九年级数学上学期期中测试题

合集下载

无锡市锡山区锡山高级中学实验学校2023-2024学年九年级上学期期中数学试题

无锡市锡山区锡山高级中学实验学校2023-2024学年九年级上学期期中数学试题

省锡中实验学校2023—2024学年度第一学期初三数学期中测试一、选择题(每题3分,共30分)1.sin60°的值等于()A.12B.1C.32D.32.已知O 的半径为4,3OP =,则点P 与O 的位置关系是()A.点P 在O 内B.点P 在O 上C.点P 在O 外D.不能确定3.在△ABC 中,∠C =90°,AC =1,BC =2,则cos A 的值是()A.12B.5C.55D.2554.如图,AB 是O 的直径,CD 是O 的弦,如果35ACD ∠=︒,那么BAD ∠为()A .35°B.55°C.65°D.75°5.在⊙O 中,弦AB 所对的圆心角的度数为80°,则弦AB 所对的圆周角的度数为()A.40B.160oC.80 或160oD.40 或1406.在下列命题中,正确的是()A.任何三角形有且只有一个内切圆B.三点确定一个圆C.三角形的内心到三角形的三个顶点的距离相等D.垂直于半径的直线一定是这个圆的切线7.已知A ∠是锐角,且cosA =34,那么锐角A 的取值范围是()A.030A ︒<∠<︒B.3045A ︒<∠<︒C.4560A ︒<∠<︒D.6090A ︒<∠<︒8.如图,AB 是半O 的直径,点C 是 AB 的中点,点D 为 BC 的中点,连接AD ,CE AD ⊥于点E .若1DE =,则AE 的长为()A.3B.22C.21+ D.322+9.如图,ABC 中660BC A =∠=︒,,点O 为ABC 的重心,连接AO BO CO 、、,若固定边BC ,使顶点A 在ABC 所在平面内进行运动,在运动过程中,保持BAC ∠的大小不变,则线段AO 的长度的取值范围为()A.232OA <≤B.332OA ≤≤C.323OA ≤≤ D.223OA <≤10.如图,在ABC 中,90BAC ∠=︒,CE 平分ACB ∠,BD CE ⊥,垂足为点D ,连结AD .下列结论:①若30ABC ∠=︒,则BD AD >;②若=45ABC ∠︒,则4ACE BDE S S = ;③若1sin 3ABC ∠=,则ABC ABD S S =△△;④若tan ABC m ∠=,则2CE m BD =⋅.正确的有()A.①③B.②③C.②④D.③④二、填空题(每空3分,共24分)11.已知α是锐角,4tan 5α=,则cos α=____°12.一个人从山下沿30︒角的坡路登上山顶,共走了50m ,那么这山的高度是_____m .13.圆内接四边形ABCD 中,∠A :∠B :∠C =2:3:7,则∠D =_____°.14.已知圆锥的母线长为8cm ,底面圆的半径为3cm ,则圆锥的侧面展开图的面积是_____cm 2.15.如图,点O I 、分别是锐角ABC 的外心、内心,若648CAB OAC ∠=∠=︒,则BCI ∠=______°16.如图,边长为2的正方形ABCD 中心与半径为2的O 的圆心重合,E 、F 分别是AD BA 、的延长线与O 的交点,则图中阴影部分的面积是_____.17.将点()3,3A -绕x 轴上的点G 顺时针旋转90°后得到点'A ,当点'A 恰好落在以坐标原点O 为圆心,2为半径的圆上时,点G 的坐标为________.18.如图,在四边形ABCD 中,9086BAD BCD BC CD ∠+∠=︒==,,,1sin 4BCD ∠=,连接AC BD ,,当ABD △是以BD 为腰的等腰三角形时,则AC 的值为____.三、解答题(10小题,共96分)19.计算:(1)2033cos 30π-+(2)21tan 45|5|2-︒⎛⎫-+- ⎪⎝⎭20.在Rt ABC △中,90ACB A B C ∠=︒∠∠∠,、、的对边分别是a b c 、、,已知32b c =,斜边上的高3CD =(1)求tan A 的值;(2)求BD 的长.21.如图,在O 中,弦BC 垂直于半径OA ,垂足为E ,D 是优弧 BC上一点,连接BD ,AD ,OC ,30ADB ∠=︒.(1)求AOC ∠的度数;(2)若弦18cm BC =,求图中劣弧 BC 的长.(结果保留π)22.如图,在矩形ABCD 中,32AB BC ==,,H 是AB 的中点,将CBH 沿CH 折叠,点B 落在矩形内点P 处,连接AP .(1)求AP 的长;(2)求tan DCP ∠的值.23.如图,在等边ABC 中,点M N 、分别在AB AC 、边上.(1)在BC 边上求作点P ,使60MPN ∠=︒;(尺规作图,不写作法,保留作图痕迹,请找出所有满足条件的点.)(2)若95AB BM ==,,设CN a =,若要使得(1)中只能作出唯一的点P ,则=a .24.如图,点C 在O 的直径AB 的延长线上,点D 是O 上一点,过C 作CE AC ⊥,交AD 的延长线于点E ,连接,CD DB ,且CD CE =.(1)求证:直线DC 与O 相切;(2)若15AB =,1tan 2BDC ∠=,求CE 的长.25.如图1,我国古建筑的大门上常常悬挂着巨大的匾额,图2中的线段BC 就是悬挂在墙壁AM 上的某块匾额的截面示意图.已知 2.5BC =米,37MBC ∠=︒.从水平地面点D 处看点C ,仰角=45ADC ∠︒,从点E 处看点B ,仰角53AEB ∠=︒.且 4.5DE =米,求匾额悬挂的高度AB 的长.(参考数据:3sin 375︒≈,4cos375≈︒,3tan 374︒≈)26.如图,在矩形ABCD 中,6cm 12cm AB BC ==,,点P 从点A 出发沿AB 以1cm/s 的速度向点B 移动;同时,点Q 从点B 出发沿BC 以2cm/s 的速度向点C 移动.各自到达终点后停止运动.设运动时间为t 秒.(1)在运动过程中,当2t =时,PQ =;(2)在运动过程中,当45DPQ ∠=︒时,求t 的值;(3)在运动过程中,当以Q 为圆心,QP 为半径的圆,与矩形ABCD 的边共有4个公共点时,请直接写出t 的取值范围.27.已知平面直角坐标系中,以原点O 为圆心,5为半径的O 交y 轴的正半轴于点P ,小刚同学用手中的三角板(90308B ACB AB ∠=︒∠=︒=,,)进行了如下的实验操作:(1)如图1,将三角板的斜边放置于x 轴上,边AB 恰好与O 相切于点D ,则切线长AD =;(2)如图2,将三角板的顶点A 在O 上滑动,直角顶点B 恰好落在x 轴的正半轴上,若BC 边与O 相切于点M ,求点B 的坐标;(3)请在备用图上继续操作:将三角板的顶点A 继续在O 上滑动,直角顶点B 恰好落在O 上且在y 轴右侧,BC 边与y 轴的正半轴交于点G ,与O 的另一交点为H ,若1PG =,求GH 的长.28.在平面直角坐标系xOy 中,对已知的点A ,B ,给出如下定义:若点A 恰好在以BP 为直径的圆上,则称点P 为点A 关于点B 的“联络点”.(1)点A 的坐标为()2,1-,则在点()11,2P ,21,12P ⎛⎫ ⎪⎝-⎭-,()32,1P -中,O 关于点A 的“联络点”是______(填字母);(2)直线112y x =-+与x 轴,y 轴分别交于点C ,D ,若点C 关于点D 的“联络点”P 满足1tan 2CPD ∠=,求点P 的坐标;(3)T e 的圆心在y ,点M 为y 轴上的动点,点N 的坐标为()4,0,在T e 上存在点M 关于点N 的“联络点”P ,且PMN 为等腰三角形,直接写出点T 的纵坐标t 的取值范围.省锡中实验学校2023—2024学年度第一学期初三数学期中测试一、选择题(每题3分,共30分)1.sin60°的值等于()A.12B.1C.2D.【答案】C 【解析】【分析】根据特殊角的三角函数值直接解答即可.【详解】根据特殊角的三角函数值可知:sin60°=32故选:C .【点睛】此题比较简单,只要熟记特殊角的三角函数值即可解答.2.已知O 的半径为4,3OP =,则点P 与O 的位置关系是()A.点P 在O 内B.点P 在O 上C.点P 在O 外D.不能确定【答案】A 【解析】【分析】本题考查了点与圆的位置关系,(r 为圆半径,d 为点到圆心距离),当r d >,点在圆内;当r d <,点在圆内;当r d =,点在圆上;据此作答即可.【详解】解:∵O 的半径为4,3OP =,∴43>∴点P 在O 内故选:A3.在△ABC 中,∠C =90°,AC =1,BC =2,则cos A 的值是()A.12B.C.55D.255【答案】C 【解析】【分析】根据勾股定理求出斜边AB 的值,在利用余弦的定义直接计算即可.【详解】解:在Rt △ACB 中,∠C =90°,AC =1,BC =2,∴222125AB AC BC =+=+=,∴15cos 55AC A AB ===,故选:C .【点睛】本题主要考查直角三角形中余弦值的计算,准确应用余弦定义是解题的关键.4.如图,AB 是O 的直径,CD 是O 的弦,如果35ACD ∠=︒,那么BAD ∠为()A.35°B.55°C.65°D.75°【答案】B 【解析】【分析】本题考查了圆周角定理,连接BD ,先利用直径所对的圆周角是直角可得90ADB ∠=︒,再利用同弧所对的圆周角相等可得35ABD ∠=︒,然后利用直角三角形的两个锐角互余进行计算即可解答.【详解】解:连接BD AB 是O 的直径,90ADB ∴∠=︒,35ACD ∠=︒ ,35ACD ABD ∴∠=∠=︒,9055BAD ABD ∴∠=︒-∠=︒,故选:B .5.在⊙O 中,弦AB 所对的圆心角的度数为80°,则弦AB 所对的圆周角的度数为()A .40B.160oC.80 或160oD.40 或140【答案】D【解析】【分析】根据题意画出图形,分类讨论,根据圆周角定理计算即可.【详解】解:当点C在优弧AB上时,由圆周角定理得,∠ACB=12∠AOB=40°,当点C在劣弧AB上时,∵四边形ACBC′是⊙O的内接四边形,∴∠AC′B=180°-∠ACB=140°,∴弦AB所对的圆周角的度数为40°或140°,故选D.【点睛】本题考查的是圆周角定理,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解题的关键.6.在下列命题中,正确的是()A.任何三角形有且只有一个内切圆B.三点确定一个圆C.三角形的内心到三角形的三个顶点的距离相等D.垂直于半径的直线一定是这个圆的切线【答案】A【解析】【分析】此题考查了三角形的内切圆与内心,圆与切线的判定,熟练运用确定圆的条件的性质是本题的关键.【详解】A、任何三角形有且只有一个内切圆,则A正确;B、不共线的三点确定一个圆,则B错误;C、三角形内心到三边的距离相等,则C错误;D、过半径的外端垂直于半径的直线是圆的切线,则D错误.故选A7.已知A ∠是锐角,且cosA =34,那么锐角A 的取值范围是()A.030A ︒<∠<︒B.3045A ︒<∠<︒C.4560A ︒<∠<︒D.6090A ︒<∠<︒【答案】B 【解析】【分析】本题考查的是锐角三角函数的定义,熟知锐角三角函数的余弦函数值随角增大而减小是解答此题的关键.先求出cos30︒,cos 45︒及cos60︒的近似值,然后得出结论即可.【详解】解:3cos300.92︒=≈ ,2cos 450.72︒=≈,1cos 600.52︒==,又∵解:3cos300.92︒=≈ ,2cos 450.72︒=≈,1cos 600.52︒==,又∵53c 4os 0.7A ∠==,余弦函数随角增大而减小,∴133242<<3045A ∴︒<∠<︒.故选:B .8.如图,AB 是半O 的直径,点C 是 AB 的中点,点D 为 BC 的中点,连接AD ,CE AD ⊥于点E .若1DE =,则AE 的长为()A.3B.22C.21+ D.322+【答案】C 【解析】【分析】本题考查了圆周角定理及推论、等腰直角三角形的判定与性质、勾股定理;连接AC ,BC ,CD ,在EA 上取一点T ,使得ET EC =,连接CT ,证明DCE △和ETC △是等腰直角三角形,求出2TA TC ==,可得结论.【详解】解:如图,连接AC ,BC 、CD .∵AB 是直径,∴90ACB ∠=︒,∵ AC BC=,∴AC CB =.∴45CAB ABC ∠=∠=︒.∵ CDDB =,∴122.52CAD DAB BAC ∠=∠==︒∠.∵ AC AC =,∴45∠=∠=︒ADC ABC .∵CE DE ⊥,∴90CED ∠=︒.∴45ECD EDC ∠=∠=︒.∴1EC DE ==,在EA 上取一点T ,使得1ET EC ==,连接CT ,∴2CT =.∵45ETC TAC ACT ∠=︒=∠+∠,∴22.5TAC TCA ∠=∠=︒.∴2AT TC ==,∴21AE AT TE =+=+.故选:C .9.如图,ABC 中660BC A =∠=︒,,点O 为ABC 的重心,连接AO BO CO 、、,若固定边BC ,使顶点A 在ABC 所在平面内进行运动,在运动过程中,保持BAC ∠的大小不变,则线段AO 的长度的取值范围为()A.232OA <≤B.32OA ≤≤C.323OA ≤≤D.223OA <≤【答案】D【解析】【分析】本题考查了三角形的重心,等边三角形的判定与性质,作ABC 的外接圆O ',延长AO 交BC 于D ,因此点A 在 BAC上运动,由三角形重心的性质得到D 是BC 的中点,当AD BC ⊥时,AD 长最大,求出3363322AD BC ==⨯=,推出333AD <≤,得到2233333AO ⨯<≤⨯,即可得解,熟练掌握以上知识点并灵活运用是解此题的关键.【详解】解:如图,作ABC 的外接圆O ',延长AO 交BC 于D ,,BAC ∠ 的大小不变,∴点A 在 BAC 上运动(不与B C 、重合),O 是ABC 的重心,D ∴是BC 的中点,当AD BC ⊥时,AD 长最大,AD ∴垂直平分BC ,AB AC ∴=,60BAC ∠=︒ ,ABC ∴ 是等边三角形,3363322AD BC ∴===,A 不与BC 、重合,12BC AD ∴<,333AD ∴<≤O 是ABC 的重心,23AO AD ∴=,2233333AO ∴⨯<≤⨯,223AO ∴<≤,故选:D .10.如图,在ABC 中,90BAC ∠=︒,CE 平分ACB ∠,BD CE ⊥,垂足为点D ,连结AD .下列结论:①若30ABC ∠=︒,则BD AD >;②若=45ABC ∠︒,则4ACE BDE S S = ;③若1sin 3ABC ∠=,则ABC ABD S S =△△;④若tan ABC m ∠=,则2CE m BD =⋅.正确的有()A.①③B.②③C.②④D.③④【答案】D【解析】【分析】①延长BD ,CA 交于点G ,证明BD DG =,根据直角三角形斜边中线的性质得AD BD =,可作判断;②如图2,过点E 作EF BC ⊥于F ,设AE x =,则,2BF EF x BE ===,2AB AC x x ==,证明△BDE ∽△CAE ,利用相似三角形面积的比等于相似比的平方可作判断;③根据1sin 3EF AC ABC BE BC ∠===,设,3,EF a BE a ==,则AE EF a ==,证明Rt Rt ACE FCE ≌,得2AC CF a ==,根据三角形面积公式进行计算可作判断;④延长,BD CA 交于点G ,证明AEC AGB ∽,列比例式,并结合三角函数可作判断.【详解】①如图1,延长BD ,CA 交于点G ,∵30,90ABC BAC ∠=︒∠=︒,∴60ACB ∠=︒,∵CE 平分ACB ∠,∴30ACD BCD ∠=∠=︒,在Rt BDC 中,90,30BDC BCD ︒︒∠=∠=,∴60DBC ∠=︒,∴ GBC 是等边三角形,∵CD BG ⊥,∴BD DG =,Rt BAG 中,12AD BG BD ==,故①错误;②如图2,过点E 作EF BC ⊥于F ,∵CE 平分ACB ∠,90BAC ∠=︒,∴AE EF =,∵90,45BAC ABC ∠=︒∠=︒,∴AB AC =,同理得BEF △是等腰直角三角形,∴BF EF =,设AE x =,则,2BF EF x BE x ===,2AB AC x ==,∴()22222422CE AE AC x x x x =+=+++,∵DEB AEC ∠=∠,90BDE EAC ∠=∠=︒,∴BDE CAE ∽△△,∴222(422)()222ACE BDES CE x S BE x ∆∆+⋅===+,∴(22)ACE BDE S S =+ ,故②错误;③如图3,过点E 作EF BC ⊥于F ,∵1sin 3EF AC ABC BE BC ∠===,设,3,EF a BE a ==,则AE EF a ==,∴.22BF a =,∵90,EAC CFE CE CE ∠=∠=︒=,AE EF =,∴Rt Rt (HL)ACE FCE ≌,∴AC CF =,∵222AB AC BC +=,∴()()22232a a AC a AC++=+∴2AC CF a ==.延长,BD CA 交于点G ,∵,GCD BCD CD BG ∠=∠⊥,∴CBD G ∠=∠,∴32,CG CB a BD DG ===,∴22AG a =,∴21112422222ABD ABG S S a a a =⋅=⨯⨯⨯= ,2124222ABC S a a a =⋅⋅= ,∴ABC ABD S S =△△.故③正确;④如图4,延长,BD CA 交于点G ,∵90,BDE CAE DEB AEC ∠=∠=︒∠=∠,∴ACE DBE ∠=∠,∵90EAC BAG ︒∠=∠=,∴AEC AGB ∽,∴CE AC BG AB=,由③知:2BG BD =,∵tan AC ABC m AB ∠==,∴2CE m BD=,∴2CE m BD =⋅.故④正确;本题正确的结论有:③④.故选:D .【点睛】本题考查了全等三角形的判定和性质,角平分线的性质,等腰直角三角形判定和性质,含30°角的直角三角形的性质,三角函数,三角形相似的判定和性质等知识,解决问题的关键是正确作辅助线.二、填空题(每空3分,共24分)11.已知α是锐角,4tan 5α=,则cos α=____°【答案】54141【解析】【分析】此题考查了求锐角的三角函数值.求锐角的三角函数值的方法:利用锐角三角函数的定义,通过设参数的方法求三角函数值.【详解】如图:由a 4tan 5b α==,设45a x x ==,b ,则c ==,故5b cos c x α===12.一个人从山下沿30︒角的坡路登上山顶,共走了50m ,那么这山的高度是_____m .【答案】25【解析】【分析】本题考查了解直角三角形的应用一坡度坡角问题,根据含30︒角所对的直角边等于斜边的一半计算即可求解,掌握含30︒角的直角三角形的性质是解题的关键.【详解】解:根据题意可得,山的高度15025m 2=⨯=,故答案为:25.13.圆内接四边形ABCD 中,∠A :∠B :∠C =2:3:7,则∠D =_____°.【答案】120【解析】【分析】根据圆内接四边形对角互补,求出∠A 与∠B ,∠C 的度数即可得出答案.【详解】解:设∠A 、∠B 、∠C 分别为2x 、3x 、7x ,根据圆内接四边形对角互补有2x+7x =180°,解得,x =20°,∴∠B =3x =60°,∴∠D =180°﹣∠B =120°,故答案为:120.【点睛】此题主要考查了圆内接四边形对角互补的性质,根据已知得出,∠A+∠C=3x+7x=180°是解题关键.14.已知圆锥的母线长为8cm ,底面圆的半径为3cm ,则圆锥的侧面展开图的面积是_____cm 2.【答案】24π【解析】【分析】先求出底面周长,再根据公式求解即可.【详解】解:底面半径为3cm ,则底面周长=6πcm ,∴侧面面积=12×6π×8=24πcm 2.故答案为:24π.【点睛】此题考查了扇形面积计算公式,圆的周长计算公式,熟记扇形面积公式是解题的关键.15.如图,点O I 、分别是锐角ABC 的外心、内心,若648CAB OAC ∠=∠=︒,则BCI ∠=______°【答案】25【解析】【分析】本题考查了三角形的内切圆与内心:三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角,也考查了三角形外心的性质和圆周角定理,连接OC ,先计算出8OAC ∠=︒,再根据三角形外心的性质得到OA OC =,则利用等腰三角形的性质和三角形内角和可计算出164AOC ∠=︒,接着根据圆周角定理得到82ABC ∠=︒,则利用三角形内角和可计算出50∠=°ACB ,然后根据三角形内心的性质得到BCI ∠的度数.【详解】解:如图,连接OC ,,648CAB OAC ∠=∠=︒ ,8OAC ∴∠=︒,点O 是锐角ABC 的外心,OA OC ∴=,8OCA OAC ∴∠=∠=︒,180164AOC OCA OAC ∴∠=︒-∠-∠=︒,1822ABC AOC ∴∠=∠=︒,18050ACB CAB ABC ∴∠=︒-∠-∠=︒,点I 是锐角ABC 的内心,1252BCI ACB ∴∠=∠=︒,故答案为:25.16.如图,边长为2的正方形ABCD 中心与半径为2的O 的圆心重合,E 、F 分别是AD BA 、的延长线与O 的交点,则图中阴影部分的面积是_____.【答案】3π-【解析】【分析】本题主要考查了圆面积的计算、正方形的性质、全等形的性质等知识点,正确添加常用辅助线、构造全等图形成为解题的关键.如图:延长DC CB ,交⊙O 于M ,N ,连接OF ,过点O 作OH AB ⊥于H ,再根据垂径定理、勾股定理、三角形的面积公式可得31DAF S =- ,然后再根据阴影部分的面积()14O ADF ABCD S S S -- 正方形即可解答.【详解】解:如图:延长DC CB ,交⊙O 于M ,N ,连接OF ,过点O 作OH AB ⊥于H .在Rt OFH △中,2222213F O O H F H =--,∵112AH BH AB ===,∴31AF FH AH =-=-∴()112313122DAF S AD AF =⋅=⨯⨯-=- ,∴图中阴影部分的面积()()()21122231344O ADF ABCD S S S ππ=--=⋅-⨯--=- 正方形.故答案为3π-.17.将点()3,3A -绕x 轴上的点G 顺时针旋转90°后得到点'A ,当点'A 恰好落在以坐标原点O 为圆心,2为半径的圆上时,点G 的坐标为________.【答案】()32,0-+或()32,0--##()32,0--或()32,0-+【解析】【分析】设点G 的坐标为(,0)a ,过点A 作AM x ⊥轴交于点M ,过点A '作A N x '⊥轴交于点N ,由全等三角形求出点A '坐标,由点A '在2为半径的圆上,根据勾股定理即可求出点G 的坐标.【详解】设点G 的坐标为(,0)a ,过点A 作AM x ⊥轴交于点M ,过点A '作A N x '⊥轴交于点N ,如图所示:∵()3,3A -,∴3AM =,3GM a =+,∵点A 绕点G 顺时针旋转90°后得到点A ',∴AG A G '=,90AGA '∠=︒,∴90AGM NGA '∠+∠=︒,∵AM x ⊥轴,A N x '⊥轴,∴90AMG GNA '∠=∠=︒,∴90AGM MAG ∠+∠=︒,∴MAG NGA '∠=∠,在AMG 与GNA ' 中,AMG GNA MAG NGA AG GA ∠=∠⎧⎪∠=∠'='⎨'⎪⎩,∴()AMG GNA AAS '≅ ,∴3GN AM ==,3A M GM a '==+,∴3ON a =+,∴(3,3)A a a '++,在Rt ONA ' 中,由勾股定理得:222(3)(3)2a a +++=,解得:32a =-+或32a =--,∴()32,0M -+或()32,0M --.故答案为:()32,0-+,()32,0--.【点睛】本题考查旋转的性质、全等三角形的判定与性质以及勾股定理,掌握相关知识之间的应用是解题的关键.18.如图,在四边形ABCD 中,9086BAD BCD BC CD ∠+∠=︒==,,,1sin 4BCD ∠=,连接AC BD ,,当ABD △是以BD 为腰的等腰三角形时,则AC 的值为____.【答案】213或7373213【解析】【分析】分BD BA =和BD AD =两种情况进行解答;①当BD BA =时,如图1:过点B 作BH AD ⊥于H ,过点C 作CE CD ⊥,在CE 上截取142CE BC ==,连接BE ,先证BAD BCE ∽ 可得ABD CBE BDA BEC ∠=∠∠=∠,,进而证ABC 和DBE 全等,即AC DE =,然后在Rt DCE V 中,利用勾股定理求出DE 即可;②当BD AD =时,如图2:过点D 作DN AB ⊥于N ,过点C 作CM CD ⊥,在CM 上截取216CM BC ==,连接BM ,先证ABD CBM ∽ 可得ABD CBM ∠=∠,进而证ABC DBM ∽ 可得12BC DM AB BD ==:::,则12BC DM =,然后在Rt DCM 中利用勾股定理求出DM 即可.【详解】解:∵ABD △是以BD 为腰的等腰三角形,∴有以下两种情况:①当BD BA =时,如图1:过点B 作BH AD ⊥于H ,过点C 作CE CD ⊥,在CE 上截取142CE BC ==,连接BE ,∵BD BA BH AD =⊥,,∴290BAD BDA AD AH BAD ABH ∠=∠=∠+∠=︒,,,∵90BAD BCD ∠+∠=︒,∴ABH BCD ∠=∠,∵1sin 4BCD ∠=,∴1sin 4AH ABH AB ∠==,∴42AB AH AD ==,∴12AD AB =::,∵142CE BC ==,∴12BC CE =::,∴AD AB BC CE =::,∵CE CD ⊥,∴90BCE BCD ∠+∠=︒.∵90BAD BCD ∠+∠=︒,∴BAD BCE ∠=∠,又∵AD AB BC CE =::,∴BAD BCE ∽ ,∴ABD CBE BDA BEC ∠=∠∠=∠,,∴BDA BEC BDA BCE ∠=∠=∠=∠,∴8BC BE ==,∵ABD CBE ∠=∠,∴ABD DBC CBE DBC ∠+∠=∠+∠,即ABC DBE ∠=∠,在ABC 和DBE 中,,,BD BA ABC DBE BC BE =∠=∠=,∴()SAS ABC DBE ≌,∴AC DE =,在Rt DCE V 中,64CD CE ==,,由勾股定理得:22213DE CD CE =+=;即213AC =②当BD AD =时,如图2:过点D 作DN AB ⊥于N ,过点C 作CM CD ⊥,在CM 上截取216CM BC ==,连接BM ,∵BD AD DN AB =⊥,,∴290DAB DBA AB AN ADN BAD ∠=∠=∠+∠=︒,,,又∵90BAD BCD ∠+∠=︒,∴ADN BCD ∠=∠,∵1sin 4BCD ∠=,∴1sin 4AN ADN AD ∠==,∴42AD AN AB ==,∴12AB AD =::,∵216CM BC ==,∴12BC CM =::,∴AB AD BC CM =::,∵CM CD ⊥,∴90BCM BCD ∠+∠=︒,又∵90BAD BCD ∠+∠=︒,∴BAD BCM ∠=∠,又∵AB AD BC CM =::,∴ABD CBM ∽ ,∴ABD CBM ∠=∠,∴ABD CBM DAB BCM ∠=∠=∠=∠,∴216BM CM BC ===,∵ABD CBM ∠=∠,∴ABD DBC CBM DBC ∠+∠=∠+∠,即ABC DBM ∠=∠,∵1212AB BD BC BM ==::,::,∴AB BD BC BM =::,∴ABC DBM ∽ ,∴12BC DM AB BD ==:::,∴12BC DM =在Rt DCM 中,616CD CM ==,,由勾股定理得:DM ==,∴12BC DM ==综上所述:AC 的长为故答案为或【点睛】本题主要考查了全等三角形的判定和性质、相似三角形的判定和性质,锐角三角函数等知识点,正确地添加辅助线构造全等三角形和相似三角形以及分类讨论思想的应用是解题的关键和难点.三、解答题(10小题,共96分)19.计算:(1)20cos 30π-+(2)21tan 45|5|2-︒⎛⎫-+- ⎪⎝⎭【答案】(1)72(2)8【解析】【分析】本题考查实数的运算,掌握负整数指数幂、零指数幂的性质并牢记特殊角的三角函数值是解决问题的关键.(1)将01π=,cos302= 代入原式,运算结果即可.(2)将tan 451︒=代入原式,运算结果即可.【小问1详解】解:20cos 30π-+312=-+72=【小问2详解】解:21tan 45|5|2-︒⎛⎫-+- ⎪⎝⎭415=-+8=20.在Rt ABC △中,90ACB A B C ∠=︒∠∠∠,、、的对边分别是a b c 、、,已知32b c =,斜边上的高CD =(1)求tan A 的值;(2)求BD 的长.【答案】(1)2(2)152【解析】【分析】本题主要考查了解直角三角形,勾股定理,熟知解直角三角形的方法是解题的关键.(1)先求出23b c =,进而利用勾股定理求出53BC c =,再根据正切的定义可得答案;(2)先解Rt ADC 得到2155AD =,再解Rt ABC △,得到2cos 3A =,则可解Rt ADC ,得到3155AC =,进而求出91510AB =,则152BD AB AD =-==.【小问1详解】解:在Rt ABC △中,9032ACB b c =︒=∠,,∴23b c =,∴2253BC AB AC c =-=,∴5tan 2BC A AC ==;【小问2详解】解:在Rt ADC 中,5tan 2CD A AD ==,∴2155AD =,在Rt ABC △中,2cos 3AC A AB ==,∴在Rt ADC 中,315cos 5AD AC A ==,∴3915210AB AC ==,∴915215151052BD AB AD =-=-=.21.如图,在O 中,弦BC 垂直于半径OA ,垂足为E ,D 是优弧 BC上一点,连接BD ,AD ,OC ,30ADB ∠=︒.(1)求AOC ∠的度数;(2)若弦18cm BC =,求图中劣弧 BC 的长.(结果保留π)【答案】(1)60︒(2)43πcm【解析】【分析】(1)连接OB ,结合垂径定理得到»»AB AC =,根据“同圆或等圆中,等弧所对的圆心角为圆周角的两倍”得到AOB ∠和AOC ∠之间的关系,进而求出AOC ∠的度数;(2)要求劣弧 BC的长,需要知道圆的半径以及弧所对圆心角的度数,由垂径定理得到BE 的长,进而在Rt BOE 中利用勾股定理求出OE 的长,利用弧长公式进行计算即可解决问题.【小问1详解】解:连接OB ,∵OA BC ⊥,∴»»AB AC =,∴AOC AOB ∠=∠,由圆周角定理得,260AOB ADB ∠=∠=︒,∴60AOC AOB ∠=∠=︒.【小问2详解】解:∵OA BC ⊥,∴192BE BC ==,在Rt BOE 中,60AOB ∠=︒,∴2OB OE =,∴2239BE OB OE OE =-==,∴33cm OE =,63cm OB =.∴劣弧 BC 的长()120π6343πcm 180⨯==.【点睛】本题考查了垂径定理,圆周角定理,勾股定理等知识点,能熟记垂径定理是解此题的关键.22.如图,在矩形ABCD 中,32AB BC ==,,H 是AB 的中点,将CBH 沿CH 折叠,点B 落在矩形内点P 处,连接AP .(1)求AP 的长;(2)求tan DCP ∠的值.【答案】(1)95(2)724【解析】【分析】此题重点考查矩形的性质、轴对称的性质、勾股定理、锐角三角函数与解直角三角形等知识,正确地作出所需要的辅助线是解题的关键.(1)连接PB ,由四边形ABCD 是矩形,32AB BC ==,,H 是AB 的中点,得出52CH =,由折叠得点P 与点B 关于CH 对称,PH BH AH ==,CH 垂直平分PB ,HPB HBP ∠=∠,证明90APB ∠=︒得出AP CH ∥,PAB BHC ∠=∠,得出3cos cos 5AP PAB BHC AB=∠=∠=,即可得出答案;(2)作PE CD ⊥于点E ,交AB 于点F ,则2EF BC ==,90BFE ∠=︒,90AFP ∠=︒,求出3cos 5AF PAB AP =∠=,4sin sin 5PF PAB BHC AP =∠=∠=,得到2725AF =,3625PF =,从而得到1425PE =,即可得出答案.【小问1详解】解:如图,连接PB ,,四边形ABCD 是矩形,32AB BC ==,,H 是AB 的中点,90ABC ∴∠=︒,1322AH BH AB ===,222235222CH BH BC ⎛⎫∴=+=+ ⎪⎝⎭,由折叠得点P 与点B 关于CH 对称,PH BH AH ==,CH ∴垂直平分PB ,HPB HBP ∠=∠,1180902APB HPB HPA HBP HAP ∴∠=∠+∠=∠+∠=⨯︒=︒,AP BP ⊥ ,CH BP ⊥,C AP H ∴∥,PAB BHC ∠=∠∴,332cos cos 552AP BH PAB BHC AB CH ∴=∠=∠===,3393555AP AB ∴==⨯=,AP ∴的长是95;【小问2详解】解:如图,作PE CD ⊥于点E ,交AB 于点F ,,90FEC ECB FBC ∠=∠=∠=︒ ,∴四边形BCEF 是矩形,2EF BC ∴==,90BFE ∠=︒,90AFP ∴∠=︒,324cos sin sin 5552AF PF BC PAB PAB BHC AP AP CH ∴=∠==∠=∠===,,3392755525AF AP ∴==⨯=,4493655525PF AP ==⨯=,274832525CE BF AB AF ∴==-=-=,361422525PE EF PF =-=-=,14725tan 482425PE DCP CE ∴∠===,tan DCP ∴∠的值为724.23.如图,在等边ABC 中,点M N 、分别在AB AC 、边上.(1)在BC 边上求作点P ,使60MPN ∠=︒;(尺规作图,不写作法,保留作图痕迹,请找出所有满足条件的点.)(2)若95AB BM ==,,设CN a =,若要使得(1)中只能作出唯一的点P ,则=a .【答案】(1)见解析(2)8120【解析】【分析】本题考查了作图—复杂作图,等边三角形的性质、相似三角形的判定与性质,解题的关键是熟练掌握以上知识点并灵活运用,正确的作出图形.(1)以A 为圆心,AN 为半径画弧,交AB 于点D ,作DMN 的外接圆,交BC 于1P 、2P ,即可完成作图;(2)证明11BMP CP N ∽,可得11CP MB BP CN =,设1BP x =,则19CP x =-,可得59x x a -=,从而得到2950x x a +=-,由只能作出唯一的点P ,得到该方程有两个相等的实数根,由此进行计算即可得出答案.【小问1详解】解:以A 为圆心,AN 为半径画弧,交AB 于点D ,作DMN 的外接圆,交BC 于1P 、2P ,如图,1P 、2P 即为所求,,如图,连接DN ,1MP ,1NP ,2NP ,2MP ,,由作图可得:AD AN =,ABC 是等边三角形,=60B ∠︒,AB AC ∴=,AB AD AC AN ∴-=-,即BD CN =,B DNC ∴∥,60MDN B ∴∠=∠=︒,由圆周角定理可得:1260MP N MP N MDN ∠=∠=∠=︒;【小问2详解】解:如图,,160MP N ∠=︒ ,11120MPB CP N ∴∠+∠=︒,ABC 是等边三角形,60A B C ∴∠=∠=∠=︒,9BC AB ==,11120BMP MPB ∴∠+∠=︒,11BMP CP N ∴∠=∠,11BMP CP N ∴ ∽,11CPMB BP CN ∴=,设1BP x =,则19CP x =-,59xx a -∴=,259a x x ∴=-,2950x x a ∴-+=,只能作出唯一的点P ,∴该方程有两个相等的实数根,()2Δ94150a ∴=--⨯⨯=,8120a ∴=,故答案为:8120.24.如图,点C 在O 的直径AB 的延长线上,点D 是O 上一点,过C 作CE AC ⊥,交AD 的延长线于点E ,连接,CD DB ,且CD CE =.(1)求证:直线DC 与O 相切;(2)若15AB =,1tan 2BDC ∠=,求CE 的长.【答案】(1)证明见解析(2)10【解析】【分析】(1)连接OD ,先根据等腰三角形的性质可得ODA A ∠=∠,CDE E ∠=∠,再根据直角三角形的性质可得90A E ∠+∠=︒,从而可得OD DC ⊥,然后根据圆的切线的判定即可得证;(2)连接OD ,设()0CD CE x x ==>,先求出A BDC ∠=∠,根据正切的定义可得22AC CE x ==,再在Rt COD 中,利用勾股定理求解即可得.【小问1详解】证明:如图,连接OD ,OA OD = ,ODA A ∴∠=∠,CD CE = ,CDE E ∴∠=∠,⊥ CE AC ,90A E ∴∠+∠=︒,90ODA CDE ∴∠+∠=︒,()18090ODC ODA CDE ∴∠=︒-∠+∠=︒,即OD DC ⊥,又OD 是O 的半径,∴直线DC 与O 相切.【小问2详解】解:如图,连接OD ,设()0CD CE x x ==>,15AB = ,11522OA OD AB ∴===,AB 是O 的直径,90ADB ∴∠=︒,90CDE BDC BDE ∴∠+∠=∠=︒,又90A E ∠+∠=︒ ,CDE E ∠=∠,A BDC ∴∠=∠,1tan 2BDC ∠= ,1tan 2CE A AC∴==,22AC CE x ∴==,1522OC AC OA x ∴=-=-,由(1)已证:OD DC ⊥,∴在Rt COD 中,222OD CD OC +=,即2221515222x x ⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭,解得10x =或0x =(不符合题意,舍去),所以CE 的长为10.【点睛】本题考查了圆的切线的判定、等腰三角形的性质、正切、勾股定理、圆周角定理等知识,熟练掌握圆的切线的判定是解题关键.25.如图1,我国古建筑的大门上常常悬挂着巨大的匾额,图2中的线段BC 就是悬挂在墙壁AM 上的某块匾额的截面示意图.已知 2.5BC =米,37MBC ∠=︒.从水平地面点D 处看点C ,仰角=45ADC ∠︒,从点E 处看点B ,仰角53AEB ∠=︒.且 4.5DE =米,求匾额悬挂的高度AB 的长.(参考数据:3sin 375︒≈,4cos375≈︒,3tan 374︒≈)【答案】4米【解析】【分析】通过作垂线构造直角三角形,在Rt △BCN 中,求出CN 、BN ,在Rt △ABE 中用AB 的代数式表示AE ,再根据∠ADC =45°得出CF =DF ,列方程求解即可.【详解】解:过点C 作CN ⊥AB ,CF ⊥AD ,垂足为N 、F ,如图所示:在Rt △BCN 中,CN =BC •sin ∠MBC =2.5×35=1.5(米),BN =BC ×cos 37°=2.5×45=2(米),∵CN ⊥AB ,CF ⊥AD ,MA ⊥AD ,∴四边形AFCN 为矩形,∴CN =AF =1.5,BN +AB =CF ,在Rt △ABE 中,∵∠AEB =53°,∴∠ABE =90°-53°=37°,AE =AB •tan ∠ABE =AB ×tan 37°=34AB ,∵∠ADC =45°,∴CF =DF ,∴BN +AB =AD -AF =AE +ED -AF ,即:2+AB =34AB +4.5-1.5,解得,AB =4(米)答:匾额悬挂的高度AB 的长约为4米.【点睛】本题考查了直角三角形的边角关系,通过作垂线构造直角三角形,利用锐角三角函数表示边,再利用各条边之间的关系,列方程求解是解决问题的常用方法.26.如图,在矩形ABCD 中,6cm 12cm AB BC ==,,点P 从点A 出发沿AB 以1cm/s 的速度向点B 移动;同时,点Q 从点B 出发沿BC 以2cm/s 的速度向点C 移动.各自到达终点后停止运动.设运动时间为t 秒.(1)在运动过程中,当2t =时,PQ =;(2)在运动过程中,当45DPQ ∠=︒时,求t 的值;(3)在运动过程中,当以Q 为圆心,QP 为半径的圆,与矩形ABCD 的边共有4个公共点时,请直接写出t 的取值范围.【答案】(1)42cm(2)1517-(3)12613185t <<【解析】【分析】(1)当2t =时,()2cm AP =,()4cm BQ =,()4cm BP =,再由勾股定理进行计算即可;(2)连接DP ,过Q 作QM DP ⊥于M ,过M 作MN AB ⊥于N ,过Q 作QK MN ⊥于K ,根据题意可得:cm AP t =,2cm BQ t =,()6cm BP t =-,由45DPQ ∠=︒,得出PQM 是等腰直角三角形,证明()AAS PMN MQK ≌得出PN MK =,MN QK =,设cm PN MK x ==,则()62t x t x -+=-,得出362t x -=,证明MPN DPA ∽得到1623622tt t =-+,求解即可;(3)当Q 与AD 相切于T 时,Q 与矩形ABCD 的边共有3个公共点,连接QT ,可得()()22626t t -+=,解得125t =,由图可知,Q 与矩形ABCD 的边共有4个公共点,需满足125t >;当Q 经过点D 时,Q 与矩形ABCD 的边共有3个公共点,可得()()()2222621226t t t -+=-+,解得61318t =-,由图可知,Q 与矩形ABCD 的边共有4个公共点,需满足61318t <-,即可得出答案.【小问1详解】解:当2t =时,()212cm AP =⨯=,()224cm BQ =⨯=,()624cm BP AB AP ∴=-=-=,()22224442cm PQ BP BQ ∴=+=+=,故答案为:42cm ;【小问2详解】解:如图,连接DP ,过Q 作QM DP ⊥于M ,过M 作MN AB ⊥于N ,过Q 作QK MN ⊥于K ,,根据题意可得:cm AP t =,2cm BQ t =,()6cm BP t ∴=-,由作图可知四边形BQKN 是矩形,BN QK ∴=,2cm BQ NK t ==,45DPQ ∠=︒ ,PQM ∴ 是等腰直角三角形,90PMQ ∴∠=︒,PM QM =,90PMN QMK KQM ∴∠=︒-∠=∠,90MNP QKM ∠=︒=∠ ,()AAS PMN MQK ∴ ≌,PN MK ∴=,MN QK =,设cm PN MK x ==,则()2cm MN NK MK t x QK =-=-=,BN QK = ,()62t x t x ∴-+=-,362t x -∴=,()36cm 2t PN -∴=,()3662cm 22t t MN t -+=-=,MPN DPA ∠=∠ ,90MNP A ∠=︒=∠,MPN DPA ∴ ∽,PN MN AP AD ∴=,即1623622t t t =-+,解得:15317t =+(舍去)或15317t =-,t ∴的值为15317-;【小问3详解】解:如图,当Q 与AD 相切于T 时,Q 与矩形ABCD 的边共有3个公共点,连接QT ,,90A B ATQ ∠=∠=∠=︒ ,∴四边形ABQT 是矩形,6cm QT AB PQ ∴===,()()22626t t ∴-+=,解得:0=t (舍去)或125t =,由图可知,Q 与矩形ABCD 的边共有4个公共点,需满足125t >;如图,当Q 经过点D 时,Q 与矩形ABCD 的边共有3个公共点,,此时PQ DQ =,()()()2222621226t t t ∴-+=-+,解得:61318t =-或61318t =--(舍去),由图可知,Q 与矩形ABCD 的边共有4个公共点,需满足61318t <-,综上所述,当12613185t <<-时,Q 与矩形ABCD 的边共有4个公共点.【点睛】本题考查了圆的综合应用,涉及勾股定理及应用,全等三角形的判定与性质,相似三角形的判定与性质等知识点,解题的关键是作辅助线,构造全等三角形和相似三角形解决问题.27.已知平面直角坐标系中,以原点O 为圆心,5为半径的O 交y 轴的正半轴于点P ,小刚同学用手中的三角板(90308B ACB AB ∠=︒∠=︒=,,)进行了如下的实验操作:(1)如图1,将三角板的斜边放置于x 轴上,边AB 恰好与O 相切于点D ,则切线长AD =;(2)如图2,将三角板的顶点A 在O 上滑动,直角顶点B 恰好落在x 轴的正半轴上,若BC 边与O 相切于点M ,求点B 的坐标;(3)请在备用图上继续操作:将三角板的顶点A 继续在O 上滑动,直角顶点B 恰好落在O 上且在y 轴右侧,BC 边与y 轴的正半轴交于点G ,与O 的另一交点为H ,若1PG =,求GH 的长.【答案】(1)533(2)()41,0B (3)253-或3【解析】【分析】(1)连接OD ,得出30DOA ∠=︒,根据含30度角的直角三角形的性质,勾股定理即可求得AD 的长;(2)连接OM ,设线段AB 交O 于点E ,过点O 作ON AB ⊥于N ,得出四边形ONBM 是矩形,根据垂径定理以及矩形的性质得出5,3OE NE ==,在Rt NEO 中,勾股定理求得ON ,Rt OMB 中,勾股定理求得OB ,即可求得点B 的坐标;(3)分类讨论,①当G 在P 点上方时,过点O 作OF BC ⊥于点F ,连接AH ,根据90度角所对的弦是直径,得出AH 是O 的直径,进而勾股定理求得HB ,垂径定理求得HF ,在Rt HOF 中,得出OF ,在Rt GFO 中求得FG ,继而根据GH FG HF =-即可求解;②当G 点在P 点下方时,过点O 作OX HB ⊥,同一法证明点,G X 重合,进而垂径定理即可求解.【小问1详解】如图,连接OD ,∵边AB 恰好与O 相切于点D ,∴OD AB ⊥,∵9030B ACB ∠=︒∠=︒,,∴∥OD BC ,∴30DOA ∠=︒,。

山东济南高新区2024—2025学年九年级数学第一学期期中考试试题(含答案)

山东济南高新区2024—2025学年九年级数学第一学期期中考试试题(含答案)

高新区2024-2025学年第一学期九年级数学期中学业水平测试试题(满分150分时间120分钟)一.选择题(本大题共10个小题,每小题4分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的)1.如图,一个实木正方体内部有一个圆锥体空洞,它的左视图是( )A. B. C. D.2.若a4=b3,则ab的值是( )A.34B.43C.12D.1123.对于反比例函数y=﹣6x的图象,下列说法正确的是()A.它的图象分布在一、三象限B.它的图象与坐标轴可以相交C.它的图象经过点(-4,-1.5)D.当x<0时,y的值随x的增大而增大4.如图,在Rt△ABC中,∠C=90°,AB=4,AC=3,则sinB=( )A.35B.45C.√74D.34(第4题图)(第5题图)(第7题图)5.如图,DE∥BC,且EC:BD=2:3,AD=6,则AE的长为()A.1B.2C.3D.46.函数与y=kx与y=kx-k(k≠0)在同一平面直角坐标系中的大致图象是( )7."今有井径五尺,不知其深,立五尺木于井上,从木末望水岸,入径四寸,问井深几何?"这是我国古代数学著作《九章算术》中的"井深几何"问题,它的题意可以由如图所示(单位:尺),已知井的截面图为矩形ABCD ,设井深为x 尺,下列所列方程中,正确的是( )A.5x =0.45B.x5+x=50.4C.x5﹣x=0.45D.x5+x=0.45A. B. C. D.9.根据图①所示的程序,得到了y与x的函数图象,如图②.若点M是y轴正半轴上任意一点,过点;②△OPO的面积为定M作PQ平行x轴交图象于点P、Q,连接OP、OQ,则以下结论:①x<0时,y=2x值;③x>0时,y随x的增大而增大;④MQ=2PM;⑤∠POO可以等于90°。

其中正确结论是()A.①②⑤ B.②④⑤ C.③④⑤ D.②③⑤(第9题图)(第10题图)10.如图,正方形ABCD中,点E是CD边上一点,连结BE,以为对角线BE作正方形BGEF,边EF与正方形ABCD的对角线BD相交于点H,连结AF,有以下结论:①∠ABF=∠DBE;②△ABF∽△DBE;③AF ⊥BD;④2BG2=BH·BD,你认为其中正确的有()A.1个B.2个C.3个D.4个二.填空题:(本大题共5个小题,每小题4分,共20分。

江苏省徐州市邳州市2024—2025学年上学期期中考试九年级数学试卷(含答案)

江苏省徐州市邳州市2024—2025学年上学期期中考试九年级数学试卷(含答案)

2024~2025学年度第一学期期中检测九年级数学试题注意事项1.本卷共6页,满分140分,考试时间100分钟。

2.答题前,请将姓名、文化考试证号用0.5毫米黑色字迹签字笔填写本卷和答题卡的指定位置。

3.答案全部涂、写在答题卡上,写在本卷上无效。

考试结束后,将答题卡交回。

一、选择题(本大题共8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置)1.方程的解是( )A .,B .C .,D .,2.的半径长为4,若点P 到圆心的距离为3,则点P 与的位置关系是( )A .点P 在内B .点P 在上C .点P 在外D .无法确定3.方程的两根为、,则( )A .6B .-6C .3D .-34.下列函数的图象与的图象形状相同的是( )A .B .C .D .5.如图,A 、B 、C 、D 为一个正多边形的顶点,O 为正多边形的中心.若,则这个正多边形的边数为( )A .7B .8C .9D .10(第5题)6.如图,在半径为5的中,弦,点C 是弦AB 上的一动点,若OC 长为整数,则满足条件的点C 有()240x x -=12x =-22x =4x =10x =24x =14x =-24x =O e O e O e O e O e 2261x x -=1x 2x 25y x =22y x=252y x =-+251y x x =++51y x =-20ADB ∠=︒O e 8AB =(第6题)A .3个B .4个C .5个D .6个7.为响应“坚持绿色低碳,建设一个清洁美丽的世界”的号召,已知某市一共有285个社区,第一季度已有60个社区实现垃圾分类,第二、三季度实现垃圾分类的小区个数较前一季度平均增长率为x ,要在第三季度将所有社医都进行垃圾分类,下列方程正确的是( )A .B .C .D .8.当时,函数的最小值为1,则a 的值为( )A .0B .2C .0或2D .0或3二、填空题(本大题共8小题,每小题4分,共32分.不需写出解题过程,请将答案直接填写在答题卡相应位置)9.一元二次方程的根是______.10.请在横线上写一个常数,使得关于x 的方程有两个相等的实数根.11.若是一元二次方程的一个根,则______.12.如图,是的内切圆,若,,则______°.(第12题)13.已知二次函数的图像经过点、,则______(填“>”“<”或“=”).14.如图,将一个圆锥展开后,其侧面是一个圆心角为108°,半径为12cm 的扇形,则该圆锥的底面圆的半径为______cm.()2601285x +=()2601285x -=()()2601601285x x +++=()()260601601285x x ++++=1a x a -≤≤221y x x =-+213x -=26______0x x -+=1x =20x mx n --=2024m n ++=O e ABC △60ABC ∠=︒50ACB ∠=︒BOC ∠=()()210y a x c a =-+<()11,y -()24,y 1y 2y(第14题)15.平面直角坐标系中,若平移二次函数的图象,使其与x 轴交于两点,且此两点的距离为1个单位,则平移方式为______.16.已知如图,二次函数的图像交x 轴于A 、B 两点,交y 轴于C 点,连接BC ,点M 是BC 上一点,射线MN 与以A 为圆心,1为半径的相切于点N ,则线段MN 的最小值是______.(第16题)三、解答题(本大题共9小题,共84分,请在答题卡指定区域内作答,解答时写出相应文字说明、证明过程或演算步骤)17.(本题10分)解下列方程:(1);(2).18.(本题8分)已知关于x 的一元二次方程.求证:不论m 为何值,该方程总有两个实数根.19.(本题8分)如图,AB 是的直径,弦AD 平分,,垂足为E .试判断DE 与的位置关系,并说明理由.(第19题)()()202420254y x x =--+2y =+A e 2420x x --=()()323x x x +=+210x mx m ++-=O e BAC ∠DE AC ⊥O e20.(本题8分)某小区有一块矩形绿地,长为20m ,宽为8m .为美化小区环境,现进行如下改造,将绿地的长减少a m ,宽增加a m ,改造后的面积比原来增加,求a 的值.21.(本题10分)已知y 是x 的函数,下表中给出了几组x 、y 的对应值:x …-2-1.5-101 4.55…y…3m-2-31.3753…(1)建立直角坐标系,以表中各对对应值为坐标描出各点,用平滑曲线顺次连接,由图像可知,它是我们学过的哪类函数?求出函数表达式,并直接写出m 的值;(2)结合图像回答问题:当x 的取值范围是____________时,.(第21题)22.(本题10分)如图,在中,,以AB 为直径作,分别交AC 、BC 于点D 、E .(1)求证:;(2)当时,求的度数;(3)过点E 作的切线,交AB 的延长线于点F ,当时,求图中阴影部分面积.(第22题)23.(本题10分)商场将进货价为40元每件的某商品以50元售出,平均每月能售出700件,调查表明:售价在50元至100元范围内,这种商品的售价每上涨1元,其销售量就将减少10件,设商场决定每件商品的售价为元.(1)该商场平均每月可售出______件商品(用含x 的代数式表示);(2)商品售价定为多少元时,每月销售利润最大?227m 0y ≥ABC △AB AC =O e BE CE =40BAC ∠=︒ADE ∠O e 2AO BE ==()50100x x <<(3)该商场决定每销售一件商品就捐赠a 元利润给希望工程,通过销售记录发现,每件商品销售价格大于85元时,扣除捐款后每天的利润随x 增大而减小,求a 的取值范围.24.(本题10分)(1)如图①,点A 、B 、C 、D 在上,,则______°:(2)如图②,A 、B 两点分别在x 轴和y 轴上,是的外接圆,利用直尺和圆规在第一象限内作出一点P ,使,且;(保留作图痕迹)(3)如图③,已知线段AB 和直线l ,利用直尺和圆规在l 上作出点P ,使;(保留作图痕迹)(4)如图④,在平面直角坐标系的第一象限内有一点B ,坐标为,过点B 作轴,轴,垂足分别为A 、C ,若点P 在线段AB 上滑动(点P 可以与点A 、B 重合),使得的位置有两个,则m 的取值范围为______.(第24题)25.(本题10分)如图,二次函数的图像与x 轴交于点、,与y 轴交于点C .连接AC 、BC .(1)填空:______,______;(2)如图①,若点D 是此二次函数图像的第一象限上一点,设D 点横坐标为m ,当四边形OCDB 的面积最大时,求m 的值;(3)如图②,若点P 在第四象限,点Q 在PA 的延长线上,当时,求点P 的坐标.(第25题)()1a ≥O e 35BAC ∠=︒BOC ∠=C e AOB △OPA OBA ∠=∠OP AP =30APB ∠=︒()2,m AB y ⊥BC x ⊥45OPC ∠=︒212y x bx c =-++()1,0A -()4,0B b =c =45CAQ CBA ∠=∠+︒2024~2025学年度第一学期期中检测九年级数学参考答案一、选择题(本大题共8小题,每小题3分,共24分)题号12345678答案CACBCCDD二、填空题(本大题共8小题,每小题4分,共32分)9.,10.911.202512.12513.>14.3.615.向下平移4个单位长度16三、解答题(本大题共9小题,共84分)17.(本题10分)解:(1)移项,得配方,得即直接开平方,得∴(2)移项,得因式分解,得∴或∴,18.(本题8分)解:∵,,∴∵不论m 为何值∴不论m 为何值,该方程总有两个实数根.19.(本题8分)解:DE 与相切理由是:连接OD∵∴∵AD 平分∴∴∴∵∴∴DE 与相切.12x =22x =-242x x -=24424x x -+=+()226x -=2x -=12x =+22x =()()3230x x x +-+=()()230x x -+=20x -=30x +=12x =23x =-1a =b m =1c m =-()2²4411b ac m m -=-⨯⨯-²44m m =-+()22m =-()220m -≥O e OD OA =ODA OAD∠=∠BAC ∠OAD CAD ∠=∠ODA CAD ∠=∠AC OD ∥DE AC ⊥OD DE ⊥O e(第19题)20.(本题8分)解:根据题意得:即:解得:,答:a 的值为3或9.21.(本题10分)(1)描点、连线如图是二次函数,设函数的表达式为:把点,,代入得解得:∴函数得表达式为(2)或.22.(本题10分)(1)证明:连接AE∵AB 是直径∴∴∵∴()()20820827a a -+-⨯=212270a a -+=13a =29a =()20y ax bx c a =++≠()1,0-()0,2-()1,3-023a b c c a b c -+=⎧⎪=-⎨⎪++=-⎩12322a b c ⎧=⎪⎪⎪=-⎨⎪=-⎪⎪⎩213222y x x =--1.375m =1x ≤-4x ≥O e 90AEB ∠=︒AE BC ⊥AB AC =BE CE=(第22题)(2)解:∵,∴∵四边形ABED 是的内接四边形∴∴.(3)解:连接OE 则∵∴∴是等边三角形∴∵EF 是切线∴∴∴∴∴阴影部分的面积.23.(本题10分)(1)(2)设每月销售利润为y 元则∵,∴当时,y 有最大值16000答:商品售价定为80元时,每月销售利润最大;(3)设每月销售利润为y 元则∴对称轴为直线∵∴当时,y 随x 得增大而减小∵每件商品销售价格大于85元时,扣除捐款后每天的利润随x 增大而减小∴解得:∵∴a 的取值范围是.24.(本题10分)(1)35,702分AB AC =40BAC ∠=︒180180407022BAC ABC ︒-∠︒-︒∠===︒O e 180ADE ABC ∠+∠=︒180********ADE ABC ∠=︒-∠=︒-︒=︒OE OA OB==2OA BE ==OA OB BE ==OBE △60BOE ∠=︒O e OE EF ⊥30F ∠=︒24OF OE ==EF ===2160π222π23603OEF BOE S S ⨯=-=⨯⨯=-扇形△101200x -+()()()224010120010160048000108016000y x x x x x =--+=-+-=--+100-<50100x <<80x =()()()24010120010160010480001200y x a x x a x a=---+=-++--()160010802102a a x +=-=+⨯-100-<802ax >+80852a+≤10a ≤1a ≥110a ≤≤(2)如图(3)如图(4)25.(本题10分)(1),2(2)∵点D 横坐标为m ,且点D 在二次函数的图像上∴点D 坐标为对于二次函数,当时,∴设BC :则解得:∴BC :21m ≤<32213222y x x =-++213,222m m m ⎛⎫-++ ⎪⎝⎭213222y x x =-++0x =2y =()0,2C y kx b =+402k b b +=⎧⎨=⎩122k b ⎧=-⎪⎨⎪=⎩122y x =-+过点D 作轴,交BC 于点E 则∴∴到DE 的距离到DE 的距离(C 到DE 的距离到DE 的距离)∵,∴当时,有最大值8∴.(3)∵,,∴,,∴∴设,则∵∴∴DE y ∥1,22E m m ⎛⎫-+ ⎪⎝⎭2213112222222DE m m m m m ⎛⎫=-++--+=-+ ⎪⎝⎭OBC BCD OCDB S S S =+四边形△△OBC CDE BDES S S =++△△△1122OC OB DE C =⨯⨯+⨯⨯12DE B +⨯⨯112422DE =⨯⨯+⨯⨯B +1442DE =+⨯⨯214222m m ⎛⎫=+-+ ⎪⎝⎭244m m =-++()()22804m m =--+<<10a =-<04m <<2m =OCDB S 四边形2m =()1,0A -()4,0B ()0,2C 25AC =220BC =225AB =222AC BC AB +=90ACB ∠=︒ABC x ∠=90CAB x∠=︒-45CAQ CBA ∠=∠+︒45CAQ x ∠=+︒()()180459045PAB x x ∠=︒-+︒-︒-=︒设直线AP 交y 轴于F则∴设AP :则解得:∴AP :设∵点P 在二次函数的图象上∴解得:,(舍去)当时,∴点P 的坐标为.1OF OA ==()0,1F -y kx b =+01k b b -+=⎧⎨=-⎩11k b =-⎧⎨=-⎩1y x =--()(),10P n n n -->213222y x x =-++2132122n n n -++=--16n =21n =-6n =17n --=-()6,7-。

山西省吕梁市临县多校2024-2025学年上学期期中测试九年级数学试卷(含答案)

山西省吕梁市临县多校2024-2025学年上学期期中测试九年级数学试卷(含答案)

2024-2025学年九年级上期中评估试卷数学试卷说明:共三大题,23小题,满分120分,考试时间120分钟.一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请把正确答案的代号填在下表中)1.把一元二次方程化成一般形式,则二次项系数、一次项系数、常数项分别为( )A .3,,1B .3,1,4C .3,D .3,4,12.2024年6月25日,嫦娥六号返回器准确着陆于预定区域,工作正常,标志着探月工程嫦娥六号任务取得圆满成功,实现世界首次月球背面采样返回.下列航天领域的图标中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .3.我们解一元二次方程时,可以运用因式分解法,将此方程化为,得到两个一元一次方程:,从而得到原方程的解为.这种解法体现的数学思想是( )A .公理化思想B .模型思想C .函数思想D .转化思想4.二次函数的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限5.如图,在中,A 是的中点,点D 在上.若,则 ( )AB . C.D .6.如图,菱形ABCD 的对角线AC ,BD 相交于点O ,,将绕点C 旋转得到,则点A 与点之间的距离为( )2314x x +=4-4,1--210x -=()()110x x -+=10,10x x -=+=121,1x x ==-25y x x =+O BCO AOB α∠=AD C ∠=α2α12α90α︒-4,16AC BD ==BOC △180︒B O C '''△B 'A .6B .8C .10D .127.下列方程没有实数根的是( )A .B .C .D .8.如图,学校课外生物小组的试验田的形状是长为、宽为的矩形,为了方便管理,要在中间开辟两横一纵共三条等宽的小路,小路与试验田的各边垂直或平行,要使种植面积为,则小路的宽为多少米若设小路的宽为x m ,根据题意可列方程( )A .B .C .D .9.石拱桥是中国传统的桥梁四大基本形式之一,是用天然石料作为主要建筑材料的拱桥,以历史悠久,形式优美,结构坚固等特点闻名于世,它的主桥是圆弧形.如图,某石拱桥的跨度AB (AB 所对的弦的长)约为,拱高CD (AB 的中点到弦AB 的距离)约为,则AB 所在圆的半径OA 为( )A .B .C .D .10.已知二次函数的图象如图所示,该抛物线的对称轴为直线,则下列结论不正确的是()()235x x -=2210x x -+=280x x --=()()230x x -+=36m 22m 2700m ()()3622700x x --=()()36222700x x --=()()36222700x x ++=()()36222700x x --=36m 6m 30m 27m 25m2y ax bx c =++1x =A .B .关于x 的方程的两根是C .当时,y 随x 的增大而减小D .二、填空题(本大题共5个小题,每小题3分,共15分)11.方程的解是___________.12.如图,四边形ABCD 内接于,若,则的度数为___________.13.若二次函数的图象经过点,利用抛物线可知不等式的解集是____________.14.铅球是利用人体全身的力量,将一定重量的铅球从肩上用手臂推出的田径运动项目之一,是集力量和技术于一体的运动,绝对力量和完美技术都是取得好成绩的因素,铅球行进高度和铅球行进曲线都影响着铅球投掷的成绩.如图,一位运动员推铅球,铅球行进高度y (单位:m )与水平距离x (单位:m )之间的关系是,此运动员投掷时,铅球的最大行进高度是_________m .15.如图,在矩形ABCD 中,E 是边CD 上一点,对角线AC ,BD 相交于点O ,于点F ,连接OF .若,则OF 的长为______.三、解答题(本大题共8个小题,共75分.解答应写出文字说明,证明过程或演算步骤)16.(本题共2个小题,每小题5分,共10分)(1)解方程:.0a c <20ax bx c ++=121,3x x =-=0x >20a b +=()()430x x -+=O 125A ∠=︒C ∠22y x x m =-+()2,3-22y x x m =-+220x x m -+≤21251233y x x =-++EF AB ⊥15,5,12AB DE AD ===243x x +=(2)以下是小夏同学解方程的过程,请解决问题:解:原方程可变形为, 第一步方程两边同时除以得, 第二步∴原方程的解是.第三步上述解方程的过程从第_______步开始出错,错误的原因是____________②请直接写出方程的解:_________________________17.(本题9分)已知二次函数的图象与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,顶点为D .(1)求点A ,B ,C ,D 的坐标,并在如图所示的平面直角坐标系中画出该二次函数的大致图象(每个小方格的边长都是1个单位长度).(2)描述抛物线是由抛物线如何平移得到的.(3)求四边形AOCD 的面积.18.(本题8分)如图,已知的直径AB 垂直弦CD 于点E ,连接CO 并延长交AD 于点F ,且F 为AD 的中点.(1)求证:.(2)若,求弦CD 的长.19.(本题7分)大豆,通称黄豆,属一年生草本,是我国重要粮食作物之一,已有五千年栽培历史,古称“菽”.某校综合实践小组以“探究大豆种植密度优化方案”为主题展开项目学习.在六块不同的试验田中种植株数不同的大豆,()()323x x x -=-()()323x x x -=--()3x -2x =-2x =-223y x x =+-223y x x =+-2y x =O AD CD=8AB =严格控制影响大豆生长的其他变量,在大豆成熟期,对每株大豆的产量进行统计,并记录如下:试验田编号123456单位面积试验田种植株数/株304050607080单位面积试验田单株的平均产量/粒514641363126(1)根据记录表中的数据分析单位面积试验田的单株平均产量与种植株数的变化规律,若设单位面积试验田种植x 株(),则单位面积试验田单株的平均产量为_________粒.(2)如果要想获得单位面积大豆的总产量达到2160粒,又相对减少田间管理,那么单位面积大豆应种植多少株?20.(本题8分〉某批发市场批发甲、乙两种水果,根据以往经验和市场行情,预计夏季某一段时间内,甲种水果的销售利润(单位:万元)与进货量x (单位:吨)近似满足函数关系;乙种水果的销售利润(单位:万元)与进货量x (单位:吨)近似满足函数关系 (其中a ,b 为常数,),且当进货量为1吨时,销售利润为1.4万元,当进货量为2吨时,销售利润为2.6万元.如果该批发市场准备进甲、乙两种水果共10吨,问这两种水果各进多少吨时获得的销售利润之和最大?最大利润是多少?21.(本题8分)阅读与思考观察下列方程系数的特征及其根的特征,解决问题:方程及其根方程及其根方程及其关联方程方程的根方程及其关联方程方程的根①①②②…………(1)请描述一元二次方程和关联方程的系数特征及它们根的关系特征.(2)方程和是不是关联方程?求解两个方程并判断两个方程的根是否符合根的关系特征.(3)请以一元二次方程为例证明关联方程根的关系特征.22.(本题12分)综合与实践如图1,这是某广场中的喷水池,那随着音乐声此起彼伏的水线,一会儿高高跃起,一会儿盘旋而下,令人心旷神怡!边上各个方向向外喷出的水线可以看做一圈形状相同的抛物线,从这些抛物线中抽象出一条分析研究,若水线达到最大高度 (点P 距地面的距离)时,水线的跨度.3080x ≤≤y 甲0.3y x =甲y 乙2y ax bx =+乙0a ≠22310x x -+=121,12x x ==2230x x +-=123,1x x =-=22310x x ++=121,12x x =-=-2230x x --=123,1x x ==-2240x x --=2240x x +-=()2200,40axbx c a b ac ++=≠-≥3.2m 8m AB =请你结合所学知识解决下列问题:(1)在图2中建立以为单位长度,点A 为坐标原点,AB 所在直线为x 轴,过点A 与AB 垂直的直线为y 轴,构建平面直角坐标系,并求出抛物线的解析式.(2)若喷水池中心C 到A 的距离约为,则该喷水池的半径至少为多少米,才能使喷出的水流都落在水池内?(3)在(2)的条件下,身高为的清洁工王师傅在水池中清理漂浮物,为了不被淋湿,王师傅站立时必须在离水池中心点C 多少米范围内?(结果保留1位小数,参考数据:,)23.(本题13分)综合与探究问题情境:数学课上,老师提出一个问题:如图1,在中,,把绕点C 逆时针旋转到的位置,点A ,B 的对应点分别是与AB 相交于点D .在旋转过程中,线段之间存在一些特殊的位置关系和数量关系.如图2,在旋转过程中,当经过AB 的中点D 时,试判断四边形与AC 的位置关系,并加以证明.问题解决:(1)请你解答老师提出的问题.数学思考:(2)小明同学发现:在图形旋转过程中,有线段垂直关系的存在.如图3,在旋转过程中,当时,求点A 与点之间的距离.数学探究:(3)小敏同学发现:在旋转过程中,有特殊三角形的存在.在旋转过程中,当是等腰三角形时,请直接写出线段AD的长.1m 2.3m 1.8m 2.24≈≈≈2.45, 3.32≈≈≈Rt ABC △90,4,3ACB AC BC ∠=︒==ABC △()090αα︒≤≤︒ABC ''△,,A B AC'''A C 'A B ''A C A B '⊥A 'BCD △数学参考答案1.A2.B 3.D4.D5.C6.C7.A8.B 9.A10.C 提示:由抛物线开口方向可知,由抛物线与y 轴交点位置可知,∴,A 选项正确;根据抛物线的轴对称性可知抛物线与x 轴分别交于和,∴方程的两根是,B 选项正确;抛物线的对称轴是直线,变形可得,D 选项正确;抛物线的对称轴是直线,故时,y 随x 的增大而增大,时,y 随x 的增大而减小,C 选项不正确.故选C .11.12.13. 14.315.6.5 提示:如图,延长FO 交DC 于点G ,构造中心对称.在矩形ABCD 中,.在矩形AFED 中,,所以.根据矩形的中心对称性和线段的中心对称性可知,,有,∴.在中,根据勾股定理得,∴.16.(1)(解法不唯一)解:配方,得,3分直接开平方,得, 4分∴5分(2)解:①二;没有考虑为0而错误地运用等式的基本性质2进行变形.3分0a <0c >0a c <()3,0()1,0-20ax bx c ++=121,3x x =-=12bx a=-=20a b +=1x =01x <<1x >124,3x x ==-55︒13x -≤≤15AB C D ==5,12AF DE AD EF ====10C E B F ==AFO CGO △≌△15,2CG AF OF FG ===1055EG =-=Rt FEG △13FG ==16.52OF FG ==()227x +=2x +=1222x x =-=-()3x -②. 5分17.解:(1)当时,,解得.∵点A 在点B 的左侧,∴点,点.当时,,∴点.由可得点.2分二次函数的大致图象如下图所示.4分(2)(方法不唯一)抛物线可由抛物线先向左平移1个单位长度,再向下平移4个单位长度得到.6分(3)如图,直线DE 为该抛物线的对称轴,其中E 为对称轴与x 轴的交点,∴.由可得是直角三角形,四边形EOCD 是直角梯形,, 8分∴9分18.解:(1)证明:如图,连接AC .∵直径AB 垂直弦CD 于点E ,∴,∴,∴.2分又∵F 为AD 的中点,CF 经过圆心O ,∴,∴,∴,∴. 4分(2)由(1)可知,∴是等边三角形,∴.如图,连接BD ,可得. 6分122,3x x =-=0y =2230x x +-=123,1x x =-=()3,0A -()1,0B 0x =3y =-()0,3C -()222314y xx x =+-=+-()1,4D --223y x x =+-223y x x =+-2y x =()1,0E -()()()3,0,0,3,1,4A C D ----A D E △2,1,4AE OE DE ===()4312415222AED AOCD EOCDS S S =+⨯⨯+=+=△四边形梯形CE DE =AC AD = AC AD =C F A D ⊥CD AC = CD AC = AC CD=AC AD CD ==ACD △30D AB ∠=︒90AD B ∠=︒在中,,∴,∴,∴.8分19.解:(1).2分(2)根据题意可列方程:. 4分整理,得,解得.6分∵种植60株比种植72株的田间管理少一些,故应舍去,∴.答:单位面积大豆应种植60株.7分20.解:由题意可知,解得 2分∴.3分设乙种水果进货m 吨,则甲种水果进货吨,10吨水果销售利润之和为W 万元,根据题意,,5分配方,得.∵,∴当时,W 的最大值为6.6.∴.7分答:甲、乙两种水果分别进货4吨,6吨时获得的销售利润之和最大,最大利润是6.6万元. 8分21.解:(1)一元二次方程和关联方程的系数特征是二次项系数、常数项相同,一次项系数互为相反数;一元二次方程和关联方程的根的关系特征是对应根互为相反数.2分(2)方程和的二次项系数、常数项相同,一次项系数互为相反数,符合(1)中描述的特征,故它们是关联方程.3分Rt ABD △8AB =142BD AB ==AD ===CD AD ==()660.5x -()660.52160x x -=213243200x x -+=1272,60x x ==1x 60x =1.442 2.6a b a b +=⎧⎨+=⎩0.11.5a b =-⎧⎨=⎩20.1 1.5y x x =-+乙()10m -()220.1 1.50.3100.1 1.23W m m m m m =-++-=-++()20.16 6.6Wm =--+0.10-<6m =104m -=2240x x --=2240x x +-=方程的根是的根是它们的两个根对应互为相反数,符合根的关系特征.5分(3)一元二次方程的根是,它的关联方程的根是,它们的两个根对应互为相反数.8分22.解:(1)根据题意,构造平面直角坐标系如图所示. 2分由题意可知,抛物线的顶点,可设抛物线的函数解析式为,2分将点B 代入,得,解得,∴抛物线的解析式为.4分(2)由题可知,∴.6分答:喷水池的半径至少为,才能使喷出的水流都落在水池内. 7分(3)当时,,解得9分.答:王师傅站立时必须在离水池中心点C 约至的范围内. 12分23.解:(1). 1分证明:由旋转的性质可知.∵D 是的中点,∴,∴,2分∴,∴ 4分(2)如图,连接2240x x --=21211240x x x x =+=-+-=1211x x =--=-+()200ax bx c a ++=≠≥x =20ax bx c -+=x =()()00,0,8,0B ()4,3.2P ()24 3.2y a x =-+()284 3.20a-+=0.2a =-()220.24 3.20.2 1.6y x x x =--+=-+2.3,8CA AB ==10.3CB CA AB =+=10.3m 1.8y =20.2 1.6 1.8x x -+=1244x x ==+()()122.3 6.3 6.3 2.65 3.7m , 2.3 6.3 6.3 2.658.9m x x +=≈-≈+=≈+≈3.7m 8.9m A B AC ''∥A A ∠=∠'Rt ABC △12AD BD CD AB ===AC A A ∠'=∠ACA A ∠'=∠'A B AC ''∥AA '在中,根据勾股定理可得.根据三角形面积公式可得由旋转可知.∴6分在中,根据勾股定理可得,在中根据勾股定理可得∴点A 与点10分(3)AD 的长为2或或. 13分提示:①当时,;②当时,;③当时,Rt ABC △5AB ==341255CD ⨯==4A C A C '==128455A D A C CD '='-=-=Rt AD C △165AD ==Rt AD A '△AA '==A '7552BC BD =532AD AB BD =-=-=BC CD =9725255AD AB BD =-=-⨯=BC CD =1522AD AB ==。

2024-2025学年九年级数学上学期期中测试卷(陕西专用,北师大版九上全部)(考试版A4)

2024-2025学年九年级数学上学期期中测试卷(陕西专用,北师大版九上全部)(考试版A4)

2024-2025学年九年级数学上学期期中模拟卷(陕西专用)(考试时间:120分钟试卷满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号等填写在答题卡和试卷指定位置上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

4.测试范围:北师大版九年级(九上全册)。

5.难度系数:0.69。

一、选择题(共8小题,每小题3分,计24分.每小题只有一个选项是符合题意的)1.下列函数不是反比例函数的是( )A.y=3x﹣1B.y=―x3C.xy=5D.y=12x2.如图是某个几何体的三视图,则该几何体是( )A.圆锥B.长方体C.三棱柱D.圆柱3.若双曲线y=k―1x的图象经过第二、四象限,则k的取值范围是( )A.k>1B.k<1C.k=1D.不存在4.在一个不透明的布袋中装有50个黄、白两种颜色的球,除颜色外其他都相同,小红通过多次摸球试验后发现,摸到黄球的频率稳定在0.7左右,则布袋中白球可能有( )A.15个B.20个C.30个D.35个5.如图,AD∥BE∥CF,若AB=2,AC=5,EF=4,则DE的长度是( )A .6B .23C .53D .836.在长为30m ,宽为20m 的长方形田地中开辟三条入口宽度相等的道路,已知剩余田地的面积为468m 2,求道路的宽度设道路的宽度为x (m ),则可列方程( )A .(30﹣2x )(20﹣x )=468B .(20﹣2x )(30﹣x )=468C .30×20﹣2×30x ﹣20x =468D .(30﹣x )(20﹣x )=4687.如图,正方形四个顶点分别位于两个反比例函数y =3x和y =n x 的图象的四个分支上,则实数n 的值为( )A .﹣3B .―13C .13D .38.如图,在菱形ABCD 中,DE ⊥AB ,垂足为E ,DE AE =34,BE =1,F 是BC 的中点.现有下列四个结论:①DE =3;②四边形DEBC 的面积等于9;③(AC +BD )(AC ﹣BD )=80;④DF =DE .其中正确结论的个数为( )A .1个B .2个C .3个D .4个二、填空题(共5小题,每小题3分,计15分)9.广场上,一个大型字母宣传牌垂直于地面放置,其投影如图所示,则该投影属于__________.(填“平行投影”或“中心投影”)10.反比例函数y =k x的图象经过点(1,6)和(m ,﹣3),则m =__________.11.已知等腰三角形的两边长是方程x 2﹣9x +18=0的两个根,则该等腰三角形的周长为__________.12.如图,在菱形ABCD 中,AC =24,BD =10.E 是CD 边上一动点,过点E 分别作EF ⊥OC 于点F ,EG⊥OD 于点G ,连接FG ,则FG 的最小值为__________.13.如图,在Rt △ABC 中,∠C =90°,AC =10cm ,BC =8cm .点P 从点C 出发,以2cm /s 的速度沿着CA向点A 匀速运动,同时点Q 从点B 出发,以1cm /s 的速度沿BC 向点C 匀速运动,当一个点到终点时,另一个点随之停止.经过__________秒后,△PCQ 与△ABC 相似.三、解答题(共13小题,计81分.解答应写出过程)14.(5分)解方程:x 2﹣4x +1=0.15.(5分)已知:a 2=b 3=c 4≠0,且2a ﹣b +c =10.求a 、b 、c 的值.16.(5分)一个几何体由一些大小相同的小正方块儿搭建,如图是从上面看到的这个几何体的形状如图,小正方形的数字表示在该位置的小正方块儿的个数,请在网格中画出从正面和左面看到的几何体的形状图..17.(5分)如图所示,BE,CF是△ABC的高,D是BC边的中点,求证:DE=DF.18.(5分)已知矩形ABCD中,AB=2,在BC中取一点E,沿AE将△ABE向上折叠,使B点落在AD上的F点,若四边形EFDC与矩形ABCD相似,求AD的长.19.(5分)如图,小明用自制的直角三角形纸板DEF测量水平地面上树AB的高度,已知两直角边EF:DE=2:3,他调整自己的姿势和三角形纸板的位置,使斜边DF保持水平,并且边DE与点B在同一直线上,DM垂直于地面,测得AM=21m,边DF离地面的距离为1.6m,求树高AB.20.(5分)如图所示某地铁站有三个闸口.(1)一名乘客随机选择此地铁闸口通过时,选择A闸口通过的概率为 .(2)当两名乘客随机选择此地铁闸口通过时,请用树状图或列表法求两名乘客选择不同闸口通过的概率.21.(6分)如图,小亮利用所学的数学知识测量某旗杆AB的高度.(1)请你根据小亮在阳光下的投影,画出旗杆AB在阳光下的投影.(2)已知小亮的身高为1.72m,在同一时刻测得小亮和旗杆AB的投影长分别为0.86m和6m,求旗杆AB的高.22.(7分)如图,在平面直角坐标系中,每个小正方形的边长都是1个单位长度,△ABC的顶点都在格点上.(1)以原点O 为位似中心,在第三象限内画出将△ABC 放大为原来的2倍后的位似图形△A 1B 1C 1;(2)已知△ABC 的面积为72,则△A 1B 1C 1的面积是__________.23.(7分)实验数据显示,一般成人喝50毫升某品牌白酒后,血液中酒精含量y (毫克/百毫升)与时间x(时)变化的图象如图(图象由线段OA 与部分双曲线AB 组成)所示.国家规定,车辆驾驶人员血液中的酒精含量大于或等于20(毫克/百毫升)时属于“酒后驾驶”,不能驾车上路.(1)求部分双曲线AB的函数表达式;(2)参照上述数学模型,假设某驾驶员晚上22:00在家喝完50毫升该品牌白酒,第二天早上6:30能否驾车去上班?请说明理由.24.(8分)如图所示,A、B、C、D是矩形的四个顶点,AB=16cm,AD=6cm,动点P,Q分别从点A,C 同时出发,点P以3cm/s的速度向点B移动,一直到达点B为止,点Q以2cm/s的速度向点D移动(1)P,Q两点从出发开始到几秒时,四边形PBCQ的面积为33cm2?(2)P,Q P和点Q的距离第一次是10cm?25.(8分)如图,已知四边形ABCD为正方形,AB=E为对角线AC上一动点,连接DE,过点E 作EF⊥DE,交BC于点F,以DE、EF为邻边作矩形DEFG,连接CG.(1)求证:矩形DEFG 是正方形;(2)探究:CE +CG 的值是否为定值?若是,请求出这个定值;若不是,请说明理由.26.(10分)如图,12y kx =+的图象与反比例函数2y mx =图象相交于A 、B 两点,已知点B 坐标为(3,﹣1).(1)求一次函数和反比例函数的表达式;(2)求得另一个交点A(﹣1,3),观察图象,请直接写出不等式kx+2≤mx的解集;(3)P为y轴上的点,Q为反比例函数图象上的点,若以ABPQ为顶点的四边形是平行四边形,求出满足条件的点P的坐标.。

湖北省武汉市武昌区武珞路中学2023-2024学年九年级上学期期中数学试题(含答案)

湖北省武汉市武昌区武珞路中学2023-2024学年九年级上学期期中数学试题(含答案)

2023—2024学年度九年级上学期期中测试数学试卷(考试时间为120分钟,满分为120分)一、选择题(共10小题,每小题3分,共30分)下列各题中均有四个备选答案,其中有且只有一个正确,请在答题卡上将正确答案的代号涂黑1.将化成一般式后,,,的值分别是()A .1,2,B .1,,C .1,,5D .1,2,52.数学世界奇妙无穷,其中曲线是微分几何的研究对象之一,下列数学曲线是中心对称图形的是()A .B .C .D .3.把抛物线向右平移2个单位,再向下平移3`个单位,得到抛物线为()A .B .C .D .4.将二次函数化成的形式应为()A .B .C .D .5.已知一元二次方程的两根分别为,,则的值是()A .B .C .3D .56.如图,在中,,,在同一平面内,将绕点顺时针旋转到的位置,连接,若,则的度数是()A .B .C .D .7.如图,有一张长12cm ,宽9cm的矩形纸片,在它的四个角各剪去一个同样大小的小正方形,然后折叠成()25x x +=20ax bx c ++=a b c 5-2-5-2-2y x =-()223y x =-++()223y x =--+()223y x =-+-()223y x =---262y x x =+-()2y x h k =-+()237y x =++()2311y x =-+()2311y x =+-()237y x =+-2410x x +-=m n m n mn ++5-3-ABC △AB AC =100BAC ∠=︒ABC △A 11AB C △1BB 11BB AC ∥1CAC ∠10︒20︒30︒40︒一个无盖的长方体纸盒.若纸盒的底面(图中阴影部分)面积是,求剪去的小正方形的边长.设剪去的小正方形的边长是,根据题意,可列方程为()A .B .C .D .8.如图,圆内接四边形中,,连接,,,,.则的度数是()A .B .C .D .9.如图,在中,顶点,,.将与正方形组成的图形绕点逆时针旋转,每次旋转,则第2023次旋转结束时,点的坐标为()A .B .C .D .10.如图,平行四边形中,,,,是边上一点,且,是边上的一个动点,将线段绕点顺时针旋转,得到,连接、,则的最小值是()270cm cm x 1294970x ⨯-⨯=2129470x ⨯-=()()12970x x --=()()1229270x x --=ABCD 105BCD ∠=︒OB OC OD BD 2BOC COD ∠=∠CBD ∠20︒25︒30︒35︒OBC △()0,0O ()2,2B -()2,2C OBC △ABCD O 90︒A ()6,2()2,6-()6,2-()6,2--ABCD 12AB =10AD =60A ∠=︒E AD 6AE =F AB EF E 60︒EN BN CN BN CN +A .B .D .14C .二、填空题(共6小题,每小题3分,共18分)下列各题不需要写出解答过程,请将结果直接填在答题卡指定的位置。

江苏省常州市溧阳市2024-2025学年九年级上学期11月期中数学试题(含答案)

江苏省常州市溧阳市2024-2025学年九年级上学期11月期中数学试题(含答案)

溧阳市2024~2025学年度第一学期期中质量调研测试九年级数学试题 2024.11一、选择题(本题共8小题,每小题2分,共16分每小题给出的四个选项中只有一个选项正确)1.以下方程中,一定是关于x 的一元二次方程的是A. x +1=0B.x 2-x =1C. x 3-x -1=0D. x 2-+1=02.方程x 2-6x =0的解是A. x 1=x 2=6B. x 1=x 2=60C. x 1=6,x 2 =0D.x 1=-6,x 2 =03.一元二次方程x 2+x -3=0的根的情况是A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根4.在△ABC 中,∠A=50°,若点O 为ABC 的外心,则∠BOC 等于A. 40°B.50°C.100°D.110°5.下列说法中,正确的是A.三点确定一个圆B.三角形有且只有一个外接圆C.四边形都有一个外接圆D.圆有且只有一个内接三角形6.如图,已知 PA 切⊙O 于点 A ,⊙O 的半径为3,OP=5,则切线长 PA 为A.B.8C. 4D.2 第6题图7.若关于x 的一元二次方程ax 2-bx =c (ac ≠0)的一个实数根为 2024,则关于x 的一元二次方程cx 2+bx =a (ac ≠0)一定有实数根A.-2024B.2024C.D.8.如图,正方形 ABCD 和CEFG 的边长分别是a 、b (b >2a ),将正方形ABCD 绕点C 旋转,在旋转过程中,△AEG 的面积S 的取值范围是A. B. C.D. 第8题图二、填空题(本大题共10小题。

每小题2分,共20分,不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.将一元二次方程2x 2=5x -化成一般形式为___________________________________。

21x13420241-2024122bS a ≤≤222121b S a ≤≤ab b S ab b +≤≤-222121ab b S ab b +≤≤-2210.若关于x 的一元二次方程x 2+nx -1=0的一个根为-1,则另一个根为___________________。

人教版2022--2023学年度第一学期九年级数学上册期中测试卷及答案

人教版2022--2023学年度第一学期九年级数学上册期中测试卷及答案
【详解】由图像可得,当x<-1或x>4时,直线y=mx+n在抛物线y=ax2+bx+c的上方,
∴不等式mx+n>ax2+bx+c的解集是:x<-1或x>4.
故答案为:x<-1或x>4.
【点睛】本题主要考查二次函数、一次函数与不等式的关系,数形结合思想的运用是解题关键.
16.24或25##25或24
【解析】
A.2B.3C.-2D.-1
7.a是方程 的一个根,则代数式 的值是()
A. B. C. D.
8.已知抛物线 的对称轴是直线 ,则实数 的值是()
A.2B. C.4D.
9.把二次函数 的图象先向右平移3个单位,再向上平移1个单位后得到一个新图象,则新图象所表示的二次函数的解析式是()
A. B.
C D.
(1)设花圃的一边AD长为x米,请你用含x的代数式表示另一边CD的长为米;
(2)当矩形场地面积为160平方米时,求AD的长.
22.某商品交易会上,某商场销售一批纪念品,进价时每件为38元,按照每件78元销售,平均每天可售出20件,为了扩大销售,增加盈利,商场决定采取适当的降价措施,经调查发现,若每个纪念品降价2元,则平均每天多销售4件.
∴方程ax2+bx+c﹣m=0没有实数根时,
∴抛物线 -m顶点在x轴下方

故④正确,
⑤∵对称轴x=﹣1=﹣ ,
∴b=2a,
∵a+b+c<0,
∴3a+c<0,
故⑤正确,
所以正确的选项有②③④⑤,
故选:C.
【点睛】本题考查二次函数图象与系数的关系,一元二次方程根的判别式、抛物线与x轴的交点等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.

2024-2025学年九年级数学上学期期中测试卷(江苏通用,测试范围:苏科版九上第1章-第2章)解析

2024-2025学年九年级数学上学期期中测试卷(江苏通用,测试范围:苏科版九上第1章-第2章)解析

2024-2025学年九年级数学上学期期中模拟卷(江苏通用)(考试时间:120分钟 试卷满分:100分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上。

写在本试卷上无效。

4.测试范围:苏科版九年级上册第1章-第2章。

5.难度系数:0.75。

第Ⅰ卷一、选择题:本题共8小题,每小题2分,共16分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.若关于x 的一元二次方程23510x x a +++= 有一个根为0,则a 的值为( )A .1±B .1C .1-D .02.直线 l 与半径为 r 的 O e 相交,且点 O 到直线 l 的距离为 6,则 r 的取值范围是( )A .6r <B .6r =C .6r >D .6r ³【答案】C【详解】解:∵直线 l 与半径为 r 的 O e 相交,且点 O 到直线 l 的距离为 6,∴6r >.故选:C .3.关于x 的一元二次方程22310x kx +-=根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .没有实数根D .只有一个实数根【答案】A【详解】解:在关于x 的一元二次方程22310x kx +-=中,2a =,3b k =,1c =-,22Δ498b ac k =-=+,因为20k >,所以22Δ4980b ac k =-=+>,所以关于x 的一元二次方程22310x kx +-=根的情况是有两个不相等的实数根.故选A .4.如图,在 O e 中,A ,B ,D 为 O e 上的点,52AOB Ð=°,则ADB Ð的度数是 ( )A .104°B .52°C .38°D .26°5.若12x x ,是一元二次方程20x x +-=的两个实数根,则12124x x x x +-的值为( )A .4B .3-C .0D .7【答案】D【详解】解:∵12x x ,是一元二次方程220x x +-=的两个实数根,∴121x x +=-,122x x =-,∴()121241427x x x x +-=--´-=,故选:D .6.如图,等边三角形ABC 和正方形DEFG 均内接于O e ,若2EF =,则BC 的长为( )A.B.C D7.把一根长50cm的铁丝围成一个等腰三角形,使其中一边的长比另一边的2倍少5cm,则该三角形的边长不可能为()A .12cmB .19cmC .22.5cmD .13cm8.如图,AB 是O e 的直径,4AB =,点C 是上半圆AB 的中点,点D 是下半圆AB 上一点,点E 是BD的中点,连接AE CD 、交于点F .当点D 从点A 运动到点B 的过程中,点F 运动的路径长是( )A 2BC .πD .【答案】B【详解】解:连接,,,AC BC BD OE ,∵AB 是O e 的直径,点C 是上半圆 AB 的中点,∴ AC BC=,90ACB Ð=°,∴点F 的轨迹为 AB 的长90=故选B .第Ⅱ卷二、填空题:本题共10小题,每小题2分,共20分。

河北省邯郸市第十一中学2024-2025学年九年级上学期期中数学试题

河北省邯郸市第十一中学2024-2025学年九年级上学期期中数学试题

河北省邯郸市第十一中学2024-2025学年九年级上学期期中数学试题一、单选题1.下列表达式中,x 为自变量,y 是x 的二次函数的是()A .2y ax bx c =++B .221y x x =-+-C .34y x =-D .21y x x=+2.下面的图形中,既是轴对称图形,又是中心对称图形的是()A .B .C .D .3.图象的对称轴是y 轴的二次函数是()A .2(1)y x =-B .22(1)y x =+C .222y x =-D .2(1)y x =-+4.如图,AB 是O 的弦,OC AB ⊥交O 于点C ,点D 是O 上一点,连接BD ,CD .若28D ∠=︒,则OAB ∠的度数为()A .28︒B .34︒C .56︒D .62︒5.抛物线2(0)y ax bx c a =++≠中,y 与x 的部分对应值如下表:x …1346…y…8182018…下列结论中,正确的是()A .抛物线开口向上B .对称轴是直线4x =C .当>4x 时,y 随x 的增大而减小D .当 4.5x <时,y 随x 的增大而增大6.若点()3P m m --,关于原点对称的点在第二象限,则m 的取值范围为()A .3m >B .03m <<C .0m <D .0m <或3m >7.二次函数24y x x c =-+的最小值是0,那么c 的值等于()A .2B .4C .2-D .88.二次函数y =ax 2+bx +c 的部分图象如图,则下列说法正确的有()①abc >0;②2a -b =0;③a -b +c ≥am 2+bm +c ;④当x <1时,y >0;⑤9a -3b +c =0A .2个B .3个C .4个D .5个9.如图,在正方形方格中,A ,B ,C ,D ,E ,P 均在格点处,则点P 是下列哪个三角形的外心()A .ACE △B .ABD △C .ACD D .BCE10.如图,以()1,4-为顶点的二次函数2y ax bx c =++的图象与x 轴负半轴交于A 点,则一元二次方程20ax bx c ++=的正数解的范围是()A .23x <<B .34x <<C .45x <<D .56x <<11.如图,在平面直角坐标系xOy 中,已知点()0,4A ,()4,4B -,()6,2C -都在M 上,则原点O 到M 上一点的最短距离为()A .2B .C .2D .212.如图,O 是正五边形ABCDE 的内切圆,分别切AB ,CD 于点M ,N ,P 是优弧MN 上的一点,则MPN ∠的度数为()A .55︒B .60︒C .72︒D .80︒二、填空题13.如图,三角形OAB 绕点O 逆时针旋转75︒到三角形OCD 的位置,已知45AOB ∠=︒,则AOD ∠=.14.如图,将边长相等的正六边形ABCDEF 和正五边形ABGHK 的AB 边重合叠放在一起,则GBC ∠的度数是.15.如图,已知⊙O 是△ABC 的内切圆,切点为D 、E 、F ,如果AE=2,CD=1,BF=3,则内切圆的半径r.16.如图,在ABC V 中,90C ∠=︒,10cm AB =,8cm BC =,点P 从点A 沿AC 向点C 以1cm/s 的速度运动,同时点Q 从点C 沿CB 向点B 以2cm/s 的速度运到(点Q 运动到点B 停止),在运动过程中,四边形PABQ 的面积最小值为2cm .三、解答题17.如图,AB 是O 的直径,点C ,D 在O 上,若66DAB ∠=︒,求ACD ∠的度数.18.如图,在平面直角坐标系中,Rt ABC △的三个顶点分别是()3,2A -,()0,4B ,()0,2C .(1)将ABC V 以点C 为旋转中心旋转180︒,画出旋转后对应的111A B C △,平移ABC V ,对应点2A 的坐标为()0,4-,画出平移后对应的222A B C △;(2)若将111A B C △绕某一点旋转可以得到222A B C △,请直接写出旋转中心的坐标.19.已知抛物线2234y x kx k =-++.(1)若抛物线的顶点在x 轴上,求k 的值;(2)若1x >时,y 随x 的增大而增大,求k 的取值范围.20.“筒车”是一种以水流作动力,取水灌田的工具.如图,“筒车”盛水筒的运行轨迹是以轴心O 为圆心的圆,已知圆心O 始终在水面上方.且当圆被水面截得的弦A 为6米时,水面下盛水筒的最大深度为1米(即水面下方部分圆上一点距离水面的最大距离).(1)求该圆的半径;(2)若水面上涨导致圆被水面截得的弦A 从原来的6米变为8米时,则水面下盛水筒的最大深度为多少米?21.足球训练中,小军从球门正前方8米的A 处射门,球射向球门的路线呈抛物线.当球离球门的水平距离为2米时,球达到最高点,此时球离地面3米.现以O 为原点建立如图所示直角坐标系.(1)求抛物线的函数表达式;(2)已知球门高OB 为2.4米,通过计算判断球能否射进球门(忽略其他因素).如图,直线AB 、BC 、CD 分别与⊙O 相切于E 、F 、G ,且AB ∥CD ,OB =6cm ,OC =8cm .求:22.∠BOC 的度数;23.BE +CG 的长;24.⊙O 的半径.25.(1)如图1,O 是等边ABC V 内一点,连接OA OB OC 、、,且345OA OB OC ===,,,将BAO 绕点B 顺时针旋转后得到BCD △,连接OD .求:①旋转角的度数;②线段OD 的长;③求BDC ∠的度数.(2)如图2所示,O 是等腰直角()90ABC ABC ∠=︒ 内一点,连接OA OB OC 、、,将BAO 绕点B 顺时针旋转后得到BCD △,连接O D .当OA OB OC 、、满足什么条件时,90ODC ∠=︒?请给出证明.26.综合与探究二次函数23y ax bx =+-的图象与x 轴交于()1,0A ,()3,0B 两点,与y 轴交于点C ,顶点为M .(1)求该二次函数的表达式,并写出点M 的坐标;(2)如图1,D 是该二次函数图象的对称轴上一个动点,当BD 的垂直平分线恰好经过点C 时,求点D 的坐标;(3)如图2,P 是该二次函数图象上的一个动点,连接OP ,取OP 的中点Q ,连接QC ,QM ,CM ,当CMQ △的面积为6时,直接写出点P 的坐标.。

九年级上学期期中考试(数学)试题含答案

九年级上学期期中考试(数学)试题含答案

九年级上学期期中考试(数学)(考试总分:100 分)一、单选题(本题共计10小题,总分30分)1.(3分)在在在在在在在在在,在P(4,-2)在在在在在在在在在在在在( )A.(-4,2)B.(4,2)C.(-2,4)D.(-4,-2)2.(3分)在在在在在,在在在在在在在在在在在 在A. B. C. D.3.(3分)在在在y=(x在1)2+2在在在在在在3在在在在在,在在在在在在在在在在在在( )A.y=x2+2B.y=(x﹣1)2+1C.y=(x+2)2+2D.y=(x﹣1)2﹣34.(3分)在在在在在在在在在在在,在在在在在在在在在“1”,“2”,“3”“4”,“5”,“6”,在在在在在在在,在在在在在在在在在,在在在在在在在在A. B. C. D.5.(3分)在在,在在在在在,在在在在在在在在在在在在在在在在在在在在在,在在在在在在在在在在在在在,在在在在在在,在在在在在在在在在在.在在在在在在在在在在在,在在在在在在在在在在在,在在在在在在A. B.C. D.6.(3分)在在在在在在在在在在在,在在在在在在A. B. C. D.7.(3分)在在,在在,在在在,在,在在在在A.6B.9C.12D.158.(3分)在在在在在在在在在在在在在在在在在在在在在在在在在在A. B. C. D.9.(3分)236410589535在在,BC在在在在在在在在在,在在在在在在在3m,在在在6m,在在在在在在在B在在在在在在在在在在在AC在在在P.在在在在在在在在在在在( )A.3B.C.D.410.(3分)在在,在在ABCD在,AB=8cm,BC=6cm,在P在在A在在,在1cm/s在在在在A→D→C在在在在在在,在在在Q在在A在在,在2cm/s在在在在A→B→C在在在在在在,在在在在在在在C在,在在在在在在在在在.在在在在在在t(s),在APQ在在在在S(cm2),在在在在在在在S在t在在在在在在在在在在( )A. B.C. D.二、填空题(本题共计5小题,总分15分)11.(3分)在在在在在在在在在在在在在72°,在在在在在在在在在在在在___________.12.(3分)在在,在在在在在在,在在在在 _________.13.(3分)在在,在在在在,在在在,在在在在在.在在,在,在______.14.(3分)在在在在在在在在在在8,在在在在在在在在在在,在在在在在在在在______.15.(3分)在在,在在在在在在在在在,在在在在1在在在在OABC在在O在在在在在45°在在在在在在OA1B1C1,在在在在,在在O在在在在2021在在在在在在OA2021B2021C2021,在在在A2021在在在在_______.三、解答题(本题共计7小题,总分55分)16.(6分)在在在在在在在.(1)在m在在(2)在在在在在在在在在在在在在在在在在在在在.17.(6分)在在,在在在在在在在在在在在在在在在1在在在在在,在在在在在在在在在在在在在在在在在在在,在ABC在在在在在在在在.(1)在在ABC在在在在6在在在在在在在在A1B1C1,在在在在A1B1C1;(2)在在在A1B1C1在在在O在在在在在在在在A2B2C2;(3)在在在ABC在在在在在在在在在在A2B2C2,在在在在在在在在在______.18.(8分)在在在在在在在在在在在在在,在在在在在在在在在在在4在在在在在在在在在在,在在在在在在在在在在在在在在在在在在在,在在在在在A在B在C在D在在在在在(在在在在在在在,在在在在在在).在在在在在在在在在在在,在在在在.(1)在在在在在在在在在在在在在“在在在在”在在在在在在?(2)在在在在在在在在在在在在(在在在),在在在在在在在在在在在在在在,在在在在在在在在在在在在在在在在在在在在在在在在“在在在在”在“在在在在”在在在.(在在在在在在在在在在在在在A在B在C在D在在)19.(6分)在在在(x-1)2-5(x-1)+4=0在,在在在在在x-1在在在在在在,在x-1=y,在在在在在在在y2-5y+4=0,在在,在y=1在,在x-1=1,在在:x=2;在y=4在,在x-1=4,在在:x=5,在在在在在在在:在在在在在在在在在在(2x+5)2-7(2x+5)+12=0在在20.(8分)A.如图,在在BCE中,点A是边BE上一点,以AB为直径的在O与CE相切于点D,AD在OC,点F为OC与在O的交点,连接A(1)在在:CB在在O在在在;(2)在在ECB=60°,AB=6,在在在在在在在在在在.21.(10分)在在在在在在在在在在在在在,在在在在在在在在50在.在在在在在在在在在在在在,在在在在在,在在在在在在y(在)在在在在在在x(在)在在在在在在在在,在在在在在在在:(1)在在y在x在在在在在在在在;(在在在在在在在x在在在在在)(2)在在在在在在在在在在在在在在在在在在24000在,在在在在在在在在在,在在在在在在在在在在?(3)在在在在在在,在在在在在在在在在在在在在在在在在50%,在在在在在在在在在在在在在在w(在),在w在x在在在在在在在在,x在在在在,w在在在在,在在在在在在在?22.(11分)A.如图,已知二次函数y=a x2+b x+3的图象与x轴交于点A(-1,0)、B(4,0),与y的正半轴交于点(1)在在在在在y=a x2+b x+3在在在在.(2)在Q(m,0)在在在OB在在在,在在Q在y在在在在在,在BC在在在M,在在在在在在在N,在在CN,在在:在在在在在Q,在在MN=MC?在在在,在在在在Q在在在;在在在在,在在在在在.(3)在在E在在在在在在在在,在在E在在在在在在在在BC在在在在F,在EF=,在在在在E在在在.答案一、单选题(本题共计10小题,总分30分)1.(3分)在在在在A2.(3分)在在在在C3.(3分)在在在在C4.(3分)在在在在D5.(3分)在在在在D6.(3分)在在在在A7.(3分)在在在在C8.(3分)在在在在B9.(3分)在在在在B10.(3分)在在在在A二、填空题(本题共计5小题,总分15分)11.(3分)在在在在512.(3分)在在在在1313.(3分)在在在在27°14.(3分)在在在在2015.(3分)在在在在(−√22,−√22)三、解答题(本题共计7小题,总分55分)16.(6分)(1)m=-1(2)在在在在在在在: x =在在在在:17.(6分)(1)在在,在A1B1C1 在在在在;(2)在在,在A2B2C2 在在在在;(3)在在在在在在在在(-3,0).18.(8分)(1)在在在在在在在在在在在在在在在在在在在在在在在在在在,在在在在在在在在在在在在在在“在在在在”在在在在(2)在在在在在在:在在 12 在在在在在在在,在在在在在在在在在在“在在 在在”在“在在在在”在在在 2 在,在在在在在在在在在在在“在在在在”在“在在在在”在在 在19.(6分)在在在在在:在 2x+5=y,在在在在在在在 y2-7y+12=0,在在 y 1=3 y2 =4 在 y=3 在,在2x+5=3,在在:x=-1;在 y=4 在,在 2x+5=4,在在: x=在在在在在在在:x1 = -1 x2 =20.(8分)(1)在在:在在 OD,在 AF 在在在在 G,在CE 在在O 在在在在 D, 在OD在CE,在在CDO=90°, 在AD在OC,在在ADO=在COD,在DAO=在COB, 在OA=OD,在在ADO=在DAO,在在COD=在COB, 在OB=OD,OC=OC,在在CDO在在CBO,在在CBO=在CDO=90°, 在OB在BC在CB 在在O 在在在.(2)S 在=S 在在 ODF=21.(10分)(1)在 y 在 x 在在在在在在在在在 y=kx+b(k≠0),在 y在 x 在在在在在在在在在 y=-20x+2600;(2)(x-50)(-20x+2600)=24000,在在,x1=70,x2=110(在在在在,在在), 在在在在在在在在,在在在在在在在在 70 在;(3)在在在在在,w=(x-50)(-20x+2600),=-20x 2+3600x-130000, w=-20(x-90)2+32000,在在在在在在在在在在在在在在在在在在 50%,在在在在在在在在在在,在在在,50≤x≤75,在a=-20 < 0,在在在在在在在,在在在:x=90 在 x < 90 在,w 在 x 在在在在在在在在 x=75 在,w 在在在在在,在在 w=27500, 在:在在在在 75 在在,在在在在在在在,在在在在在 27500 在.22.(11分)(1)在 A(-1,0),B(4,0)在在 y=ax 2+bx+3,在:在在在在在在在在在在(2)在在,在在在在:在 x=0 在,y=3, 在在 C 在在在在(0,3). 在在在 BC 在在在在在在在 y=kx+c(k≠0), 在B(4,0),C(0,3)在在 y=kx+c,在:,在在:在在在 BC 在在在在在在在在在 Q 在在在在(x,0),在在 M 在在在在在 N 在在在在在MN=MC. 在在 C 在在在在(0,3),在在在:x=0( 在在)在在在 Q在在在在在在在在 Q在在 MN=MC.(3)在在 E 在 EP在在在 BC,在 y 在在在 P,在在在在 P 在在在,在在 P1,P2,在在 2 在在.在OB=4,OC=3,在在在 O 在在在 BC 在在在在=在在 E 在在在在在在在在 BC 在在在在 F,在在在 E 在在在 BC 在在在在,在在 P1在在在 OC 在在在,在在 P1在在在在在CP1=CP2,在在 P2在在在在在在在 BC在在在在在在在在在在 EP 在在在在在在在在在在在 EP在在在在在在在在在在在在在在,在:在在在E 在在在在:。

九年级数学上学期期中测试题(安徽省合肥)

九年级数学上学期期中测试题(安徽省合肥)

九年级数学上学期期中测试题(安徽省合肥)一、选择题(本大题共10小题,每小题4分,满分40分)1.(4分)二次函数y=﹣(x+1)2+2图象的顶点所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限2.(4分)在平面直角坐标系中,将二次函数y=(x+1)2+3的图象向右平移2个单位长度,再向下平移1个单位长度,所得抛物线对应的函数表达式为()A.y=(x+3)2+2B.y=(x﹣1)2+2C.y=(x﹣1)2+4D.y=(x+3)2+43.(4分)对于反比例函数,下列说法正确的是()A.图象经过点(2,﹣3)B.图象位于第一、三象限C.当x<0时,y随x的增大而增大D.当x>0时,y随x的增大而增大4.(4分)二次函数y=x2+3x+n的图象与x轴有一个交点在y轴右侧,则n的值可以是()A.﹣2B.0C.2D.45.(4分)已知三个实数a,b,c满足a﹣2b+c=0,a+2b+c<0,则()A.b>0,b2﹣ac≤0B.b<0,b2﹣ac≤0C.b>0,b2﹣ac≥0D.b<0,b2﹣ac≥06.(4分)如图,一次函数y=ax+b的图象与反比例函数的图象交于点A(2,3),B (m,﹣2),则不等式ax+b的解是()A.﹣3<x<0或x>2B.x<﹣3或0<x<2C.﹣2<x<0或x>2D.﹣3<x<0或x>37.(4分)一杠杆装置如图.杆的一端吊起一桶水,水桶对杆的拉力的作用点到支点的杆长固定不变.甲、乙、丙、丁四位同学分别在杆的另一端竖直向下施加压力F甲、F乙,F丙,F丁,将相同重量的水桶吊起同样的高度,若F丙<F乙<F甲<F丁,则这四位同学对杆的压力的作用点到支点的距离最远的是()A.甲同学B.乙同学C.丙同学D.丁同学8.(4分)如图,抛物线y=ax2+bx+c(a≠0)的对称轴为x=1,与x轴的一个交点位于(2,0),(3,0)两点之间.下列结论:①2a+b=0;②bc<0;③;④若x1,x2为方程ax2+bx+c=0的两个根,则﹣3<x1•x2<0.其中正确结论的个数是()A.1B.2C.3D.49.(4分)一次函数y=ax+b与反比例函数y=的图象如图所示,则二次函数y=ax2+bx+c 的大致图象是()A.B.C.D.10.(4分)已知二次函数y=ax2﹣2ax+3(其中x是自变量),当0<x<3时对应的函数值y 均为正数,则a的取值范围为()A.0<a<1B.a<﹣1或a>3C.﹣3<a<0或0<a<3D.﹣1≤a<0或0<a<3二、填空题(本大题共4小题,每小题5分,满分20分)11.(5分)已知y是x的二次函数,如表给出了y与x的几对对应值:x…﹣2﹣101234…y…11a323611…由此判断,表中a=.12.(5分)某商店销售一批头盔,售价为每顶80元,每月可售出200顶.在“创建文明城市”期间,计划将头盔降价销售,经调查发现:每降价1元,每月可多售出20顶.已知头盔的进价为每顶50元,则该商店每月获得最大利润时,每顶头盔的售价为元.13.(5分)如图,正方形四个顶点分别位于两个反比例函数和的图象的四个分支上,则n的值=.14.(5分)如图,点A,B分别在函数y=(a>0)图象的两支上(A在第一象限),连结AB交x轴于点C.点D,E在函数y=(b<0,x<0)图象上,AE∥x轴,BD∥y轴,连结DE,BE.若AC=2BC,△ABE的面积为9,四边形ABDE的面积为14,则a ﹣b的值为,a的值为.三、(本大题共2小题,每小题8分,满分16分)15.(8分)已知抛物线y=x2﹣4x+a的顶点在直线y=﹣4x﹣1上,求抛物线的顶点坐标.16.(8分)已知函数y=﹣x2+bx+c(b,c为常数)的图象经过点(0,﹣3),(﹣6,﹣3).(1)求b,c的值.(2)当﹣4≤x≤0时,求y的最大值.四、(本大题共2小题,每小题8分,满分16分)17.(8分)已知反比例函数y=的图象经过点A(3,﹣2).(1)求k的值.(2)点C(x1,y1),B(x2,y2)均在反比例函数y=的图象上,若0<x1<x2,直接写出y1,y2的大小关系.18.(8分)如图,一次函数y=x+3的图象与反比例函数的图象交于点A(m,4),与x轴交于点B,与y轴交于点C(0,3).(1)求反比例函数解析式;(2)已知P为反比例函数图象上的一点,S△OBP=2S△OAC,求点P的坐标.五、(本大题共2小题,每小题10分,满分20分)19.(10分)甲船从A处起以15km/h的速度向正北方向航行,这时乙船从A的正东方向20km 的B处起以20km/h的速度向西航行,多长时间后,两船的距离最小?最小距离是多少?20.(10分)如图,抛物线y=ax2+bx+6经过点A(﹣2,0)、B(4,0),与y轴交于点C,点D是抛物线上的一个动点,设点D的横坐标为m(1<m<4),连接AC、BC、BD、CD.(1)请直接写出抛物线的表达式.(2)求△BCD面积的最大值.六、(本题满分12分)21.(12分)如图,一次函数y=2x的图象与反比例函数y=(x>0)的图象交于点A(4,n).将点A沿x轴正方向平移m个单位长度得到点B,D为x轴正半轴上的点,点B的横坐标大于点D的横坐标,连接BD,BD的中点C在反比例函数y=(x>0)的图象上.(1)求n,k的值;(2)当m为何值时,AB•OD的值最大?最大值是多少?七、(本题满分12分)22.(12分)如图1,某个温室大棚的横截面可以看作矩形ABCD和抛物线AED构成,其中AB=3m,BC=4m,取BC中点O,过点O作线段BC的垂直平分线OE交抛物线AED 于点E,若以O点为原点,BC所在直线为x轴,OE为y轴建立如图所示平面直角坐标系,抛物线AED的顶点E(0,4).请回答下列问题:(1)求如图2抛物线的解析式;(2)如图3,为了保证蔬菜大棚的通风性,该大棚要安装两个正方形孔的排气装置LFGT,SMNR,若FL=NR=0.75m,求两个正方形装置的间距GM的长.八、(本题满分14分)23.(14分)如图,抛物线y=﹣x2+bx+c经过A(﹣1,0),C(0,3)两点,并交x轴于另一点B,点M是抛物线的顶点,直线AM与y轴交于点D.(1)求该抛物线的表达式;(2)若点H是x轴上一动点,分别连接MH,DH,求MH+DH的最小值;(3)若点P是抛物线上一动点,问在对称轴上是否存在点Q,使得以D,M,P,Q为顶点的四边形是平行四边形?若存在,请直接写出所有满足条件的点Q的坐标;若不存在,请说明理由.。

2023-2024学年湖北省武汉市江岸区九年级上学期数学期中试题及答案

2023-2024学年湖北省武汉市江岸区九年级上学期数学期中试题及答案

2023-2024学年湖北省武汉市江岸区九年级上学期数学期中试题及答案一、选择题(本大题共10小题,每小题3分,共30分)1. 一元二次方程2356x x -+=化为一般形式()200ax bx c a ++=≠后,a ,b ,c 的值可以是( )A. 5a =-,3b =-,6c =B. 3a =-,5b =,6c =-C. 3a =-,5b =,6c =D. 5a =,3b =-,6c =-【答案】D 【解析】【分析】本题考查一元二次方程的一般形式,把方程的变形为一般形式即可.【详解】解:一元二次方程2356x x -+=的一般形式为:25360x x --=,故5a =,3b =-,6c =-,故选:D .2. 下列食品标识中,既是轴对称图形又是中心对称图形的是( )A. 绿色饮品B. 绿色食品C. 有机食品D. 速冻食品【答案】D 【解析】【分析】根据轴对称图形与中心对称图形的概念分别判断选项即可得出答案.【详解】解:A 、既不是轴对称图形,也不是中心对称图形,故本选项不合题意;B 、是轴对称图形,不是中心对称图形,故本选项不合题意;C 、不是轴对称图形,是中心对称图形,故本选项不合题意;D 、既是轴对称图形,又是中心对称图形,故本选项符合题意;故选:D .【点睛】本题考查轴对称图形以及中心对称图形的判断,熟练掌握两种特殊图形的概念是解题关键,做题时注意看清楚题目要选的是哪种图形.3. 一元二次方程27460x x -+=的根的情况为( )A. 有两个不相等的实数根 B. 有两个相等的实数根C. 无实数根 D. 只有一个实数根【答案】C 【解析】【分析】根据判别式判断一元二次方程根的情况,能够熟练运用根的判别式是解决本题的关键.【详解】根据根的判别式可知,()244761520∆=--⨯⨯=-<,故方程无实根,故选:C .4. 如图,A 、D 是O 上的两点,BC 是直径,AD BC ⊥,若32D ∠=︒,则ACD ∠的度数为( )A. 116︒B. 128︒C. 122︒D. 126︒【答案】A 【解析】【分析】利用垂径定理得出 AC DC=,通过同弧或等弧所对圆周角相等可得32CAD D ∠=∠=︒,再根据三角形内角和即可求解.【详解】解:∵AD BC ⊥,BC 是直径,∴ AC DC=,∴32CAD D ∠=∠=︒,∵180CAD D ACD ∠+∠+∠=︒,∴116ACD ∠=︒,故选:A .【点睛】此题考查了垂径定理和圆周角定理,解题的关键是熟练掌握垂径定理和同弧或等弧所对圆周角相等的应用.5. 设a ,b 是方程220230x x +-=的两个实数根,则b ab a -+的值为( )A. 1 B. 1- C. 2022D. 2023【答案】C 【解析】【分析】本题考查的是一元二次方程根与系数的关系,熟记“若12x x 、是方程一元二次方程()200ax bx c a ++=≠的两个实数根,则1212b ca x x x x a+=-=,.”是解题关键.【详解】解:∵a,b 是方程220230x x +-=的两个不相等的实数根,∴1a b +=-,2023ab =-,∴()12023120232022b ab a -+=---=-+=,故选:C .6. 如图所示,OA 、OB 、OC 都是O 的半径(点B 在劣弧AC 上,不包括端点A 、C ),则下列关系一定成立的是( )A. 2AOB BOC ∠=∠B. 2AOB ACB ∠=∠C. 2AOB CAB ∠=∠D. 2AOB OCA∠=∠【答案】B 【解析】【分析】本题考查圆周角定理,根据“同弧所对的圆周角等于圆心角的一半”进行判断即可,能够熟练运用圆周角定理是解决本题的关键.【详解】解:根据同弧所对圆周角等于圆心角的一半可知, AOB ∠为弧AB 所对的圆心角,弧AB 所对的圆周角为ACB ∠,的故2AOB ACB ∠=∠,故选:B .7. 若点()13,A y -,()22,B y -,()33,C y 在二次函数()215y x =++的图象上,则1y ,2y ,3y 大小关系是( )A. 123y y y << B. 132y y y << C. 213y y y << D.312y y y <<【答案】C 【解析】【分析】本题主要考查二次函数的图像与性质,熟练掌握二次函数的图像与性质是解题的关键.【详解】解: 点()13,A y -,()22,B y -,()33,C y 在反比例函数()215y x =++的图象上,19y ∴=,26y =,321y =,213y y y ∴<<.故选:C .8. 如图,Rt ACB △中,90C ∠=︒,7AC =,5BC =,点P 从点B 出发向终点C 以1个单位长度/s 移动,点Q 从点C 出发向终点A 以2个单位长度/s 移动,P 、Q 两点同时出发,一点先到达终点时P 、Q 两点同时停止,则( )秒后,PCQ △的面积等于4.A. 1B. 2C. 4D. 1或4【答案】A 【解析】【分析】本题考查一元二次方程的应用,设t 秒后,PCQ △的面积等于4,根据三角形面积公式列出一元二次方程,解方程即可.【详解】解:设t 秒后,PCQ △的面积等于4,由题意得:,2BP t CQ t ==,则5,CP t =-∵12PCQ CQ CP S =⋅△,∴()14252t t =⨯⨯-,整理得:2540t t -+=,解得:1214t t ==,(不合题意,舍去),即1秒后,PCQ △的面积等于4,故选:A .9. 已知O 的半径2OA =,弦AB 、AC 的长分别是,则BOC ∠的度数为( )A. 30︒B. 120︒C. 30︒或150︒D. 30︒或120︒【答案】C 【解析】【分析】本题考查了垂径定理、勾股定理逆定理及特殊角三角函数.分两种情况考虑,根据垂径定理及特殊角三角函数即可求解.【详解】解:当弦AB 、AC 在半径OA 的同侧时,如图,过O 作OD AB ⊥于D ,则12AD AB ==,2AOB AOD ∠=∠,∵sin AD AOD OA ==∠,∴60AOD ∠=︒,∴2120AOB AOD ∠=∠=︒;∵2228OA OC AC +==,∴=90AOC ∠︒,∴30BOC AOB AOC ∠︒=∠-∠=;当弦AB 、AC 在半径OA 的异侧时,如图,同理可求得120AOB ∠=︒,=90AOC ∠︒,则360150BOC AOB AOC ∠=︒-∠-∠=︒,即BOC ∠的度数为30︒或150︒;故选:C .10. 已知抛物线2y x bx c =++(c 为常数)经过点()p m ,、()q m ,、()4,c ,当18q p ≤-<时,则m 的取值范围为( )A. 412c m c -≤<+B. 15124c m c -≤<+C. 12c m c <≤+ D. 324c m c -<+≤【答案】B 【解析】【分析】本题考查了二次函数的性质.先求出4b =-,可得抛物线的对称轴为直线22bx =-=,再根据抛物线的对称性可得4p q +=,进而得到()424q p q q q -=--=-,再结合18q p ≤-<,可得()212164q ≤-<,然后根据()22424m q q c q c =-+=-+-,即可求解.【详解】解:当4x =时,164y b c c =++=,∴4b =-,∴抛物线的对称轴为直线22bx =-=,∴抛物线解析式为24y x x c =-+,∵抛物线2y x bx c =++(c 为常数)经过点()p m ,、()q m ,,∴22p q+=,即4p q +=,∴4p q =-,∴()424q p q q q -=--=-,又18q p ≤-<,∴1248q ≤-<,∴1242q ≤-<,∴()212164q ≤-<,∵()22424m q q c q c =-+=-+-,∴15124c m c -≤<+,故选:B二、填空题(本大题共6小题,每小题3分,共18分)11. 在平面直角坐标系中,点()3,5-关于x 轴对称的点的坐标为__________.【答案】(-3,-5)【解析】【分析】根据关于x 轴对称点的坐标特点:横坐标不变,纵坐标互为相反数可得答案.【详解】在平面直角坐标系中,点(−3,5)关于x 轴对称的点的坐标为(−3,−5),故答案为:(−3,−5).【点睛】此题主要考查了关于x 轴对称点的坐标,关键是掌握点的变化规律.12. 把抛物线2y x =-向左平移1个单位,然后向上平移3个单位,则平移后抛物线的解析式为________.【答案】()213y x =-++【解析】【分析】直接根据“上加下减,左加右减”的原则进行解答即可.【详解】解:由“左加右减”的原则可知,将抛物线2y x =-向左平移1个单位所得抛物线的解析式为:()21y x =-+.由“上加下减”的原则可知,将抛物线()21y x =-+向上平移3个单位所得抛物线的解析式为:()213y x =-++.故答案为:()213y x =-++.【点睛】本题考查了二次函数图象的平移与几何变换,利用抛物线解析式的变化规律:左加右减,上加下减是解题的关键.13. 某机械厂七月份生产零件50万个,第三季度生产零件196万个.设该厂八、九月份平均每月的增长率为x ,那么方程是_____.【答案】50+50(1+x)+50 (1+x)2=196【解析】【分析】因为设该厂八、九月份平均每月的增长率为x ,七月份生产零件50万个,所以八月份生产零件50(1+x )万个,九月份生产零件50(1+x )2万个,三个月之和即为总产量.【详解】因为设该厂八、九月份平均每月的增长率为x ,七月份生产零件50万个,所以八月份生产零件50(1+x )万个,九月份生产零件50(1+x )2万个,所以根据第三季度生产零件196万个可列方程为:50+50(1+x )+50(1+x )2=196.【点睛】本题考查一元二次方程应用中的增长率问题,需要注意第三季度产量是三个月之和.14. 如图,在Rt ABC △中,90ACB ∠=︒,60A ∠=︒,1AC =,将ABC 绕点C 按逆时针方向旋转得到A BB '' ,此时点A '恰好在AB 边上,连结BB ',则A BB '' 的周长为________.【答案】3+3+【解析】【分析】先根据含30度角的直角三角形的性质结合勾股定理得到,22AB AC ==,BC =.再根据旋转的性质得到1AC A C '==,,2BC B C AB A B ACA BCB '''''====∠=∠,则可判断ACA ' 为等边三角形,从而得到BCB 'V 为等边三角形,可得到BB BC '==1A B '=,即可求解.【详解】解:∵90ACB ∠=︒,60A ∠=︒,∴30ABC ∠=︒,∵1AC =,∴22AB AC ==,∴BC ==∵将ABC 绕点C 按逆时针方向旋转得到A BB '' ,此时点A '恰好在AB 边上,∴1AC A C '==,,2BC B C AB A B ACA BCB '''''====∠=∠,∵60A ∠=︒,∴ACA ' 为等边三角形,∴60ACA BCB ''∠=∠=︒,1AA AC '==,BCB 'V 为等边三角形,∴BB BC '==,1A B '=,∴A BB '' 的周长为213A B BB A B ''''++==.故答案为:3【点睛】本题考查了旋转的性质,等边三角形的判定与性质,含30度角的直角三角形的性质和勾股定理.15. 已知抛物线2y ax bx c =++(a ,b ,c 为常数,0a >)经过()3,2A -、()9,2B 两点,下列四个结论:①一元二次方程220ax bx c ++-=的根为13x =-,29x =;②若点()15,C y 、)2Dy 在该抛物线上,则12y y <;③对于任意实数t ,总有293at a b bt -≥-;④对于a 的每一个确定值()0a >,若一元二次方程2ax bx c p ++=(p 为常数)有根,则236p a ≥-.其中正确的结论是________(填写序号)【答案】①③④【解析】【详解】根据函数的解析式结合函数图象逐个分析,并判断每个选项的正误即可.【分析】解:∵()3,2A -、()9,2B 两点纵坐标相等,故当2y =时,39x =-或此时函数2y ax bx c =++变为22=0ax bx c ++-,故一元二次方程220ax bx c ++-=的根为13x =-,29x =成立,故①正确;由于()3,2A -、()9,2B 两点纵坐标相等,∴A,B 两点关于函数的对称轴对称,∴函数的对称轴为:3x =,∵0a >,∴函数的开口向上,故越靠近对称轴,函数的值越小,C 点离对称轴的距离为532-=,D 点离对称轴距离为3,∵23>,∴12y y >,故②错误;将293at a b bt -≥-变为;∵函数的对称轴为3x =,故当3x =时函数取最小值,将3x =代入函数解析式中得:93y a b c =++,故函数最小值为:93a b c ++,故293ax bx c a b c ++≥++,对于任意的实数t 都有:293at bt a b +≥+变形得293at a b bt -≥-,故③正确;∵32b a-=,则6b a =-,将()3,2A -、()9,2B 两点代入2y ax bx c =++中得:9328192a b c a b c -+=⎧⎨++=⎩①②,3⨯+①②得,227c a =-,若一元二次方程2ax bx c p ++=则: 244b ac p a -≥,将227c a =-,6b a =-代入,化简得236p a ≥-,故④正确,故答案为:①③④.【点睛】本题属于二次函数的综合题,能够熟练掌握二次函数的解析式与图象之间的关系是解决本题的关键.能够熟练掌握二次函数的解析式与图象之间的关系是解决本题的关键.16. 如图,已知ABC 是O 的内接三角形,O 的半径为2,将劣弧 AC 沿AC 折叠后刚好经过弦BC 的中点D .若60ACB ∠=︒,则弦AC 的长为________.【答案】【解析】【分析】设折叠后的 AC 所在圆的圆心为O ',连接O A ',O D ',OA ,OB ,过点O作OE AB ⊥于点E ,解直角三角形得出AB =O ' 与O 为等圆,得出OA O A '=,OB OD =,A O B A OD'∠=∠,证明AOB AO D ' ≌,得出AB AD ==A 作AH BC ⊥于H ,设BH HD x ==,则2CD x =,3CH x =,根据勾股定理得出()(222x +=,求出x 的值,即可得出答案.【详解】解:设折叠后的 AC 所在圆的圆心为O ',连接O A ',O D ',OA ,OB ,过点O 作OE AB ⊥于点E ,如图所示:∵OE AB ⊥,∴12AE BE AB ==,∵60ACB ∠=︒,∴2120A OD A C B '∠=∠=︒,2120AOB ACB ∠=∠=︒,∴1602AOE BOE AOB ∠=∠=∠=︒,∴sin 602AE AO =⨯︒==,∴AB =又∵O ' 与O 为等圆,∴OA O A '=,OB OD =,A O B A OD'∠=∠,∴AOB AO D ' ≌,∴AB AD ==过A 作AH BC ⊥于H ,设BH HD x ==,则2CD x =,3CH x =,∵60ACB ∠=︒,∴在Rt ACH中,tan 603AH CH x =⨯︒==,361cos 602CH x AC x ===︒,∵222AH BH AB +=,∴()(222x +=,解得:x =,∴AC =.【点睛】本题主要考查了圆的综合应用,解直角三角形,圆周角定理,勾股定理,三角形全等的判定和性质,垂径定理,解题的关键是作出辅助线,数形结合,根据勾股定理建立方程.三、解答题(共8小题)17. 解方程:22530x x ++=.【答案】11x =-,232x =-【解析】【分析】利用公式法求解可得.【详解】解:22530x x ++=2a =,5b =,3c =,∴2542310∆=-⨯⨯=>,∴514x -±==,∴11x =-,232x =-.【点睛】本题主要考查了公式法解一元二次方程;根据系数特点选择适当的方法是解题的关键.18. 要组织一次篮球联赛,赛制为单循环形式(每两队之间都赛一场),计划安排21场比赛,问应邀请多少个球队参加比赛?【答案】应邀请7个球队参加比赛.【解析】【分析】设邀请x 个球队参加比赛,那么第一个球队和其他球队打(x-1)场球,第二个球队和其他球队打(x-2)场,以此类推可以知道共打(1+2+3+…+x-1)场球,然后根据计划安排21场比赛即可列出方程求解.【详解】设邀请x 个球队参加比赛,依题意得1+2+3+…+x-1=21,即()x x 12-=21,∴x 2-x-42=0,∴x=7或x=-6(不合题意,舍去).答:应邀请7个球队参加比赛.【点睛】此题和实际生活结合比较紧密,准确找到关键描述语,从而根据等量关系准确的列出方程是解决问题的关键.此题还要判断所求的解是否符合题意,舍去不合题意的解.19. 已知函数224y x x =-++.(1)该函数的对称轴为________,顶点为________;(2)当x ________时,y 随x 增大而减小;(3)当03x <<时,函数值y 的取值范围是________.【答案】(1)1x =,()1,5(2)1≥(3)15y <£【解析】【分析】(1)把函数解析式化为顶点式,再根据“二次函数()()20=-+≠y a x h k a 的对称轴为直线x h =,顶点坐标为(),h k ”即可求解;(2)根据二次函数的增减性,即可求解;(3)根据二次函数()()20=-+≠y a x h k a 的性质可得当1x =时,函数有最大值,最大值为5,再分别求出0x =,3x =时的函数值,即可求解.【小问1详解】解:224y x x =-++()215x =--+,∴该函数的对称轴为直线1x =,顶点为()1,5;故答案为:1x =,()1,5【小问2详解】解:∵10-<,∴抛物线开口向下,∴当1x ≥时,y 随x 增大而减小;故答案为:1≥小问3详解】解:∵抛物线开口向下,顶点为()1,5,∴当1x =时,函数有最大值,最大值为5,当0x =时,4y =,当3x =时,9641y =-++=,∴当03x <<时,函数值y 的取值范围是15y <£.故答案为:15y <£20. 如图,AB 是O 的直径,AC 是弦, BDCD =,DE AB ⊥于点E ,连接DO .(1)求证:AC DO ∥;(2)若CD =DE AE 的长.【【答案】(1)见解析 (2)5【解析】【分析】本题主要考查圆周角定理,勾股定理以及平行线的判定:(1)连接AD ,证明12DAB DAC CAB ∠=∠=∠,再由圆周角定理得CAB DOB ∠=∠,从而可得结论;(2)连接DB ,由勾股定理得出1EB =以及圆的半径,从而可得结论.【小问1详解】连接AD ,如图,∵ CDBD =,∴12DAB DAC CAB ∠=∠=∠,又12DAB DOB ∠=∠,∴CAB DOB ∠=∠,∴AC DO ∥,【小问2详解】连接DB ,∵ CD BD =,CD =∴CD BD ==又DE DE AB ⊥,∴在Rt DBE 中,222DB DE EB =+,∴1EB =,设OE x =,则1OB OD AO x ===+Rt DOE △中,222DE OE OD +=,222(1)x x +=+∴2x OE ==,13AO x =+=,∴325AE AO OE =+=+=21. 如图网格是由边长为1个单位长度的小正方形组成,每个小正方形的顶点叫做格点,点A 、B 、C 、O 都是格点,请仅用无刻度的直尺完成下列作图,作图过程用虚线表示,作图结果用实线表示,点A 对应点E ,点B 对应点F .(1)在图1中,将线段AB 向右平移3个单位长度,画出平移后的线段EF ,再将线段BC 绕点F 顺时针旋转90︒,画出对应线段B C '';(2)在图2中,先作点A 关于点O 对称点Q ,再过点O 作直线分别交AB 、AC 于点M 、N ,使得MO NO =.【答案】(1)见解析;(2)见解析.【解析】【分析】(1)根据点的平移和线段绕点旋转,然后连接即可求解;(2)根据中心对称的性质即可作图.【小问1详解】如图,根据平移和旋转的性质,找到对应点,然后连接即可;∴EF ,B C ''即为所求;【小问2详解】的如图,根据网格作图特点,∵O 为AQ 中点,AC MQ ∥,∴OA OQ =,OAN OQM ∠=∠,∵AON QOM ∠=∠,∴AON QOM ≌,∴MO NO=∴点M ,N ,Q 即为所求.22. 某商家在购进一款产品时,由于运输成本及产品成本的提高,该产品第x 天的成本y (元/件)与x (天)之间的关系如图所示,并连续50天均以80元/件的价格出售,第x 天该产品的销售量z (件)与x (天)满足关系式10z x =+.(1)第5天,该商家获得的利润是________元;第40天,该商家获得的利润是________元;(2)设第x 天该商家出售该产品的利润为w 元.①求w 与x 之间函数关系式,并指出第几天的利润最大,最大利润是多少?②在出售该产品的过程中,当天利润不低于1125元的共有________天?(直接填写结果)【答案】(1)450,1000(2)①()805003080203050z z x w z x z x -≤≤⎧=⎨-+<≤⎩,第30天利润最大,最大利润1200元; 8【解析】【分析】(1)求出BC 的解析式,即可;(2)①先求出w 与x之间的函数关系式,结合一次函数与二次函数的性质,即可求解;②的利用每件利润乘以总销量等于总利润,进而求出二次函数最值即可.【小问1详解】解:根据题意得:第5天,该商家获得的利润是()()8050510450-⨯+=元;设BC 的解析式为()0y kx b k =+≠,把()()30,50,50,70B C 代入得:30505070k b k b +=⎧⎨+=⎩,解得:120k b =⎧⎨=⎩,∴20y x =+,当40x =时,60y =,即第40天时该产品的成本是60元/件,利润为:()()806040101000-+=元;故答案为:450;1000【小问2详解】解:①根据题意得:()805003080203050z z x w z x z x -≤≤⎧=⎨-+<≤⎩化简得230300030506003050x x w x x x +≤≤⎧=⎨-++<≤⎩当030x ≤≤时,30300w x =+,∵300k =>,∴w 随x 增大而增大,当30x =时,max 30303001200w =⨯+=,当3050x <≤时,250600w x x =-++,∵10a =-<开口向下,∴对称轴()502521x =-=⨯-,3050x <≤时,w 随x 增大而减小,又x 为整数,∴31x =时,2max 3150316001189w =-+⨯+=,∵11891200<,∴max 1200w =,此时30x =,即第30天利润最大,最大利润1200元,②230300030506003050x x w x x x +≤≤⎧=⎨-++<≤⎩当030x ≤≤时,303001125w x =+≥30825x ≥27.5≥x 又030x ≤≤且x 为整数∴2830,28x x ≤≤=或29或30当3050x <≤时,2506001125x x -++≥2505250x x -+≤令2505250x x -+=()()15350x x --=∴115x =,235x =∴1535x ≤≤又3050x <≤∴3035x <≤且x 为整数,∴31x =或32或33或34或35综上所述,第28,29,30,31,32,33,34,35天共计8天利润不低于1125元,故答案为:8【点睛】本题考查了二次函数的性质在实际生活中的应用.最大销售利润的问题常利函数的增减性来解答,我们首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案.根据每天的利润等于一件的利润乘以销售件数,建立函数关系式,此题为数学建模题,借助二次函数解决实际问题.23. (1)【问题背景】如图1,在ABC 中,AB AC =,2BAC α∠=,D ,E 为BC 边上的点,且DAE α∠=,ACE △绕点A 顺时针旋转2α得到ABF △,连接DF ,直接写出DF 与DE 的数量关系:________;(2)【类比探究】如图2,在ABC 中,60CAB ∠=︒,AB AC =,D 、E 均为BC 边上的点,且30DAE ∠=︒,2BD =,32EC =,求DE 的长;(3)【拓展应用】如图3,E 是正方形ABCD 内一点,90AEB ∠=︒,F 是BC 边上一点,且45EDF ∠=︒,若2AB =,请直接写出当DE 取最小值时CF =________.【答案】(1)DF DE =;(2(3)23【解析】【详解】解:(1)∵2,,BAC DAE αα∠=∠=∴2,BAD CAE BAC DAE ααα∠+∠=∠-∠=-=由旋转得,,AF AE =,BAF CAE ∠=∠∴,BAF BAD α∠+∠=即,DAF α∠=∴,DAF DAE ∠=∠在ADE V 和ADF △中,AE AFDAE DAFAD AD=⎧⎪∠=∠⎨⎪=⎩∴()SAS ,ADE ADF ≌∴DE DF =;(2)∵60CAB ∠=︒,AB AC =,∴ABC是等边三角形,∴60CAB B ACB ∠=∠=∠=︒,AB AC BC ==,将ABD △绕点A 逆时针旋转60︒得到ACF △,连接EF ,如图2,则AF AD =,2FC BD ==,60ACF B Ð=Ð=°,CAF BAD ∠=∠.∵60CAB ∠=︒,30DAE ∠=︒,∴30CAE BAD ∠+∠=︒,∴30EAF CAE CAF CAE BAD DAE ∠=∠+∠=∠+∠==∠︒.∵AE AE =,∴()SAS EAF EAD △≌△,∴EF DE =,过点F 作FG BC ⊥,交BC 的延长线于点G ,∵6060120ECF ACE ACF ︒︒∠=∠+∠=+=︒,∴60FCG ∠=︒,∴30CFG ∠=︒,∴112122CG FC ==⨯=,∴35122EG EC CG =+=+=,∴FG ===,DE EF ====(3)将CDF 绕点D 顺时针旋转90︒,得到ADG △,取AB 的中点O ,连接OD ,OE ,OF ,则112OA OB AB ===.如图3,∵DE OD OE ≥-,∴DE 取最小值时,点E 在OD 上,如图4所示:由旋转的性质得DF DG =,CDF ADG ∠=∠,∵45EDF ∠=︒,∴904545CDF ADE ∠+∠-︒=︒=︒,∴45ODG ADO ADG ADO CDF ∠=∠+∠=∠+∠=︒,∴ODF ODG ∠=∠,在ODF △和ODG 中,DF DG ODF ODGOD OD =⎧⎪∠=∠⎨⎪=⎩∴()SAS ODF ODG △≌△,∴OF OG =.设CF x =,则1OF OG OA AG x ==+=+,2BF BC CF AB CF x =-=-=-,在Rt OBF △中,222(2)1(1)x x -+=+,解得23x =,∴当DE 取最小值时CF 的长为23.【分析】(1)先证明,DAF DAE α∠=∠=根据SAS 证明ADE ADF V V ≌可得DF DE =;(2)先证ABC 是等边三角形,得60CAB B ACB ∠=∠=∠=︒,AB AC BC ==,将ABD △绕点A 逆时针旋转60︒,得到ACF △,连接EF ,再证()SAS EAF EAD ≌ ,得EF DE =,过点F 作FG BC ⊥,交BC 的延长线于点G ,然后由含30︒角的直角三角形的性质得1CG =,则52=EG ,即可解决问题;(3)将CDF 绕点D 顺时针旋转90︒,得到ADG △,取AB 的中点O ,连接OD 、OE 、OF ,则112OA OB AB ===,由DE OD OE ≥-,得DE 取最小值时,点E 在OD 上,再由旋转的性质得DF DG =,CDF ADG ∠=∠,然后证()SAS ODF ODG △≌△,得OF OG =,设CF 的长为x ,则1OF OG x ==+,2BF x =-,在Rt OB F 中,由勾股定理得出方程,解方程即可.【点睛】本题考查正方形的性质、旋转的性质、全等三角形的判定与性质、等腰三角形的性质、等边三角形的判定与性质、勾股定理等知识;正方形的内角为90︒,对边相等;根据SAS 证明三角形全等;全等三角形对应边相等,30︒角所对直角边等于的一半.24. 如图,在平面直角坐标系xOy 中,抛物线23y x mx =+-经过点()3,0A ,点C 是抛物线的顶点,连接AC .(1)求抛物线的函数解析式及顶点C 的坐标;(2)设直线()0y kx k k =-≠与抛物线相交于P 、Q 两点(点P 在点Q 的左侧且点Q 在第四象限),当直线PQ 与直线AC 相交所成的一个角为45︒时,求点Q 的坐标;(3)如图2,作直线AP ,AG 分别交y 轴正、负半轴于点M 、N ,交抛物线于点P 、G ,设点M 、N 的纵坐标分别为m 、n ,且3=-mn ,求证:直线PG 经过一个定点.【答案】(1)2=23y x x --,顶点()1,4C -(2)Q 点坐标为()2,3-(3)见解析【解析】【分析】(1)利用待定系数法求得函数解析式,再利用抛物线的顶点坐标公式即可求解;(2)先求得直线PQ 过定点()1,0,再构造一线三等角,证明()AAS CAH ARG ≌△△,求得()1,2R -,再求得:31RC y x =--,根据平行线性质求得:33l y x =-+,联立即可求解;(3)设AP :()()30y k x k =-≠,AG :()()30y k x k =-'≠',表示出M 、N 的坐标,由3m n ⋅=-,得到13k k '⋅=-,联立,根据根与系数的关系,求得1P x k =-,1G x k ='-,设PG :()0y ax b a =+≠,联立,根据根与系数的关系,求得2P G x x a +=+,3P G x x b ⋅=--,据此求得13kk '=-,进一步计算即可求解.【小问1详解】解:∵23y x bx =+-经过点()3,0A ,∴9330b +-=,3=6b -,2b =-,∴抛物线解析式:2=23y x x --,对称轴212x -=-=,1x =时212134y =-⨯-=-,∴顶点()1,4C -,综上所述,抛物线解析式2=23y x x --,顶点()1,4C -;【小问2详解】解:∵()1y kx k k x =-=-,∴当10x -=,即1x =时,0y =,∴PQ 过定点()1,0,过A 作AR AC ⊥,AR AC =,连RC ,的过M 作l RC ∥交抛物线于P ,Q ,过A 作GH y ∥轴,过R 作RG GH ⊥于G ,过C 作CH GH ⊥于H ,∵90AHC RGA RAC ∠=∠=∠=︒,∴90CAH RAG ARG ∠=︒-∠=∠,∴()AAS CAH ARG ≌△△,∴4RG AH ==,2CH GA ==,∴()1,2R -,又()1,4C -,设直线RC 的解析式为y mx n =+,∴24m n m n =-+⎧⎨-=+⎩,解得31m n =-⎧⎨=-⎩,∴:31RC y x =--,∵l RC ∥,∴设直线l 的解析式为3y x n '=-+,把()1,0代入得03n '=-+,解得3n '=,∴:33l y x =-+,联立23323y x y x x =-+⎧⎨=--⎩,解得13x =-,22x =,又P Q x x <,∴2Q x =,()2,3Q -,∴Q 点坐标为()2,3-;【小问3详解】解:设AP :()()30y k x k =-≠,AG :()()30y k x k =-'≠',∴()0,3M k -,()0,3N k -',∵3m n ⋅=-,∴()()333k k '-⋅-=-,∴13k k '⋅=-,联立:2323y kx k y x x =-⎧⎨=--⎩,∴()22330x k x k -++-=,∴2A P x x k +=+,∴1P x k =-,同理:1G x k ='-,设PG :()0y ax b a =+≠,联立:223y ax b y x x =+⎧⎨=--⎩,∴()2230x a x b -+--=,∴2P G x x a +=+,3P G x x b ⋅=--,∴112k k a -+-=+',()()113k k b --=--',∴4k k a +'=+,()13kk k k b -++=-'-',∴kk a b '=-,∵13kk '=-,∴13b a =+,∴()11133y ax a a x =++=++,∴定点11,3⎛⎫- ⎪⎝⎭.【点睛】本题是二次函数的综合问题,考查二次函数的图象及性质,熟练掌握二次函数的图象及性质,根与系数的关系,等腰直角三角形的性质是解题的关键.。

九年级上册数学期中测试题及答案

九年级上册数学期中测试题及答案

九年级上册数学期中测试题(总分:120分时间:120分钟)班级:姓名:分数: .一、选择题1.下面图形中,是中心对称图形的是()A. B.C.D.2.方程x2=x的解是()A.x=1 B.x1=﹣1,x2=1 C.x1=0,x2=1 D.x=03.用配方法解一元二次方程x2+8x+7=0,则方程可化为()A.(x+4)2=9 B.(x﹣4)2=9C.(x+8)2=23 D.(x﹣8)2=94.将抛物线y=2x2向上平移1个单位,再向右平移2个单位,则平移后的抛物线为()A.y=2(x+2)2+1 B.y=2(x﹣2)2+1 C.y=2(x+2)2﹣1 D.y=2(x﹣2)2﹣15.下列运动形式属于旋转的是()A.钟表上钟摆的摆动B.投篮过程中球的运动C.“神十”火箭升空的运动 D.传动带上物体位置的变化6.抛物线y=ax2+bx+c(a≠0)过(2,8)和(﹣6,8)两点,则此抛物线的对称轴为()A.直线x=0 B.直线x=1C.直线x=﹣2 D.直线x=﹣17.已知关于x的方程x2﹣kx﹣6=0的一个根为x=3,则实数k的值为()A.1 B.﹣1 C.2 D.﹣28.有一人患了流感,经过两轮传染后共有64人患了流感.设每轮传染中平均一个人传染了x个人,列出的方程是()A.x(x+1)=64 B.x(x﹣1)=64C.(1+x)2=64 D.(1+2x)=649.如图,已知△AOB是正三角形,OC⊥OB,OC=OB,将△OAB绕点O按逆时针方向旋转,使得OA与OC重合,得到△OCD,则旋转的角度是()A.150°B.120°C.90°D.60°10.如图,在△ABO中,AB⊥OB,OB=,AB=1,把△ABO绕点O旋转150°后得到△A1B1O,则点A1坐标为()A.(﹣1,﹣)B.(﹣1,﹣)或(﹣2,0)C.(﹣,1)或(0,﹣2)D.(﹣,1)11.在同一直角坐标系中,函数y=kx2﹣k和y=kx+k(k≠0)的图象大致是()A.B.C.D.12.如图,抛物线y=ax2+bx+c的对称轴是x=﹣1.且过点(,0),有下列结论:①abc>0;②a﹣2b+4c=0;③25a﹣10b+4c=0;④3b+2c>0;⑤a﹣b≥m(am﹣b);其中所有正确的结论是()A.①②③B.①③④C.①②③⑤D.①③⑤二、填空题13.抛物线y=﹣(x+1)2+2的顶点坐标为.14.方程x2﹣6x+9=0的解是.15.若关于x的方程kx2﹣4x﹣1=0有实数根,则k的取值范围是.16.等边△ABC内有一点P,且PA=3,PB=4,PC=5,则∠APB= 度.17.已知二次函数y=3(x﹣1)2+1的图象上有三点A(4,y1),B(2,y2),C(﹣3,y3),则y1、y2、y3的大小关系为.18.如图,等腰Rt△ABC中,∠ACB=90°,AC=BC=1,且AC边在直线a上,将△ABC绕点A顺时针旋转到位置①可得到点P1,此时AP1=;将位置①的三角形绕点P1顺时针旋转到位置②可得到点P2,此时AP2=+1;将位置②的三角形绕点P2顺时针旋转到位置③可得到点P3时,AP3=+2…按此规律继续旋转,直至得到点P2026为止,则AP2016= .19.如图,方格纸中的每个小方格都是正方形,△ABC的顶点均在格点上,建立平面直角坐标系.(1)以原点O为对称中心,画出与△ABC关于原点O对称的△A1B1C1,A1的坐标是.(2)将原来的△ABC绕着点(﹣2,1)顺时针旋转90°得到△A2B2C2,试在图上画出△A2B2C2的图形.(2)如图所示,△A2B2C2即为所求作的三角形.20.已知二次函数当x=﹣1时,有最小值﹣4,且当x=0时,y=﹣3,求二次函数的解析式.21.解方程:(1)x2﹣x=3(2)(x+3)2=(1﹣2x)2.22.先化简,再求值:÷(a﹣1﹣),其中a是方程x2+x ﹣3=0的解.23.将一块正方形铁皮的四个角各剪去一个边长为4cm的小正方形,做成一个无盖的盒子,盒子的容积是400cm3,求原铁皮的边长.24.如图,抛物线y=﹣x2+bx+c与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A(﹣1,0),C(0,2).(1)求抛物线的解析式;(2)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;(3)点E时线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,△CBF的面积最大?求出△CBF的最大面积及此时E 点的坐标.25.在△ABC中,AB=AC,∠A=60°,点D是线段BC的中点,∠EDF=120°,DE与线段AB相交于点E,DF与线段AC(或AC的延长线)相交于点F.(1)如图1,若DF⊥AC,垂足为F,AB=4,求BE的长;(2)如图2,将(1)中的∠EDF绕点D顺时针旋转一定的角度,DF仍与线段AC相交于点F.求证:BE+CF=AB.(3)如图3,若∠EDF的两边分别交AB、AC的延长线于E、F两点,(2)中的结论还成立吗?如果成立,请证明;如果不成立,请直接写出线段BE、AB、CF之间的数量关系.九年级上册数学期中测试题(总分:120分时间:120分钟)班级:姓名:分数: .一、选择题1.下面图形中,是中心对称图形的是(D)A. B.C.D.2.方程x2=x的解是(C)A.x=1 B.x1=﹣1,x2=1 C.x1=0,x2=1 D.x=03.用配方法解一元二次方程x2+8x+7=0,则方程可化为(A)A.(x+4)2=9 B.(x﹣4)2=9C.(x+8)2=23 D.(x﹣8)2=94.将抛物线y=2x2向上平移1个单位,再向右平移2个单位,则平移后的抛物线为(B)A.y=2(x+2)2+1 B.y=2(x﹣2)2+1 C.y=2(x+2)2﹣1 D.y=2(x﹣2)2﹣15.下列运动形式属于旋转的是(A)A.钟表上钟摆的摆动B.投篮过程中球的运动C.“神十”火箭升空的运动 D.传动带上物体位置的变化6.抛物线y=ax2+bx+c(a≠0)过(2,8)和(﹣6,8)两点,则此抛物线的对称轴为(C)A.直线x=0 B.直线x=1C.直线x=﹣2 D.直线x=﹣17.已知关于x的方程x2﹣kx﹣6=0的一个根为x=3,则实数k的值为(A )A.1 B.﹣1 C.2 D.﹣28.有一人患了流感,经过两轮传染后共有64人患了流感.设每轮传染中平均一个人传染了x个人,列出的方程是(C)A.x(x+1)=64 B.x(x﹣1)=64C.(1+x)2=64 D.(1+2x)=649.如图,已知△AOB是正三角形,OC⊥OB,OC=OB,将△OAB绕点O按逆时针方向旋转,使得OA与OC重合,得到△OCD,则旋转的角度是(A)A.150°B.120°C.90°D.60°10.如图,在△ABO中,AB⊥OB,OB=,AB=1,把△ABO绕点O旋转150°后得到△A1B1O,则点A1坐标为(B)A.(﹣1,﹣)B.(﹣1,﹣)或(﹣2,0)C.(﹣,1)或(0,﹣2)D.(﹣,1)11.在同一直角坐标系中,函数y=kx2﹣k和y=kx+k(k≠0)的图象大致是(D)A.B.C.D.12.如图,抛物线y=ax2+bx+c的对称轴是x=﹣1.且过点(,0),有下列结论:①abc>0;②a﹣2b+4c=0;③25a﹣10b+4c=0;④3b+2c>0;⑤a﹣b≥m(am﹣b);其中所有正确的结论是(D)C.①②③D.①③④C.①②③⑤D.①③⑤二、填空题13.抛物线y=﹣(x+1)2+2的顶点坐标为(﹣1,2).14.方程x2﹣6x+9=0的解是x1=x2=3 .15.若关于x的方程kx2﹣4x﹣1=0有实数根,则k的取值范围是k≥4 .16.等边△ABC内有一点P,且PA=3,PB=4,PC=5,则∠APB=150 度.17.已知二次函数y=3(x﹣1)2+1的图象上有三点A(4,y1),B(2,y2),C(﹣3,y3),则y1、y2、y3的大小关系为y2<y1<y3.18.如图,等腰Rt△ABC中,∠ACB=90°,AC=BC=1,且AC边在直线a上,将△ABC绕点A顺时针旋转到位置①可得到点P1,此时AP1=;将位置①的三角形绕点P1顺时针旋转到位置②可得到点P2,此时AP2=+1;将位置②的三角形绕点P2顺时针旋转到位置③可得到点P3时,AP3=+2…按此规律继续旋转,直至得到点P2026为止,则AP2016=1344+672√2 .三、解答题19.如图,方格纸中的每个小方格都是正方形,△ABC的顶点均在格点上,建立平面直角坐标系.(1)以原点O为对称中心,画出与△ABC关于原点O对称的△A1B1C1,A1的坐标是(6,﹣1).(2)将原来的△ABC绕着点(﹣2,1)顺时针旋转90°得到△A2B2C2,试在图上画出△A2B2C2的图形.【解答】解:(1)如图所示,△A1B1C1即为所求三角形,点A1的坐标是A1(6,﹣1);故答案为:(6,﹣1);(2)如图所示,△A2B2C2即为所求作的三角形.20.已知二次函数当x=﹣1时,有最小值﹣4,且当x=0时,y=﹣3,求二次函数的解析式.【解答】解:设y=a(x+1)2﹣4则﹣3=a(0+1)2﹣4∴a=1,∴抛物线的解析式为y=(x+1)2﹣4即:y=x2+2x﹣3.四、解答题21.解方程:(1)x2﹣x=3(2)(x+3)2=(1﹣2x)2.【解答】解:(1)x2﹣x﹣3=0,∵a=1,b=﹣1,c=﹣3,∴△=1+12=13>0,∴x=1±√13/2∴x1=1+√13/2;x2=1-√13/2(2)x+3=±(1﹣2x),即x+3=1﹣2x或x+3=2x﹣1,解得:x1=-2/3,x2=4.22.先化简,再求值:÷(a﹣1﹣),其中a是方程x2+x ﹣3=0的解.【解答】解:原式=÷=•==∵a是方程x2+x﹣3=0的解,∴a2+a﹣3=0,即a2+a=3,∴原式=1/3.23.将一块正方形铁皮的四个角各剪去一个边长为4cm的小正方形,做成一个无盖的盒子,盒子的容积是400cm3,求原铁皮的边长.【解答】解:设原铁皮的边长为xcm,依题意列方程得(x﹣2×4)2×4=400,即(x﹣8)2=100,所以x﹣8=±10,x=8±10.所以x1=18,x2=﹣2(舍去).答:原铁皮的边长为18cm.五、解答题24.如图,抛物线y=﹣x2+bx+c与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A(﹣1,0),C(0,2).(1)求抛物线的解析式;(2)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;(3)点E时线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,△CBF的面积最大?求出△CBF的最大面积及此时E 点的坐标.【解答】解:(1)把A(﹣1,0),C(0,2)代入y=﹣x2+bx+c得,解得,c=2,∴抛物线的解析式为y=﹣1/2x2+3/2x+2.(2)存在.如图1中,∵C(0,2),D(,0),∴OC=2,OD=,CD==5/2①当CP=CD时,可得P1(3/2,4).②当DC=DP时,可得P2(3/2,5/2),P3(3/2,-5/2)综上所述,满足条件的P点的坐标为(3/2,4)或(3/2,5/2)或(3/2,-5/2).(3)如图2中,对于抛物线y=﹣1/2x2+3/2x+2,当y=0时,﹣1/2x2+3/2x+2=0,解得x1=4,x2=﹣1∴B(4,0),A(﹣1,0),由B(4,0),C(0,2)得直线BC的解析式为y=﹣1/2x+2,设E则F,EF=﹣=∴-1/2<0,∴当m=2时,EF有最大值2,此时E是BC中点,∴当E运动到BC的中点时,△EBC面积最大,∴△EBC最大面积=1/2×4×EF=1/2×4×2=4,此时E(2,1).25.在△ABC中,AB=AC,∠A=60°,点D是线段BC的中点,∠EDF=120°,DE与线段AB相交于点E,DF与线段AC(或AC的延长线)相交于点F.(1)如图1,若DF⊥AC,垂足为F,AB=4,求BE的长;(2)如图2,将(1)中的∠EDF绕点D顺时针旋转一定的角度,DF仍与线段AC相交于点F.求证:BE+CF=AB.(3)如图3,若∠EDF的两边分别交AB、AC的延长线于E、F两点,(2)中的结论还成立吗?如果成立,请证明;如果不成立,请直接写出线段BE、AB、CF之间的数量关系.【解答】解:(1)如图1中,∵AB=AC,∠A=60°,∴△ABC是等边三角形,∴∠B=∠C=60°,BC=AC=AB=4,∵点D是线段BC的中点,∴BD=DC=1/2BC=2,∵DF⊥AC,即∠CFD=90°,∴∠CDF=30°,又∵∠EDF=120°,∴∠EDB=30°,∴∠BED=90°∴BE=1/2BD=1.(2)如图2中,过点D作DM⊥AB于M,作DN⊥AC于N.∵∠B=∠C=60°,BD=DC,∠BDM=∠CDN=30°,∴△BDM≌△CDN,∴BM=CN,DM=DN,又∵∠EDF=120°=∠MDN,∴∠EDM=∠NDF,又∵∠EMD=∠FND=90°,∴△EDM≌△FDN,∴ME=NF,∴BE+CF=BM+EM+NC﹣FN=2BM=BD=1/2AB.(3)结论不成立.结论:BE﹣CF=1/2AB.∵∠B=∠C=60°,BD=DC,∠BDM=∠CDN=30°,∴△BDM≌△CDN,∴BM=CN,DM=DN,又∵∠EDF=120°=∠MDN,∴∠EDM=∠NDF,又∵∠EMD=∠FND=90°,∴△EDM≌△FDN,∴ME=NF,∴BE﹣CF=BM+EM﹣(FN﹣CN)=2BM=BD=1/2AB.。

福建省福州市福清市2023-2024学年九年级上学期期中数学试题(含解析)

福建省福州市福清市2023-2024学年九年级上学期期中数学试题(含解析)

2023-2024学年度第一学期九年级校内期中质量检测数学试卷第Ⅰ卷注意事项:1.全卷三大题,25小题,试卷共4页,另有答题卡.2.答案必须写在答题卡上,否则不能得分.一、选择题(共10小题,每题4分,满分40分,每小题只有一个正确选项)1.各学科的图形都蒀含着对称美,下列图形中既是轴对称图形,又是中心对称图形的是()A .B .C .D .2.用配方法解方程时,结果正确的是( )A .B .C .D .3.下列一元二次方程中,没有实数根的是( )A .B .C .D .4.抛物线可以由抛物线平移得到,下列平移方法中正确的是( )A .先向左平移2个单位,再向上平移1个单位B .先向左平移2个单位,再向下平移1个单位C .先向右平移2个单位,再向上平移1个单位D .先向右平移2个单位,再向下平移1个单位5.如图,⊙O 是△ABC 的外接圆,若∠ABC=40°,则∠AOC 的度数为( )2410x x -+=()225x -=()223x -=()225x +=()223x +=()()120x x +-=2510x x +-=2(3)1x -=2210x +=()2+21y x =-2y x =A .B 8.如图,抛物线A .B 9.《九章算术》是我国古代内容极为丰富的数学名著.书中有下列问题何?”其意思是“今有直角三角形的圆形(内切圆)直径是多少?30︒y ax =1x >15.已知抛物线16.如图,在中,!则的长是三、解答题(共9小题,满分17.解方程:18.已知关于的一元二次方程19.福州是一座蕴存着绚丽风光,并拥有深厚人文底蕴的城市.她散落分布着很多历史悠久的古村落.现福州某乡镇景区需要复原一个古代圆抰形木门(示意图)2y ax =-Rt ABC △AD AD 247x x +-x20.现代互联网技术的广泛应用,催生了快递行业的高速发展,据调查,某快递公司今年九月份与十一月份的投递总件数分别为10万件和率.21.高尔夫球是一项具有特殊魅力的运动,该二次函数图象上部分点的横坐标,纵坐标的对应值如下表;1234(1)写出的值________,并画出函数图象;(2)当飞行时间________时,高尔夫球高度达到最高;(3)求高尔夫球飞行高度为时所用的时间.x y x a x =s 15m(1)求作的外接圆:(要求,尺规作图,不写作法.保留作图痕迹)(2)在(1)的条件下,补全图形并证明,连接,过作,交的延长线于点.求证:是的切线.23.如图,在平面直角坐标系中,点的坐标是,在轴上任取一点,完成以下操作步骤:①连接,作线段的垂直平分线,过点作轴的垂线,记,的交点为.②在轴上多次改变点的位置,用(1)的方法得到相应的点,把这些点用平滑的曲线连接起来.观察画出的曲线,猜想它是我们学过的哪种曲线.某数学兴趣小组在探究时发现在轴上取几个特殊位置的点,可以求出相对应的点的坐标;例如:取点,过作轴于点.,在中,根据勾股定理得.________;在的垂直平分线上,解得:________.(1)请帮忙完成以上填空;ABC O OB C CD OB ∥AB D CD O A ()0,2x M AM AM 1l M x 2l 1l 2l P x M P L x M P ()4,0M -P PB y ⊥B ()4,P y ∴-22PM y ∴=Rt PAB 222PA PB AB =+=P AM PA PM ∴=22PM PA ∴=y =()4,5P ∴-(1)求抛物线的解析式;(2)若点为线段上的一个动点,过点时.①求证:四边形是平行四边形:②连接,在抛物线上是否存在,使25.如图,在中,.(1)如图,当时,求证;(2)当点为边的中点时,连接,求的最大值;(3)如图,若,时,求的面积.P AC OCPD AD Q ABC 90ACB ∠=︒1045α︒<<︒BM AE ⊥Q AC MQ MQ 2105α=︒2AE =BCF △参考答案与解析1.C【分析】本题考查了中心对称图形与轴对称图形的概念,解题的关键是掌握轴对称图形的是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.【详解】解: A 、是轴对称图形,不是中心对称图形,故此选项不合题意;B 、是轴对称图形,不是中心对称图形,故此选项不合题意;C 、既是轴对称图形,又是中心对称图形,故此选项符合题意;D 、是轴对称图形,不是中心对称图形,故此选项不合题意,故选:C .2.B【分析】根据完全平方公式,结合等式的性质,进行配方即可.【详解】解:∵,∴,∴,∴,故选:B .【点睛】本题考查了配方法,熟练掌握配方法的求解步骤是解题的关键.3.D【分析】本题考查了一元二次方程 (为常数)的根的判别式,根据一元二次方程根的判别式进行判断即可求解.当时,方程有两个不相等的实数根;当时,方程有两个相等的实数根;当时,方程没有实数根.【详解】解:A. ,即,,则原方程有实数根,故该选项不符合题意;B. ,,则原方程有实数根,故该选项不符合题意;C. ,即,,则原方程有实数根,故该选项不符合题意;D. ,,则原方程没有实数根,故该选项符合题意;故选:D .4.B【分析】根据平移的规律“左加右减,上加下减”,将向左平移2个单位再向上平移1个单位即可得,即可求得答案2410x x -+=24133x x -++=2443x x -+=()223x -=20ax bx c ++=0a a b c ≠,,,24b ac ∆=-0∆>Δ0=Δ0<()()120x x +-=220x x --=241890b ac ∆=-=+=>2510x x +-=24254290b ac ∆=-=+=>2(3)1x -=2680x x -+=24364840b ac ∆=-=-⨯=>2210x +=24042180b ac ∆=-=-⨯⨯=-<2y x =()2+21y x =-【详解】解:根据题意将向左平移2个单位再向下平移1个单位即可得,故选B【点睛】本题考查了二次函数的平移,掌握平移规律是解题的关键,理解题意确定平移的方向和距离是关键.5.D【详解】试题分析:由⊙O 是△ABC 的外接圆,若∠ABC=40°,根据圆周角定理,∴∠AOC=2∠ABC=80°.考点:圆周角定理点评:此题考查了圆周角定理.此题比较简单,注意掌握数形结合思想的应用.6.A【分析】本题考查了旋转的性质、坐标与图形变化,得到点和点关于原点对称,熟知关于原点对称的点横坐标和纵坐标相反是解答的关键.【详解】解:点绕原点逆时针方向旋转得到点,点和点关于原点对称,,故选:A .7.C【分析】本题考查了圆的切线的性质、等腰三角形的性质,连接,先根据圆的切线的性质可得,由,再根据等腰三角形的性质可得,即可求得的度数.【详解】解:如图,连接,,,,是的切线,切点为,,,故选:C .8.C【分析】本题考查了二次函数和不等式、二次函数与一次函数的交点,由A 、B 两点的横坐标可知在到1之间直2y x =()2+21y x =-P Q ()1,3P -O 180 Q ∴P Q ()1,3Q ∴-OC 90OCD ∠=︒40BAC ∠︒=40ACO ∠=︒ACD ∠OC OA OC = 40BAC ∠︒=∴40ACO BAC ∠=∠=︒ CD O C ∴90OCD ∠=︒50ACD OCD ACO ∴∠=∠-∠=︒4-所以点是该抛物线上一点,则故④是正确的,故选:C11.或【分析】利用因式分解法求解即可.【详解】解:,因式分解得:,∴或,解得:或,故答案为:或.【点睛】本题考查了解一元二次方程,能够根据方程特点灵活选用不同的解法是解题关键.12.【分析】本题考查了旋转性质,涉及周角为,据此作答,观察出该图形被平分成五部分,这五部分完全重合是解题的关键.【详解】解:因为该图形被平分成五部分,这五部分完全重合,所以每个部分形成的角度:。

江苏省徐州市沛县第五中学2024-2025学年九年级上学期11月期中考试数学试题(含答案)

江苏省徐州市沛县第五中学2024-2025学年九年级上学期11月期中考试数学试题(含答案)

2024-2025学年度第一学期期中考试数学试题一、选择题:(每题3分,共24分)1. 一元二次方程的解是( )A.B.C.D. 2. 下列说法正确的是()A. 等弧所对的圆心角相等B. 三角形的外心到这个三角形的三边距离相等C. 经过三点可以作一个圆D. 相等的圆心角所对的弧相等3. 一元二次方程配方后化为( )A.B.C.D. 4. 如图,点在上,若,则的度数为()A. 95°B. 100°C. 105°D. 110°5. 坐标平面上,若移动二次函数的图象,使其与轴交于两点,且此两点的距离为2个单位,则移动方式可为( )A. 向上平移5个单位B. 向右平移5个单位C. 向下平移5个单位D. 向下平移2个单位6. 如图1,点表示我国古代水车的一个盛水筒.如图2当水车工作时,盛水筒的运行路径是以轴心为圆心,为半径的圆.若被水面截得的弦长为,则在水车工作时,盛水筒在水面以下的最大深度为()230x x +=3x =-120,3x x ==-3x =120,3x x ==24110x x --=()2215x -=()2211x -=()2415x -=()2411x -=,,A B C O 055C ∠=AOB ∠()()202220245y x x =---+x M O 5m O AB 6mA. B. C.D. 7. 已知的半径是一元二次方程的一个根,圆心到直线的距离.则直线与的位置关系是( )A.相离B. 相切C. 相交D. 无法判断8. 如图,二次函数的图象与轴正半轴相交,其顶点坐标为,且抛物线与轴的一个交点的横坐标在与0之间,下列结论①;②;③;④;⑤.其中正确的有( )A. 1个B. 2个C. 3个D. 4个二、填空题(每题3分,共24分)9. 已知是一元二次方程的两个根,则的值为____________.10. 若二次函数的图像与轴没有公共点,则的取值范围是___________.11. 抛物线先沿轴向右平移4个单位长度,再沿轴向上平移2个单位,则平移后抛物线对应的函数表达式是______________.12. 若关于的方程有两个不相等的实数根,则的取值范围是___________.13. 抛物线顶点坐标是________________.14. 如图,四点都在上,若,则_____________°.4m 3m 2m 1mO 2340x x --=O l 6d =l O 2y ax bx c =++y 1,12⎛⎫ ⎪⎝⎭x 12-0abc <240b ac ->0a b c ++<0a b +=0a b c -+<12x x 、2410x x -+=1233x x +22y x x m =++x m 23y x =-x y x 210kx x -+=k ()22259y x =--+A B C D 、、、O 056A ∠=C ∠=15. 如图,是的直径,点在的延长线上,与相切于点,若,则___________°.16. 如图,在中,是直径,是弦,延长相交于点,且,,则________________°.三、解答题(本大题共10题,共92分)17. 解下列方程(每小题5分,共10分)(1)(2)18. 如图,,交于点是半径,且于点.(1)求证:;(4分)(2)若,求的半径.(5分)19. 为了让学生养成热爱图书的习惯,某学校抽出一部分资金用于购买书籍.已知2022年该学校用于购买图书的费用为5000元,2024年用于购买图书的费用是7200元,求2022-2024年买书资金的平均增长率.(8分)20. 如图,的直径为,弦为,的平分线交于点,求的长.(10分)AB O C AB CD O D 026C ∠=CAD ∠=O AB CD ,AB CD P 2AB DP =019P ∠=AOC ∠=2230x x --=()()2323x x +=+OA OB =AB O ,,C D OE OE AB ⊥F AC BD =6,1CD EF ==O O AB 10cm AC 6cm ACB ∠O D ,BC AD21. 已知二次函数抛物线经过.(1)求抛物线的表达式,并画出这个函数的图象;(2)根据图象,直接写出:①当函数值时,自变量的取值范围;②当时,函数值的取值范围.22. 如图,已知是的外接圆,是的直径,点是延长线上的一点,交的延长线于点,平分.(1)与有何位置关系?请说明理由.(5分)(2)若,求的长.(5分)23. 某文具店销售一种进价为10元/个的签字笔,物价部门规定这种签字笔的售价不得高于14元/个,根据以往经验:以12元/个的价格销售,平均每周销售签字笔100个;若每个签字笔的销售价格每提高1元,则平均每周少销售签字笔10个.设销售价为元/个.(1)求该文具店这种签字笔平均每周的销售利润(元)与销售价(元/个)之间的函数关系式;(4分)(2)当取何值时,该文具店这种签字笔平均每周的销售利润最大?最大利润是多少元?(6分)24.【模型建立】2y x bx c =-++()()1,4,0,3A B 0y ≥x 12x -<<y O ABC ∆AB O D AB AE DC ⊥DC E AC DAE ∠DE O 6,4AB CD ==CE x w x x如图①、②,点分别在圆外,在圆内,直线分别交圆于点,则是点到圆上的点的最短距离,是点到圆上的点的最长距离.【问题解决】(1)请就图①中为何最长进行证明.(3分)(2)已知点到圆上的点的最短距离为4,最长距离为8,则圆的半径为_____________.(2分)(3)如图③,在中,.点在边上,且,动点在半径为2的圆上,则的最小值是____________.(2分)(4)如图④,点,动点在以的中点为,求线段的最大值.(4分)25. 如图,抛物线与直线相交于两点,与轴相交于另一点.(1)求抛物线的解析式;(3分)(2)点是直线上方抛物线上的一个动点(不与重合),过点作直线轴于点,交直线于点,当时,求点坐标;(3分)(3)当点运动到什么位置时,的面积有最大值?(4分)(4)抛物线上是否存在点使的面积等于面积的一半?若存在,请直接写出点的坐标;若不存在,请说明理由.(4分)P O O PO O ,A B PA P O PB P O PB P O O ABC ∆090,6,5C AC BC ∠===E BC 2CE =P E AP ()2,0A B ()4,4P OB C AC 2y x bx c =-++2y x =+()()2,0,3,A B m -x C P AB ,A B P PD x ⊥D AB E 2PE ED =P P PAB ∆M ABM ∆ABC ∆M参考答案一、选择题1. B2. A3. A4. D5. C6. D7. A8. D 二、填空题9. 12 10. 11. 12. 且 13. 14. 124°15. 32° 16. 57°三、解答题17.(1);(2)18. 解:(1)∵,∴,∵,∴,即∴;(2)连接,∵,∴,设半径为,∴,在中,,∴,∴半径为5.19. 解:设平均增长率为,1m >()2342y x =--+14k <0k ≠()2,5123,1x x ==-123,1x x =-=-OE AB ⊥CF DF =,OA OB OF AB =⊥AF BF =AF CF BF DF -=-AC BD =OC OF CD ⊥132CF DF CD ===O r 1OF r =-Rt OCF ∆()2213r r =-+5r =O x ()2500017200x +=,(舍),答:平均增长率为20%.20. 解:∵为直径,∴,,在中,在平分∴,∴∴为等腰直角三角形,设,在中,,,∴21.解:(1)把,代入得,∴615x +=±10.220%x ==2 2.2x =-AB 090ACB ∠=090ADB ∠=Rt ABC∆8BC ==CD ACB ∠12∠=∠AD BD=ABD ∆AD BD x ==Rt ABD ∆22210x x +=x=AD =()()1,40,3A B 2y x bx c =-++314c b c =⎧⎨-++=⎩23b c =⎧⎨=⎩∴…-10123……343…(2)①当时,②当时,22. 解:(1)与相切连接,∵平分,∴,∵∴∴∴∵,∴,∴与相切;(2)作交于,∵,,∴,∵,∴,在中,,223y x x =-++x y()214y x =--+0y ≥13x -≤≤12x -<<04y <≤DE O OC AC EAB ∠12∠=∠OA OC =23∠=∠13∠=∠AE OC ⎪⎪AE DC ⊥OC ED ⊥DE O CFAD ⊥AD F 12∠=∠,CE AE CF AD ⊥⊥CE CF =6AB =3OC =Rt COD ∆5OD ==1134522CF ⨯⨯=⨯125CF =∴23. 解:(1)即(2)∵,对称轴为直线,∴当时,随增大而增大,∴当时,,答:当时,利润最大为320元.24. 解:(1)连接,∴为最长,∵∵∴,即(2)2或6;(3);(4)取,连接,∴,∴当最大时,最大,连接并延长交于,此时最大,∴,∴线段最大值为.125CE =()()101001012w x x=---⎡⎤⎣⎦()()1022010x x =--2103202200x x =-+-2103202200w x x =-+-2103202200w x x =-+-()21016360x =--+100-<16x =1014x ≤≤w x 14x =max 320w =14x =,PC OC PB PO CO PC +>OB OC =PO OB PC +>PB PC >2-()4,0D BD 12AC BD =BD AC DP OP H DH max 4DB DH ==+(max 1422AC =+=AC 2+25. 解:(1)把代入,得,∴把两点代入得,∴∴(2)设,∵∴∴∴(3)∵()3,B m 2y x =+5m =()3,5B ,A B 420935b c b c --+=⎧⎨-++=⎩28b c =⎧⎨=⎩228y x x =-++()2,28P m m m -++(),2E m m +26PE m m =-++2ED m =+2PE ED=()2622m m m -++=+220m m +-=121,2m m ==-(舍)()1,9P 1122PAB S PE AD PE h ∆=+ ()12PE AD h =+ 152PE =()2562m m =-++251125228m ⎛⎫=--+⎪⎝⎭502-<∴当时,,此时(4)令得,∴,∴中点为,若在下方,过作的平行线,∴∴,若在上方,,∴法二:设12m =max 1258S =125,24P ⎛⎫ ⎪⎝⎭0y =2280m m -++=122,4m m =-=()4,0C AC ()1,0F AB F AB 1y x =-2128y x y x x =-⎧⎨=-++⎩290x x --=x=1M 2M AB 2528y x y x x =+⎧⎨=-++⎩230x x --=x =34,M M ()()2,28,,2M m m m N m m -+++()2282MN m m m =-++-+26m m =-++或∴∴,,,21115665222ABM S mm ∆=⨯⨯-++=⨯⨯⨯263m m -++=263m m -++=263m m-++=-m =m=1M2M 3M 4M。

2023~2024学年第一学期期中九年级数学期中练习卷【含答案】

2023~2024学年第一学期期中九年级数学期中练习卷【含答案】

2023-2024学年度第一学期期中练习卷九年级数学(本试卷共6页.全卷满分120分.时间为120分钟)一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在括号内) 1.下列方程中,是一元二次方程的是( ) A . 2x -y =5B .x +1x=0C .5x 2=1D .y 2-x +3=02.一元二次方程x 2-4x =-4的根的情况是( )A .有两个相等的实数根B .有两个不相等的实数根C .没有实数根D .无法确定3.已知1是关于x 的一元二次方程x 2+x +k 2-3k -6=0的一个实数根,则实数k 的值是( ) A .4或-1 B .-4或1C .-1D .4 4.甲、乙两名运动员在6次射击测试中的成绩如下表(单位:环):甲的成绩 6 7 8 8 9 9 乙的成绩596 ?910如果两人测试成绩的中位数相同,那么乙第四次射击的成绩(表中标记为?)可以是( ) A .6环 B .7环 C .8环 D .9环5.如图,四边形ABCD 是⊙O 的内接四边形,若∠BCD =110°,则∠BOD 的度数是( ) A .70° B .120° C .140°D .160°6.如图,△ABC 内接于⊙O ,∠BAC =45°,AD ⊥BC ,垂足为D ,BD =6,DC =4. 则AB 的长( )A .6 2B .10C .12D .6 5 二、填空题(本大题共10小题,每小题2分,共20分.请把答案填写在答题卡相应位置.......上) 7.数据2、4、3、-4、1的极差是 .8.已知x 1,x 2是方程x 2-3x +2=0的实数根,则x 1+x 2- x 1x 2= .(第6题)(第5题)C9.已知⊙O 的半径为6cm ,点P 在⊙O 内,则线段OP 的长 6cm (填“<”、“=”或“>”).10.某公司决定招聘一名广告策划人员,某应聘者三项素质测试的成绩如下表:测试项目 创新能力综合知识语言表达测试成绩/分708090将创新能力、综合知识和语言表达三项测试成绩按5∶3∶2的比例计入总成绩,则该应聘者的总成绩是 分.11.如图,AB 是半圆的直径,P 是AB 延长线上一点,PC 切半圆于点C ,若∠CAB=31°,则∠P = °.12.在⊙O 中,弦AB 的长为4,OC ⊥AB ,交AB 于点D ,交⊙O 于点C ,OD ∶CD =3∶2,则⊙O 半径长 .13.一个圆锥的底面半径为3,母线长为4,其侧面积是 .14.某企业2020年盈利3000万元,2022年盈利3662万元,该企业盈利的年平均增长率不变.设年平均增长率为x ,根据题意,可列出方程 .15.如图,AE 是正八边形ABCDEFGH 的一条对角线,则∠BAE = °.16.如图,在等腰直角三角形ABC 中,AC =BC =22,点P 在以斜边AB 为直径的半圆上,M 为PC 的中点.当点P 沿半圆从点A 运动至点B 时,点M 运动的路径长 .P(第11题)D EABC(第15题) FG H(第16题)(第12题)三、解答题(本大题共11小题,共88分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤) 17.(8分)解方程:(1)x 2+2x -3=0; (2)(x -2)2=3x -6. 18.(8分)关于x 的一元二次方程x 2-4x -k -6=0有两个不相等的实数根x 1,x 2. (1)求k 的取值范围;(2)若x 1 =3x 2,求k 的值.19.(6分)如图,在⊙O 中,AB 是非直径的弦,CD 是直径,且CD 平分AB ,并交AB 于点M ,求证:CD ⊥AB ,AC ⌒=BC ⌒,AD ⌒=BD ⌒.(第20题)20.(9分)甲、乙两名同学本学期五次某项测试的成绩(单位:分)如图所示.(1)甲、乙两名同学五次测试成绩的平均数分别是 分、 分; (2)利用方差判断这两名同学该项测试成绩的稳定性; (3)结合数据,请再写出一条与(1)(2)不同角度的结论.21.(6分)要建一个面积为150 m 2的长方形养鸡场,为了节省材料,养鸡场的一边利用原有的一道墙,另三边用铁丝网围成,如果铁丝网的长为35 m .若墙足够长,则养鸡场的长与宽各为多少?(第19题)甲 乙(第21题)墙22.(8分)用直尺和圆规完成下列作图:(不写作法,保留作图的痕迹)(1)如图①,经过A 、B 、C 三点作⊙P ;(2)如图②,已知M 是直线l 外一点.作⊙O ,使⊙O 过M 点,且与直线l 相切.23.(8分)如图,在△ABC 中,AB =AC ,过点A ,C 的⊙O 与BC ,AB 分别交于点D ,E ,连接DE . (1)求证DB =DE ;(2)延长ED ,AC 相交于点P ,若∠P =33°,则∠A 的度数为▲________°.B(第23题)AED CO(第22题) BAClM①②24.(7分)某商店将进价为30元的商品按售价50元出售时,能卖500件.已知该商品每涨价1元,销售量就会减少10件,为获得12000元的利润,且尽量减少库存,应涨价为多少元?25.(8分)如图,D为⊙O上一点,点C是直径BA延长线上的一点,且∠CDA=∠CBD.(1)求证:CD是⊙O的切线;(2)过点B作⊙O的切线BE交CD的延长线于点E.若BC=12,AC=4,求BE的长.C(第25题)26.(10分)如果关于x的一元二次方程ax2+bx+c=0满足a+b+c=0,那么称这样的方程为“美好方程”.例如,方程x2-4x+3=0,1-4+3=0,则这个方程就是“美好方程”.(1)下列方程是“美好方程”的是▲ ;①x2+2x-3=0 ②x2-3x=0 ③x2+1=0 ④x(x-1)=2(x-1)(2)求证:“美好方程”ax2+bx+c=0总有两个实数根;(3)若美好方程(b-c)x2+(c-a)x+(a-b)=0有两个相等的实数根,求证:a+c=2 b.27.(10分)(1)证明定理:圆内接四边形的对角互补.已知:如图①,四边形ABCD 内接于⊙O . 求证:∠A +∠C =∠B +∠D =180°.(2)逆命题证明:若四边形的一组对角∠A +∠C =180°,则这个四边形的4个顶点共圆(图②) 可以用反证法证明如下:在图②中,经过点A ,B ,D 画⊙O .假设点C 落在⊙O 外,BC 交⊙O 于点E ,连接DE , ∵四边形ABED 内接于⊙O∴可得 =180°, ∵∠A +∠C =180°,∴∠BED = ,与∠BED >∠C 得出矛盾; 同理点C 也不会落在⊙O 内, ∴A ,B ,C ,D 共圆.(3)结论运用:如图∠BAC =120°,线段AB =83,点D ,E 分别在射线AC 和线段AB 上运动,以DE 为边在∠BAC 内部作等边△DEF ,则BF 的最小值为 .②DCBAO①FCAEBD③2023~2024学年度第一学期期中练习卷 九年级数学数学试卷参考答案及评分标准一、选择题(本大题共6小题,每小题2分,共12分)二、填空题(每小题2分,共20分) 7.8 8. 1 9. <10.77 11.28° 12.5213.12π14.3000(1+x )2=366215.67.5°16.π三、解答题(本大题共11小题,共88分)17.(8分)(1)解:x 2+2x -3=0x 2+2x +1=3+1 ···················································································· 1分 (x +1)2=4 ····························································································· 2分 x +1=±2 ····························································································· 3分 ∴x 1=1, x 2=-3 ················································································ 4分 (2)解:(x -2)2-3(x -2)=0 ············································································ 5分(x -2) (x -2-3)=0 ··············································································· 6分 ∴x 1=2, x 2=5. ·················································································· 8分18.(8分)(1)∵x 2-4x -k -6=0有两个不相等的实数根 ∴(-4)2-4(-k -6) >0…………… …………… 2分 ∴k >-10………………………………………………4分(2)∵x 1,x 2是方程两个实数根∴x 1+x 2=4,x 1x 2=-k -6…………………………………………5分 ∵x 1 =3x 2∴4x 2=4∴x 2=1…………………………………………6分 ∴x 1 =3…………………………………7分 ∴x 1x 2=3=-k -6∴k =-9………………………………………8分题号 1 2 3 4 5 6 答案CAABCD19.(6分)证明:连接OA ,OB , ∵OA =OB,CD 平分AB∴∠AMO =∠BMO =90°,…………………2分 ∴CD ⊥AB ,…………………………3分 ∵CD 是直径,∴AC ⌒=BC ⌒,AD ⌒=BD ⌒. (6)20.(9分)(1)80,80 ··················································································· 2分 (2)方差分别是:s 2甲=(80-80)2+(90-80) 2+(80-80)2+(70-80)2+(80-80)25=40分2 ···································· 4分 s 2乙=(60-80)2+(70-80) 2+ (90-80)2+(80-80)2+(100-80)25=200分2 ································ 6分 由s 2甲<s 2乙可知,甲同学的成绩更加稳定. ·························································· 7分 (3)甲同学的成绩在70,80,90间上下波动,而乙的成绩从60分到100分,呈现上升趋势,越来越好,进步明显. ·················································································· 9分21.(6分)解 :设养鸡场的宽为x m ,则长为(35-2x )m ,由题意得: x (35-2x )=150…………………………………2分整理得:2x 2-35x +150=0…………………………………3分 解得:x 1=10,x 2=152.…………………………………4分当x 1=10时,35-2 x 1=15;当x 2=152时,35-2 x 2=20.……………………5分答: 养鸡场长为15 m ,宽为10 m 或长为20 m ,宽为152………………………6分 22.(本题8(1)(4分)(2)(lD(第20题)23.(本题8分)(1)∵AB=AC,∴∠B=∠C,又∵四边形AEDC为⊙O的内接四边形,∴∠AED+∠C=180°,∵∠BED+∠AED=180°,∴∠BED=∠C∴∠BED=∠B∴DB=DE.··························································································6分(2)38° ·······························································································8分24.(7分)解:设涨价x元,根据题意得:(50-30+x)(500-10x)=12000.…………………………3分解得:x1=10,x2=20. …………………………5分∵要尽量减少库存,∴x2=20(舍). …………………………6分答:涨价10元.…………………………7分25.(8分)证明:(1)连接OD.∴∠ADO=∠OAD,∵AB是⊙O的直径,∴∠BDA=90°,∴∠ABD+∠BAD=90°,∵∠CDA=∠CBD,∴∠CDO=∠CDA+∠ADO=90°,即CD⊥OD. ················································································ 3分分(43.∵BE2+BC2=EC∴x 2+122=(x+42.∴x=43.即BE的长为43.·········································································· 8分26.(10分)(1)①④…………………………………2分(2)证明:∵ax2+bx+c=0是“美好方程”∴a+b+c=0………………3分∴b=-a-c………………4分判别式b 2-4 ac=(-a-c)2-4 ac=c2-2 a c+a2=(c-a)2≥0………………5分∴“美好方程”ax2+bx+c=0总有两个实数根.………………6分(3)证明:方法一:∵美好方程(b-c)x2+(c-a)x+(a-b)=0有两个相等的实数根∴(c-a)2-4(b-c) (a-b) =0…………………………………7分∴c2-2 a c+a2-4 ab+4 b2+4 a c-4 b c=0∴c2+2 a c+a2-4 ab-4 b c+4 b2=0…………………………………8分∴(c+a)2-4(a+c) b+4 b2=0∴(c+a-2 b)2=0…………………………………9分∴c+a-2 b=0,即a+c=2 b.…………………………………10分方法二:将x=1代入美好方程(b-c)x2+(c-a)x+(a-b)=0左右两边,左边=右边从而得出x=1是方程的解。

人教版2022--2023学年度第一学期九年级数学上册期中测试卷及答案

人教版2022--2023学年度第一学期九年级数学上册期中测试卷及答案

数学试题 第1页(共10页) 数学试题 第2页(共10页)………………○………………内………………○………………装………………○………………订………………○………………线………………○………………………………○………………外………………○………………装………………○………………订………………○………………线………………○………………… 学校:______________姓名:_____________班级:_______________考号:______________________人教版2022--2023学年度第一学期期中测试卷 九年级 数学(满分:120分 时间:100分钟)题号 一 二 三 总分 分数一、选择题 (共12题,每题3分,共36分) 1.如图所示图形不是中心对称图形的是( )A .B .C .D .2.下列一元二次方程中没有实数根的是 ( ) A .2240xx +-= B .2440xx -+=C .2250xx --= D .2340xx ++=3.将一元二次方程:2850x x --=化成2()x a b +=的形式正确的是( )A .2(4)21x += B .2(4)11x -= C .2()421x -= D .2(8)69x -=4.一元二次方程20x x -=的根是()A .1x=,21x= B .11x =,21x =- C .1x=,21x=-D .121x x ==5.将二次函数y=x 2的图象向右平移一个单位长度,再向上平移3个单位长度所得的图象解析式为( ) A .()2y x 13=-+B .()2y x 13=++C .()2y x 13=-- D .()2y x 13=+-6.由于国内疫情得到缓和,餐饮业逐渐恢复,某地一家餐厅重新开张,开业第一天收入约为2000元,之后两天的收入按相同的增长率增长,第3天的收入约为2420元,若设每天的增长率为x ,则列方程为( ) A .2000(1)2420x +=B .2000(12)2420x +=C .22000(1)2420x -= D .22000(1)2420x +=7.已知等腰三角形的两边长分别是一元二次方程2680x x -+=的两根,则该等腰三角形的底边长为( ) A .2B .4C .8D .2或48.已知关于x 的一元二次方程(m -1)x 2+2x +1=0有实数根,则m 的取值范围是( ) A .m <2B .m≤2C .m <2且m≠1D .m≤2且m≠19.在同一直角坐标系中,一次函数y =ax +c 和二次函数2y ax c =+的图象大致为( )A .B .C .D .10.已知点()11,x y 、()22,x y 、()33,x y 在双曲线5yx=上,当1230x x x <<<时,1y 、2y 、3y 的大小关系是( )A .123yy y << B .312yy y << C .132yy y << D .231yy y <<11.如图,△ODC 是由△OAB 绕点O 顺时针旋转31°后得到的图形,若点D 恰好落在AB 上,且∠AOC 的度数为100°,则∠DOB 的度数是( )数学试题第3页(共10页)数学试题第4页(共10页)……○………………内………………○………………装………………○………………订………………○………………线………………○………………此卷只装订不密封……○………………外………………○………………装………………○………………订………………○………………线………………○………………A.34°B.36°C.38°D.40°12.如图,抛物线2y ax bx c=++的对称轴为直线1x=,与x轴的一个交点为(1,0)-,其部分函数图象如图所示,下列说法不正确的是()A.0abc>B.20a b-=C.方程20ax bx c++=的两个根为3和1-D.当1x<时,y随x的增大而减小二、填空题(共6题,每题3分,共18分)13.当x_________时,3x-在实数范围内有意义.14.已知点A(a,3)与点B(4,b)关于原点对称,则a-b的值是_________.15.抛物线23(2)1y x=++的顶点坐标是__________.16.在直角坐标平面中,将抛物线22(1)y x=+先向上平移1个单位,再向右平移2个单位,那么平移后的抛物线表达式是____________. 17.如图,在△ABC中,∠C=90°,AC=2cm,AB=3cm,将△ABC绕点B顺时针旋转60°得到△FBE,则点E与点C之间的距离是_______cm.18.已知x2-4x-2=0,求3x2-12x+202的值_____________.三、解答题(共6题,共46分)19.(6分)先化简,再求值22113263x x xxx x++-⎛⎫÷-⎪--⎝⎭其中5x=20.(6分)解方程.(1)2210x x+-=;(2)22530x x-+=.21.(8分)如图,D是等边三角形ABC内一点,将线段AD绕点A顺时针旋转60°,得到线段AE,连接CD,BE,(1)求证:∠AEB=∠ADC;(2)连接DE,若∠ADC=105°,求∠BED的度数.数学试题 第5页(共10页) 数学试题 第6页(共10页)………………○………………内………………○………………装………………○………………订………………○………………线………………○………………………………○………………外………………○………………装………………○………………订………………○………………线………………○………………… 学校:______________姓名:_____________班级:_______________考号:______________________22.(8分)如图,△ABC 三个顶点的坐标分别为A (2,4),B (1,1),C (4,3).(1)请画出△ABC 关于x 轴对称的△A 1B 1C 1,并写出A 1的坐标; (2)请画出△ABC 关于原点对称的△A 2B 2C 2,并写出A 2的坐标; (3)请画出△ABC 以点B 为旋转中心,沿逆时针旋转90°后△A 3B 3C 3.23.(8分)某商场以每件280元的价格购进一批商品,当每件商品售价为360元时,每月可售出60件,为了扩大销售,商场决定采取适当降价的方式促销,经调查发现,如果每件商品降价1元,那么商场每月就可以多售出5件.(1)降价前商品每月销售该商品的利润是多少元?(2)要使商场每月销售这种商品的利润达到7200元,且更有利于减少库存,则每件商品应降价多少元?(3)当这种商品售价定为多少元时,该商品所获的利润最大?最大利润是多少?24.(10分)如图,对称轴为直线x =﹣1的抛物线y =ax 2+bx +c (a ≠0)与x 轴相交于A ,B 两点,其中点A 的坐标为(﹣3,0). (1)求点B 的坐标;(2)已知a =1,C 为抛物线与y 轴的交点:①若点P 在抛物线上,且S △POC =4S △BOC ,求点P 的坐标; ②在抛物线的对称轴上找出一点Q ,使BQ +CQ 的值最小,并求出点Q 的坐标.参考答案及评分标准一、选择题 (共12题,每题3分,共36分)题号 1 2 3 4 5 6 7 8 9 10 11 12 答案ADCAADADBCCB数学试题 第7页(共10页) 数学试题 第8页(共10页)……○………………内………………○………………装………………○………………订………………○………………线………………○………………此卷只装订不密封……○………………外………………○………………装………………○………………订………………○………………线………………○………………二、填空题 (共6题,每题3分,共18分) 13.3x ≥ 14.-1 15.(2,1)- 16.22(1)1y x =-+ 17.5 18.208三、解答题(共6题,共46分) 19.(6分) 解:22113263x x x x x x ++-⎛⎫÷- ⎪--⎝⎭ ()()()213132333x x x x x x x +-⎡⎤-=÷-⎢⎥---⎣⎦()()221313233x x x x x x +--+=÷-- ()()2213231x x x x +-=⋅-- ()()()()2132311x x x x x +-=⋅-+- ()121x x +=-当x =5时,原式=()516325184+===-. 2O.(6分) 解:(1)2210x x +-=,221x x ∴+=,则22111xx ++=+,即2(1)2x +=,12x ∴+=±,112x ∴=-+,212x =--;(2)22530x x -+=,(1)(23)0x x ∴--=,则10x -=或230x -=, 解得11x=,2 1.5x =.21.(8分)解:(1)∵△ABC 是等边三角形, ∴∠BAC =60°,AB =AC .∵线段AD 绕点A 顺时针旋转60°,得到线段AE , ∴∠DAE =60°,AE =AD . ∴∠BAD +∠EAB =∠BAD +∠DAC . ∴∠EAB =∠DAC . 在△EAB 和△DAC 中,AB ACEAB DAC AE AD ⎧⎪∠∠⎨⎪⎩===, ∴△EAB ≌△DAC . ∴∠AEB =∠ADC .(2)如图,∵∠DAE =60°,AE =AD , ∴△EAD 为等边三角形. ∴∠AED =60°,又∵∠AEB =∠ADC =105°. ∴∠BED =45°. 22.(8分)数学试题 第9页(共10页) 数学试题 第10页(共10页)………………○………………内………………○………………装………………○………………订………………○………………线………………○………………………………○………………外………………○………………装………………○………………订………………○………………线………………○………………… 学校:______________姓名:_____________班级:_______________考号:______________________解(1)如图所示△A 1B 1C 1为所求作的图形,A 1(2,-4); (2)如图所示△A 2B 2C 2为所求作的图形,A 2(-2,-4); (3)如图所示△A 3B 3C 3为所求作的图形.23.(8分)解】(1)由题意得60×(360-280)=4800(元). 即降价前商场每月销售该商品的利润是4800元;(2)设每件商品应降价x 元,由题意得(360-x -280)(5x +60)=7200, 解得x 1=8,x 2=60.要更有利于减少库存,则x =60.答:要使商场每月销售这种商品的利润达到7200元,且更有利于减少库存,则每件商品应降价60元. (3)设总利润为W 元,则W =(360-x -280)(5x +60)=-5( x -34)2+10580, 360-34=326, 则当降价34元,即售价326元时,总利润最大为10580元. 24.(10分)解(1)∵抛物线的对称轴为直线x =﹣1,点A 的坐标为(﹣3,0), ∴点B 的坐标为(﹣1×2﹣(﹣3),0),即(1,0).(2)∵a =1,点A 的坐标为(﹣3,0),点B 的坐标为(1,0), ∴抛物线的解析式为y =(x +3)(x ﹣1)=x 2+2x ﹣3, 又∵点C 为抛物线与y 轴的交点, ∴点C 的坐标为(0,﹣3). ①设点P 的坐标为(x ,x 2+2x ﹣3), ∵S △POC =4S △BOC , ∴12|x |•OC =4×12OB •OC ,即|x |=4, ∴x =±4,∴点P 的坐标为(﹣4,5)或(4,21).②连接AC ,交抛物线对称轴于点Q ,此时BQ +CQ 的值最小,如图所示.设直线AC 的解析式为y =mx +n (m ≠0),将A (﹣3,0)、B (0,﹣3)代入y =mx +n ,得:303m n n -+=⎧⎨=-⎩,解得:13m n =-⎧⎨=-⎩, ∴直线AC 的解析式为y =﹣x ﹣3. 当x =﹣1时,y =﹣1×(﹣1)﹣3=﹣2, ∴点Q 的坐标为(﹣1,﹣2).。

2024-2025学年九年级数学上学期期中测试卷(冀教版,九上全部)(考试版A4)

2024-2025学年九年级数学上学期期中测试卷(冀教版,九上全部)(考试版A4)

2024-2025学年九年级数学上学期期中模拟卷(冀教版)(满分120分,时间120分钟)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

4.测试范围:冀教版九年级上册。

5.难度系数:0.65。

第Ⅰ卷一、选择题(本大题共16个小题,共38分,1~6小题每题3分,7~16小题每题2分.每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.在某市体育中考期间,在运动技能测试“排球垫球”项目中,某市直中学有8位学生的垫球数分别为39,53,55,48,52,53,48,48.这组数据的中位数和众数分别是()A .50,48B .52,48C .52,53D .48,482.甲、乙、丙、丁四名同学参加科技知识竞赛,他们平时测验成绩的平均分相同,方差分别是21.7S =甲,2 2.4S =乙,20.5S =丙,24S =丁,则成绩最稳定的是( )A .甲B .乙C .丙D .丁3.若38m n =,则m n n +的值是( )A .118B .311C .113D .8114.如图,河坝横断面迎水坡AB 的坡度是,坝高BC =,则坡面AB 的长度是( )A .B .6mC .D .9m5.如图,AB 为O e 的直径,点C ,D 在圆上,若64D Ð=°,则BAC Ð的度数为( )A .64°B .34°C .26°D .24°6.将方程21010x x -=+利用配方法转化为()25x c -=的形式,则c 的值为( )A .24B .25C .26D .1007.下表是小明填写的综合实践活动报告的部分内容,请你借助小明的测量数据,计算河流的宽度AB .题目测量河流宽度AB目标示意图测量数据1.5m BC =,10m BD =, 1.8mDE =则AB =( )m A .20B .30C .40D .508.已知菱形OABC 在平面直角坐标系中如图放置,点C 在x 轴上,若点A 的坐标为(3,4),经过点A 的双曲线交BC 于点D ,则OAD △的面积为( )A .8B .9C .10D .129.如图,在由小正方形组成的网格中,小正方形的边长均为1,点A ,B ,O 都在小正方形的顶点上,则AOBÐ的正弦值是( )A B C .13D .1210.如图,直线y kx =与双曲线my x =相交于点A 和B ,已知点A 的坐标为()4,1,则不等式m kx x³的解集为( )A .4x ³B .04x <£C .4x ³或4x £-D .4x ³或40x -£<11.如图,A 、B 、C 、D 均为圆周上十二等分点,若用直尺测量弦CD 长时,发现C 点、D 点分别与刻度1和4对齐,则A 、B 两点的距离是( )A .B .C .D .612.在矩形ABCD 中,已知45AB AD ==,,点E 为BC 上一点,连接AE 并延长交DC 的延长线于点F ,连接DE ,若2DEC BAE Ð=Ð,则EF 的长为( )A .B .C .3D .513.关于x 的方程22240x mx m -+-=的两个根1x ,2x 满足1223x x =+,且12x x >,则m 的值为( )A .3-B .1C .3D .914.如图,当反比例函数()0ky x x=>的图象L 将矩形ABCD 的内部(不含边界)的横、纵坐标都为整数的点分成数量相等的两部分,则k 的取值范围为( )A .1215k <<B .1014k <<C .410k <<D .1516k <<15.某数学兴趣小组借助无人机测量一条河流的宽度BC .如图,无人机在P 处测得正前方河流的点B 处的俯角DPB a Ð=,点C 处的俯角45DPC Ð=o ,点A ,B ,C 在同一条水平直线上.若45m AP =,tan 3a =,则河流的宽度BC 为( )A .30mB .25mC .20mD .15m16.如图,已知A ,B ,C 为O e 上的三点,且2120AC BC ACB ==Ð=°,.点P 从点A 出发,沿着逆时针方向运动到点B ,连接CP 与弦AB 相交于点D ,当ACD V 为直角三角形时,弧AP 的长为( )A .2pB .12πC .23p 或12πD .2p 或43p第Ⅱ卷二、填空题(本大题共3个小题,共10分;17小题2分,18~19小题各4分,每空2分,答案写在答题卡上)17.如图,在O e 中,AM 是O e 的直径,8AM =,点B 是 AM 的中点,点C 在弦AB 上,且AC =D 在 AB 上,且CD OB ∥,则CD 的长为.18.如图①所示,E 为矩形ABCD 的边AD 上一点,动点P ,Q 同时从点B 出发,点P 沿折线BE ED DC--运动到点C 时停止,点Q 沿BC 运动到点C 时停止,它们运动的速度都是1cm/s ,设P ,Q 同时出发t 秒时,BPQ V 的面积为2cm y .已知y 与t 的函数关系图象如图②(曲线OM 为抛物线的一部分),则:(1)cos ABE Ð= ;(2)当t = 时,ABE QBP ∽△△.19.如图,点(3,0)A ,(0,4)B ,连接AB ,点D 为x 轴上点A 左侧的一点,点E ,F 分别为线段AB ,线段BO上的点,点B ,D 关于直线EF 对称.(1)若DE AO ^,则四边形BEDF 的形状是 ;(2)当AD 最长时,点F 的坐标为 .三、解答题(本大题共7个小题,共72分,解答应写出文字说明、证明过程或演算步骤)20.(本小题满分9分)解方程:(1)22125x x -+=;(2)()()3222x x x +=+.21.(本小题满分9分)某校九年级男生进行了“引体向上”测试,每班随机抽取的人数相同,成绩分为“优秀”“良好”“及格”“不及格”四个等级,其中相应等级的得分分别为10分、8分、6分、4分.小聪将九(1)班和九(2)班的成绩整理并绘制了如图所示的不完整的统计图表.班级平均数众数中位数方差九(1)班7.6——8 3.84九(2)班8.410—— 3.84请你根据所给的信息解答下列问题:(1)请补充完成条形图和统计分析表;(2)若九(2)班少统计了一个学生“优秀”的成绩,则此次统计的数据中不受影响的是______(选填“平均数”“众数”“中位数”);(3)请你从两个方面分析出哪个班的男生“引体向上”成绩更好些.22.(本小题满分9分)如图,ABCD Y 中,点E 是AD 的中点,连接CE 并延长交BA 的延长线于点F .(1)求证:AF AB =;(2)点G 是线段AF 上一点,满足,FCG FCD CG Ð=Ð交AD 于点H .①求证:AH CH DH GH ×=×;②若2,6AG FG ==,求GH 的长.23.(本小题满分10分)图1是某住宅单元楼的人脸识别系统(整个头部需在摄像头视角范围内才能被识别),其示意图如图2,摄像头A 的仰角、俯角均为15°,摄像头高度160cm OA =,识别的最远水平距离150cm OB =.(1)如图2,张亮站在摄像头前水平距离100cm 的点G 处,恰好能被识别(头的顶部在仰角线AD ), 求张亮的身高约是多少厘米;(2)夕夕身高136cm ,头部高度为18cm ,踮起脚尖可以增高3cm ,此时夕夕能被识别吗?请计算说明.(精确到0.1cm ,参考数据:sin150.26cos150.97°»°»,,tan150.27°»)24.(本小题满分10分)如图1,一汤碗的截面是以AB 为直径的半圆O (碗体厚度忽略不计),放置于水平桌面MN 上,碗中装有一些液体(图中阴影部分),其中液面截线∥CD MN .已知液面截线CD 宽8cm ,液体的最大深度为2cm .(1)求汤碗直径AB 的长;(2)如图2,在同一截面内,将汤碗(半圆O )沿桌面MN 向右作无滑动的滚动,使液体流出一部分后停止,再次测得液面截线CD 减少了2cm .①上述操作后,水面高度下降了多少?②通过计算比较半径12AB 和流出部分液体后劣弧 CD 的长度哪个更长.(参考数据:3tan 374°=)25.(本小题满分12分)如图,已知在平面直角坐标系中,矩形ABCD 的边AB x ∥轴,AD y ∥轴,点A 的坐标为(2,1),43AB AD ==,.(1)求直线BD 的解析式;(2)已知双曲线()0ky k x =>与折线ABC 的交点为E ,与折线ADC 的交点为F .①连接CE ,当3BCE S =V 时,求该双曲线的解析式,并求出此时点F 的坐标;②若双曲线()0ky k x =>与矩形ABCD 各边和对角线BD 的交点个数为3,请求k 的取值范围.26.(本小题满分13分)在ABC V 中,45A Ð=°,AC =D 为AB 边上一动点,45CDF Ð=°,DF 交BC 边于F .探究:如图1,若AC BC =,(1)当ACD V 与BDF V 全等时,求AD 的长;(2)当CDF V 为等腰三角形时,求CF 的长.延伸:如图2,若90DCF Ð=°,E 为BD 上一点,且45DEF Ð=°,(3)小东经过研究发现:“当点D 在AB 边上运动时,DE 的长度不变,是个定值.”你认为小东的结论是否正确,如果正确,请求出这个定值;如不正确,说明理由(4)若BF =sin B 的值.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
上A点的位置,用(1,2)表示B点的位置,那么四边形 ABCD 旋
转 得到四边形EFGH时的旋转中心用有序数对表示是 .
14、若 3a2 a 2 0 ,则 5 2a 6a2

15、点A的坐标为( 2 ,0),把点A绕着坐标原点顺时针旋转
. 16、实数a,b在数轴上的对应点的位置如图,请化简式子:
25、如图,在直角坐标系中,Rt△AOB的两条直角边 OA,OB分别在x轴的负半轴,y轴的负半轴
上,且OA=2,OB=1.将Rt△AOB绕点O按顺时针方向旋转90º,再把所得的图像沿x轴正方向平
移1个单位,得△CDO.
(1)写出点A,C的坐标; (2)求点A和点C之间的距离.
yC
平面直角坐标系中, 其中点 O 为坐标原点,点 A 的坐标为 (3,0) , ABO 60o.
在 AB 上, BD AB ,点 B 是垂足, OD∥ AC , 连接 CD .(1)求证: CD 是⊙O 的切线. (2)若⊙O 的半径为10cm,∠A=600,求CD的长
D C
A
B
O
23、如图所示,直角梯形 ABCD 中, AB ∥ DC , AB 7 cm , BC CD 4 cm ,以 AB 所在
(2)求(1)中方程有两个相同实数解的概率.
21、在如图所示的方格纸中,每个小方格都是边长为1个单位的正方形, △ ABC 的三个顶点都在
格点上(每个小方格的顶点叫格点).
(1) 画出 △ ABC 绕点O逆时针旋转90°后的 △ ABC . (2) 求 △ ABC 的面积.
A CO
B
22、如图,⊙O 是 Rt△ ABC 的外接圆,点 O
A.70° B.60° C.50° D.40°
7、方程 x2 9x 18 0 的两个根是等腰三角形的底和腰,则这个三角形的周长为( )
A.12
B.12或15
C.15或12
D.不能确定
8、从3名男生和2名女生中随机抽取2020年南京青奥会志愿者.下列事件的概率:抽取2名,恰 好是1名男生和1名女生( )。
D。 k 1 且 k 0
3、直线
y
4 3
x
4

x
轴、
y
轴分别交于
A

B
两点,把△
AOB
绕点
A
顺时针
旋转90°后得到△ AOB ,则点 B 的坐标是(

A. (3,4) B.(4,5) C.(7,4) D.(7,3)
4、 △ ABC 为⊙O 的内接三角形, AB 1,° C 30 则⊙O
的内接正方形的面积为( )
A.不亏不盈 B.盈6.12元 C.亏6.02元 D.亏5.92元
二、填空题 11、随即掷一枚均匀的硬币三次次,三次正面朝上的概率是______________。
12、已知⊙ O1 和⊙ O2 的半径分别是12和2,圆心 O1 的坐标是(0,8),圆心 O2 的坐标是(-
6,0),则两圆的位置关系是( ) 13、如图,四边形EFGH是由四边形 ABCD 经过旋转得到的.如果用有序数对(2,1)表示方格纸
a b b2 (a b)2
_________
135º到点B,那么点B的坐标是
17、已知⊙O的半径是5cm,弦AB∥CD,AB=6cm,CD=8cm则AB与CD的距是 18、如图所示,圆锥的母线长是3,底面半径是1,A是底面圆周上一点,• 从点A出发绕侧面一
周,再回到点A的最短的路线长是( )
20、(6分)1/2、1/18
A.1/5 B.2/5 C.3/5 D.4/5 9、如图,圆弧形桥拱的跨度AB=12米,拱高CD=4米,
则拱桥的半径为( ) A.6.5米 B.9米 C.13米 D.15米
第9题
10.某商场根据市场销售变化,将A商品连续两次提价20%,同时将B商品连续两次降价20%,结果 都以每件23.04元出售,此时商场若同时售出A、B两商品各一件的盈亏情况为( ).
一、选择题、
九年级上学期期中测试题 数学
1 1、使 x 1 有意义的x的取值范围是( )
A.x>1 B.x≥1 C.x≠1 D.x≥0且x≠1
2、若关于 x 的一元二次方程 kx2 2x 1 0 有两个不相等的实数根,则 k 的取值范围是(

A. k 1
B。 k 1且 k 0
C.。 k 1
A.2
B.4 C.8 D.16
5、下列事件是随机事件的是( )
A.在一个标准大气压下,加热到100℃,水沸腾
B.购买一张福利彩票,中奖
C.有一名运动员奔跑的速度是30米/秒
D.在一个仅装着白球和黑球的袋中摸球,摸出红球
6、AB是⊙O 的直径,点C、D在⊙O 上, BOC 110° ,
AD∥ OC ,则 AOD ( )
直线为轴旋转一周,得到一个几何体,求它的全面积.





24、某商场销售一批衬衫,平均每天可售出20件,每件盈利40元,为了扩大销售,增加利润,尽 量减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫降价1元,商场平均每 天可多售出2件,若商场每天要获利润1200元,请计算出每件衬衫应降价多少元?
二、填空题(每小题3分,共24分)
11、 1/8
12、 内切
13、( 5、2 )
14、 1
15、 (-1,-1) 16、2a+b 17、1或7
18、A 三、解答题(共66分) 19、(6分)(1)3根号3 (2)解:
x 2x 5 22x 5 x 22x- 5 0
5 x1 2, x2 2
(1)求作 △ AOB 的外接圆圆心P,并求出P点的坐
标;
(2)若⊙P与 y 轴交于点 D ,求 D 点的坐标;
(3)若CD是⊙P的切线,求直线CD的函数解析式.
y D CO
B Ax
参考答案
一、选择题(每小题3分,共30分)
1、A 2、B 3、D 4、A 5、 B 6、D 7、C 8、C 9、A 10、D
33 A.6 3 B. 2 C.3 3 D.3
三、解答题
19、计算、解方程:
41
31
(1)计算:( 48 - 8 )-( 3 - 2 0.5 );;
(2)x(2x-5)=4x-10.
20、:甲、乙两同学投掷一枚骰子,用字母p、q分别表示两人各投掷一次的点数.(1)求满足关
于x的方程 x2 px q 0 有实数解的概率.
相关文档
最新文档