激光热处理的应用
光热效应的应用
光热效应的应用
1.太阳能利用:光热效应可以把太阳光转化为热能,从而产生电力或提供热水。
太阳能热水器和太阳能发电站就是典型的光热应用。
2. 激光加工:激光束的光热效应可以用于切割、焊接、钻孔和表面处理等加工工艺中。
在半导体制造业和金属加工业中广泛应用。
3. 医疗治疗:光热效应在医疗治疗中的应用主要是利用光热效应杀灭肿瘤细胞,即光热疗法。
这种方法通常使用激光或红外线辐射。
4. 热成像:利用物体表面的光热辐射,可以得出物体表面温度的分布,从而获得热成像。
这种技术通常用于工业、医学和环保等领域。
5. 热敏材料:光热效应还可以被用作热敏材料,如热敏纸、热敏墨水和热敏记录材料等。
这些材料在打印、记录和测试等方面有广泛的应用。
总之,光热效应的应用非常广泛,它不仅能够帮助我们更好地利用能源,还可以在很多方面带来便利和发展。
- 1 -。
激光技术在金属材料加工工艺中的应用
激光技术在金属材料加工工艺中的应用1. 引言1.1 激光技术在金属材料加工工艺中的重要性激光技术是一种高精度、高效率的加工方法,在金属材料加工领域发挥着重要作用。
激光加工具有非接触性、高能量密度、高速度和高精度等优点,可以实现对金属材料的精密加工和微细加工。
在金属材料加工中,激光技术可以实现各种加工工艺,如切割、焊接、打印、表面处理和热处理等,为金属制造业提供了多种解决方案。
激光技术在金属材料加工工艺中的重要性体现在以下几个方面:激光加工具有高能量密度和可控性,可以实现对金属材料的高精度加工,提高加工质量和加工效率;激光加工具有非接触性,可以减少材料损失和减少工具磨损,有利于提高金属材料利用率和延长设备寿命;激光加工具有高速度和高效率,可以节约成本和减少能源消耗,提高金属加工的经济效益和环保效益。
激光技术在金属材料加工工艺中的重要性不言而喻,已经成为当今金属加工行业不可或缺的重要技术之一。
随着激光技术的不断发展和创新,相信其在金属材料加工中的应用前景将更加广阔。
1.2 激光技术的发展历史激光技术的发展历史可以追溯到上世纪50年代。
1958年,美国的肯尼斯·荣特根发明了世界上第一台激光器,标志着激光技术的诞生。
随后,激光技术经过不断的发展和完善,逐渐应用于各个领域,包括金属材料加工工艺。
在激光技术发展的过程中,人们逐渐发现了激光在金属材料加工中的巨大潜力。
激光技术能够实现高精度、高效率的金属材料加工,不仅可以减少加工时间和成本,还可以提高产品的质量和精密度。
激光技术在金属材料加工工艺中扮演着非常重要的角色。
随着科技的不断进步和激光技术的不断完善,激光在金属材料加工中的应用范围也在不断扩大。
从最初的激光切割技术到目前的激光焊接、激光打印、激光表面处理以及激光热处理技术,激光技术已经成为金属材料加工中不可或缺的重要工具。
激光技术的发展历史为金属材料加工工艺的进步提供了重要的技术支持,同时也为未来激光技术在金属加工领域的应用打下了坚实的基础。
激光热处理
谢谢大家
4、加工柔性好,适用面广。利用灵活 的导光系统可随意将激光导向处理部分,从 而可方便地处理深孔、内孔、盲孔和凹槽等, 可进行选择性的局部处理。
对于大面积扫描,因激光光斑面积 小,必须采用多次搭接技术或大面积光 斑技术,散焦法、宽带法和转镜法。多 次搭接时因其每个相邻扫描带的接合处 存在一个区域。因此其显微硬度是波动 的,从金相上看搭接涂层在整体呈现一 种宏观的周期性性能变化。对大面积光 斑技术,当输出功率一定时,光斑面积 越大,功率密集越低,增大光束直径可 能消弱激光的高能密度和超快速加热优 势。
激光表面处理技术包括:激光相变技术、激光熔
覆技术、激光合金化技术、激光表面复合处理技 术
1、 激光表面淬火 (1)激光表面淬火的原理 应用激光将金属材料表面加热到相变点以上,随着 材料自身冷却,奥氏体转变成马氏体,使材料表面硬 化,同时硬化层内残留有相当大的压应力,从而增加 了表面的疲劳强度。利用这一特点对零件表面实 施激光淬火,则可以大大提高材料的耐磨性和抗疲 劳性能。
激光热处理技术与其它热处理如高频淬
火、渗碳、渗氮等传统工艺相比,具有以下特 点:
1、无需使用外加材料,仅改变被处理材 料表面的组织结构。处理后的改性层具有足够 的厚度,可根据需要调整深浅一般可达0.10.8mm 。
3、被处理件变形极小,由于激光功率 密度高,与零件的作用时间很短(10-2-10 秒),故零件的热变形区和整体变化都很小。 故适合于高精度零件处理,作为材料和零件 的最后处理工序。
三、激光热处理的应用
几乎一切金属表面热处理都可以应用。 目前应用比较多的有汽车、冶金,以及航天、航空等高科技产品。
1、汽车行业
激光热处理在汽车行业应用极为广泛, 在许多汽车关键件上,如:缸体、缸套、曲 轴等几乎都可以采用激光热处理。例如:美 国通用汽车公司用十几台千瓦级激光热处理 在汽车行业应用极为广泛,在许多汽车关键 件上,CO2激光器,对换向器壳内壁局部硬 化,日产3万套,提高工效四倍。
激光热处理原理
激光热处理原理“热处理”是指通过加热于金属材料,以多种方式改变金属材料的组织或性质的方法。
尽管激光热处理技术在诱导表面组织的变化方面类似于现有的高频热处理(感应淬火,Induction Hardening)方法,但激光热处理方法有更多优点,例如,经激光热处理后,母材的尺寸变化几乎为零,且因构成更致密的组织而使表面硬度变得更高,无需另行冷却工程。
激光热处理技术还能针对所需的部分进行选择性热处理,如三维形状的机械配件及模具产品、模切刀的刀刃末端部分等。
同时,通过采用高温计(Pyrometer)实时测量和控制母材的表面温度,可在大批/小批生产工程中获得稳定的热处理质量。
经激光热处理后,表面硬度会根据母材含碳量的不同而有所不同,通常保持在 >53~65Hrc的水平,有效硬化深度约为0.8~1.5mm,硬化幅度按激光功率调整为几毫米至几十毫米。
到2000年初为止,主要用于激光热处理工程的激光器为二氧化碳(CO2)激光器,但目前随着多种高功率激光器的开发,对金属材料的吸收率更高的高功率激光器更受青睐,包括半导体激光器、碟片激光器、光纤激光器等。
激光热处理技术作为一种替代高频热处理(Induction Hardening)的技术,不仅适用于汽车产业领域,如冲压模具、注塑模具、汽车配件等,还适用于造船、钢铁、机械、电子产业等广泛领域,且其适用范围逐渐扩展至需经局部性热处理而提升产品硬度及强度的多个领域。
就激光金属热处理技术的基本原理而言,通过将高能量密度的激光束照射到金属材料的表面上,将母材温度急剧上升至母材快要达到熔融温度时为止,并重新急剧冷却之,由此诱导其表面的组织变化。
照射到母材表面上的激光束会转换为热能,使母材表面加热,并通过利用母材的热传导特性重新使其降温(自猝灭,Self-Quenching),最终提升材料的硬度及强度。
优点·仅对所需的部分进行局部性热处理·实时监测和控制母材的温度,提升热处理质量·采用适合不同热处理对象的多种激光束,提升工作灵活性及生产效率·以自猝火(Self-quenching)效果尽量减少产品变形,获得非常稳定、均匀的热处理效果·无论产品的生产量、大小、重量,都能获得稳定的热处理效果适用产品汽车、电子、造船、航空零部件、注塑/冲压磨具、道具、大型涡轮机、齿轮螺纹、刀刃及各种工具类等济南欧威激光有限公司,是韩国(株)EUROVISION LASER CO.,LTD 在中国的全资子公司,公司坐落于人杰地灵的山东省济南市,公司成立于2016年6月,在汽车、钢铁、电子、半导体、医疗等整个产业领域致力于开发和推广多种激光应用技术。
激光热处理PPT幻灯片
9
对于大面积扫描,因激光光斑面积 小,必须采用多次搭接技术或大面积光 斑技术,散焦法、宽带法和转镜法。多 次搭接时因其每个相邻扫描带的接合处 存在一个区域。因此其显微硬度是波动 的,从金相上看搭接涂层在整体呈现一 种宏观的周期性性能变化。对大面积光 斑技术,当输出功率一定时,光斑面积 越大,功率密集越低,增大光束直径可 能消弱激光的高能密度和超快速加热优 势。
20
谢谢大家
21
10
ห้องสมุดไป่ตู้
三、激光热处理的应用
几乎一切金属表面热处理都可以应用。 目前应用比较多的有汽车、冶金、石油、重 型机械、农业机械等存在严重磨损的机器行 业,以及航天、航空等高科技产品。
11
1、汽车行业
激光热处理在汽车行业应用极为广泛, 在许多汽车关键件上,如:缸体、缸套、曲 轴等几乎都可以采用激光热处理。例如:美 国通用汽车公司用十几台千瓦级激光热处理 在汽车行业应用极为广泛,在许多汽车关键 件上,CO2激光器,对换向器壳内壁局部硬 化,日产3万套,提高工效四倍。
12
2、大型机车制造业
激光热处理在大型机车制造业已被采用,
大大提高了机车寿命,主要是机车大型曲
轴的激光热处理和机车柴油机缸套和机车
主簧片的激光热处理。它们的模具制造工
艺复杂,精度要求高,形状各异,应用广
泛,但往往因模具的寿命短而加大了成本,
返修也很困难。用激光对模具表面进行热
处理,已逐渐被认识和被采用,可成倍的
18
因此,可以减少后道工序(矫正或磨制)的 工作量,降低工件的制造成本。此外该工 艺为自冷却方式,无需淬火液,是一种清洁 卫生的热处理方法;而且便于用同一激光 加工系统实现复合加工。因此可直接将 激光淬火供需安排在生产线上,以实现自 动化生产。又由于该工艺为非接触式,因 此可用于窄小的沟槽和底面的表面淬火。
齿轮的激光热处理技术与应用
5 齿轮激光热处理设备
( 激 光设 备配 置 1) 横 流CO 激 光器 1 ,专 用配 套冷 水机 组 1 ,数 台 套
小 ,一般 不会使原 齿 轮加工 精度 等级 降低 。
激 光 淬 火 后 齿 轮 的疲 劳 强 度 比调 质 齿 轮 的 高 得
控 加 工机 床 1 ,光 路 系统 1 。 图2 A S S R 台 套 为H N G — C
合物 ,表面 硬度 为6 0 8 0H 5 — 0 V。 C. 金 结 构 钢 、 中 碳 合 金 结 构 钢 如 40Cr 合 、
( 激光渗氮 1) 激光渗氮是将尿素涂于工件表面,在一定功率密
度激 光 束辐 照下 进行 渗氮 。如 要使 1 r2 2 2 钢 C l NiW V 1
4 C NMo ,第 一层 表 层 为完 全 淬硬 层 ,由隐 晶 马 0 i 等 r 氏体 + 少量 残 余奥 氏体组 成 ;第 二 层过 渡 层 为马 氏体
+ 化 物 组成 ;第三 层 为高 温 回火 区 ,由回 火 索 氏体 碳 组成 。硬 化层 硬度 为6 0 7 0H 。 7 — 8 V
2 1年第4 0 2 期
汽车 q艺与材料 A& { 1 - TM 5
齿 轮激 光淬 火技术 适用 于高 中碳 钢 、高 中碳合 金 钢 、铸铁等材料 , 硬化层深可控制在0 ~ . 1 mm。对于 4 l 2
低碳钢 、低碳合金钢 ,淬火硬度可;.0H C 14 R 左右 ;对于 2  ̄ 中碳钢 ( 5 ) 如4 钢 表面淬火硬度可达5 R 左右。 7H C 激 光 淬 火 加 热 速 度 极 高 (可 达 1 0 ℃/ 以 0 0 s 上 ),相 变温度停 留时 间不到0 1S . ,因此热 影 响区很
激光在化学中的应用
激光在化学中的应用激光(LASER)是上纪60年代创造的一种光源,是一种崭新的光源,是由激光器产生的“种光〞,激光有很多特性:首先,激光是单色的,或者说是单频的,有一些激光器可以同时产生不同频率的激光,但是这些激光是互相隔离的,使用时也是分开的;其次,激光是相干光的特征,其所有的光波都是同步的,整束光就好似一个“波列〞;再次,激光是高度集中的,也就是说它要走很长的一段距离才会出现分散或者收敛的现象,它的亮度最高,具有相当大的能量。
近年来激光在化学中的应用也越来越广泛,随着各类激光器的研制与开展,激光化学的根底与应用研究正在向实用化纵深开展。
接下来就从以下几个方面介绍激光在化学中的一些应用。
一、激光化学气相沉积法激光化学气相沉积法(Laser Chemical V apour Deposition)(LCVD)是在真空室内放置基体,通入反响原料气体,在激光束作用下与基体外表及其附近的气体发生化学反响,在基体外表形成沉积薄膜。
他具有以下几个优点:1、沉积温度低对于大多数材料可在500℃以下,甚至室温即可沉积成膜。
对温度敏感的基体材料,如聚合物、陶瓷、化合物半导体等,假设用常规CVD可能发生熔化、开裂或分解。
激光化学气相沉积由于基体温度低,减少了因温升引起的变形、应力、开裂、扩散和夹杂等弊病,在不高的沉积温度下,就可得到高质量的薄膜和较高的沉积速度;2、局部选区精细定域沉积聚焦激光束在计算机控制下能准确选区定域沉积,获得直径在微米级的点和宽度在微米级的线沉积,适宜于在微电子和微机械制造中应用;3、不需掩膜沉积此种沉积方式提高了激光能量利用率,可以采用直写方式沉积出设计的图案,凡激光光斑扫描过的轨迹上都形成沉积薄膜。
该工艺适应性强,方便样机快速改型,制造形状不规那么的零件,以及微电子器件的维修等;4、膜层纯度高,夹杂少,质量高。
5、可用作成膜的材料范围广,几乎任何材料都可进展沉积。
二、激光热处理激光热处理是20世纪7O年代以后迅速开展起来的一种高新技术,它是利用激光高能量密度的特点,把激光束作为热源对材料外表进展局部快速加热,实现相变硬化、外表改性处理等的理想工具。
激光再制造技术及应用
激光再制造技术及应用一、激光再制造技术的原理激光再制造技术,是一种将激光熔化或烧结物质,以实现再制造的高精密度加工技术。
激光再制造技术的原理主要包括以下几个方面:1. 激光加热原理:激光是一种高能量密度的光束,可以在短时间内对材料进行快速加热,使其瞬间融化或烧结。
这种高能量密度和快速加热的特性,使得激光成为了再制造材料的理想加热源。
2. 材料再制造原理:通过激光对废旧材料进行加热,将其融化或烧结成新的形状,再利用这些材料来制造新的零部件或产品。
这种再制造的原理,可以大大减少资源的浪费,提高材料的利用率。
3. 三维打印原理:激光再制造技术通常与三维打印技术相结合,利用激光熔化或烧结粉末材料的方式,逐层堆积成所需的形状。
通过三维打印技术,可以实现复杂结构、高精度的零部件制造。
激光再制造技术在再制造领域具有明显的优势,主要表现在以下几个方面:1. 高精度加工:激光再制造技术可以实现高精度的加工,能够制造出复杂结构的零部件,满足不同行业的精密加工需求。
2. 节能环保:激光再制造技术可以大大减少原材料的消耗,降低废料排放,有利于保护环境和节约能源。
3. 灵活性强:激光再制造技术适用于各种材料,包括金属、塑料、陶瓷等,具有很高的加工范围和灵活性。
4. 成本效益高:激光再制造技术可以利用废旧材料进行再利用,节约了原材料的采购成本,提高了生产效率。
5. 个性化定制:激光再制造技术可以根据客户需求进行个性化定制,满足不同客户的特殊需求。
激光再制造技术已经在各个行业得到了广泛应用,主要包括以下几个领域:1. 航空航天领域:激光再制造技术可以制造具有复杂结构的航空零部件,提高了飞行器的性能和安全性。
2. 汽车制造领域:激光再制造技术可以制造汽车零部件,如发动机零部件、刹车系统零部件等,提高了汽车的性能和可靠性。
3. 医疗器械领域:激光再制造技术可以制造医疗器械,如人工关节、牙齿修复材料等,提高了医疗器械的精度和适配性。
激光技术在工业中的应用
激光技术在工业中的应用激光技术作为一种高度精密的工具,在工业领域中有着广泛的应用。
它以其独特的特性和优势,为工业生产带来了革命性的变革,提高了生产效率,降低了成本,改善了产品质量。
本文将探讨激光技术在工业中的应用,介绍其在不同领域的具体运用。
一、激光切割激光切割是激光技术在工业中应用最为广泛的领域之一。
激光切割利用高能激光束对工件进行热加工,通过激光束的高能量浓缩作用,可以快速、精确地切割各种材料,如金属、塑料、玻璃等。
激光切割具有切割速度快、切割质量高、切割精度高等优点,被广泛应用于金属加工、汽车制造、电子设备制造等行业。
二、激光焊接激光焊接是利用激光束对工件表面进行加热,使其熔化并在熔池中形成焊缝的一种焊接方法。
激光焊接具有热影响区小、焊缝质量高、焊接速度快等优点,适用于对焊接质量要求高的工件。
激光焊接广泛应用于航空航天、船舶制造、电子器件等领域,为工业生产提供了高效、稳定的焊接解决方案。
三、激光打标激光打标是利用激光束对工件表面进行刻蚀或着色,实现标记、编码、图案等信息的永久性标记的技术。
激光打标具有标记速度快、标记质量高、标记精度高等优点,适用于对标记要求精细的行业。
激光打标广泛应用于电子产品、医疗器械、食品包装等领域,为产品标识和溯源提供了可靠的解决方案。
四、激光清洗激光清洗是利用激光束对工件表面的污垢、氧化层等进行去除的清洁技术。
激光清洗具有无损清洗、无化学污染、无二次污染等优点,可以高效地清洗各种材料的表面。
激光清洗广泛应用于汽车维修、航空维护、文物保护等领域,为清洁作业提供了高效、环保的解决方案。
五、激光测量激光测量是利用激光束对工件进行距离、角度、形状等参数的测量技术。
激光测量具有测量精度高、测量速度快、非接触测量等优点,适用于各种复杂形状的工件测量。
激光测量广泛应用于工件检测、三维建模、地形测绘等领域,为精密测量提供了可靠的技术支持。
六、激光打孔激光打孔是利用激光束对工件表面进行高能量浓缩,实现对材料的穿孔加工的技术。
激光热处理 梯度结构-概述说明以及解释
激光热处理梯度结构-概述说明以及解释1.引言1.1 概述激光热处理是一种利用高能激光束对材料表面进行局部加热的先进技术,通过控制激光参数,可以实现表面材料的快速加热和冷却,从而改善材料的表面性能和组织结构。
梯度结构则是指在材料内部形成具有连续、逐渐变化的组织结构,使材料在不同位置具有不同的性能,既保留了材料本身的特性,又具有更加优越的性能表现。
本文将探讨激光热处理与梯度结构的结合应用,探讨其在材料制备领域的重要意义并展望未来的发展方向。
通过对激光热处理和梯度结构的基本原理和优势进行深入分析,可以更好地理解这一先进技术在材料领域中的应用前景和潜力。
json"1.2 文章结构":{"本文将首先介绍激光热处理的基本原理,包括激光对材料的作用机制和热处理过程中的关键参数。
接着,将阐述梯度结构的概念及其在材料强度和性能优化方面的优势。
最后,探讨激光热处理与梯度结构相结合的应用,探索其对材料性能的提升和应用领域的拓展。
通过对这些内容的深入分析,读者将更加全面地了解激光热处理与梯度结构在材料加工领域的重要作用。
"}1.3 目的本文旨在探讨激光热处理与梯度结构的结合应用在材料制备领域的潜在优势及未来发展趋势。
通过深入分析激光热处理的基本原理和梯度结构的概念,我们旨在揭示这两种技术结合使用的优势,并展望这种结合在材料制备中的潜在发展方向。
通过本文对激光热处理与梯度结构的研究,我们希望为材料研究领域提供新的思路和方法,推动材料科学与工程的进步。
同时,我们也希望引起学术界和工业界对这一领域的更多关注和研究,为未来材料制备技术的发展做出贡献。
2.正文2.1 激光热处理的基本原理激光热处理是一种通过激光能量对材料表面进行加热处理的技术。
其基本原理是利用激光束的高能量密度,将能量集中地作用在材料表面上,从而使材料表面迅速升温,达到所需的温度。
在短时间内加热到高温的过程中,材料表面会发生相变、晶粒细化、残余应力消除等物理变化,以提高材料的性能。
激光热处理原理及应用
激光热处理原理及应用激光热处理(Laser heat treatment)是利用激光器产生的高能量、高密度的激光束对材料进行加热处理的一种表面强化技术。
它通过瞬间的激光照射,使材料表面局部区域迅速加热到很高的温度,然后通过传热作用将高温局部含能量较高的物质重新排序,从而改变材料的微观结构和性能。
激光热处理的原理主要包括吸收过程、传热过程和相变过程三个方面。
首先是吸收过程。
激光束照射到材料表面时,会引起表面的光源吸收,激光能量被转化为热能。
此过程与激光在材料中的反射、散射以及折射有关。
材料的吸收率与其波长、光束形状、入射角度、材料本身的吸收特性等因素都有关系。
其次是传热过程。
激光光束在材料表面产生的热能会通过传热方式向材料内部传导,使得局部区域温度升高。
传热方式包括传导、对流和辐射三种形式。
当激光能量较大时,传热速度远远大于材料的热损失速率,就会导致局部区域温度升高。
最后是相变过程。
当局部区域温度达到材料的熔点或显著高于材料的临界温度时,相变就会发生。
相变过程包括熔化、淬火和回火等,由于瞬时的高温和快速的冷却速率,可以改变材料的晶体结构、显微组织和力学性能。
激光热处理技术广泛应用于金属、陶瓷、半导体等领域。
其中,金属材料是应用最广泛的对象。
在金属材料领域,激光热处理可以实现以下几个方面的应用。
首先,激光热处理可以改善金属材料的硬度和耐磨性。
通过瞬时的高温和快速的冷却,可以使金属材料的晶粒细化,减少缺陷和夹杂物的数量,从而显著提高材料的硬度和耐磨性。
其次,激光热处理可以改善金属材料的抗腐蚀性能。
通过调控激光加工参数和选择合适的加工介质,可以在金属表面形成致密的氧化膜或硬化层,提高金属材料的抗腐蚀性能。
再次,激光热处理可以改善金属材料的疲劳性能。
通过激光热处理抑制晶界腐蚀、消除内应力和缺陷,可以提高金属材料的疲劳寿命,延缓疲劳裂纹的扩展。
此外,激光热处理还可以修复金属材料的损伤。
通过局部加热和快速冷却,可以消除材料中的应力和缺陷,使损伤区域重新呈现良好的性能。
激光热处理实训报告结论
一、实训目的本次实训旨在通过实际操作,使学生了解激光热处理的基本原理、工艺过程及设备操作,提高学生对激光热处理技术的掌握程度,为今后从事相关领域工作打下坚实基础。
二、实训内容1. 激光热处理基本原理及工艺流程(1)激光热处理原理:激光热处理是利用高功率密度的激光束对金属材料进行表面处理的一种方法。
通过激光束的高温加热,使材料表面迅速奥氏体化,随后急速冷却,实现表面硬化、细化晶粒、改善组织结构等目的。
(2)激光热处理工艺流程:主要包括设备调试、工件摆放、激光照射、冷却等步骤。
2. 激光热处理设备操作(1)设备介绍:本次实训主要使用的是CO2激光器,其具有高功率密度、高能量转换效率、良好的加工性能等特点。
(2)设备操作:实训过程中,学生需掌握设备启动、激光束调节、工件摆放、激光照射、冷却等操作。
3. 激光热处理效果评价(1)硬度检测:通过硬度计对激光热处理后的工件表面硬度进行检测,与原始工件进行对比,分析激光热处理效果。
(2)金相分析:对激光热处理后的工件进行金相分析,观察组织结构变化,评价激光热处理效果。
三、实训结果与分析1. 激光热处理效果通过实训,学生对激光热处理技术有了更深入的了解,掌握了激光热处理的基本原理、工艺流程及设备操作。
在实训过程中,对工件进行激光热处理后,表面硬度、耐磨性、疲劳性能等指标均得到显著提高。
2. 实训中发现的问题及解决方法(1)工件摆放问题:在实训过程中,发现工件摆放位置不当会影响激光热处理效果。
为解决此问题,需严格按照操作规程进行工件摆放,确保激光束均匀照射到工件表面。
(2)激光功率调节问题:激光功率过大或过小都会影响激光热处理效果。
为解决此问题,需根据工件材料、尺寸、要求等参数,合理调节激光功率。
(3)冷却速度问题:冷却速度过快或过慢都会影响激光热处理效果。
为解决此问题,需根据工件材料、要求等参数,选择合适的冷却方式。
四、实训结论1. 激光热处理技术在提高金属材料表面性能、改善组织结构、延长使用寿命等方面具有显著优势。
激光技术在现代工业中的应用
激光技术在现代工业中的应用激光技术是一种高科技技术,它在现代工业中的应用十分广泛。
激光技术通过激光器将能量转换成光,从而产生具有高亮度、高方向性、高相干性和高单色性的激光光束。
这种技术被广泛应用于工业生产、通讯、医疗、安防等领域。
本文将详细介绍激光技术在现代工业中的应用。
一、激光切割技术激光切割技术是激光技术在工业中最为广泛应用的领域之一。
激光切割技术的原理是利用高亮度、高方向性、高相干性和高单色性的激光光束对金属、非金属材料进行精密切割。
该技术具有切割速度快、切割精度高、操作简单、无污染等优势。
激光切割技术被广泛应用于汽车制造、航空航天、建筑装饰、玩具制造等众多领域。
二、激光焊接技术激光焊接技术是利用激光针对金属材料进行的一种聚焦加热的技术。
它具有加热快、焊接速度快、焊缝质量好、工艺灵活等优点。
激光焊接技术被广泛应用于汽车制造、电子产品、光学仪器、厨具制造等领域。
三、激光打标技术激光打标技术是利用激光进行标记的一种技术。
这种技术可以在表面加工雕刻出各种形状无限复杂、精度高、光洁度好的图案。
激光打标技术被广泛应用于显示器、移动通信、仪器仪表、医疗器械、消费品等领域。
四、激光电镀技术激光电镀技术是一种将激光加热局部区域使金属材料从气态或液态转化为固态并在基材上生成一层金属薄膜的技术。
这种技术具有减少污染、制造金属薄膜的速度快、镀层的厚度均匀等优点。
激光电镀技术被广泛应用于航空航天、汽车、电子产品、仪器仪表等领域。
五、激光光刻技术激光光刻是一种生产集成电路、印刷电路板等高新技术产品的重要技术。
利用激光器将图形反射到感光树脂表面,使经过感光树脂的光在刻蚀前产生化学变化,能够实现高精度的图形刻蚀。
总之,激光技术在现代工业中的应用广泛,是现代工业生产中不可或缺的技术。
未来,随着激光技术的不断进步和发展,它的应用领域还将不断扩大,为工业生产注入更多力量。
激光热加工原理激光原理及应用电子电子PPT课件
第4页/共5页
感谢观看!
第5页/共5页
(2) 材料的加热
R n 1 2 n1 12 n22 n 1 n1 12 n22
➢设入射激光束的光功率密度为qi,材料表面吸收的光功率密度为q0 ,则有
q0 Aqi qi 1 R ➢激光从表面入射到材料内部深度为处的光强 qz q0eaz
➢一般将激光在材料内的穿透深度定义为光强降至I0/e时的深度,因而穿透深 度为1/a
qS
r
qS0
exp
r2
2 r
持续加热得到的光斑中心的温度最大值为
(2) 材料的熔化与汽化
T 0,0, AqS0r
23 2 t
➢激光功率密度过高,材料在表面汽化,不在深层熔化;激光功率密度过低, 则能量会扩散到较大的体积内,使焦点处熔化的深度很小
第3页/共5页
7.1 激光热加工原理
(4) 激光等离子体屏蔽现象 ➢激光作用于靶表面,引发蒸汽,蒸汽继续吸收激光能量,使温度升高,最后 在靶表面产生高温高密度的等离子体。等离子体迅速向外膨胀,在此过程中继 续吸收入射激光,阻止激光到达靶面,切断了激光与靶的能量耦合。 如图7-2所示,为等离子云变化的过程
如果半无限大即物体厚度无限大物体表面受到均匀的激光垂直照射加热被材料表面吸收的光功率密度不随时间改变而且光照时间足够长以至被吸收的能量所产生的温度导热和热辐射之间达到动平衡此时圆形激光光斑中心的温度可以由下式确定上一页上一页回首页回首页下一页下一页回目录回目录71激光热加工原理材料的加热如果光照时间为有限长s考察点离开表面的距离cm也不为零此时圆形激光光斑中心轴线上考察点的温度为ierfcktierfckt进一步假设照射激光是高斯光束且入射到表面上的光束有效半径为则激光光斑的功率密度可用离开中心的距离表示为材料的熔化与汽化激光功率密度过高材料在表面汽化不在深层熔化
激光热处理
激光热处理激光热处理是七十年代出现了大功率激光器以后才开始研究的新技术。
由于激光热处理可以获得其他热处理技术所不能达到的效果,因而对它的研究应用日益广泛和深入。
激光热处理就是以激光作为热源的热处理。
将激光束扫描至零件表面上。
其红外线能量被零件表面吸收而迅速形成高温,可使金属产生相变甚至熔化。
随着激光束离开零件表面,其表面的热量迅速向内部传递而形成极高的冷却速度,而使零件的表面硬化。
激光热处理与常规热处理比较具有以下优点(1)加热快,工件热变形小。
因激光功率密度高,半秒内就可以将工件表面从室温加热到760度,因而热影响区小,变形极小。
这样,不仅节省能源,而且工作表面清洁,处理后无需修磨,可在零件经加工后作为最后一道工序。
(2)可对形状复杂的工件或其局部进行热处理,如盲孔、小孔、小曹、薄壁零件等;也可根据需要在同一零件的不同部位进行相应的处理;还可对价廉的零件表面进行高级金属的局部涂敖或合金化。
(3)通用性强。
由于激光焦深大,在离焦点75毫米左右的范围内功率密度基本相同。
因此,激光热处理对工件尺寸大小及表面是否平整均无严格的限制。
用一台带光学系统的激光器可以处理不同形状和各种尺寸的工件。
(4)操作简单。
便于实现自动化生产。
生产重复性好,质量稳定可靠,并可纳入流水线。
(5)无需处理介质。
有利于环境保护。
必要时又可使零件在特殊气氛(例如真空)中进行处理。
上述的优点是某些先进的热处理工艺难以达到的。
但是激光热处理的弱点是:它是一种表面处理方法,无法改变改善零件芯部性能;处理层太薄,不能用于重负荷零件,也不适用于大型零件。
国外采用的激光处理装置的形式颇多,但一般应包括以下几部分:激光器、功率调节系统、聚焦系统、导光系统、光束摆动机构、聚焦镜头、工作台及控制系统。
美国avco 公司在这方面处于领先地位,已有供自动生产使用的激光热处理装置出售。
附图AVCO Everett激光器及热处理装置示意图AVCO Everett实验研究所设计的HDL型工业用激光器及热处理装置示意图。
激光生活中的应用
激光生活中的应用激光技术是一种非常重要的现代技术,广泛应用于各个领域。
以下是激光在生活中的一些应用:1.激光打印:激光打印技术用于打印机,能够以非常高的精度和速度在各种材料上进行打印。
激光打印机广泛用于家庭和商业办公场所,适用于打印文件、图片等。
2.激光切割:激光切割技术是使用激光束对材料进行切割。
激光切割技术广泛应用于工业领域,用于切割金属、塑料等材料,具有高效、精准的特点。
3.激光测距:激光测距技术利用激光束的反射时间来测量距离,常见于测量仪器和测距仪,如激光测距仪和激光测距传感器。
激光测距技术在工程测量、地质勘探等领域起到了重要作用。
4.激光雷达:激光雷达是一种利用激光束进行物体探测和测距的技术。
激光雷达被广泛应用于自动驾驶汽车、智能交通系统等领域,能够实时感知周围环境并进行精确定位和导航。
5.激光治疗:激光治疗技术是利用激光的热能和生物效应对人体进行治疗。
激光治疗在皮肤美容、激光祛痣、激光脱毛等领域被广泛应用,具有无创、精准、疗效好的特点。
6.激光显示:激光显示技术是一种新兴的显示技术,利用激光束在屏幕上直接投射图像。
与传统的液晶显示屏相比,激光显示屏具有更高的亮度、更广的色域和更好的色彩还原度,被认为是未来显示技术的发展方向。
7.激光雷射唱机:激光唱机是一种利用激光技术来读取唱片上信息的设备。
与传统的唱片机相比,激光唱机具有更高的读取精度和更好的音质表现,能够还原出唱片原始的声音。
总的来说,激光技术在生活中的应用非常广泛,从打印、切割到测量、显示,甚至到医疗和娱乐领域,都有激光技术的身影。
随着技术的进一步发展,相信激光技术在未来会有更多创新和应用。
激光热处理技术在金属材料中的应用研究
激光热处理技术在金属材料中的应用研究引言:金属材料作为一种常见的材料,广泛应用于工业生产和科学研究领域,其性能对各个行业的发展起着重要作用。
然而,传统热处理技术在一些特殊情况下无法满足要求,这就需要采用一些新的技术来改善材料性能。
激光热处理技术作为一种新兴的表面改性技术,在金属材料的处理中显示出了巨大的潜力。
本文将探讨激光热处理技术在金属材料中的应用,并讨论其对材料性能的影响。
1. 激光热处理技术简介激光热处理技术是一种利用高能激光对金属材料进行非接触式的加热处理的技术。
通过调整激光的能量密度和照射时间,可以实现对金属材料表面的快速升温和冷却。
激光热处理技术具有局部性好、加热速度快、变形小等优点,因此被广泛应用于金属材料的表面改性和性能提升。
2. 激光热处理技术在金属材料强化中的应用激光热处理技术可以通过改变金属材料的微观结构,在不改变整体成分的情况下提高材料的硬度和强度。
例如,通过激光表面熔化和淬火处理,可以在金属材料表面形成一层致密的晶须组织,从而改善材料的耐磨性和抗腐蚀性能。
此外,利用激光热处理技术还可以实现金属材料的局部强化,例如通过激光熔化和再结晶处理,在焊接接头附近提高材料的强度和耐疲劳性能。
3. 激光表面合金化技术的研究进展激光表面合金化技术是激光热处理技术的一种重要应用,它通过激光照射时的快速加热和冷却过程,将预先喷涂的合金粉末与金属基体表面进行熔化和混合,形成一层合金化的表面层。
这种技术可以改善金属材料的耐磨性、耐腐蚀性和高温氧化抗性等性能。
研究人员通过探究不同的合金粉末成分、加热和冷却速度等参数对合金化层性能的影响,逐步优化激光表面合金化技术,使之成为金属材料表面处理的有效手段。
4. 激光热处理技术在3D打印金属材料中的应用随着3D打印技术的快速发展,激光热处理技术在3D打印金属材料中的应用也得到了广泛关注。
通过激光热处理技术,可以消除3D打印金属材料中的缺陷和残余应力,提高材料的密实性和力学性能。
激光处理技术在半导体制造中的应用
激光处理技术在半导体制造中的应用半导体制造是一项高精密和高成本的工艺,而激光加工技术的广泛应用,则是这一领域重要的基础。
激光处理技术可以同时解决超细、高精密、高效率的工艺问题。
本文将深入探究激光处理技术在半导体制造中的应用。
一、激光基础知识激光技术是一种利用电子、被称为激光发射机的设备来制造光线的技术。
利用激光器产生的单色性高、相干性强的光束,在半导体制造过程中可以精确地将该产业所需的不同类型的圆形或矩形孔等进行精密验收、切割和加工。
二、激光切割技术应用于半导体制造激光切割技术是一种通过激光束的热效应,对材料进行割裂和切割的技术。
当垂直入射到半导体替换材料后,激光束可以通过刻蚀、打孔等方式对半导体替换材料进行精确切割的加工。
三、激光去除技术应用于半导体制造激光去除技术是一种通过激光束热作用的剥离技术。
经该技术处理过的半导体替换材料表面能够获得良好的光学性能和元器件性能,且放置能够避免材料对环境产生严重污染的情况。
此外,经过激光去除技术处理过的半导体替换材料表面更容易被处理。
四、激光熔覆及再生技术应用于半导体制造激光熔覆及再生技术也是常用于半导体生产线上对材料进行处理的方法。
该技术利用激光将材料表面“激光印刷”的方法来进行材料再生或加热,优点在于能够让材料保持原有形态,且能够快速的得到相应的反应。
五、激光光化学刻蚀技术应用于半导体制造激光光化学刻蚀技术是一种通过激光和化学反应结合的技术,能够在需要刻蚀半导体替换材料时,不使用强的化学剂或硫酸,而直接使用激光来进行材料处理,避免了使用强酸、强碱对环境和人体的危害。
六、总结从上述五个方面可以看出,激光处理技术在半导体制造中的广泛应用和不可替代性。
能够高效、精准地完成对半导体替换材料的加工过程,大大提高了制造工艺的效率,降低了生产成本,增加了产值。
未来,随着激光技术的不断发展改进,我们相信激光处理技术在半导体制造中的应用前景将更加广阔。
激光热处理中实际光束热作用的快速分析
激光热处理中实际光束热作用的快速分析本文通过探讨激光热处理的实际光束热作用,讨论激光热处理的快速分析及其应用,旨在指导实际应用。
激光热处理是指在熔融和改变表面结构和外形的同时,使用激光能量对工件进行热处理的一种方法。
激光热处理是一种非常有效的加工方法,具有良好的热处理表面,低噪声,节能和环保等特点。
激光热处理实际上是将激光能量转换为热能,然后将这种热能转化为冷能,再将冷能转化为工件表面的加工变化,使其具有良好的加工性能。
实际上,激光热处理的光束热作用是指将激光束聚焦到激光热处理表面,使表面温度升高。
一般来说,激光热处理要求被处理表面位处极小的温度范围内,这样才能实现理想的加工结果。
因此,激光热处理的关键是实现正确的光束热作用,以便改善处理的表面性能。
激光热处理的快速分析是指在激光加工过程中,通过实时追踪光束加工区域的温度变化,确定光束的热作用以及加工质量的高低的过程。
可以采用实时表面温度测量、光束能量测量、反射热激励、热均匀度测量等技术,来完成这一分析。
目前,人们已经使用这些技术来研究激光热处理过程中表面温度变化、光束形状和能量等内容,评估加工过程中加工质量的好坏。
这些快速分析方法在实际应用中非常有效。
可以有效地提高激光热处理的表面处理质量,提高处理速度,减少生产成本等。
此外,可以应用快速分析技术来研究激光热处理中的表面形貌及其变化,以及激光热处理与加工工艺、加工工具和工件材料等多种因素之间的关联。
有助于更好地控制加工参数以及激光热处理的瞬时表象。
总之,激光热处理的实际光束热作用及其快速分析是激光热处理行业探索的重要课题,在工业应用中具有重要意义。
通过分析,可以有效地改善激光热处理过程,精确控制表面质量,从而提高激光热处理的效率和质量,为实际应用提供可靠的参考依据。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
本设备是集光、机、电以及制冷和材料加工技术一体的大型集成设备,能对轴类、平面类、缸齿轮类、以及空间工模具类等产品进行激光淬火、激光熔覆、激光表面合金化加工,从而达到改善表面性能、提高工件的使用寿命、恢复工件的外型尺寸以重复使用等目的。
主要特点:模块化设计,高度集成,具有良好的系统性能及很高的使用寿命;功能齐全,使用方便;激光加工精度高,效率稳定可靠;抗干扰能力强,动态响应速度快;造型美观,操作及维护简便。
激光热处理是一种表面热处理技术。
即利用激光加热金属材料表面实现表面热处理。
激光加热具有极高的功率密度,即激光的照射区域的单位面积上集中极高的功率。
由于功率密度极高,工件传导散热无法及时将热量传走,结果使得工件被激光照射区迅速升温到奥氏体化温度实现快速加热。
当激光加热结束,因为快速加热时工件基体大体积中仍保持较低的温度,被加热区域可以通过工件本身的热传导迅速冷却,从而实现淬火等热处理效果。
激光淬火效果:激光淬火层的硬度分布曲线激光淬火层的硬度分布激光淬火技术可对各种导轨、大型齿轮、轴颈、汽缸内壁、模具、减振器、摩擦轮、轧辊、滚轮零件进行表面强化。
适用材料为中、高碳钢,铸铁。
激光淬火的应用实例:激光淬火强化的铸铁发动机汽缸,其硬度提高HB230提高到HB680,使用寿命提高2~3倍。
]概念定义:利用激光进行加热的热处理工艺称作激光热处理,它是一种高能量密度表面热处理,具有超高加热速度,其淬火硬化层的性质和状态与普通淬火有着显著的区别。
研究范围:激光热处理的研究分为不熔化表面热处理和熔化表面热处理两大类。
不熔化表面热处理主要包括激光表面相变硬化、激光冲击热处理和激光表面退火等;熔化表面热处理主要包括激光表面熔凝、激光表面合金化和激光非晶态等。
(一) 发展过程70年代初~80年代初需求动力:70年代大功率CO2激光器的出现,推动了激光热处理的发展。
主要特点:该阶段的主要特点是:1.广泛开展激光表面相变硬化(即激光淬火)的研究和应用;2.开展激光表面合金化的探索研究;3.受激光器功率的影响,激光热处理工艺的应用受到一定局限,未能迅速发展。
典型成果和产品:典型成果:激光热处理设备、激光表面相变硬化工艺的应用80年代初~至今需求动力:随着激光技术的发展,激光器功率的提高,激光热处理的优点日趋明显,从而推动激光热处理的迅速发展。
激光热处理作为一种很好的节能型热处理工艺也是其迅速发展的动力之一。
主要特点:该阶段的主要特点:1.激光热处理设备已商业化,正朝小型化、自动化和柔性化方向发展;2.激光表面相变硬化处理工艺日趋成熟,广泛用于汽车、航空航天、武器等工业部门;3.激光表面合金化工艺因具有极大的经济效益,倍受各国的重视,研究工作进展较大,但仍处于基础工艺试验、组织分析和性能试验的实验室研究阶段,尚未进入工业应用;4.开展了激光涂覆处理、激光表面熔凝、激光脉冲冲击强化处理和激光渗氮处理等工艺的研究。
典型成果和产品:典型成果:激光表面相变硬化处理广泛用于军用部门和民用部门。
(二) 现有水平及发展趋势激光热处理是70年代初首先在美国发展起来的金属表面强化新工艺。
激光热处理具有加热和冷却速度快、工件变形小、可进行局部热处理、工艺灵活性大、污染小和易实现自动化等优点。
目前,国外应用较多的激光热处理主要有激光表面相变硬化、激光冲击处理、激光表面合金化和激光表面熔凝等。
激光表面相变硬化处理现已用于铸铁、碳钢、合金钢、钛合金、铝合金等材料。
美国海军面射武器中心及陆军导弹分部对用于导弹上的凸轮、轴承、齿轮等零件进行激光表面相变硬化代替渗碳或渗氮工艺而取得了成功。
前苏联对钛合金进行这种处理后,表面的显微硬度提高了75~125%,同时也提高了抗腐蚀性和抗磨性能。
最近,德国在激光相变硬化时的温度控制和激光连续扫描时搭接软化带的控制方面取得了较大进展。
激光冲击处理是通过在材料表面产生压力脉冲来改变材料的组织和应力状态,从而改善材料性能,特别是疲劳性能,美国人对航天常用铝合金7075和2024进行了激光冲击热处理,提高了铝合金的疲劳寿命。
激光表面合金化是利用功率较高的激光器对表面涂敷有合金元素的金属表面进行照射,使表面一层薄层迅速熔化,合金元素在熔化层内迅速扩散,凝固时在表面形成一层所需的合金化层。
目前美国、原苏联、日本和西欧等国都十分重视这方面的研究。
但由于该工艺需要的激光设备功率较高,工序比较复杂,现仍处于试验研究阶段,有待于进一步开发。
最近,激光热处理技术除了在西方发达国家取得很大进展外,一些发展中国家也在进行真空热处理的研究工作。
南斯拉夫学者利用600W的LPW6000激光系统对结构碳钢、铬钼结构钢和铬钨工具钢进行了激光表面硬化处理,研究了热处理对微观硬度、淬火裂纹和残余应力的影响。
朝鲜学者利用2.4KW的CW-CO2激光器研究了钢经激光热处理后,马氏体相变塑性对热应力的影响。
Jiguangrechulixianzhaungjifazhan摘要:作者从4个方面介绍了近年来我国激光热处理的现状及发展:(1)激光硬化;(2)激光熔覆;(3)激光合金化;(4)工程应用。
关键词:激光相变硬化;激光冲击硬化;激光熔覆;激光合金化1 前言我国激光热处理的研究、开发和应用,自70年代由铁科院金化所和中科院长春光机所等单位率先开展以来,已有20多年的历史。
迄今,我国开展激光热处理的单位已遍及除西藏以外的各省、自治区、直辖市。
在国家“六五”、“七五”、“八五”、“九五”攻关和“863”计划,国家自然科学基金和各地的科技发展基金的支持和引导下,取得了大量有价值的研究成果,并有若干突破性进展,取得了一定规模的工业应用。
在我国,激光热处理领域的产、学、研相结合的格局已经初步形成。
可以预期,经过坚持不懈的努力,将有更多的突破,市场的开拓也必定会有更大的进展。
2 激光硬化2.1 激光相变硬化的强化机理和组织的研究重庆大学[1]对GCr15钢经激光淬火后引起高硬度(1065HV)的原因用光学金相、扫描和透射电镜、X光衍射仪、俄歇分析仪及电子探针作了系统的试验研究。
提出GCr15钢激光相变硬化机理为:①以马氏体相变强化为主,马氏体很细,尺寸为0.196μm×1.8μm,马氏体位错密度很高,达2.3×1012条/cm3,马氏体的含碳量高达0.90%;②残留奥氏体显著强化,其位错密度达3.6×1012条/cm3;③晶粒超细化(ASTM No.16)和碳化物细化(最表面处为0.59μm,离表面0.1mm处为0.41μm)及弥散分布。
山东工业大学[2]对W18Cr4V高速钢经激光相变硬化后的强化机理和组织性能作了研究:激光相变区的晶粒由原来的8级提高到12级,残留奥氏体量较常规淬火有明显减少,约10%~15%,相变区的马氏体为针状马氏体和板条马氏体的混合组织。
激光快速加热时间虽短,仍存在碳化物的不完全溶解以及碳和合金元素的不充分扩散,扩散距离约数百nm数量级,碳化物的溶解以尖角-均匀溶解机制进行。
激光相变硬化层的硬度峰值为946HV,红硬性比常规淬火高出80℃,640℃回火后硬度峰值达到1003HV,耐磨性较常规热处理提高1~2.8倍,经640℃回火后耐磨性提高5.3~8.1倍,刀具的切削性能提高2倍以上。
上海工程技术大学[3]研究了硼铸铁的激光热处理,研究表明:硼铸铁经激光处理后,磨损值降低45.7%。
激光热处理提高硼铸铁耐磨性的原因是激光硬化层的高硬度及合理的硬度梯度以及局部熔化区对石墨片割裂的封闭。
关于强化机理的研究还有许多精彩的报道,限于篇幅无法一一列出,但这些工作已经并将继续为激光相变硬化的工程应用作出积极的贡献。
2.2 激光相变硬化的温度场及相变硬化区尺寸的计算为了实现激光相变硬化工艺的计算机控制,早日达到实际应用,正努力解决两个问题:①快速计算;②减少计算与实际间的误差。
昆明理工大学[4]对稳态温度场的计算公式进行快速傅里叶(Fourier)变换,可以迅速对温度场求解,在求解过程中已不必进行关于时间的积分运算,使计算速度显著增加,与同精度的有限元或有限差分等纯数值计算相比,计算速度快两个数量级以上。
实际证实,计算与试验结果之间的相对误差在10%左右。
对瞬态温度场计算公式,利用快速Fourier变换[5],即FFT技术,可使温度场的求解速度大大加快,效果与稳态温度场时相同。
此方法适于任意给定的激光功率密度分布。
如果能有效监测实际光束的功率密度分布,并能迅速计算激光与物质的相互热作用,对于保证激光热处理的质量有重要意义。
上海海运学院[6]采用非稳态瞬时热源解法,导出了描述激光淬火对零件内部热循环过程及快速估算硬化层深度的近似公式,简便实用,误差较小。
我们知道,在激光作用下材料吸收激光能量的过程和随后往内部传递热能的过程应该遵守热力学的基本定律,但它明显地有着自身的特殊性,如热过程速度极快、温度梯度大、激光束斑的功率密度分布不均匀而且随时间还会发生变化;激光作用又有连续和脉冲两种方式,在激光作用过程中材料对激光的吸收率以及一些热力学参数随温度变化而变化等。
当然不可忽视的是:在激光作用下不同材料本身的组织、结构、成分及其在热作用过程中的变化规律差别很大。
因此,激光与材料相互作用过程是一个非常复杂的问题。
许多计算方法及其得出的公式都是在限定条件的情况下提出的,若所作的假设与实际情况相差甚远,则基本上对实际热处理工艺的制定没有直接的指导作用。
近期的一些研究在这方面已作了很大的努力,试图接近实际,但看来要实现激光相变硬化的计算机控制还有一段距离。
2.3 激光淬火用光热转换材料的研究一般来说,需激光硬化的金属材料表面都经过机械加工,表面粗糙度很小,对激光的反射率可达80%~90%,因此通常采用对激光有较高吸收能力的涂料进行预处理。
在这方面长春光机所、清华大学等单位做了许多探索。
近年来上海工程技术大学[7]以光热转换材料(简称吸收涂层)的光谱发射率及激光相变硬化区面积为依据,研制成以金属氧化物为主的混合氧化物的新型光热转换材料。
该材料对CO2激光的吸收率达90%以上,具有工艺性能良好、干燥快、无刺激性气味和激光处理过程中无反喷等优点,有较好推广应用价值。
华中理工大学[8]比较了国内有些单位采用的两种光热转换材料——磷化膜与SiO2胶体涂料,得到以下结果:①SiO2胶体涂料的光热转换效率优于磷化膜的;②由于基体与磷化液之间的化学反应造成表面粗糙度增大,且磷与铁之间形成低熔点脆性共晶相,引起硬化层出现晶间微裂纹。
所以SiO2胶体的淬硬层质量优于磷化膜;③SiO2涂层的工艺过程简单,无环境污染,灵活性强。
从目前来看,激光相变硬化的工业应用离不开采用适宜的光热转换材料。
如何保证大批量工业应用过程中涂覆光热转换材料的稳定性、均匀性及可检测性并进一步降低生产成本,还需做进一步工作。