数列,所以21923q q +=⨯,解得13q =, 故11()3n n a -=,11313(1)12313n n n S -==--. 又3n n n b =,则1231123133333n n n n nT --=+++++L ,两边同乘13,则234111231333333n n n n n T +-=+++++L ,两式相减,得23412111113333333n n n nT +=+++++-L ,即1111(1)1133(1)332333121n n n n n n n T ++-=-=---, 整理得31323(1)4323423n n n nn n T +=--=-⨯⨯, 323314322()(1)04232323n n n n nn n T S ++-=---=-<⨯⨯,故2n n S T <.20.已知抛物线C :22(0)y px p =>的焦点F 到准线的距离为2. (1)求C 的方程,(2)已知O 为坐标原点,点P 在C 上,点Q 满足9PQ QF =u u u r u u u r,求直线OQ 斜率的最大值.答案:见解析 解析:(1)由焦点到准线的距离为p ,则2p =. 抛物线c 的方程:24y x =.(2)设点200(,)4y P y ,(,)Q Q Q x y ,(1,0)F .∵9PQ QF =u u u r u u u r .∴222000009499(,)9(1,)4104910Q Q Q Q Q Q Q Q Q Q y y x x x y x y y x y y y x y y ⎧+⎪⎧-=-=⎪⎪--=--⇒⇒⎨⎨⎪⎪-=-⎩=⎪⎩则020001193944Q OQ Qy y k y y x y ===≤=++. ∴直线OQ 斜率的最大值为13. 21.已知函数32()1f x x x ax =-++. (1)讨论()f x 的单调性;(2)求曲线()y f x =过坐标原点的切线与曲线()y f x =的公共点的坐标. 答案: 见解析 解析:(1)2()32f x x x a '=-+(i )当4120a ∆=-≤,即13a ≥时,()0f x '≥恒成立,即()f x 在()f x 在x ∈R 上单调递增.(ii )当4120∆=->,即13a <时,()0f x '=解得,113x =,213x +=.∴()f x 在113(,3a --∞,113(,)3a -+∞单调递增,在113113(33a a-++单调递减,综上所述:当13a ≥时,()f x 在R 上单调递增;当13a <时,()f x 在113113(,33a a--+单调递减.(2)设可原点切线的切点为32(,1)t t t at -++,切线斜率2()32k f t t t a '==-+.又321t t at k t-++=,可得322132t t at t t a t -++=-+.化简得2(1)(21)0t t t -++=,即1t =.∴切点为(1,1)a +,斜率1k a =+,切线方程为(1)y a x =+,将(1)y a x =+,321y x x ax =-++联立可得321(1)x x ax a x -++=+,化简得2(1)(1)0x x -+=,解得11x =,21x =-.∴过原点的切线与()y f x =公共点坐标为(1,1)a +,(1,1)a ---.22.在直角坐标系xOy 中,C e 的圆心为)(2,1C ,半径为1. (1)写出C e 的一个参数方程;(2)过点)(4,1F 作C e 的两条切线.以坐标原点为极点,x 轴正半轴为极轴建立坐标系,求这两条切线的极坐标方程. 答案: 见解析 解析:(1)C e 的参数方程为2cos 1sin x y θθ=+⎧⎨=+⎩(θ为参数)(2)C e 的方程为22(2)(1)1x y -+-=①当直线斜率不存在时,直线方程为4x =,此时圆心到直线距离为2r >,舍去;②当直线斜率存在时,设直线方程为1(4)y k x -=-,化简为410kx y k --+=, 此时圆心(2,1)C 到直线的距离为1d r ===,化简得2||k =,两边平方有2241k k =+,所以3k =±代入直线方程并化简得40x -+-=或40x =化为极坐标方程为5cos sin 4sin()46πρθθρθ-=-⇔+=-或cos sin 4sin()46πρθθρθ+=+⇔+=23.已知函数()|||3|f x x a x =-++. (1)当1a =时,求不等式()6f x ≥的解集; (2)若()f x a >-,求a 的取值范围. 答案: 见解析 解析:当1a =时,()6|1||3|6f x x x ≥⇔-++≥,当3x ≤-时,不等式136x x ⇔---≥,解得4x ≤-; 当31x -<<时,不等式136x x ⇔-++≥,解得x ∈∅; 当1x ≥时,不等式136x x ⇔-++≥,解得2x ≥. 综上,原不等式的解集为(,4][2,)-∞-+∞U . (2)若()f x a >-,即min ()f x a >-,因为()|||3||()(3)||3|f x x a x x a x a =-++≥--+=+(当且仅当()(3)0x a x -+≤时,等号成立),所以min ()|3|f x a =+,所以|3|a a +>-,即3a a +<或3a a +>-,解得3(,)2a ∈-+∞.。
文科《高等数学》1-3答案
、填空题(每小题3分,共15分)1.()()_______________.f x dx '=⎰ ()f x 2.21x t d te dt dx =⎰2x xe. 3.321421sin 1x xdx x x -+-⎰=___0__.4.方程310y y ''++=是 二阶 阶的微分方程. 5.设2212,x xy e y xe ==都是某二阶线性齐次方程的解, 则该方程的通解为____2212x xC eC xe +____1、()dF x =⎰()F x C + . 2、20cos limxx t dt x→=⎰ 1 .3、11||x x dx -=⎰0 . 4、微分方程92cos3y y x ''+=的特解形式为 ()c o s 3s i n 3x a x b x + _____ . 5、52sin xdx π=⎰15. 1、()d f x dx ⎡⎤=⎣⎦⎰()f x dx. 2、d dx⎰3、20_______________________.x td e dt dx -=⎰22x xe - 4、2ln ___________().x y xy y x x '''++=微分方程是否是线性的填是或不是是5、(1)1____________().xy x Ce x y y '=+-+=函数是否是微分方程的解填是或不是不是 二、求下列积分(每小题5分,共45分) 1. ()xx e dx +⎰ 原式=212xx e C ++ 2.22(sec )x x dx +⎰ 原式3tan 3x x c =++3.123dx x -⎰ 原式=111(23)ln |23|2232d x x c x -=-+-⎰ 4.sin 2x dx ⎰ 原式=2sin 2cos 222xx xd C =-+⎰.5.⎰=2,,2,t x t dx tdt=⇒==211122(1)1112(ln |1|)ln |1.t t dt dt dt t t t t t C C +-===-+++=-++=++⎰⎰⎰6.3x xe dx ⎰原式333333*********.3333939x x x x x x x xde xe e dx xe e d x xe e C ==-=-=-+⎰⎰⎰ 7.122(105)x dx --+⎰原式1123221125(105)(105)(105).5153x d x x ----=++=+=⎰ 8.120arcsin xdx ⎰原式[]111220011arcsin (1)262x x x π=-=⋅+-⎰⎰120 1.1212ππ=+=+-9.140⎰原式=()2112t x t dx tdt =-=-令,,())123240111111122233t t dx tdt t dt t t ⎛-=-=--=--=- ⎝⎰1.(2sin )x x dx +⎰原式2cos x x c =-+ 2.21()1x e dx x-++⎰ 原式=arctan x e x c --++ 3.ln x dx x ⎰ 原式=21ln ln (ln )2xd x x c =+⎰ 4.5(13)x dx +⎰原式=5611(13)(13)(13)318x d x x c ++=++⎰ 5.arctan xdx ⎰原式=2arctan arctan arctan 1xx x xd x x x dx x⋅-=⋅-+⎰⎰()222111arctan 1arctan ln 1.221x x d x x x x C x =⋅-+=⋅-+++⎰ 6.(12)sin x xdx π-⎰原式=00(12)(cos )(12)cos cos (12)o x d x x x xd x πππ--=--+-⎰⎰222cos 222sin 22odx xπππππ=--=--=-⎰7.320cos sin x xdx π⎰原式= ()34442200111cos cos cos (cos cos 0).4424xd x x πππ-=-=--=⎰8.1221xe dx x ⎰原式)2112111.x x e d e e x ⎛⎫=-=-=- ⎪⎝⎭⎰9.1⎰令2,2t x t dx tdt ===原式=11111000222|222|2t t t t t e tdt tde te e dt e e ⋅==-=-=⎰⎰⎰1. 2(13)x dx -⎰原式= 3x x c -+2.21(1dx x -+⎰ 原式=21arctan arcsin 1dx x x C x -=-++⎰ 3. 221(1)x x dx x x +++⎰ 原式=2222(1)1111arctan ln (1)11x x dx dx dx dx x x C x x x x x x ++⎛⎫=+=+=++ ⎪+++⎝⎭⎰⎰⎰⎰4.2sec (12)x dx -⎰原式211sec (12)(12)tan(12).22x d x x C =---=--+⎰ 5.1xx e dx e +⎰ 原式=1(1)ln(1)1x xx d e e c e +=+++⎰6. 3ln x xdx ⎰ 原式= 44443111ln ln (ln )ln 44444x x xd x x d x x x x dx =-=-⎰⎰⎰4411ln 416x x x C =-+ 7.120x e dx ⎰原式=1221200111(2)(1)222x xe d x e e ==-⎰ 8.2121arcsin 1x x x dx x -+-+⎰ 原式=22111122221100arcsin 12211111x x x x dx dx dx dx x x x x ---⎛⎫+==- ⎪++++⎝⎭⎰⎰⎰⎰ ()102arctan 22x x π=-=-9.320cos xdx π⎰原式=22222220cos cos (1sin )sin sin sin sin x xdx x d x d x xd x ππππ=-=-⎰⎰⎰⎰32200112sin sin 1333xx ππ=-=-=10.140⎰()2112t x t dx tdt =-=-令,, 原式=())232111111122233tttdt t dt t t⎛--=--=--=- ⎝11.120x xe dx -⎰原式=11112222200001111()[(2)]2222x x xx xde xe e dx e e d x ------=--=-+-⎰⎰⎰ 12220111()(13)224x e e e ---=-+=-三、(10分)求由抛物线22,y x y x ==所围成图形的面积22(0,0),(1,1)y xy x⎧=⎪⇒⎨=⎪⎩ 3312120021)()|333x A x dx x ==-=⎰三.求由曲线2y x =与直线y x =所围成的平面图形的面积,以及此图形绕x 轴旋转所得旋转体的体积.1132120021)()326x S x dx x =-=-=⎰ 11112230.236V xdx x dx xx πππππ=-=-=⎰⎰三、(10分)求由曲线21,y x =+ 直线0,0y x ==和1x =所围成的平面图形的面积, 以及此图形绕x 轴旋转所得旋1231014(1)()33S x dx x x =+=+=⎰ 511224221000228(1)(21)()5315x V x dx x x dx x x ππππ=+=++=++=⎰⎰ 四(10分)求方程sin cos xy y x e-'+=的通解.cos cos sin ()xdx xdxx y e e e dx c --⎰⎰=⋅+⎰sin sin sin sin ()()x x x x e e e dx c e x c ---=⋅+=+⎰sin ()x e x c -=+四、(10分)求方程()221dyxy xx y dx +=-的通解. 22133,,dy dy xx y xy dx dx y x -=-=解方程可变形为分离变量得()22131313113,11ln 3ln ln ln ln ln ,,.x xdy x dx dx dx y x x xy x C e C x x C y e C x---⇒==-⇒=--+=++⇒=⎰⎰⎰⎰为任意常数四、(10分)求微分方程xy y e-'+=满足初始条件0|0x y ==的特解.[][]dx dxx x x x y e e e dx c e e e dx c ----⎰⎰=⋅+=⋅+⎰⎰[]()x x e dx c e x c --=+=+⎰00|0,0(0)0x y e c c ==⇒=+⇒=所求特解为xy xe-=五、(10分)求方程2xy y y e -'''++=的通解.212:20,210,1,y y y r r r r '''++=++===-解对应齐次方程 -12*2*2*2*2-212(),(2)1(24),21,211,().22xx x x x x x y C x C e y Ax e y Ae x x y Ae x x A A y x e y C x C e x e '--''---=+==-=-+====++对应齐次方程通解非齐次方程特解为则代入非齐次方程比较系数得通解五、(10分)求解微分方程yxy y e x'=+令y u x=,则''','u u y u xu u xu e u xu e =+⇒+=+⇒= 1ln ln u u yxe du dx e x cx ex c---⇒=⇒-==⇒-=+⎰⎰ 五、(10分)求方程cos y y x ''+=的通解.212:10,,cos sin r r i Y C x C x +=⇒=±⇒=+特征方程 **121(cos sin )0,21sin 21cos sin sin 2y x A x B x A B y x x y C x C x x x =+⇒==∴=⇒=++设六、(10分)求解微分方程320y y y '''++=特征方程:2123202,1r r r r ++=⇒=-=- 方程的通解为:212xx y c ec e --=+六、(10分)求方程x yy e x'+=满足初始条件1|0x y ==的特解. 1111()()[(1)]dxdxxx x x x y ee edx c e xdx c x e c x x-⎰⎰=⋅+=⋅+=-+⎰⎰1|0,0x y c ==∴=故特解为:1xx y e x-=。
2020年普通高等学校招生全国统一考试(文科)数学试卷 (解析)
2020年普通高等学校招生全国统一考试文科数学(全国卷三)第Ⅰ卷一.选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确作案填在答题卡上。
每小题5分,共60分。
1. 已知集合1{=A ,2,3,5,7,}11,}153|{<<=x x B ,则B A 中元素的个数为( ) A.2 B.3C. 4D. 5【答案】B【解析】}11,7,5{=B A ,故选B 2. i i z -=+1)1(,则=z ( )A.i -1B.i +1C.i -D.i【答案】D 【解析】i iiz -=+-=11,i z =故选D 3. 设一组样本数据1x ,2x ,n x 的方差为01.0,则数据110x ,210x ,n x 10 的方差为( ) A.01.0 B. 1.0C. 1D. 10【答案】C【解析】n x x x ,...,,21由公式的公差为01.02=s ,n x x x 10,...,10,1021知的公差为11022=s ,故选C4. Logistic 模型是常用数学模型之一,可应用于流行病学领域.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数I (t )(t 的单位:天)的Logistic 模型:)53(23.01)(--+=t e K t I ,其中K 为最大确诊病例数,当K t I 95.0)(*=时,标志着已初步遏制疫情,则*t 约为(319ln ≈)( )A.60B.63C.66D.69【答案】C【解析】由K e K t I t95.01)()53(23.0**=+=--,19)53(23.0*=-te ,19ln )53(23.0*=-t ,1323.0353*≈=-t ,66*≈t ,故选C.5. 已知1)3sin(sin =++πθθ,则=+)6sin(πθ( )A.21 B.33 C.32 D.22 【答案】B【解析】由1)3sin(sin =++πθθ,得,1cos 23sin 21sin =++θθθ,1cos 23sin 23=+θθ,1)21cos 23(sin 3=⨯+⨯θθ, 1)6sin cos 6cos (sin 3=+πθπθ,1)6sin(3=+πθ,33)6sin(=+πθ,故选B. 6. 在平面内,A ,B 是两个定点,C 是动点,若1=⋅BC AC ,则点C 的轨迹为( )A.圆B.椭圆C.抛物线D. 直线【答案】A【解析】以AB 所在直线为x 轴,中垂线为y 轴,建立平面直角坐标系,设)0,(a A -,)0,(a B ,),(y x C ,则),(y a x AC +=,),(y a x BC -=,),(),(y a x y a x BC AC -⋅+=⋅ 1222=-+=a y x ,2221a y x +=+,故选A.7. 设O 为坐标原点,直线2=x 与抛物线)0(2:>=p px y C 交于D ,E 两点,若OE OD ⊥,则C 的焦点坐标为 ( )A.)0,41(B. )0,21(C.)0,1(D.)0,2(【答案】B【解析】根据题意,设点)2,2(p D ,)2,2(p E -,p DE 4=,p OE OD 44+==,由222DE OE OD =+,可得1=p ,故抛物线方程为x y 22=,选B.8. 点)1,0(-到直线)1(+=x k y 距离的最大值为( )A.1B.2C.3D.2【答案】B【解析】直线)1(+=x k y 过点)0,1(-,故点)1,0(-到直线)1(+=x k y 距离的最大值为两点)0,1(-与)1,0(-的距离2,故选B.9. 右图为某几何体的三视图,则该几何体的表面积是( )A. 246+B. 244+C. 326+D. 324+ 【答案】C【解析】该几何图形的直观图如上:其表面积为326+,故选C. 10. 设2log 3=a ,3log 5=b ,32=c ,则 ( )A.b c a <<B.c b a <<C.a c b <<D.b a c <<【答案】A 【解析】18log 2log 2log 23322log 933332<===,322log 3<, 127log 3log 3log 23323log 2535552>===,所以323log 5>,故选A. 11. 在ABC ∆中,32cos =C ,4=AC ,3=BC ,则=B tan ( )A.5B.52C. 54D. 58【答案】C【解析】由条件知916916cos 2222=-+=⋅⋅-+=C BC AC BC AC AB ,3=AB ,913321699cos =⨯⨯-+=B ,954sin =B ,54tan =B ,故选C.22212. 已知函数xx x f sin 1sin )(+=,则 ( )A.)(x f 的最小值为2B. )(x f 的的图象关于y 轴对称C. )(x f 的的图象关于直线π=x 对称D. )(x f 的的图象关于直线2π=x 对称【答案】D【解析】当0<x 时,0)(<x f ,故A 错;)(x f 是奇函数,故B 错;xx x x x f sin 1sin )sin(1)sin()(--=+++=+πππ, xx x x x f sin 1sin )sin(1)sin()(+=-+-=-πππ,)()(x f x f -≠+ππ,故C 错,所以选D.第Ⅱ卷二.选择题:本大题共4分,每小题5分,共20分,把答案填在答题卡上。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
文科高等数学
一、填空题
1、函数x x f -=51
)(的定义域是(5,∞-)
2、已知极限32
lim 22=-+-→x k x x x ,则2-=k 。
3、曲线),在(211+=
x y 处切线斜率是:21 4、设x x
y 2=,则)1(ln 2'2+=x x y x 5、若⎰⎰+=-+=C x dx x f C x dx x f )1()(,则
6、已知)(cos x f x 是的一个原函数,则⎰+-=C x x x dx x xf sin cos )(。
二、选择题
1、设{
}{}=,则、、=,、、M P M P /531321=(B ) A 、{}5 B 、{}2 C 、{
}1 D 、{}3 2、在112
+-•=x x e e x y 其定义域(∞∞-,)内是(B ) A 、奇函数 B 、偶函数 C 、非奇非偶函数 D 、有界函数
3、以下计算正确的是(D )
A 、)(22ex d dx xe x =
B 、x d x dx
sin 12=-
C 、)1(2x d x
dx -= D 、x dx x 3ln 21= 5、下列在指定区间是单调增函数的为(C )
A 、)1,1(,-=x y
B 、),(,sin +∞-∞=x y
C 、)0,(,2-∞-=x y
D 、),0(,3+∞=-x
y
6、已知的值为处有极小值,则在a x x x ax x f 11)(023=---=(A )
A 、1
B 、
3
1 C 、0 D 、3
1- 7、设函数3
2cos 21cos )(π=-=x x x a x f 在点处取得极值,则=a (C ) A 、0 B 、21 C 、1 D 、2
三、判断题
1、若有极限在点可导,则在点00)()(x x f x x f (V )
2、极限d x e d bx x
a =++
∞→)1(lim (X ) 3、⎰+=C x f dx x f x xf )(21)(')(2222(X ) 4、已知.....718.2=e 是一个无理数,则⎰
+=C x dx x e e (X ) 四、证明题 若⎪⎩⎪⎨⎧=≠=0
,00,1sin sin )(2x x x x x f 证明:处可导在0)(=x x f 证明:x
x x x f x f x x 1sin sin lim )0()(lim 200→→=-
=01sin sin sin lim 0=•→x x x x x 处可导在0)(=∴x x f
五、解答题 解不定积分⎰dx x
x x 3sin cos 由原式=⎰⎰⎰⎪⎭
⎫ ⎝⎛-==x xd x dx x x x x x 233sin 121)(sin sin sin cos
=⎰+-dx x
x x 22sin 121sin 2 =⎰+-xdx x
x 22csc 21sin 2 =C x x x +--
cot 21sin 22
感谢下载!
欢迎您的下载,资料仅供参考。