新北师大版九年级数学上册期中考试题
2024年北师大版九年级上册数学期中模拟试题+答案
北师大版九年级上册期中模拟测试数学试题(1)(1-3章)考试时间:120分钟满分150分班级:________________ 姓名:________________ 考号:________________一、单选题(本大题共10小题,总分40分)1.平行四边形、矩形、菱形、正方形都具有的性质()A.对角线相等B.对角线互相平分C.对角线平分一组对角D.对角线互相垂直2.关于x的一元二次方程2x2+3x﹣1=0的二次项系数,一次项系数,常数项分别是()A.2,3,﹣1B.2,﹣3,1C.2,﹣3,﹣1D.﹣2,3,13.物理某一实验的电路图如图所示,其中K1,K2,K3为电路开关,L1,L2为能正常发光的灯泡.任意闭合开关K1,K2,K3中的两个,那么能让两盏灯泡同时发光的概率为()A.13B.23C.12D.144.如图,在矩形ABCD中,AB=2,对角线AC与BD相交于点O,AE垂直平分OB于点E,则BC的长为()A.2√5B.2√3C.4D.25.新能源汽车节能、环保,越来越受消费者喜爱,2021年某款新能源汽车销售量为18万辆,销售量逐年增加,2023年预估销售量为23.6万辆,求这款新能源汽车的年平均增长率,可设这款新能源汽车的年平均增长率为x,根据题意,下列方程正确的为()A.18(1+x2)=23.6B.18(1﹣x)2=23.6C.23.6(1﹣x)2=18D.18(1+x)2=23.66.关于x的一元二次方程x2﹣2x+m=0的一个根为﹣1,则m的值为()A.﹣3B.﹣1C.1D.27.如图,在正方形ABCD中,AC与BD交于点O,BE平分∠CBD,交CD于点E,交OC于点F,若AB =4,则CF的值为()A.32B.4√2−4C.2√2+2D.28.若x1,x2为方程x2+4x﹣1=0的两个根,则x1+x2+x1x2的值为()A.5B.﹣5C.﹣3D.39.若等腰三角形一条边的边长为3,另两条边的边长是关于x的一元二次方程x2﹣4x+k=0的两个根,则k的值是()A.3B.4C.3或4D.210.如图,已知一个矩形纸片OACB,将该纸片放置在平面直角坐标系中,点A(10,0),点B(0,6),点P为BC边上的动点,将△OBP沿OP折叠得到△ODP,连接CD、AD.则下列结论中:①当∠BOP =45°时,四边形OBPD为正方形;②当∠BOP=30°时,△OAD的面积为10;③当P在运动过程中,CD的最小值2√34−6;④当OD⊥AD时,BP=2.其中结论正确的有()A.1个B.2个C.3个D.4个二、填空题(本大题共5小题,总分20分)11.某篮球运动员在同一条件下进行投篮训练,结果如下表:投篮总次数n1020501002005001000投中次数m8184286169424854投中的频率0.80.90.840.860.8450.8480.854根据上表,该运动员投中的概率大约是(结果精确到0.01).12.如图,在矩形ABCD中,对角线AC与BD相交于点O,过点O作OE⊥AD,垂足为E,若AB=6,则OE的长为.13.若m是一元二次方程x2+x﹣1=0的实数根,则代数式m2+m+2=.14.已知△ABC的两边是关于x的方程x2﹣(3k+1)x+2k2+2k=0的两根,第三边长为4,当△ABC是等腰三角形时,则k的值是.15.如图,在矩形ABCD中,E,F分别是边AB,AD上的动点,P是线段EF的中点,PG⊥BC,PH⊥CD,G,H为垂足,连接GH.若AB=8,AD=6,EF=6,则GH的最小值是.三、解答题(本大题共10小题,总分90分)16.解方程:(1)4(x﹣1)2﹣9=0;(2)x2﹣2x﹣5=0;17.求阴影部分面积.(单位:厘米)18.已知关于x的一元二次方程x2﹣2mx+2m﹣2=0.(1)若该方程有一个根是x=2,求m的值;(2)求证:无论m取什么值,该方程总有两个实数根.19.已知:关于x的方程x2﹣(m+2)x+2m=0.(1)求证:无论m为何值,方程总有实数根;(2)若xx12+xx22+x1x2=3,求m的值.20.3月14日是国际数学日.某校在“国际数学日”当天举行了丰富多彩的数学活动,其中游戏类活动有:A.数字猜谜;B.数独;C.魔方;D.24点游戏;E.数字华容道.该校为了解学生对这五类数学游戏的喜爱情况,随机抽取部分学生进行了调查统计(每位学生必选且只能选一类),并根据调查结果,绘制了两幅不完整的统计图如图所示.根据上述信息,解决下列问题.(1)本次调查总人数为,并补全条形统计图(要求在条形图上方注明人数);(2)若该校有3000名学生,请估计该校参加魔方游戏的学生人数;(3)该校从C类中挑选出2名男生和2名女生,计划从这4名学生中随机抽取2名学生参加市青少年魔方比赛,请用列表或画树状图的方法,求恰好抽到1名男生和1名女生的概率.21.如图,在△ABC中,AB=AC,D是BC的中点,过点A作AE∥BC,使AE=BD,连接BE.求证:四边形AEBD是矩形.22.阅读与思考配方法不仅能够帮助我们解一元二次方程,我们还能用来解决最大值最小值问题,例如:求代数式2x2﹣x+2+y2的最小值.我们使用的方法如下:原式=2(xx2−12xx)+2+yy2=2(xx2−12xx+116−116)+2+yy2=2(xx2−12xx+116)−18+2+yy2=2(xx−14)2+yy2+158.∵2(xx−14)2≥0,y2≥0,∴2(xx−14)2+yy2+158≥158,∴2x2﹣x+2+y2的最小值是158.根据材料方法,解答下列问题.(1)﹣x2+4x﹣1的最大值为;(2)求m2+n2+6m﹣4n+15的最小值.23.如图,矩形ABCD的对角线交于点G,过点B作BE∥AC交DC的延长线于点E.(1)求证:四边形ABEC为平行四边形;(2)过点D作DF⊥BE于F,连接FG,若AB=1,BC=2,求FG的长.24.已知菱形ABCD的两边AB,AD的长为关于x的方程xx2−mmxx+mm2−14=0的两个实数根.(1)求m的值;(2)求菱形ABCD的周长.25.如图1,正方形ABCD中,E为对角线上一点.(1)连接DE,BE.求证:BE=DE;(2)如图2,F是DE延长线上一点,FB⊥BE,FE交AB于点G.①求证:BF=FG;②当BE=BF时,求证:GGGG=(√2−1)DDGG.参考答案一、单选题(本大题共10小题,总分40分)1-5.BAABD.6-10.ABBCC.二、填空题(本大题共5小题,总分20分)11.0.85.12.3.13.3.14.2或3.15.7.三、解答题(本大题共10小题,总分90分)16.解:(1)[2(x﹣1)]2﹣32=0,[2(x﹣1)+3][2(x﹣1)﹣3]=0,即(2x+1)(2x﹣5)=0,∴2x+1=0或2 x﹣5=0,解得:xx11=−1122,xx22=5522;(2)x2﹣2x=5,x2﹣2x+1=5+1,(x﹣1)2=6,∴xx−11=±√66,解得:xx11=11+√66,xx22=11−√66.17.解:S阴影=1122×5×(5+4)﹣(52−1144π×52)=225522−111144(平方厘米),答:阴影部分的面积为225522−111144平方厘米.18.(1)解:把x=2代入x2﹣2mx+2m﹣2=0中得:22﹣4m+2m﹣2=0,解得m=1;(2)证明:由题意得,Δ=(﹣2m)2﹣4(2m﹣2)=4m2﹣8m+8=4(m﹣1)2+4≥0,∴无论m取什么值,该方程总有两个实数根.19.(1)证明:∵Δ=[﹣(m+2)]2﹣4×2m=m2﹣4m+4=(m﹣2)2,∴Δ≥0,故无论m为何值,方程总有实数根.(2)解:由题意得:x1+x2=m+2,x1•x2=2m,∵xx_11(xx11+xx22)22−22xx11xx22+xx11⋅xx22=(xx11+xx22)22−xx11⋅xx22,∴(m+2)2﹣2m=3,整理得:m2+2m+1=0,解得:m=﹣1.20.解:(1)20÷10%=200(人),∴本次调查总人数为200;200﹣(40+20+60+30)=50(人),∴喜欢24点游戏的有50人;补全条形统计图如下:故答案为:200;(2)3000×6611221111=900(人),∴该校参加魔方游戏的学生人数约为900人;(3)根据题意画树状图如下:共有12种等可能的结果,恰好抽到1名男生和1名女生有8种,∴恰好抽到1名男生和1名女生的概率是881122=2233.21.证明:∵AE∥BC,AE=BD,∴四边形AEBD是平行四边形,∵AB=AC,D是BC的中点,∴AD⊥BC,∴∠ADB=90°,∴四边形AEBD是矩形.22.解:(1)﹣x2+4x﹣1=﹣(x2﹣4x)﹣1=﹣(x2﹣4x+4﹣4)﹣1=﹣(x﹣2)2+4﹣1=﹣(x﹣2)2+3,∵﹣(x﹣2)2≤0,∴﹣(x﹣2)2+3≤3,∴﹣(x﹣2)2+3的最大值为3.∴﹣x2+4x﹣1的最大值为3;(2)m2+n2+6m﹣4n+15=m2+6m+9+n2﹣4n+4+2=(m+3)2+(n﹣2)2+2∵(m+3)2≥0,(n﹣2)2≥0,∴(m+3)2+(n﹣2)2+2≥2,∴(m+3)2+(n﹣2)2+2的最小值为2,∴m2+n2+6m﹣4n+15的最小值为2.23.(1)证明:∵四边形ABCD是矩形,∴AB∥CD,∵E点在DC的延长线上,∴AB∥CE,又∵BE∥AC,∴四边形ABEC为平行四边形.(2)解:∵四边形ABCD是矩形,∴∠ABC=90°,BG=DG,AC=BD,即G点是BD中点,∵AB=1,BC=2,∴AAAA=√AABB22+BBAA22=√1122+2222=√55,∴BBBB=√55,∵DF⊥BE,∴∠BFD=90°,∴FFFF=1122BBBB=�5522.24.解:(1)∵四边形ABCD是菱形,∴AB=AD,∵两边AB,AD的长为关于x的方程xx22−mmxx+mm22−1144=11的两个实数根,∴ΔΔ=(−mm)22−44(mm22−1144)=mm22−22mm+11=11,解得:m1=m2=1,∴m的值为1;(2)由(1)得:m=1,∴方程为xx22−xx+1144=11,解得:xx11=xx22=1122,∵四边形ABCD是菱形,∴AABB=AABB=BBAA=BBAA=1122,∴菱形ABCD的周长为44×1122=22.25.(1)证明:∵AC是正方形ABCD的对角线,∴AB=AD,∠BAE=∠DAE=45°,∵AE=AE,∴△ABE≌△ADE(SAS),∴BE=DE;(2)①证明:∵四边形ABCD是正方形,∴∠GAD=90°,∴∠AGD+∠ADG=90°,由(1)知,△ABE≌△ADE,∴∠ADG=∠EBG,∴∠AGD+∠EBG=90°,∵FB⊥BE,∴∠EBF=90°,∴∠FBG+∠EBG=90°,∴∠AGD=∠FBG,∵∠AGD=∠FGB,∴∠FBG=∠FGB,∴FG=FB;②证明:∵FB⊥BE,∴∠FBE=90°,在Rt△EBF中,BE=BF,∴EEFF=√BBEE22+BBFF22=√BBEE22+BBEE22=√22BBEE,由(1)知,BE=DE,由①知,FG=BF,∴FG=BF=BE=DE,∴FFEE=EEFF−FFFF=√22BBEE−BBEE=√22BBEE−BBEE=(√22−11)BBEE。
期中测试 :第一章至第三章2024-2025学年北师大版数学九年级上册
九年级上册数学北师大版期中测试第一章至第三章一、选择题(本大题共10小题,每小题3分,共30分)1.下列方程是关于x的一元二次方程的是 ( )A.2x-1=4B. xy+x=3C.x−1x=5D.x²−2x+1=02.如图,Rt△ABC中,D 是AB的中点,∠B=25°,则∠ADC 的度数为 ( )A.50°B.48°C.55°D.25°3.关于x 的一元二次方程(m−3)x²+5x+m²−3m=0的常数项为0,则m的值为( )A.3B.0C.3 或0D.24.如图,电路图上有4个开关A,B,C,D和1个小灯泡,现随机闭合两个开关,小灯泡发光的概率为 ( )A1 2 B13C23D145.下列说法中,正确的是 ( )A.对角线互相垂直且相等的四边形是正方形B.对角线互相平分的四边形是菱形C.对角线互相垂直的四边形是平行四边形D.对角线相等的平行四边形是矩形6.从-1,1,2中任取两个不同的数,分别记为a和b,则a,b是方程.x²−x−2=0的两个根的概率是( )A1 2 B 56C16D 137.定义运算“ *”为a∗b=ab²−2ab-3,则3*x=0的根的情况为 ( )A.有两个不相等的实数根B.无实数根C.有两个相等的实数根D.不能确定8.将两个完全相同的菱形按如图所示的方式放置,若∠BAD=α,∠CBE=β,则β=( )A.45∘+12αB.45∘+32αC.90∘−12αD.90∘−32α9.若一个菱形的两条对角线长分别是关于x的一元二次方程x²−10x+m=0的两个实数根,且其面积为11,则该菱形的边长为 ( )A √3 B.2√3 C√14D.2√1410.形如x²+ax=b²(a⟩0,b>0)的方程的一种图解法是:如图①,以a/₂和b为两直角边长作Rt△EFG,再在斜边上截取FH=a/2,则EH的长就是所求方程的正根.现有关于x的一元二次方程:x²+mx=16(m⟩0),按照上述方法,构造图②,在Rt△ABC 中,∠ACB=90°,连接CD,若S BCD S ACD =32,则m的值为 ( )A.3B.4C.6D.8二、填空题(本大题共8小题,每小题3分,共24分)11.若关于x的一元二次方程x²−3x+m=0有一个根为1,则m的值为 .12.如图,菱形ABCD的面积为 24,AC=8,则菱形的边长为 .13.一个不透明的袋子里装有红球和白球共m个,它们除颜色外完全相同,每次搅匀后从中随机摸出一个球并记下颜色,再放回袋中,不断重复,统计汇总数据如下表:已知袋子里白球有10个,根据表格信息,可估计 m的值为 .14.手卷是国画装裱中横幅的一种体式,以能握在手中顺序展开阅览得名,它主要由“引首”“画心”“拖尾”三部分组成(这三部分都是矩形形状),分隔这三部分的部分统称为“隔水”.图中手卷长 1 000 cm,宽40cm,引首和拖尾完全相同,其宽度都为100 cm,若隔水的宽度为x cm,画心的面积为15 200 cm², 则根据题意, 可列方程为(不用化简).15.如图,在矩形ABCD 中,对角线AC,BD 相交于点O,DE⊥AC于点 E,若∠EDC :∠EDA=1: 2,AC= 10,则EC 的长度是 .16.将四根长度相等的细木条首尾相接,用钉子钉成四边形ABCD,如图①,当∠B=90°时,测得A,C两点间的距离√2.推动四边形如图②,当∠B60°时,A,C 两点间的距离为,四边形ABC D 的面积为 .17.如图,在矩形 ABCD 中,AC、BD 相交于点O,AE 平分∠BAD,交BC 于E,已知∠EAO=15°,AC=6,那么△BOE的面积为 .18.在不透明的口袋中,有五个形状、大小、质地完全相同的小球,小球上分别标有数-2、-1、0、2、3,现从口袋中任取一个小球,将该小球上的数作为点 C 的横坐标,然后放回摇匀,再从口袋中任取一个小球,将该小球上的数作为点C的纵坐标,则点C恰好与点A(-2,2)、B(3, 2)构成直角三角形的概率是三、解答题(共66分)19.(10分)用适当的方法解方程:(1)x²+12x−2=0.(2)(x+3)(x-1)= 12.20.(10分)已知关于x的一元二次方程x²−2x+m−2=0有两个不相等的实数根.(1)求m的取值范围.(2)若m为正整数,请你写出一个满足条件的m值,并求出此时方程的根.21.情境题·国防历史(10分)某校为纪念历史,缅怀先烈,举行以“致敬抗美援朝,争做时代新人”为主题的故事会,校团委将抗美援朝中四位历史英雄人物头像制成编号为A、B、C、D的四张卡片(除编号和头像外其余完全相同),活动时先将四张卡片背面朝上洗匀放好,再从中随机抽取一张,记下卡片上的英雄人物,然后放回.学生根据所抽取的卡片来讲述他们波澜壮阔、可歌可泣的历史事迹.请用列表或画树状图的方法求小强和小叶抽到的两张卡片恰好是同一英雄人物的概率.22.(12分)某青年旅社有60个客房供游客居住,在旅游旺季,当每个客房的定价为每天 200 元时,所有客房都可以住满.每个客房定价每提高10元,就会有1个客房空闲,对有游客入住的客房,旅社还需要对每个房间每天支出20元的维护费用,设每个客房的定价提高了x元.(1)填表(不需化简):多少元? (纯收入=总收入-维护费用)23.(12 分)如图,在矩形ABCD中,M、N分别是AD、BC 的中点,P、Q 分别是 BM、DN 的中点.(1)求证:BM=DN.(2)连接MQ、PN,判断四边形 MPNQ 的形状,并说明理由.(3)矩形ABCD 的边 AB 与AD 满足什么数量关系时,四边形 MPNQ 是正方形? 请说明理由.24.(12分)综合与实践综合与实践课上,老师让同学们以“矩形的折叠”为主题开展数学活动.(1)操作判断操作一:对折矩形纸片 ABCD,使AD 与BC重合,得到折痕EF,把纸片展平;操作二:在AD 上选一点 P,沿BP 折叠,使点 A 落在矩形内部点 M 处,把纸片展平,连接PM,BM.根据以上操作,当点M在EF上时,写出图1 中一个30°的角: .(2)迁移探究小华将矩形纸片换成正方形纸片,继续探究,过程如下:将正方形纸片 ABCD 按照(1)中的方式操作,并延长PM交CD 于点 Q,连接BQ.①如图 2,当点 M 在 EF 上时,∠MBQ=°,∠CBQ=°;②改变点 P在 AD 上的位置(点P 不与点A,D重合),如图3,判断∠MBQ 与∠CBQ的数量关系,并说明理由.(3)拓展应用在(2)的探究中,已知正方形纸片ABCD的边长为8cm,当FQ=1cm时,直接写出AP的长.。
最新北师大版九年级数学上册期中考试题及答案【必考题】
最新北师大版九年级数学上册期中考试题及答案【必考题】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.2的倒数是( )A .2B .12C .12-D .-22.对某市某社区居民最爱吃的鱼类进行问卷调查后(每人选一种),绘制成如图所示统计图.已知选择鲳鱼的有40人,那么选择黄鱼的有( )A .20人B .40人C .60人D .80人3.某商店出售两件衣服,每件卖了200元,其中一件赚了25%,而另一件赔了20%.那么商店在这次交易中( )A .亏了10元钱B .赚了10钱C .赚了20元钱D .亏了20元钱4.下列各数:-2,0,13,0.020020002…,π9( )A .4B .3C .2D .15.若点1(),6A x -,2(),2B x -,32(),C x 在反比例函数12y x=的图像上,则1x ,2x ,3x 的大小关系是( ) A .123x x x << B .213x x x << C .231x x x << D .321x x x <<6.若三点()1,4,()2,7,(),10a 在同一直线上,则a 的值等于( )A .-1B .0C .3D .47.如图是二次函数y=ax 2+bx+c (a ,b ,c 是常数,a ≠0)图象的一部分,与x 轴的交点A 在点(2,0)和(3,0)之间,对称轴是x=1.对于下列说法:①ab <0;②2a+b=0;③3a+c >0;④a+b ≥m (am+b )(m 为实数);⑤当﹣1<x <3时,y >0,其中正确的是( )A .①②④B .①②⑤C .②③④D .③④⑤ 8.如图,平行于x 轴的直线与函数11k y (k 0x 0)x =>>,,22k y (k 0x 0)x=>>,的图象分别相交于A ,B 两点,点A 在点B 的右侧,C 为x 轴上的一个动点,若ABC 的面积为4,则12k k -的值为( )A .8B .8-C .4D .4-9.如图,△ABC 中,∠A=30°,点O 是边AB 上一点,以点O 为圆心,以OB 为半径作圆,⊙O 恰好与AC 相切于点D ,连接BD .若BD 平分∠ABC ,AD=23,则线段CD 的长是( )A .2B 3C .32D 33210.如图,⊙O 中,弦BC 与半径OA 相交于点D ,连接AB ,OC ,若∠A=60°,∠ADC=85°,则∠C 的度数是( )A.25°B.27.5°C.30°D.35°二、填空题(本大题共6小题,每小题3分,共18分)1.364的平方根为__________.2.因式分解:(x+2)x﹣x﹣2=_______.a b=________.3.已知a、b为两个连续的整数,且28a b<<,则+4.如图,把三角板的斜边紧靠直尺平移,一个顶点从刻度“5”平移到刻度“10”,则顶点C平移的距离CC'=_________.5.如图,某高速公路建设中需要测量某条江的宽度AB,飞机上的测量人员在C 处测得A,B两点的俯角分别为45和30.若飞机离地面的高度CH为1200米,且点H,A,B在同一水平直线上,则这条江的宽度AB为______米(结果保留根号).6.如图,正方形ABCD的边长为8,M是AB的中点,P是BC边上的动点,连结PM,以点P为圆心,PM长为半径作P.当P与正方形ABCD的边相切时,BP的长为__________.三、解答题(本大题共6小题,共72分)1.解分式方程:2311 33xx x x -+=--2.若二次函数y=ax2+bx+c的图象的顶点是(2,1)且经过点(1,﹣2),求此二次函数解析式.3.如图,矩形ABCD中,AB=6,BC=4,过对角线BD中点O的直线分别交AB,CD边于点E,F.(1)求证:四边形BEDF是平行四边形;(2)当四边形BEDF是菱形时,求EF的长.4.如图,点A,B,C都在抛物线y=ax2﹣2amx+am2+2m﹣5(其中﹣14<a<0)上,AB∥x轴,∠ABC=135°,且AB=4.(1)填空:抛物线的顶点坐标为(用含m的代数式表示);(2)求△ABC的面积(用含a的代数式表示);(3)若△ABC的面积为2,当2m﹣5≤x≤2m﹣2时,y的最大值为2,求m的值.5.我国中小学生迎来了新版“教育部统编义务教育语文教科书”,本次“统编本”教材最引人关注的变化之一是强调对传统文化经典著作的阅读.某校对A 《三国演义》、B《红楼梦》、C《西游记》、D《水浒》四大名著开展“最受欢迎的传统文化经典著作”调查,随机调查了若干名学生(每名学生必选且只能选这四大名著中的一部)并将得到的信息绘制了下面两幅不完整的统计图:(1)本次一共调查了_________名学生;(2)请将条形统计图补充完整;(3)某班语文老师想从这四大名著中随机选取两部作为学生暑期必读书籍,请用树状图或列表的方法求恰好选中《三国演义》和《红楼梦》的概率.6.东东玩具商店用500元购进一批悠悠球,很受中小学生欢迎,悠悠球很快售完,接着又用900元购进第二批这种悠悠球,所购数量是第一批数量的1.5倍,但每套进价多了5元.(1)求第一批悠悠球每套的进价是多少元;(2)如果这两批悠悠球每套售价相同,且全部售完后总利润不低于25%,那么每套悠悠球的售价至少是多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、D3、A4、C5、B6、C7、A8、A9、B10、D二、填空题(本大题共6小题,每小题3分,共18分)1、±22、(x+2)(x ﹣1)3、114、55、)120016、3或三、解答题(本大题共6小题,共72分)1、32x =- 2、231211y x x =-+-3、(1)略;(24、(1)(m ,2m ﹣5);(2)S △ABC =﹣82a a +;(3)m 的值为72或.5、(1)50;(2)见解析;(3)16. 6、(1)第一批悠悠球每套的进价是25元;(2)每套悠悠球的售价至少是35元.。
北师大版九年级上册数学期中考试试卷及答案
北师大版九年级上册数学期中考试试题一、单选题1.方程x(x+2)=0的根是()A.x=2B.x=0C.x1=0,x2=﹣2D.x1=0,x2=2 2.随机掷一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,则这个骰子向上的一面点数是奇数的概率为()A.12B.13C.14D.153.如图,在菱形ABCD中,AB=6,∠ABD=30°,则菱形ABCD的面积是()A.18B.C.36D.4.如图,DE∥FG∥BC,若DB=4FB,则EG与GC的关系是()A.EG=4GC B.EG=3GC C.EG=52GC D.EG=2GC5.一元二次方程x(x﹣3)=0的根是()A.0B.3C.0和3D.1和36.如图,菱形ABCD中,AB=2,∠A=120°,点P,Q,K分别为线段BC,CD,BD上的任意一点,则PK+QK的最小值为()A.1B C.2D17.如图,将矩形ABCD沿AF折叠,使点D落在BC边的点E处,过点E作EG∥CD交AF于点G,连接DG.给出以下结论:①DG=DF;②四边形EFDG是菱形;③EG2=12GF×AF;④当AG=6,EG=BE)A.①②③B.①②④C.①③④D.①②③④8.某校文学小组在举行的图书共享仪式上互赠图书,每位同学都把自己的图书向本组其他成员增送一本,全组共互赠了1260本书,设全组共有x名同学,依题意,可列出方程为A.x(x﹣1)=1260B.x(x+1)=1260C.2x(x﹣1)=1260D.12x(x﹣1)=12609.如图,四边形ABCD是菱形,对角线AC,BD相交于点O,DH⊥AB于点H,连接OH,若∠DHO=20°,则∠ADC的度数是()A.120°B.130°C.140°D.150°10.下列四个选项中的三角形,与图中的三角形相似的是()A.B.C.D.二、填空题11.方程23530x x-=-的一次项系数是__________.12.已知23a cb d==,若b+d≠0,则a cb d++=_____.13.同时抛掷两枚质地均匀的骰子,则事件“两枚骰子的点数和小于7”的概率是_____. 14.已知长方形ABCD,AB=3cm,AD=4cm,过对角线BD的中点O做BD垂直平分线EF,分别交AD 、BC 于点E 、F ,则AE 的长为__________cm .15.如图,在正方形ABCD 的外侧,作等边DCE ,则AEC 的度数是__________.16.如图,Rt △ABC 中,∠C =90°,以斜边AB 为边向外作正方形ABDE ,且正方形对角线交于点O ,连接OC ,已知AC =3,OC =,则另一直角边BC 的长为_____.三、解答题17.解下列方程(1)2x 2﹣4x ﹣3=0(2)(x ﹣1)2=(1﹣x )18.已知关于x 的一元二次方程(a +c)x 2+2bx +(a -c)=0,其中a ,b ,c 分别为△ABC 三边的长.(1)如果x =-1是方程的根,试判断△ABC 的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断△ABC 的形状,并说明理由.19.袋中装有除数字不同其它都相同的六个小球,球上分别标有数字1,2,3,4,5,6.(1)从袋中摸出一个小球,求小球上数字小于3的概率;(2)将标有1,2,3数字的小球取出放入另外一个袋中,分别从两袋中各摸出一个小球,求数字之和为偶数的概率.(要求用列表法或画树状图求解)20.在矩形ABCD 中,点E 在BC 上,AE AD =,DF ⊥AE ,垂足为F .(1)求证.DF AB=(2)若30FDC ∠=︒,且4AB =,求AD .21.某商店从厂家以每件18元购进一批商品出售,若每件售价为a 元,则可售出(320﹣10a )件,但物价部门限定每件商品加价不能超过进价的25%,若商店要想获得400元利润,则售价应定为每件多少元?需售出这种商品多少件?22.在 ABCD ,过点D 作DE ⊥AB 于点E ,点F 在边CD 上,DF =BE ,连接AF ,BF.(1)求证:四边形BFDE 是矩形;(2)若CF =3,BF =4,DF =5,求证:AF 平分∠DAB.23.如图,在△ABC 中,AB=AC ,点P 、D 分别是BC 、AC 边上的点,且∠APD=∠B .(1)求证:AC•CD=CP•BP ;(2)若AB=10,BC=12,当PD ∥AB 时,求BP 的长.24.如图,△ABC 在平面直角坐标系中,三个顶点坐标分别为A (0,3)、B (3、4)、C (2,2)(网格中每个正方形的边长是1个单位长度).(1)以点B为位似中心,在网格内画出△A′BC′,使△A′BC′与△ABC位似,且位似比为2:1,则点C′的坐标是______;(2)△A′BC′的面积是_______平方单位;(3)在x轴上找出点P,使得点P到B与点A距离之和最小,请直接写出P点的坐标.25.如图,AC是矩形ABCD的对角线,过AC的中点O作EF⊥AC,交BC于点E,交AD 于点F,连接AE,CF.(1)求证:四边形AECF是菱形;(2)若3DCF=30°,求四边形AECF的面积.(结果保留根号)参考答案1.C【解析】【分析】本题可根据“两式相乘值为0,这两式中至少有一式值为0”来解题.【详解】解:x(x+2)=0,∴x=0或x+2=0,解得x1=0,x2=﹣2.故选:C.【点睛】此题考查解一元二次方程,正确掌握解方程的方法及能依据每个方程的特点选择恰当的解法是解题的关键.2.A【解析】【详解】试题解析:∵骰子六个面中奇数为1,3,5,∴P(向上一面为奇数)31. 62 ==故选A.3.B【解析】【详解】过点A作AE⊥BC于E,如图,∵在菱形ABCD中,AB=6,∠ABD=30°,∴∠BAE=30°,∵AE⊥BC,∴AE=∴菱形ABCD的面积是6⨯=,故选B.4.B【解析】【分析】根据平行线分线段成比例定理即可得到答案.【详解】∵DE∥FG∥BC,DB=4FB,∴31EG DFGC FB===3.故选B.【点睛】此题主要考查平行线分线段成比例定理的理解及运用.根据平行线分线段成比例定理解答是解题的关键.5.C【解析】【详解】试题分析:x=0或x﹣3=0,所以x1=0,x2=3.故选C.考点:因式分解法解一元二次方程6.B【解析】【分析】先根据四边形ABCD是菱形可知,AD∥BC,由∠A=120°可知∠B=60°,作点P关于直线BD的对称点P′,连接P′Q,PC,则P′Q的长即为PK+QK的最小值,由图可知,当点Q与点C重合,CP′⊥AB时PK+QK的值最小,再在Rt△BCP′中利用锐角三角函数的定义求出P′C的长即可.【详解】解:∵四边形ABCD是菱形,∴AD∥BC,∵∠A=120°,∴∠B=180°-∠A=180°-120°=60°,作点P 关于直线BD 的对称点P′,连接P′Q ,P′C ,则P′Q 的长即为PK+QK 的最小值,由图可知,当点Q 与点C 重合,CP′⊥AB 时PK+QK 的值最小,在Rt △BCP′中,∵BC=AB=2,∠B=60°,∴sin 2P Q CP BC B ''==⋅=⨯故选B .【点睛】本题考查的是轴对称-最短路线问题及菱形的性质,根据题意作出辅助线,构造出直角三角形是解答此题的关键.7.D【解析】【分析】先依据翻折的性质和平行线的性质证明∠DGF=∠DFG ,从而得到GD=DF ,接下来依据翻折的性质可证明DG=GE=DF=EF ,连接DE ,交AF 于点O .由菱形的性质可知GF ⊥DE ,OG=OF=12GF ,接下来,证明△DOF ∽△ADF ,由相似三角形的性质可证明DF 2=FO•AF ,于是可得到GE 、AF 、FG 的数量关系,过点G 作GH ⊥DC ,垂足为H .利用(2)的结论可求得FG=4,然后再△ADF 中依据勾股定理可求得AD 的长,然后再证明△FGH ∽△FAD ,利用相似三角形的性质可求得GH 的长,最后依据BE=AD-GH 求解即可.【详解】解:∵GE ∥DF ,∴∠EGF =∠DFG .∵由翻折的性质可知:GD =GE ,DF =EF ,∠DGF =∠EGF ,∴∠DGF =∠DFG .∴GD =DF .故①正确;∴DG =GE =DF =EF .∴四边形EFDG 为菱形,故②正确;如图1所示:连接DE ,交AF 于点O .∵四边形EFDG 为菱形,∴GF ⊥DE ,OG =OF =12GF .∵∠DOF =∠ADF =90°,∠OFD =∠DFA ,∴△DOF ∽△ADF .∴DFAF =OFDF ,即DF 2=FO•AF .∵FO =12GF ,DF =EG ,∴EG 2=12GF•AF .故③正确;如图2所示:过点G 作GH ⊥DC ,垂足为H .∵EG 2=12GF•AF ,AG =6,EG =∴20=12FG (FG+6),整理得:FG 2+6FG ﹣40=0.解得:FG =4,FG =﹣10(舍去).∵DF =GE =AF =10,∴AD =∵GH ⊥DC ,AD ⊥DC ,∴GH ∥AD .∴△FGH ∽△FAD .∴GHAD=FGAF410,∴GH,∴BE=AD﹣GH=故选:D.【点睛】本题考查了四边形与三角形的综合应用,掌握矩形的性质、菱形的判定和性质、相似三角形的性质和判定、勾股定理的应用,利用相似三角形的性质得到DF2=FO•AF是解题答问题②的关键,依据相似三角形的性质求得GH的长是解答问题④的关键.8.A【解析】【分析】设全组共有x名同学,那么每名同学要赠送(x﹣1)本,那么总共送x(x﹣1)本,据此可得出方程.【详解】设全组共有x名同学,那么每名同学送出的图书是(x﹣1)本;则总共送出的图书为x(x﹣1);又知实际互赠了1260本图书,∴x(x﹣1)=1260;故选:A.【点睛】此题考查列一元二次方程,本题弄清每名同学送出的图书是(x-1)本是解题的关键.9.C【解析】【分析】由四边形ABCD是菱形,可得OB=OD,AC⊥BD,又由DH⊥AB,∠DHO=20°,可求得∠OHB的度数,然后由直角三角形斜边上的中线等于斜边的一半,证得△OBH是等腰三角形,继而求得∠ABD的度数,然后求得∠ADC的度数.【详解】∵四边形ABCD是菱形,∴OB=OD,AC⊥BD,∠ADC=∠ABC,∵DH⊥AB,∴OH=OB=12 BD,∵∠DHO=20°,∴∠OHB=90°﹣∠DHO=70°,∴∠ABD=∠OHB=70°,∴∠ADC=∠ABC=2∠ABD=140°,故选C.【点睛】本题考查了菱形的性质、直角三角形的性质以及等腰三角形的判定与性质,证得△OBH是等腰三角形是关键.10.B【解析】【分析】由于已知三角形和选择项的三角形都放在小正方形的网格中,设正方形的边长为1,所以每一个三角形的边长都是可以表示出,然后根据三角形的对应边成比例即可判定选择项.【详解】解:设小正方形的边长为1,那么已知三角形的三边长分别为,所以三边之比为1:2A、三角形的三边分别为2,,三边之比为3,故本选项错误;B、三角形的三边分别为2,4,1:2C、三角形的三边分别为2,32:3D44,故本选项错误.故选:B.【点睛】此题主要考查了相似三角形的判定,属于基础题,掌握三边对应成比例的两个三角形相似是解答本题的关键,难度一般.11.-5【解析】【分析】根据任何一个关于x的一元二次方程经过整理,都能化成如下形式ax2+bx+c=0(a≠0).这种形式叫一元二次方程的一般形式.其中ax2叫做二次项,a叫做二次项系数;bx叫做一次项;b叫做一次项系数,c叫做常数项可得答案.【详解】方程3x2﹣5x﹣3=0的一次项系数是﹣5.故答案为:﹣5.【点睛】本题考查了一元二次方程的一般形式,关键是掌握要确定二次项系数,一次项系数和常数项,必须先把一元二次方程化成一般形式.12.23【解析】【分析】分别设a=2m,c=2n,根据23a cb d==可用m、n表示出b、d,代入所给代数式即可得答案.【详解】设a=2m,c=2n,∵23a cb d==,∴b=3m,d=3n,∴a cb d++=2m2n3m3n++=23,故答案为:2 3【点睛】本题考查等比性质的应用,若a c kb d==,则a cb d++=k,熟练掌握等比性质是解题关键.13.15 36【解析】【分析】画树状图展示所有36种等可能的结果数,再找出“两枚骰子的点数和小于7”的结果数,然后根据概率公式求解.【详解】画树状图为:共有36种等可能的结果数,其中“两枚骰子的点数和小于7”的结果数为15,所以“两枚骰子的点数和小于7”的概率15 36;故答案为:15 36 .【点睛】此题考查列表法与画树状图法,解题关键在于根据题意画出树状图.14.7 8【解析】【详解】连接EB,∵BD垂直平分EF,∴ED=EB,设AE=xcm,则DE=EB=(4﹣x)cm,在Rt△AEB中,AE2+AB2=BE2,即:x2+32=(4﹣x)2,解得:x=78故答案为78cm .15.45︒【解析】【分析】先求出AED ∠的度数,即可求出AEC ∠.【详解】解:由题意可得,,90,60AD DC DE ADC EDC DEC ︒︒==∠=∠=∠=,,150AD DE ADE ADC EDC ︒=∠=∠+∠= 180150152AED DAE ︒︒︒-∴∠=∠==45AEC CED AED ︒∴∠=∠-∠=故答案为45︒【点睛】本题考查了等腰与等边三角形的性质,等腰三角形的两底角相等,等边三角行的三条边都相等,三个角都相等,灵活应用等腰及等边三角形的性质是解题的关键.16.9【解析】【分析】过O 作OF ⊥BC ,过A 作AM ⊥OF ,根据正方形的性质得出∠AOB=90°,OA=OB ,求出∠BOF=∠OAM ,根据AAS 证△AOM ≌△BOF ,推出AM=OF ,OM=FB ,求出四边形ACFM 为矩形,推出AM=CF ,AC=MF=3,得出等腰三角形三角形OCF ,根据勾股定理求出CF=OF=6,求出BF ,即可求出答案.【详解】解:过O 作OF ⊥BC 于F ,过A 作AM ⊥OF 于M ,∵∠ACB =90°,∴∠AMO =∠OFB =90°,∠ACB =∠CFM =∠AMF =90°,∴四边形ACFM 是矩形,∴AM =CF ,AC =MF =3,∵四边形ABDE为正方形,∴∠AOB=90°,OA=OB,∴∠AOM+∠BOF=90°,又∵∠AMO=90°,∴∠AOM+∠OAM=90°,∴∠BOF=∠OAM,在△AOM和△OBF中0AM BOF AMO OFB OA0B∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AOM≌△OBF(AAS),∴AM=OF,OM=FB,∴OF=CF,∵∠CFO=90°,∴△CFO是等腰直角三角形,∵OC=,由勾股定理得:CF=OF=6,∴BF=OM=OF﹣FM=6﹣3=3,∴BC=6+3=9.故答案为:9.【点睛】本题考查了等腰直角三角形,勾股定理,正方形的性质,全等三角形的性质和判定的应用,主要考查学生综合运用性质进行推理的能力.17.(1)x1x2(2)x1=1,x2=0.【解析】【分析】(1)利用公式法解方程即可;(2)先移项,利用因式分解法解方程即可.【详解】(1)∵a =2,b =﹣4,c =﹣3,∴△=(﹣4)2﹣4×2×(﹣3)=40>0,则x 22,即x 1=22+,x 2=22;(2)(x ﹣1)2=(1-x ),(x ﹣1)2+(x ﹣1)=0,(x ﹣1)•x =0,解得:x 1=1,x 2=0.【点睛】本题考查解一元二次方程,解一元二次方程常用的方法有直接开平方法、公式法、因式分解法、配方法等,熟练掌握并灵活运用适当的方法是解题关键.18.(1)△ABC 是等腰三角形,理由见解析;(2)△ABC 是直角三角形.理由见解析.【解析】【详解】试题分析:(1)由方程解的定义把x=﹣1代入方程得到a ﹣b=0,即a=b ,于是由等腰三角形的判定即可得到△ABC 是等腰三角形;(2)由判别式的意义得到△=0,整理得222a b c =+,然后由勾股定理的逆定理得到△ABC 是直角三角形.试题解析:解:(1)△ABC 是等腰三角形.理由如下:∵x=﹣1是方程的根,∴(a+c )×1﹣2b+(a ﹣c )=0,∴a+c ﹣2b+a ﹣c=0,∴a ﹣b=0,∴a=b ,∴△ABC 是等腰三角形;(2)△ABC 是直角三角形.理由如下:∵方程有两个相等的实数根,∴△=2(2)4()()0b a c a c -+-=,∴2224440b a c -+=,∴222a b c =+,∴△ABC 是直角三角形.考点:1.根的判别式;2.等腰三角形的判定;3.勾股定理的逆定理.19.(1)13;(2)49.【解析】【分析】(1)先列出摸出一个小球的所有可能的结果,再找出小球上数字小于3的结果,然后利用概率公式求解即可;(2)先用表格列出从两袋中摸出小球的所有可能的结果,再计算两个小球数字之和,从而得出数字之和为偶数的结果,然后利用概率公式计算即可.【详解】(1)依题意,从袋中摸出一个小球的结果有6种,即1,2,3,4,5,6,它们每一种出现的可能性相等其中,小球上数字小于3的结果有2种,即1,2故小球上数字小于3的概率为2163 P==;(2)依题意,用列表法列出从两袋中摸出小球的所有可能的结果如下:4561(1,4)(1,5)(1,6)2(2,4)(2,5)(2,6)3(3,4)(3,5)(3,6)其中,数字之和为偶数的结果有4种,即(1,5),(2,4),(2,6),(3,5)故两个小球上数字之和为偶数的概率为49 P=.【点睛】本题考查了简单事件的概率计算、利用列举法求概率,依据题意,正确列出事件的所有可能的结果是解题关键.20.(1)证明见解析;(2)8【解析】【分析】(1)利用“AAS”证△ADF≌△EAB即可得;(2)由∠ADF+∠FDC=90°、∠DAF+∠ADF=90°得∠FDC=∠DAF=30°,据此知AD=2DF,根据DF=AB可得答案.【详解】(1)证明:在矩形ABCD中,∵AD∥BC,∴∠AEB=∠DAF,又∵DF⊥AE,∴∠DFA=90°,∴∠DFA=∠B,又∵AD=EA,∴△ADF≌△EAB,∴DF=AB.(2)∵∠ADF+∠FDC=90°,∠DAF+∠ADF=90°,∴∠FDC=∠DAF=30°,∴AD=2DF,∵DF=AB,∴AD=2AB=8.【点睛】本题主要考查矩形的性质,解题的关键是掌握矩形的性质和全等三角形的判定与性质及直角三角形的性质.21.每件商品的售价应定为22元,需要卖出这种商品100件.【解析】【分析】可根据关键语“若每件售价x元,则每件盈利(x-18)元,则可卖出(320-10x)件”,根据每件的盈利×销售的件数=获利,即可列出方程求解.【详解】解:设每件商品的售价定为x元,则(x﹣18)(320﹣10x)=400,整理得x2﹣50x+616=0,∴x1=22,x2=28∵18(1+25%)=22.5,而28>22.5∴x=22.卖出商品的件数为320﹣10×22=100.答:每件商品的售价应定为22元,需要卖出这种商品100件.【点睛】本题考查了一元二次方程的应用,解题时可根据题意列出方程,判断所求的解是否符合题意,舍去不合题意的解.22.(1)见解析(2)见解析【解析】【分析】(1)根据平行四边形的性质,可得AB与CD的关系,根据平行四边形的判定,可得BFDE 是平行四边形,再根据矩形的判定,即可证明;(2)根据平行线的性质,可得∠DFA=∠FAB,根据等腰三角形的判定与性质,可得∠DAF=∠DFA,根据角平分线的判定,即可证明.【详解】(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD.∵BE∥DF,BE=DF,∴四边形BFDE是平行四边形.∵DE⊥AB,∴∠DEB=90°,∴四边形BFDE是矩形;(2)∵四边形ABCD是平行四边形,∴AB∥DC,∴∠DFA=∠FAB.在Rt△BCF中,由勾股定理,得,∴AD=BC=DF=5,∴∠DAF=∠DFA,∴∠DAF=∠FAB,即AF平分∠DAB.【点睛】本题考查了平行四边形的性质,矩形的判定,等腰三角形的判定与性质,利用等腰三角形的判定与性质得出∠DAF=∠DFA是解题关键.23.(1)证明见解析;(2)253.【解析】【分析】(1)易证∠APD=∠B=∠C,从而可证到△ABP∽△PCD,即可得到BP ABCD CP=,即AB•CD=CP•BP,由AB=AC即可得到AC•CD=CP•BP;(2)由PD∥AB可得∠APD=∠BAP,即可得到∠BAP=∠C,从而可证到△BAP∽△BCA,然后运用相似三角形的性质即可求出BP的长.【详解】解:(1)∵AB=AC,∴∠B=∠C.∵∠APD=∠B,∴∠APD=∠B=∠C.∵∠APC=∠BAP+∠B,∠APC=∠APD+∠DPC,∴∠BAP=∠DPC,∴△ABP∽△PCD,∴BP AB CD CP=,∴AB•CD=CP•BP.∵AB=AC,∴AC•CD=CP•BP;(2)∵PD∥AB,∴∠APD=∠BAP.∵∠APD=∠C,∴∠BAP=∠C.∵∠B=∠B,∴△BAP∽△BCA,∴BA BP BC BA=.∵AB=10,BC=12,∴101210BP =,∴BP=253.【点睛】本题主要考查了相似三角形的判定与性质、等腰三角形的性质、平行线的性质、三角形外角的性质等知识,把证明AC•CD=CP•BP 转化为证明AB•CD=CP•BP 是解决第(1)小题的关键,证到∠BAP=∠C 进而得到△BAP ∽△BCA 是解决第(2)小题的关键.24.(1)(1,0);(2)10;(3)(97,0).【解析】【分析】(1)利用位似图形的性质得出对应点位置,即可得出答案;(2)利用勾股定理逆定理可得△A′BC′是直角三角形,利用三角形面积公式求出△A′BC′面积即可;(3)作A 关于y 轴的对称点A″,连接A″B ,交x 轴于点P ,根据对称性质可得A″B 即为PA+PB 的最小值,根据A″和B 点坐标可得直线A″B 的解析式,令y=0即可得P 点坐标.【详解】(1)如图所示:C′(1,0);故答案为:(1,0);(2)∵A′B 2=62+22=40,A′C′2=42+22=20,C′B 2=42+22=20,∴A′B 2=A′C′2+C′B 2,∴△A′BC′是直角三角形,∴△A′BC′的面积是:1210平方单位;故答案为:10(3)作A 关于y 轴的对称点A″,连接A″B ,交x 轴于点P ,∴PA=PA″,∴PA″+PB=PA+PB=BA″,即为PA+PB 的最小值,设A″B 直线解析式为:y =kx+b ,把(3,4),(0,﹣3),代入得:343k bb+=⎧⎨=-⎩,解得:733 kb⎧=⎪⎨⎪=-⎩,故A″B直线解析式为:y=73x﹣3,当y=0时,x=9 7,故P(97,0).【点睛】本题考查位似变换以及坐标与图形的性质、待定系数法求一次函数解析式及轴对称的性质,正确得出对应点的坐标是解题关键.25.(1)证明见解析(2)【解析】【分析】(1)由过AC的中点O作EF⊥AC,根据线段垂直平分线的性质,可得AF=CF,AE=CE,OA=OC,然后由四边形ABCD是矩形,易证得△AOF≌△COE,则可得AF=CE,继而证得结论;(2)由四边形ABCD是矩形,易求得CD的长,然后利用三角函数求得CF的长,继而求得答案.【详解】(1)∵O是AC的中点,且EF⊥AC,∴AF=CF ,AE=CE ,OA=OC ,∵四边形ABCD 是矩形,∴AD ∥BC ,∴∠AFO=∠CEO ,在△AOF 和△COE 中,{AFO CEOAOF COEOA OC∠=∠∠=∠=∴△AOF ≌△COE (AAS ),∴AF=CE ,∴AF=CF=CE=AE ,∴四边形AECF 是菱形;(2)∵四边形ABCD 是矩形,∴在Rt △CDF 中,cos ∠DCF=CDCF ,∠DCF=30°,∴CF=cos 30CD︒=2,∵四边形AECF 是菱形,∴CE=CF=2,∴四边形AECF 是的面积为:。
北师大版九年级数学上册期中考试卷及答案【完美版】
北师大版九年级数学上册期中考试卷及答案【完美版】班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.4的平方根是( ) A .±2B .2C .﹣2D .162.实数a 、b 在数轴上的位置如图所示,且|a|>|b|,则化简2a a b -+的结果为( )A .2a+bB .-2a+bC .bD .2a-b3.已知关于x 的分式方程21m x -+=1的解是负数,则m 的取值范围是( ) A .m ≤3B .m ≤3且m ≠2C .m <3D .m <3且m ≠24.关于x 的一元二次方程2(1)20x k x k ---+=有两个实数根12,x x ,()1212122(2)2x x x x x x -+--+3=-,则k 的值()A .0或2B .-2或2C .-2D .25.下列各组数中,能作为一个三角形三边边长的是( ) A .1,1,2B .1,2,4C .2,3,4D .2,3,56.如图是由6个同样大小的正方体摆成的几何体.将正方体①移走后,所得几何体( )A .主视图改变,左视图改变B .俯视图不变,左视图不变C .俯视图改变,左视图改变D .主视图改变,左视图不变7.下列四个图形中,线段BE 是△ABC 的高的是( )A .B .C .D .8.如图,AB 是⊙O 的直径,BC 与⊙O 相切于点B ,AC 交⊙O 于点D ,若∠ACB=50°,则∠BOD 等于( )A .40°B .50°C .60°D .80°9.甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息.已知甲先出发4分钟,在整个步行过程中,甲、乙两人的距离y (米)与甲出发的时间t (分)之间的关系如图所示,下列结论:①甲步行的速度为60米/分; ②乙走完全程用了32分钟;③乙用16分钟追上甲;④乙到达终点时,甲离终点还有300米。
北师大版九年级上册数学期中考试试卷含答案
北师大版九年级上册数学期中考试试题一、单选题1.下列方程中,关于x 的一元二次方程是()A .2230x x --=B .2210x y --=C .()270x x x -+=D .20ax bx c ++=2.如图,在平行四边形ABCD 中,E 是BC 上一点,BE :EC =1:2,AE 与BD 相交于点F ,若S △BEF =2,则S △ABD =()A .24B .25C .26D .233.若方程(a-2)x²+ax-3=0是关于x 的一元二次方程,则a 的取值范围是()A .a≥2且a≠2B .a≥0且a≠2C .a≥2D .a≠24.如图,在平行四边形ABCD 中,M 、N 是BD 上两点,BM DN =,连接AM 、MC 、CN 、NA ,添加一个条件,使四边形AMCN 是矩形,这个条件是()A .12OM AC =B .MB MO =C .BD AC ⊥D .AMB CND∠=∠5.如图,菱形ABCD 的面积为120cm 2,正方形AECF 的面积为50cm 2,则AB 的长为()A .9cmB .12cmC .13cmD .15cm6ABCD 中,30B ∠=︒,过点A 作AE BC ⊥于点E ,现将△ABE沿直线AE 翻折至△AFE 的位置,AF 与CD 交于点G .则CG 等于()A 1B .1C .12D .27.在一个不透明的口袋中,装有若干个红球和4个黄球,它们除颜色外没有任何区别,摇匀后从中随机摸出一个球,记下颜色后再放回口袋中,通过大量重复摸球实验发现,摸到黄球的概率是0.2,则估计盒子中大约有红球()A .12个B .16个C .20个D .25个8.如图,矩形ABCD 中,AB=8,BC=4.点E 在边AB 上,点F 在边CD 上,点G 、H 在对角线AC 上.若四边形EGFH 是菱形,则AE 的长是()A .B .C .5D .69.如图,在ABCD 中,CD=2AD ,BE ⊥AD 于点E ,F 为DC 的中点,连接EF 、BF ,下列结论:①∠ABC=2∠ABF ;②EF=BF ;③S 四边形DEBC =2S △EFB ;④∠CFE=3∠DEF,其中正确结论的个数共有()A .1个B .2个C .3个D .4个10.如图,已知直线a ∥b ∥c ,直线m 、n 与a 、b 、c 分别交于点A 、C 、E 、B 、D 、F ,若AC =8,CE =12,BD =6,则BF 的值是()A .14B .15C .16D .1711.如图,在正方形ABCD 中,E 、F 分别是BC 、CD 上的点,且∠EAF=45°,AE 、AF 分别交BD 于M 、N ,连按EN 、EF ,有以下结论:①△ABM ∽△NEM ;②△AEN 是等腰直角三角形;③当AE=AF 时,2BEEC=④BE+DF=EF ;⑤若点F 是DC 的中点,则CE 23=CB .其中正确的个数是()A .2B .3C .4D .512.如图,四边形ABCD 和A′B′C′D′是以点O 为位似中心的位似图形,若OA :OA′=2:3,则四边形ABCD 与四边形A′B′C′D′的面积比为()A .4:9B .2:5C .2:3D二、填空题13.已知菱形的周长为24,较大的内角为120°,则菱形的较长的对角线长为_____.14.方程x 2=2x 的解是_______.15.在平面直角坐标系中,矩形OABC 的顶点坐标分别是(0O ,0),(8A ,0),(8B ,6),(0C ,6),已知矩形111OA B C 与矩形OABC 位似,位似中心为坐标原点O ,位似比为12,则点1B 的坐标是______.16.如图,矩形纸片ABCD ,BC=10,AB=8,E 是边CD 上一点,连接AE 、折叠该纸片,使点A 落在AE 上的G 点,并使折痕经过点B ,得到折痕BF ,点F 在AD 上,若DE=5,则GE 的长为____.三、解答题17.解方程:①2x 2﹣4x ﹣3=0;②5(x+1)2=7(x+1).18.(1)解方程(3)30x x x -+-=;(2)解方程2220x x --=;(3)已知a≠0,b≠0,a≠b 且x=1是方程ax²+bx-10=0的一个解,求2222a b a b--的值.19.已知:如图,在△ABC 中,AB=AC ,D 为边BC 上一点,以AB ,BD 为邻边作平行四边形ABDE ,连接AD ,EC .(1)求证:△ADC ≌△ECD ;(2)当点D 在什么位置时,四边形ADCE 是矩形,请说明理由.20.某超市准备进一批季节性小家电,每个进价为40元,经市场预测,销售定价为每个50元,可售出400个;定价每增加1元,销售量将减少10个,设每个定价增加x 元,(1)当定价增加5元时,获利是多少元?(2)商店若准备获得利润6000元,并且使进货量较少,则每个定价为多少元?应进货多少个?21.如图,在△ABC 中,∠ACB=90°,AC=BC ,点D 在边AB 上,连接CD ,将线段CD 绕点C 顺时针旋转90°至CE 位置,连接AE(1)求证:AB ⊥AE ;(2)若BC 2=AD•AB ,求证:四边形ADCE 为正方形.22.元旦期间,某超市销售两种不同品牌的苹果,已知1千克甲种苹果和1千克乙种苹果的进价之和为18元.当销售1千克甲种苹果和1千克乙种苹果利润分别为4元和2元时,陈老师购买3千克甲种苹果和4千克乙种苹果共用82元.(1)求甲、乙两种苹果的进价分别是每千克多少元?(2)在(1)的情况下,超市平均每天可售出甲种苹果100千克和乙种苹果140千克,若将这两种苹果的售价各提高1元,则超市每天这两种苹果均少售出10千克,超市决定把这两种苹果的售价提高x元,在不考虑其他因素的条件下,使超市销售这两种苹果共获利960元,求x的值.23.已知BD垂直平分AC,∠BCD=∠ADF,AF⊥AC,(1)证明ABDF是平行四边形;(2)若AF=DF=5,AD=6,求AC的长.24.已知如图,矩形ABCD的周长为64,AB=12,对角线AC的垂直平分线分别交AD、BC于E、F,连接AF、CE、EF,且EF与AC相交于点O.(1)求证:四边形AECF是菱形;(2)求S△ABF 与S△AEF的比值.25.如图,在△ABC中,∠C=90°,AC=12cm,BC=16cm,D、E分别是AC、AB的中点,连接DE.点P从点D出发,沿DE方向匀速运动,速度为2cm/s;同时,点Q从点B 出发,沿BA方向匀速运动,速度为4cm/s,当点P停止运动时,点Q也停止运动.连接PQ,设运动时间为t(0<t<4)s.解答下列问题:(1)当t为何值时,以点E、P、Q为顶点的三角形与△ADE相似?(2)当t 为何值时,△EPQ 为等腰三角形?参考答案1.A 【解析】【详解】试题解析:A 、符合一元二次方程的定义,正确;B 、方程含有两个未知数,错误;C 、原方程可化为-7x=0,是一元一次方程,错误;D 、方程二次项系数可能为0,错误.故选A .考点:一元二次方程的定义.2.A 【解析】【分析】已知平行四边形ABCD 中,E 是BC 上一点,BE :EC =1:2,可知△BEF ∽△ADF 得出相似比1==3BE BF EF AD DF AF =,所以211(39S BEF S ADF ==V V 得出18S ADF =V 根据2S BEF =V ,在△BEF 中,把EF 作为底边,在三角形ABF 中,把AF 作为底边,高相等,面积比即是底边的比,即13S BEF EF S ABF AF ==V V ,得出6S ABF =V ,S ABD S ABF S ADF =+V V V 求得答案.【详解】在平行四边形ABCD 中AD=BC ,AD ∥BC ∴△BEF ∽△ADF ,∴1==3BE BF EF AD DF AF =∴211(39S BEF S ADF ==V V ∵2S BEF =V ∴18S ADF =V 在△BEF 中,把EF 作为底边,在三角形ABF 中,把AF 作为底边,高相等,面积比即是底边的比,即13S BEF EF S ABF AF ==V V ∴6S ABF =V 且18S ADF =V ∴61824S ABD S ABF S ADF =+=+=V V V 故选:A .【点睛】本题考查了相似三角形的判定定理和性质,如果两个三角形相似,面积比就等于相似比的平方,可以作为求解三角形面积的方法.3.D 【解析】【分析】根据一元二次方程的定义得到a-2≠0,由此求得a 的取值范围.【详解】解:依题意得:a-2≠0,解得a≠2.故选D .【点睛】本题考查了一元二次方程的概念.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是ax 2+bx+c=0(且a≠0).特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.4.A 【解析】【分析】由平行四边形的性质可知:OA OC =,OB OD =,再证明OM ON =即可证明四边形AMCN 是平行四边形.【详解】∵四边形ABCD 是平行四边形,∴OA OC =,OB OD =,∵对角线BD 上的两点M 、N 满足BM DN =,∴OB BM OD DN -=-,即OM ON =,∴四边形AMCN 是平行四边形,∵12OM AC =,∴MN AC =,∴四边形AMCN 是矩形.故选:A .【点睛】本题考查了矩形的判定,平行四边形的判定与性质,解题的关键是灵活运用所学知识解决问题.5.C 【解析】【分析】根据正方形的面积求出AC 的长,根据菱形的面积求出BD 的长,再利用菱形的对角线互相垂直平分计算菱形的边长.【详解】解:因为正方形AECF 的面积为50cm 2,所以AC=10cm=因为菱形ABCD 的面积为120cm 2,所以BD=21202410cm ⨯=所以菱形的边长=13cm 故选C .【点睛】此题考查正方形和菱形的性质,关键是根据正方形和菱形的面积进行解答.6.A 【解析】【分析】在Rt △ABE 中,∠B=30°,BE=32,根据△ABE 沿直线AE 翻折至△AFE 的位置可知BF=3,结合菱形ABCD 32,则利用菱形对边平行即CG ∥AB ,再根据平行线段成比例可得CG CFAB BF ==求得1【详解】∵∠B=30°,AE ⊥BC∴AE=2,BE=32∴BF=3,32,则又∵CG ∥AB ∴CG CFAB BF=33=解得1.【点睛】本题考查了菱形的性质,平行线段成比例,图形的翻折,解本题的关键是通过利用菱形对边平行发现与要求线段CG 与其他线段成比例的关系.7.B 【解析】【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解.【详解】解:设盒子中有红球x 个,由题意可得:44x +=0.2,解得:x=16,故选B ..【点睛】此题主要考查了利用频率估计概率,本题利用了用大量试验得到的频率可以估计事件的概率.关键是根据黄球的概率得到相应的等量关系8.C 【解析】【详解】连接EF 交AC 于点M ,由四边形EGFH 为菱形可得FM=EM ,EF ⊥AC ;利用“AAS 或ASA”易证△FMC ≌△EMA ,根据全等三角形的性质可得AM=MC ;在Rt △ABC 中,由勾股定理求得AC=tan ∠BAC=12BC AB =;在Rt △AME 中,AM=12AC=,tan ∠BAC=12EM AM =可得Rt △AME 中,由勾股定理求得AE=5.故答案选C .【点睛】本题考查了菱形的性质;矩形的性质;勾股定理;锐角三角函数.9.D 【解析】【分析】如图延长EF 交BC 的延长线于G ,取AB 的中点H 连接FH .证明△DFE ≌△FCG 得EF=FG ,BE ⊥BG ,四边形BCFH 是菱形即可解决问题.【详解】解:如图延长EF交BC的延长线于点G,取AB的中点H,连接FH.∵CD=2AD,DF=FC,∴CF=CB,∴∠CFB=∠CBF,∵CD∥AB,∴∠CFB=∠FBH,∴∠CBF=∠FBH,∴∠ABC=2∠ABF.故①正确,∵DE∥CG,∴∠D=∠FCG,∵DF=FC,∠DFE=∠CFG,∴△DFE≌△FCG,∴FE=FG,∵BE⊥AD,∴∠AEB=90°,∵AD∥BC,∴∠AEB=∠EBG=90°,∴BF=EF=FG,故②正确,∵S△DFE=S△CFG,=S△EBG=2S△BEF,故③正确,∴S四边形DEBC∵AH=HB,DF=CF,AB=CD,∴CF=BH,∵CF∥BH,∴四边形BCFH是平行四边形,∵CF=BC,∴四边形BCFH是菱形,∴∠BFC=∠BFH,∵FE=FB,FH∥AD,BE⊥AD,∴FH⊥BE,∴∠BFH=∠EFH=∠DEF,∴∠EFC=3∠DEF,故④正确,故选D.【点睛】本题考查平行四边形的性质和判定、菱形的判定和性质、直角三角形斜边中线的性质、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考选择题中的压轴题.10.B【解析】【分析】三条平行线截两条直线,所得的对应线段成比例.直接根据平行线分线段成比例定理即可得出结论.【详解】解:∵a∥b∥c,AC=8,CE=12,BD=6,∴AC BD AE BF=,即86=812BF +,解得:=15BF,故选:B.【点睛】本题考查的是平行线分线段成比例定理,熟知三条平行线截两条直线,所得的对应线段成比例是解答此题的关键.11.C【解析】【分析】①如图,证明△AMN ∽△BME 和△AMB ∽△NME ,②利用相似三角形的性质可得∠NAE=∠AEN=45°,则△AEN 是等腰直角三角形可作判断;③先证明CE=CF ,假设正方形边长为1,设CE=x ,则BE=1-x ,表示AC 的长为AO+OC 可作判断;④如图3,将△ADF 绕点A 顺时针旋转90°得到△ABH ,证明△AEF ≌△AEH (SAS ),则EF=EH=BE+BH=BE+DF ,可作判断;⑤如图4中,设正方形的边长为2a ,则DF=CF=a ,,想办法求出BE ,EC 即可判断.【详解】如图,∵四边形ABCD 是正方形,∴∠EBM=∠ADM=∠FDN=∠ABD=45°.∵∠MAN=∠EBM=45°,∠AMN=∠BME ,∴△AMN ∽△BME ,∴AM MN BM EN =,∴AM BM MN EN=,∵∠AMB=∠EMN ,∴△AMB ∽△NME ,故①正确,∴∠AEN=∠ABD=45°,∴∠NAE=∠AEN=45°,∴△AEN 是等腰直角三角形,故②正确,在△ABE 和△ADF 中,∵90AB AD ABE ADF AE AF =⎧⎪∠=∠=︒⎨⎪=⎩,∴Rt △ABE ≌Rt △ADF(HL),∴BE=DF .∵BC=CD ,∴CE=CF ,假设正方形边长为1,设CE=x ,则BE=1﹣x ,如图2,连接AC ,交EF 于H ,∵AE=AF ,CE=CF ,∴AC 是EF 的垂直平分线,∴AC ⊥EF ,OE=OF ,Rt △CEF 中,OC 12=EF 22=,在△EAF 中,∠EAO=∠FAO=22.5°=∠BAE=22.5°,∴OE=BE .∵AE=AE ,∴Rt △ABE ≌Rt △AOE(HL),∴AO=AB=1,∴AC 2==AO+OC ,∴122+x 2=∴x=22-,∴1222222BE EC -==-③如图3,∴将△ADF 绕点A 顺时针旋转90°得到△ABH ,则AF=AH ,∠DAF=∠BAH .∵∠EAF=45°=∠DAF+∠BAE=∠HAE .∵∠ABE=∠ABH=90°,∴H 、B 、E 三点共线,在△AEF 和△AEH 中,AE AE FAE HAE AF AH =⎧⎪∠=∠⎨⎪=⎩,∴△AEF ≌△AEH(SAS),∴EF=EH=BE+BH=BE+DF ,故④正确,如图4中,设正方形的边长为2a ,则DF=CF=a ,AF =a,∵DF ∥AB ,∴12FN DF AN AB ==,∴AN=NE 23=AF =a ,∴AE =3=a ,∴BE 23=a ,∴EC 43=a 23=BC ,故⑤正确.故选:C .【点睛】本题考查相似三角形的判定和性质、正方形的性质、全等三角形的判定和性质,等腰直角三角形的判定和性质、线段垂直平分线的性质和判定等知识,解题的关键是灵活应用所学知识解决问题,学会添加常用辅助线构造全等三角形,属于中考压轴题.12.A【解析】【分析】根据题意求出两个相似多边形的相似比,根据相似多边形的性质解答.【详解】解:∵四边形ABCD和A′B′C′D′是以点O为位似中心的位似图形,OA:OA′=2:3,∴DA:D′A′=OA:OA′=2:3,∴四边形ABCD与四边形A′B′C′D′的面积比为:4:9,故选:A.【点睛】本题是对相似图形的考查,熟练掌握多边形相似的性质是解决本题的关键.13.【解析】【分析】由菱形的性质可得AB=6,AC⊥BD,BD=2OB,由直角三角形的性质可得AO=1,由勾股定理可求BO的长,即可得BD的长.【详解】解:如图所示:∵菱形ABCD的周长为24,∴AB=6,AC⊥BD,BD=2OB,∵∠BAD=120°,∴∠ABC=60°,∴∠ABO=12∠ABC=30°,∴AO=3,∴∴BD=故答案为:.【点睛】本题考查了菱形的性质,直角三角形30°角所对的直角边等于斜边的一半的性质,勾股定理,熟记性质是解题的关键,作出图形更形象直观.14.x 1=0,x 2=2【解析】【分析】先移项得到x 2﹣2x =0,再把方程左边进行因式分解得到x (x ﹣2)=0,方程转化为两个一元一次方程:x =0或x ﹣2=0,即可得到原方程的解为x 1=0,x 2=2.【详解】解:∵x 2﹣2x =0,∴x (x ﹣2)=0,∴x =0或x ﹣2=0,∴x 1=0,x 2=2.故答案为:x 1=0,x 2=2.【点睛】本题主要考查了解一元二次方程,熟练掌握一元二次方程的解法,并能够根据方程的特征灵活选用合适的方法解答是解题的关键.15.()4,3或()4,3--【解析】【分析】由矩形OA 1B 1C 1与矩形OABC 位似,位似中心为坐标原点O ,位似比为12,又由点B 的坐标为(8,6),即可求得答案.【详解】解:如图,∵矩形OA 1B 1C 1与矩形OABC 位似,位似中心为坐标原点O ,位似比为12,∴点B 1的坐标是:(4,3)或(-4,-3).故答案为:(4,3)或(-4,-3).【点睛】本题考查了位似图形的性质,注意位似图形是特殊的相似图形,注意数形结合思想的应用.16.955.【解析】【分析】由勾股定理求出AE 的长,证明△ABH ∽△EAD ,得出AH AB DE AE =求出AH 的长,得出AG 的长,即可得出答案.【详解】∵四边形ABCD 为矩形,∴AB=CD=8,AD=BC=10,∠BAD=∠D=90°,∴AE 2222105AD DE =+=+=5由折叠及轴对称的性质可知,△ABF ≌△GBF ,BF 垂直平分AG ,∴BF ⊥AE ,AH=GH ,∴∠BAH+∠ABH=90°,又∵∠FAH+∠BAH=90°,∴∠ABH=∠FAH ,∴△ABH ∽△EAD ,∴AH AB DE AE =,即555AH =解得:AH 855=∴AG=2AH 1655=,∴GE=AE ﹣55555=.【点睛】本题考查了正方形的性质,翻折变换的性质,相似三角形的判定与性质,勾股定理等知识,熟练掌握翻折变换和矩形的性质,证明三角形相似是解题的关键.17.①x 1=22,x 2=22;②x 1=﹣1,x 2=25.【解析】【分析】①直接利用一元二次方程的求根公式,求方程的解;②先移项得到5(x+1)2﹣7(x+1)=0,然后利用因式分解法解方程,即可求解.【详解】①2x 2﹣4x ﹣3=0,a =2,b =﹣4,c =﹣3,∴△=b 2﹣4ac =16﹣4×2×(﹣3)=40,∴2b x a -±==,∴x 1x 2;②5(x+1)2﹣7(x+1)=0,(x+1)(5x+5﹣7)=0,x+1=0或5x+5﹣7=0,∴x 1=﹣1,x 2=25.【点睛】本题主要考查解一元二次方程,掌握公式法和因式分解法解一元二次方程,是解题的关键.18.(1)123,1x x ==-;(2)1211x x ==(3)5.【解析】【分析】(1)提公因式因式分解后可解;(2)把方程左边化为完全平方式的形式,再利用直接开方法求出x 的值即可;(3)把x=1代入方程求得a+b=10,然后将其整体代入化简后的分式并求值.【详解】解:(1)因式分解得(3)(1)0x x -+=,∴123,1x x ==-;(2)∵原方程可化为(x-1)2=3,1x ∴-=1x ∴=±1211x x ∴==(3)解:∵x=1是方程ax²+bx-10=0的根,∴a+b=10,∴225222a b a b a b -+==-,故答案是:5.【点睛】本题考查的是一元二次方程的解法,熟练掌握直接开平方法、因式分解法、配方法、公式法是解题关键.19.(1)证明见解析;(2)点D 在BC 的中点上时,四边形ADCE 是矩形.【解析】【分析】(1)利用等边对等角以及平行四边形的性质可以证得∠EDC=∠ACB ,则易证△ADC ≌△ECD ,利用全等三角形的对应边相等即可证得;(2)根据平行四边形性质推出AE=BD=CD ,AE ∥CD ,得出平行四边形,根据AC=DE 推出即可.【详解】解:(1)证明:∵AB=AC ,∴∠B=∠ACB ,又∵▱ABDE 中,AB=DE ,AB ∥DE ,∴∠B=∠EDC=∠ACB ,AC=DE ,在△ADC 和△ECD 中,{EDC=ACB DC=CDAC DE=∠∠,∴△ADC ≌△ECD (SAS ).(2)点D 在BC 的中点上时,四边形ADCE 是矩形,∵四边形ABDE 是平行四边形,∴AE=BD ,AE ∥BC ,∵D 为边长中点,∴BD=CD ,∴AE=CD ,AE ∥CD ,∴四边形ADCE是平行四边形,∵△ADC≌△ECD,∴AC=DE,∴四边形ADCE是矩形,即点D在BC的中点上时,四边形ADCE是矩形.考点:平行四边形的性质;等腰三角形的性质;全等三角形的判定与性质;矩形的判定的应用.20.(1)5250元;(2)当定价为70元时利润达到6000元,此时的进货量为200个【解析】【分析】(1)根据利润=每件商品利润×销售量,列式即可求解;(2)总利润=每件商品利润×销售量,销售量为400﹣10x,列方程求解,根据题意取舍;【详解】(1)定价增加5元即为:50+5=55元时,销售量为:400-10×5=350获利为:(50+5﹣40)(400﹣5×10)=5250元(2)设每个定价增加x元,根据题意(x+10)(400﹣10x)=6000,整理得:x2﹣30x+200=0解得,x1=10,x2=20,∵要使进货量较少,∴x=20,∴定价为50+20=70元,进货量为:400﹣10x=400﹣200=200.当定价为70元时利润达到6000元,此时的进货量为200个.【点睛】本题是一元二次方程的实际应用问题,现列出关于x的关系式,求解一元二次方程,根据条件对x值取舍,确定最终符合题意的答案.21.(1)根据旋转的性质得到∠DCE=90°,CD=CE,利用等角的余角相等得∠BCD=∠ACE,然后根据“SAS”可判断△BCD≌△ACE,则∠B=∠CAE=45°,所以∠DAE=90°,即可得到结论.(2)由于BC=AC,则AC2=AD•AB,根据相似三角形的判定方法得到△DAC∽△CAB,则∠CDA=∠BCA=90°,可判断四边形ADCE为矩形,利用CD=CE可判断四边形ADCE为正方形.【分析】(1)根据旋转的性质得到∠DCE=90°,CD=CE,利用等角的余角相等得∠BCD=∠ACE,然后根据“SAS”可判断△BCD≌△ACE,则∠B=∠CAE=45°,所以∠DAE=90°,即可得到结论.(2)由于BC=AC,则AC2=AD•AB,根据相似三角形的判定方法得到△DAC∽△CAB,则∠CDA=∠BCA=90°,可判断四边形ADCE为矩形,利用CD=CE可判断四边形ADCE为正方形.【详解】证明:(1)∵∠ACB=90°,AC=BC,∴∠B=∠BAC=45°∵线段CD绕点C顺时针旋转90°至CE位置,∴∠DCE=90°,CD=CE∵∠ACB=90°,∴∠ACB﹣∠ACD=∠DCE﹣∠ACD,即∠BCD=∠ACE∵在△BCD和△ACE中,BC AC {BCD ACE CD CE=∠=∠=,∴△BCD≌△ACE(SAS)∴∠B=∠CAE=45°∴∠BAE=45°+45°=90°∴AB⊥AE(2)∵BC2=AD•AB,BC=AC,∴AC2=AD•AB∴AC AD AB AC=∵∠DAC=∠CAB,∴△DAC∽△CAB∴∠CDA=∠BCA=90°∵∠DAE=90°,∠DCE=90°,∴四边形ADCE为矩形∴四边形ADCE 为正方形.22.(1)甲、乙两种苹果的进价分别为10元/千克,8元/千克;(2)x 的值为2或7.【解析】【分析】(1)根据题意列二元一次方程组即可求解,(2)根据题意列一元二次方程即可求解.【详解】(1)解:设甲、乙两种苹果的进价分别为a 元/千克,b 元/千克.由题得:()()18344282a b a b +=⎧⎨+++=⎩解之得:108a b =⎧⎨=⎩答:甲、乙两种苹果的进价分别为10元/千克,8元/千克(2)由题意得:()()()()410010214010960x x x x +-++-=解之得:12x =,27x =经检验,12x =,27x =均符合题意答:x 的值为2或7.【点睛】本题考查了二元一次方程组和一元二次方程的实际应用,中等难度,列方程是解题关键.23.(1)证明见解析;(2)485.【解析】【分析】(1)先证得△ADB ≌△CDB 求得∠BCD=∠BAD ,从而得到∠ADF=∠BAD ,所以AB ∥FD ,因为BD ⊥AC ,AF ⊥AC ,所以AF ∥BD ,即可证得.(2)先证得平行四边形是菱形,然后根据勾股定理即可求得.【详解】(1)证明:∵BD 垂直平分AC ,∴AB=BC ,AD=DC ,在△ADB 与△CDB 中,AB BC AD DC DB DB =⎧⎪=⎨⎪=⎩,∴△ADB ≌△CDB (SSS )∴∠BCD=∠BAD ,∵∠BCD=∠ADF ,∴∠BAD=∠ADF ,∴AB ∥FD ,∵BD ⊥AC ,AF ⊥AC ,∴AF ∥BD ,∴四边形ABDF 是平行四边形,(2)解:∵四边形ABDF 是平行四边形,AF=DF=5,∴▱ABDF 是菱形,∴AB=BD=5,∵AD=6,设BE=x ,则DE=5-x ,∴AB 2-BE 2=AD 2-DE 2,即52-x 2=62-(5-x )2解得:x=75,∴245AE =,∴AC=2AE=485.考点:1.平行四边形的判定;2.线段垂直平分线的性质;3.勾股定理.24.(1)证明见解析;(2)8:17.【解析】【分析】(1)根据SSS 证明△AOE ≌△COF ,根据全等得出OE=OF ,推出四边形是平行四边形,再根据EF ⊥AC 即可推出四边形是菱形;(2)由(1)知S △AEF =S △ACF ,再分别求得S △ABF 与S △AEF 的面积即可得到其比值.【详解】∴AD∥BC,∴∠OAE=∠OCF.∵EF垂直平分AC,∴AO=CO,∠AOE=∠COF=90°,∴△AOE≌△COF(ASA),∴OE=OF,∴四边形AFEC是平行四边形,又∵EF⊥AC,∴四边形AFEC是菱形;(2)∵△AOE≌△COF,∴S△AEF=S△ACF∵S△ABF=3BF,S△AEF=3FC,∴S△ABF:S△AEF=BF:FC.∵矩形ABCD的周长为64,AB=12,∴BC=20,设FC=x,则AF=x,BF=20﹣x在Rt△ABF中,由勾股定理122+(20﹣x)2=x2解得:x68 5 =,BF32 5 =,∴S△ABF:S△AEF=BF:FC=8:17.【点睛】此题主要考查了矩形的性质、线段的垂直平分线性质、菱形的判定以及勾股定理等知识的综合应用.熟练掌握菱形的判定方法是解题的关键.25.(1)4114s或4013s;(2)t=1或3或207或196秒【解析】【分析】(1)①当PQ⊥AB时,△PQE是直角三角形.证明△PQE∽△ACB,将PE、QE用时间t 表示,由三角形对应线段成比例的性质即可求出t值;②当PQ⊥DE时,证明△PQE∽△DAE,(2)分三种情形讨论,①当点Q在线段BE上时,EP=EQ;②当点Q在线段AE上时,EQ=EP;③当点Q在线段AE上时,EQ=QP;④当点Q在线段AE上时,PQ=EP,分别列出方程即可解决问题.【详解】解:(1)在Rt△ABC中,AC=12cm,BC=16cm,∴AB20cm.∵D、E分别是AC、AB的中点.∴AD=DC=6cm,AE=EB=10cm,DE∥BC且DE=12BC=8cm,①如图1中,PQ⊥AB时,∵∠PQB=∠ADE=90°,∠AED=∠PEQ,∴△PQE∽△ADE,∴PE QE AE DE=,由题意得:PE=8﹣2t,QE=4t﹣10,即82410 108t t--=,解得t=41 14;②如图2中,当PQ⊥DE时,△PQE∽△DAE,∴PE QE ED AE=,∴82410 810t t--=,∴t=40 13,∴当t为4114s或4013s时,以点E、P、Q为顶点的三角形与△ADE相似.(2)①如图3中,当点Q在线段BE上时,由EP=EQ,可得8﹣2t=10﹣4t,t=1.②如图4中,当点Q在线段AE上时,由EQ=EP,可得8﹣2t=4t﹣10,解得t=3.③如图5中,当点Q在线段AE上时,由EQ=QP,可得12(8﹣2t):(4t﹣10)=4:5,解得t=20 7.④如图6中,当点Q在线段AE上时,由PQ=EP,可得12(4t﹣10):(8﹣2t)=4:5,解得t=19 6.综上所述,t=1或3或207或196秒时,△PQE是等腰三角形.【点睛】本题主要考查了相似三角形的判定和性质及等腰三角形的判定,注意分类讨论,灵活的用含t的代数式表示线段的长度是解题的关键.。
新北师大版九年级数学上册期中考试及完整答案
新北师大版九年级数学上册期中考试及完整答案班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若分式211xx-+的值为0,则x的值为()A.0 B.1 C.﹣1 D.±12.若实数m、n满足402nm-+=-,且m、n恰好是等腰△ABC的两条边的边长,则△ABC的周长是()A.12 B.10 C.8或10 D.63.已知⊙O的半径为10,圆心O到弦AB的距离为5,则弦AB所对的圆周角的度数是()A.30°B.60°C.30°或150°D.60°或120°4.若函数y=(3﹣m)27mx-﹣x+1是二次函数,则m的值为()A.3 B.﹣3 C.±3 D.95.等腰三角形的一个角是80°,则它的顶角的度数是()A.80°B.80°或20°C.80°或50°D.20°6.对于二次函数,下列说法正确的是()A.当x>0,y随x的增大而增大B.当x=2时,y有最大值-3C.图像的顶点坐标为(-2,-7)D.图像与x轴有两个交点7.如图,△ABC中,∠A=78°,AB=4,AC=6.将△ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是()A .B .B .C .D .8.在同一坐标系内,一次函数y ax b =+与二次函数2y ax 8x b =++的图象可能是( )A .B .C .D .9.如图,有一块含有30°角的直角三角形板的两个顶点放在直尺的对边上.如果∠2=44°,那么∠1的度数是( )A .14°B .15°C .16°D .17°10.如图,矩形ABCD 中,AB=8,BC=4.点E 在边AB 上,点F 在边CD 上,点G 、H 在对角线AC 上.若四边形EGFH 是菱形,则AE 的长是( )A .25B .35C .5D .6二、填空题(本大题共6小题,每小题3分,共18分)1.8-的立方根是__________.2.分解因式:a 2﹣4b 2=_______.3.已知关于x 的分式方程233x k x x -=--有一个正数解,则k 的取值范围为________.4.(2017启正单元考)如图,在△ABC 中,ED ∥BC ,∠ABC 和∠ACB 的平分线分别交ED 于点G 、F ,若FG =4,ED =8,求EB +DC =________.5.如图,某校教学楼AC 与实验楼BD 的水平间距153CD =米,在实验楼顶部B 点测得教学楼顶部A 点的仰角是30,底部C 点的俯角是45︒,则教学楼AC 的高度是__________米(结果保留根号).6.如图,菱形ABCD 顶点A 在例函数y =3x (x >0)的图象上,函数 y =k x(k >3,x >0)的图象关于直线AC 对称,且经过点B 、D 两点,若AB =2,∠DAB =30°,则k 的值为______.三、解答题(本大题共6小题,共72分)1.解分式方程:3213 xx x--=-2.已知关于x的一元二次方程220x x k+-=有两个不相等的实数根.(1)求k的取值范围;(2)若方程的两个不相等实数根是a,b,求111aa b-++的值.3.已知A(﹣4,2)、B(n,﹣4)两点是一次函数y=kx+b和反比例函数y=mx图象的两个交点.(1)求一次函数和反比例函数的解析式;(2)求△AOB的面积;(3)观察图象,直接写出不等式kx+b﹣mx>0的解集.4.如图,在△ABC中,点D,E分别在边AB,AC上,∠AED=∠B,射线AG分别交线段DE,BC于点F,G,且AD DF AC CG=.(1)求证:△ADF∽△ACG;(2)若12ADAC=,求AFFG的值.5.学校开展“书香校园”活动以来,受到同学们的广泛关注,学校为了解全校学生课外阅读的情况,随机调查了部分学生在一周内借阅图书的次数,并制成如图不完整的统计表.学生借阅图书的次数统计表借阅图书的次数0次1次2次3次4次及以上人数7 13 a 10 3请你根据统计图表中的信息,解答下列问题:()1a=______,b=______.()2该调查统计数据的中位数是______,众数是______.()3请计算扇形统计图中“3次”所对应扇形的圆心角的度数;()4若该校共有2000名学生,根据调查结果,估计该校学生在一周内借阅图书“4次及以上”的人数.6.某超市销售一款“免洗洗手液”,这款“免洗洗手液”的成本价为每瓶16元,当销售单价定为20元时,每天可售出80瓶.根据市场行情,现决定降价销售.市场调查反映:销售单价每降低0.5元,则每天可多售出20瓶(销售单价不低于成本价),若设这款“免洗洗手液”的销售单价为x(元),每天的销售量为y(瓶).(1)求每天的销售量y(瓶)与销售单价x(元)之间的函数关系式;(2)当销售单价为多少元时,销售这款“免洗洗手液”每天的销售利润最大,最大利润为多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、D4、B5、B6、B7、C8、C9、C10、C二、填空题(本大题共6小题,每小题3分,共18分)1、-22、(a+2b)(a﹣2b)3、k<6且k≠34、125、6、三、解答题(本大题共6小题,共72分)1、95 x=2、(1)k>-1;(2)13、(1)反比例函数解析式为y=﹣8x,一次函数的解析式为y=﹣x﹣2;(2)6;(3)x<﹣4或0<x<2.4、(1)略;(2)1.5、()117、20;()22次、2次;()372;()4120人.6、(1)y=﹣40x+880;(2)当销售单价为19元时,销售这款“免洗洗手液”每天的销售利润最大,最大利润为880元。
北师大版九年级上册数学期中考试试卷及答案
北师大版九年级上册数学期中考试试题一、单选题1.下列说法错误的是()A .对角线互相垂直的平行四边形是矩形B .矩形的对角线相等C .对角线相等的菱形是正方形D .两组对边分别相等的四边形是平行四边形2.一个菱形的两条对角线分别为4和5,则这个菱形的面积是()A .8B .10C .15D .203.在矩形ABCD 中,对角线AC 与BD 相交于点O ,34ADB ∠=︒,则BAO ∠的度数是A .46°B .54°C .56°D .60°4.如图,公路AC 、BC 互相垂直,公路AB 的中点M 与点C 被湖隔开,若测得AB 的长为3.2km ,则M ,C 之间的距离是()A .0.8kmB .1.6kmC .2.0kmD .3.2km 5.用配方法解方程2640x x ++=时,原方程变形为()A .2(3)9x +=B .2(3)13x +=C .2(3)5x +=D .2(3)4x +=6.一个不透明的盒子中放入四张卡片,每张卡片上都写有一个数字,分别是﹣2,﹣1,0,1.卡片除数字不同外其它均相同,从中随机抽取两张卡片,抽取的两张卡片上数字之积为负数的概率是()A .14B .13C .12D .347.已知等腰三角形的两边长分别是一元二次方程2680x x -+=的两根,则该等腰三角形的底边长为()A .2B .4C .8D .2或48.某地一家餐厅新开张,开业第一天收入约为5000元,之后两天的收入按相同的增长率增长,第3天收入约为6050元,若设每天的增长率为x ,则x 满足的方程是()A .5000(1+x )=6050B .5000(1+2x )=6050C .5000(1﹣x )2=6050D .5000(1+x )2=60509.如图矩形ABCD 的两条对角线相交于点O ,CE 垂直平分DO ,AB 1=,则BE 等于()A .32B .43C .23D .210.如图,在边长为2的正方形ABCD 中,点Q 为BC 边的中点,点P 为对角线AC 上一动点,连接PB 、PQ ,则PBQ 周长的最小值为()AB .3C 1D .二、填空题11.一元二次方程()211x x +=+的根是_____.12.若关于x 的方程21(1)7a a x +--=0是一元二次方程,则a =____.13.x 2﹣4x+1=(x ﹣2)2﹣______.14.如图所示,平行四边形ABCD 的对角线AC 、BD 相交于点O ,试添加一个条件:___,使得平行四边形ABCD 为菱形.15.若关于x 的一元二次方程2(1)10k x x -++=有实数根,则k 的最大整数值是_________.16.一个袋子中6个红球,若干白球,它们除颜色外完全相同,现在经过大量重复的摸球试验发现,摸出一个球是白球的频率稳定在0.4附近,则袋子中白球有_____个.17.如图,正方形ABCD 的对角线BD 是菱形BEFD 的一边,菱形BEFD 的对角线BF 交CD 于点P ,则∠FPC 的度数是______.18.如图,在Rt ABC 中,90A ∠= ,AB=6,BC=10,P 是BC 边上的一点,作PE 垂直AB ,PF 垂直AC ,垂足分别为E 、F ,求EF 的最小值是_____.三、解答题19.用适当的方法解方程:(1)x 2+2x ﹣1=0;(用配方法)(2)3x 2﹣5x+1=0;(用公式法)(3)3(2x+1)2=4x+2;(用因式分解法)(4)3x 2+5x =3x+3.(选择适当的方法)20.“一方有难,八方支援”.四川汶川大地震牵动着全国人民的心,我市某医院准备从甲、乙、丙三位医生和A 、B 两名护士中选取一位医生和一名护士支援汶川.(1)若随机选一位医生和一名护士,用树状图(或列表法)表示所有可能出现的结果;(2)求恰好选中医生甲和护士A 的概率.21.如图,菱形ABCD 的对角线AC 与BD 相交于点O ,∠ABC ∶∠BAD =1∶2,AC ∥BE ,CE ∥BD .(1)求∠DBC 的度数;(2)求证:四边形OBEC 是矩形.22.如图,在正方形ABCD 中,点P 是对角线BD 上的一点,点E 在AD 的延长线上,且PA=PE,PE交CD于点F.(1)证明:PC=PE;(2)求∠CPE的度数.23.某公园内有一块长30m,宽20m的矩形空地,准备将其建成一个矩形花坛,要求在花坛中修建三条长方形的矩形小道(如图),剩余的地方种植花草,要使种植花草的面积为532m2,那么小道的宽度应为多少米?(注:所有小道宽度相等)24.某服装专卖店在销售中发现,一款衬衫每件进价为70元,销售价为100元时,每天可售出20件,今年受“疫情”影响,为尽快减少库存,商店决定采取适当的降价措施,经市场调查发现,如果每件衬衫降价1元,那么平均可多售出2件.试问:每件衬衫降价多少元时,平均每天赢利750元?25.如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF.(1)求证:△AFE≌△DBE;(2)若AB⊥AC,试判断四边形ADCF是不是菱形?若是,证明你的结论;若不是,请说明理由.参考答案1.A【解析】根据特殊平行四边形的性质判断即可;【详解】经过判断,对角线互相垂直的平行四边形是菱形,故A错误;B、C、D均正确;故答案选A.【点睛】本题主要考查了特殊平行四边形的判定,准确判断是解题的关键.2.B【解析】【分析】根据菱形的面积计算公式计算即可;【详解】∵菱形的两条对角线分别为4和5,∴菱形的面积14510 2=⨯⨯=;故答案选B.【点睛】本题主要考查了菱形的面积计算,准确计算是解题的关键.3.C【解析】【分析】由矩形的性质得∠BAD=90°,OA=OC=12AC,OB=OD=12BD,AC=BD,则OA=OD,由等腰三角形的性质得∠OAD=∠ADB=34°,进而得出答案.【详解】解:∵四边形ABCD是矩形,∴∠BAD=90°,OA=OC=12AC,OB=OD=12BD,AC=BD,∴OA=OD,∴∠OAD=∠ADB=34°,∴∠BAO=90°−∠OAD=90°−34°=56°;故选:C.【点睛】本题考查了矩形的性质、等腰三角形的判定与性质等知识;熟练掌握矩形的性质和等腰三角形的性质是解题的关键.4.B【解析】【分析】根据直角三角形斜边上的中线性质得出CM=12AB,代入求出即可.【详解】∵AC⊥BC,∴∠ACB=90°,∵M为AB的中点,∴CM=12 AB,∵AB=3.2km,∴CM=1.6km,故选:B.【点睛】此题考查直角三角形斜边上的中线性质,能根据直角三角形斜边上的中线性质得出CM=12AB是解题的关键.5.C【解析】【分析】方程整理后,配方得到结果,即可做出判断.【详解】解:方程配方得:x2+6x+5+4-5=0,即(x+3)2=5.故选:C.【点睛】此题考查解一元二次方程-配方法,熟练掌握完全平方公式是解题的关键.6.B【解析】【分析】画树状图展示所有12种等可能的结果数,再找出抽取的两张卡片上数字之积为负数的结果数,然后根据概率公式求解.【详解】解:画树状图如下:由树状图可知共有12种等可能结果,其中抽取的两张卡片上数字之积为负数的结果有4种,所以抽取的两张卡片上数字之积为负数的概率为412=13,故选B.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.7.A【解析】【分析】解一元二次方程求出方程的解,得出三角形的边长,用三角形存在的条件分类讨论边长,即可得出答案.【详解】解:x2-6x+8=0(x-4)(x-2)=0解得:x=4或x=2,当等腰三角形的三边为2,2,4时,不符合三角形三边关系定理,此时不能组成三角形;当等腰三角形的三边为2,4,4时,符合三角形三边关系定理,此时能组成三角形,所以三角形的底边长为2,故选:A.本题考查了等腰三角形的性质,三角形的三边关系,解一元二次方程,能求出方程的解并能够判断三角形三边存在的条件是解此题的关键.8.D【解析】【分析】根据开业第一天收入约为5000元,之后两天的收入按相同的增长率增长,第3天收入约为6050元列方程即可得到结论.【详解】解:设每天的增长率为x ,依题意,得:5000(1+x )2=6050.故选:D .【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.9.A【解析】【分析】根据矩形的性质可证明ODC ,OAB 都是等边三角形,根据等边三角形的性质即可求出OE 的长,即可的答案;【详解】四边形ABCD 是矩形,OA OB OD OC ∴===,CE 垂直平分相等OD ,CO CD ∴=,OC OD CD ∴==,OCD ,AOB 都是等边三角形,OB AB OD 1∴===,OE DE ==12OD=12,13BE 122∴=+=,【点睛】本题考查矩形的性质、等边三角形的判断和性质、线段的垂直平分线的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.10.C【解析】【分析】由于点B 与点D 关于AC 对称,所以如果连接DQ ,交AC 于点P ,那么PBQ 的周长最小,此时PBQ 的周长BP PQ BQ DQ BQ.=++=+在Rt CDQ 中,由勾股定理先计算出DQ 的长度,再得出结果即可.【详解】连接DQ ,交AC 于点P ,连接PB 、BD ,BD 交AC 于O .四边形ABCD 是正方形,AC BD ∴⊥,BO OD =,CD 2cm =,∴点B 与点D 关于AC 对称,BP DP ∴=,BP PQ DP PQ DQ ∴+=+=.在Rt CDQ 中,DQ ===,PBQ ∴的周长的最小值为:BP PQ BQ DQ BQ 1++=+=+.故选C .【点睛】此题考查轴对称问题,根据两点之间线段最短,确定点P 的位置是解题关键.11.10x =,21x =-【分析】利用因式分解法求解可得.【详解】解:2(1)1x x +=+ ,2(1)(1)0x x ∴+-+=,则(1)0x x +=,0x ∴=或10x +=,解得10x =,21x =-,故答案为:10x =,21x =-.12.﹣1.【解析】根据一元二次方程的定义得到由此可以求得a 的值.【详解】解:∵关于x 的方程(a ﹣1)xa2+1﹣7=0是一元二次方程,∴a 2+1=2,且a ﹣1≠0,解得,a =﹣1.故答案为﹣1.13.3【解析】利用配方法的步骤整理即可.【详解】解:x 2﹣4x+1=x 2﹣4x+4﹣3=(x ﹣2)2﹣3,故答案为3,14.AD=DC (答案不唯一)【详解】由四边形ABCD 是平行四边形,添加AD=DC ,根据邻边相等的平行四边形是菱形的判定,可使得平行四边形ABCD 为菱形;添加AC ⊥BD ,根据对角线互相垂直的平行四边形是菱形的判定,可使得平行四边形ABCD 为菱形.故答案为:AD=DC (答案不唯一).15.0【解析】关于x 的一元二次方程2(1)10k x x -++=有实数根,则△=240b a -≥,且k-1≠0,求出k 的取值范围即可解决本题.【详解】解:关于x 的一元二次方程2(1)10k x x -++=有实数根,则()=1410k 10△--≥⎧⎪⎨-≠⎪⎩k ,解得:54k ≤且k≠1,则k 的最大整数值为;0,故答案为:0.16.4【解析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【详解】设袋子中白球有x 个,由题意得,6x x+=0.4,解得:x =4,经检验x=4是原方程的解故袋子中白球有4个,故答案为:4.17.112.5°【解析】利用正方形的性质得到90BCD ∠︒=,45CBD ∠︒=,再根据菱形的性质得BF 平分,EBD ∠,所以22.5CBP ∠︒=,然后根据三角形外角性质计算∠FPC 的度数.【详解】解:∵四边形ABCD 为正方形,90BCD ∴∠︒=,45CBD ∠︒=,∵四边形BEFD 为菱形,∴BF 平分∠EBD ,22.5CBP ∴∠︒=,22.590112.5FPC PBC BCP ∴∠∠∠︒︒︒=+=+=.故答案为:112.5︒.18.4.8【解析】根据已知得出四边形AEPF 是矩形,得出EF=AP ,要使EF 最小,只要AP 最小即可,根据垂线段最短得出即可.【详解】解:连接AP ,∵∠BAC=90°,PE ⊥AB ,PF ⊥AC ,∴∠BAC=∠AEP=∠AFP=90°,∴四边形AFPE 是矩形,∴EF=AP ,要使EF 最小,只要AP 最小即可,过A 作AP ⊥BC 于P ,此时AP 最小,在Rt △BAC 中,∠BAC=90°,BC=10,AB=6,由勾股定理得:AC=8,由三角形面积公式得:116810AP 22⨯⨯=⨯⋅,∴AP=4.8,即EF=4.8,故答案为:4.8.【点睛】本题利用了矩形的性质和判定、勾股定理以及垂线段最短的应用.19.(1)x1=﹣x 2=﹣1(2)x 1x 2(3)x 1=﹣12,x 2=﹣16(4)1211,33x x --==【解析】【分析】(1)根据配方法求解即可;(2)根据公式法求解即可;(3)根据因式分解法求解即可;(4)根据公式法求解即可;(1)解:x 2+2x ﹣1=0,x 2+2x =1,x 2+2x+1=1+1,即(x+1)2=2,∴x+1=,∴x 1=﹣x 2=﹣1(2)解:3x 2﹣5x+1=0,∵a =3,b =﹣5,c =1,∴Δ=(﹣5)2﹣4×3×1=13>0,则x即x 1=56,x 2=56-;(3)解:3(2x+1)2=4x+2,3(2x+1)2﹣2(2x+1)=0,(2x+1)[3(2x+1)﹣2]=0,2x+1=0或6x+1=0,x 1=﹣12,x 2=﹣16.(4)解:3x 2+5x =3x+3,3x 2+2x-3=0∵a =3,b =2,c =-3,∴Δ=22﹣4×3×(﹣3)=40>0,∴x =223-±⨯=13-,∴x 1=13-+,x 2【点睛】本题考查解一元二次方程的解法,熟练掌握解法解一元二次方程的方法:配方法、公式法、因式分三种方法是解题的关键.20.(1)详见解析;(2)16【解析】(1)利用用树状图(或列表法)列举出所有情况;(2)让恰好选中医生甲和护士A 的情况数除以总情况数即为所求的概率.【详解】解:(1)用列表法或树状图表示所有可能结果如下:护士医生A B 甲(甲,)A (甲,)B 乙(乙,)A (乙,)B丙(丙,)A(丙,)B(2)因为共有6种等可能的结果,其中恰好选中医生甲和护士A的有1种,所以P(恰好选中医生甲和护士1)6A=.(3分)【点睛】本题考查的是用列表法或者用树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.树状图法适用于两步或两步以上完成的事件;解题的关键是还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.21.(1)30°(2)证明见解析【解析】【分析】(1)由四边形ABCD是菱形,得到对边平行,且BD为角平分线,利用两直线平行得到一对同旁内角互补,根据已知角之比求出相应度数,进而求出∠BDC度数;(2)由四边形ABCD是菱形,得到对角线互相垂直,利用两组对边平行的四边形是平行四边形,再利用有一个角为直角的平行四边形是矩形即可得证.【详解】(1)∵四边形ABCD是菱形,∴AD∥BC,∠DBC=12∠ABC,∴∠ABC+∠BAD=180°,∵∠ABC:∠BAD=1:2,∴∠ABC=60°,∴∠BDC=12∠ABC=30°;(2)证明:∵四边形ABCD是菱形,∴AC ⊥BD ,即∠BOC=90°,∵BE ∥AC ,CE ∥BD ,∴BE ∥OC ,CE ∥OB ,∴四边形OBEC 是平行四边形,则四边形OBEC 是矩形.【点睛】此题考查了矩形的判定,菱形的性质,熟练掌握判定与性质是解本题的关键.22.(1)见解析;(2)90°【解析】【分析】(1)由四边形ABCD 是正方形,BD 是正方形ABCD 的对角线,得AB =BC ,∠ABP =∠CBP =45°,利用SAS 可证得△ABP ≌△CBP 即可证明PC =PE .(2)由△ABP ≌△CBP ,得∠BAP =∠BCP ,从而得∠DAP =∠DCP ,再由PA =PE 即可证出∠DCP =∠E ,进而可证出∠CPE =∠EDF =90°.【详解】(1)证明:∵四边形ABCD 是正方形,BD 是正方形ABCD 的对角线,∴AB =BC ,∠ABP =∠CBP =45°,在△ABP 和△CBP 中,=AB BC ABP CBP PB PB =⎧⎪∠∠⎨⎪=⎩,∴△ABP ≌△CBP (SAS ),∴PA =PC ,∵PA =PE ,∴PC =PE ,(2)解:由(1)知,△ABP ≌△CBP ,∴∠BAP =∠BCP ,∴∠DAP =∠DCP ,∵PA =PE ,∴∠DAP =∠E ,∴∠DCP=∠E,∵∠CFP=∠EFD,∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠E,即∠CPE=∠EDF=90°.【点睛】本题主要考查了正方形的性质,全等三角形的性质与判定,等腰三角形的性质,解题的关键在于能够熟练掌握相关知识进行求解.23.小道进出口的宽度应为1米.【解析】【分析】观察图形可知,种植花草的地方拼凑起来可以得到一个新矩形,设小道进出口的宽度为x 米,则新矩形的长是(30﹣2x)m,宽是(20﹣x)m,根据面积公式列方程,求解即可.【详解】设小道进出口的宽度为x米,依题意得(30﹣2x)(20﹣x)=532,整理,得x2﹣35x+34=0,解得,x1=1,x2=34.∵34>20(不合题意,舍去),∴x=1.答:小道进出口的宽度应为1米.【点睛】本题考查一元二次方程的实际应用,解题关键是根据题中的等量关系列方程,注意根据实际意义对求得的根进行取舍.24.每件衬衫降价15元时,平均每天赢利750元【解析】【分析】设每件衬衫降价x元,则平均每天可售出(20+2x)件,再写出单件利润的表达式(100﹣70﹣x),两者乘积为总利润,解方程,根据题意对根进行取舍,即可求出答案.【详解】设每件衬衫降价x元,则平均每天可售出(20+2x)件,依题意,得:(100﹣70﹣x)(20+2x)=750,整理,得:x 2﹣20x+75=0,解得:x 1=5,x 2=15.∵尽快减少库存,∴x =15.答:每件衬衫降价15元时,平均每天赢利750元.【点睛】本题考查一元二次方程的实际应用,解题关键是根据题中的等量关系列方程,注意根据题意对求得的根进行取舍.25.(1)证明见解析;(2)四边形ADCF 是菱形,证明见解析【解析】【分析】(1)根据平行线的性质可得∠AFE=∠DBE ,然后利用AAS 判定△AFE ≌△DBE 即可;(2)首先证明四边形ADCF 是平行四边形,再根据直角三角形斜边上的中线等于斜边的一半可得AD=CD ,进而可得四边形ADCF 是菱形.【详解】(1)证明:∵AF ∥BC ,∴∠AFE=∠DBE ,∵E 是AD 的中点,∴AE=DE ,在△AFE 和△DBE 中,AFE DBE FEA BED AE DE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AFE ≌△DBE (AAS );(2)解:四边形ADCF 是菱形,理由如下:∵△AFE ≌△DBE ,∴AF=BD ,∵AD 是斜边BC 的中线,∴BD=DC∴AF=DC .∵AF∥BC,∴四边形ADCF是平行四边形,∵AC⊥AB,AD是斜边BC的中线,∴AD=12BC=DC,∴平行四边形ADCF是菱形.。
北师大版九年级上册数学期中考试试卷带答案
北师大版九年级上册数学期中考试试题一、单选题1.如图,在▱ABCD中,对角线AC与BD交于点O,若增加一个条件,使▱ABCD成为菱形,下列给出的条件不正确的是()A.AB=AD B.AC⊥BD C.AC=BD D.AD=CD2.一元二次方程x2﹣6x+5=0配方后可化为()A.(x﹣3)2=﹣14B.(x+3)2=﹣14C.(x﹣3)2=4D.(x+3)2=43.用频率估计概率,可以发现,抛掷硬币,“正面朝上”的概率为0.5,是指()A.连续掷2次,结果一定是“正面朝上”和“反面朝上”各1次B.连续抛掷100次,结果一定是“正面朝上”和“反面朝上”各50次C.抛掷2n次硬币,恰好有n次“正面朝上”D.抛掷n次,当n越来越大时,正面朝上的频率会越来越稳定于0.54.若关于x的一元二次方程x2﹣2x+m=0有一个解为x=﹣1,则另一个解为()A.1B.﹣3C.3D.4相似5.如图,每个小正方形边长均为1,则下列图中的三角形(阴影部分)与图中ABC的是()A.B.C.D.6.如图,矩形ABCD中,DE⊥AC于E,若∠ADE=2∠EDC,则∠BDE的度数为()A.36°B.30°C.27°D.18°7.如图,DE 是 ABC 的中位线,点F 在DE 上,且∠AFB =90°,若AB =5,BC =8,则EF 的长为()A .2.5B .1.5C .4D .58.如图,在正三角形ABC 中,点D 、E 分别在AC 、AB 上,且13AD AC =,AE=BE ,则有()A .△AED ∽△BEDB .△AED ∽△CBDC .△AED ∽△ABDD .△BAD ∽△BCD9.组织一次排球邀请赛,参赛的每个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛.设比赛组织者应邀请x 个队参赛,则x 满足的关系式为()A .x (x+1)=28B .12x (x ﹣1)=28C .x (x ﹣1)=28D .x (x+1)=2810.如图,在菱形ABCD 中,对角线AC 与BD 相交于点O ,若AB=2,∠ABC=60°,则BD 的长为()A .2B .3C D .二、填空题11.一元二次方程x 2=x 的解为_____.12.为保护环境,法库县掀起“爱绿护绿”热潮,经过两年时间,绿地面积增加了21%,则这两年的绿地面积的平均增长率是___.13.三角形的两边长分别为3和6,第三边的长是方程x 2﹣6x+8=0的解,则此三角形的周长是_____.14.如果小强将镖随意投中如图所示的正方形木板,那么镖落在阴影部分的概率为_____15.如图,菱形ABCD 的两条对角线长分别为AC =6,BD =8,点P 是BC 边上的一动点,则AP 的最小值为__.16.如图,正方形ABCD 中,AB 6=,点E 在边CD 上,且CD 3DE =,将ADE 沿AE 对折至AFE. 延长EF 交边BC 于点G ,连接AG 、CF.下列结论:ABG ①≌AFG ;BG GC ②=;AG //CF ③;GCF ④是等边三角形,其中正确结论有______.三、解答题17.解方程:(1)3(x ﹣3)=5x (x ﹣3);(2)(x+1)(x ﹣1)+2(x+3)=13.18.先化简,再求值:2226m m m+-÷(m+3+53m -),其中m 是方程x 2﹣2x ﹣1=0的根.19.如图,小明同学用自制的直角三角形纸板DEF测量树AB的高度,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上.已知纸板的两条直角边EF=,测得边DF离地面的高度 1.5m40cmDE=,20cmCD m,求树AB的高度.AC=,8=20.如图,在矩形ABCD中,AD=10,AB=6.E为BC上一点,ED平分∠AEC,求:点A到DE的距离.21.在甲乙两个不透明的口袋中,分别有大小、材质完全相同的小球,其中甲口袋中的小球上分别标有数字1,2,3,4,乙口袋中的小球上分别标有数字2,3,4,先从甲袋中任意摸出一个小球,记下数字为m,再从乙袋中摸出一个小球,记下数字为n.(1)请用列表或画树状图的方法表示出所有(m,n)可能的结果;(2)若m,n都是方程x2﹣5x+6=0的解时,则小明获胜;若m,n都不是方程x2﹣5x+6=0的解时,则小利获胜,问他们两人谁获胜的概率大?22.如图,在四边形ABCD中,AB//DC,AB AD=,对角线AC,BD交于点O,AC平分⊥交AB的延长线于点E,连接OE.∠,过点C作CE ABBAD(1)求证:四边形ABCD是菱形;(2)若AB=2BD=,求OE的长.23.如图,已知菱形ABCD,延长AB到E,使BE=2AB,连接EC并延长交AD的延长线于点F.(1)图中共有哪几对相似三角形?请直接写出结论;(2)若菱形ABCD的边长为3,求AF的长.24.水果店张阿姨以每斤2元的价格购进某种水果若干斤,然后以每斤4元的价格出售,每天可售出100斤,通过调查发现,这种水果每斤的售价每降低0.1元,每天可多售出20斤,为保证每天至少售出260斤,张阿姨决定降价销售.(1)若将这种水果每斤的售价降低x元,则每天的销售量是斤(用含x的代数式表示);(2)销售这种水果要想每天盈利300元,张阿姨需将每斤的售价降低多少元?25.如图1,正方形ABCD的边长为a,E为边CD上一动点(点E与点C、D不重合),连接AE交对角线BD于点P,过点P作PF⊥AE交BC于点F.(1)求证:PA=PF;(2)如图2,过点F作FQ⊥BD于Q,在点E的运动过程中,PQ的长度是否发生变化?若不变,求出PQ的长;若变化,请说明变化规律.(3)请写出线段AB、BF、BP之间满足的数量关系,不必说明理由.参考答案1.C 【解析】菱形的定义:有一组邻边相等的平行四边形叫做菱形,判定定理有:定理1:四边都相等的四边形是菱形.定理2:对角线互相垂直的平行四边形是菱形.根据菱形的定义和判定定理即可作出判断,【详解】A 选项:根据菱形的定义可得,当AB=AD 时▱ABCD 是菱形,本选项正确;B 选项:根据对角线互相垂直的平行四边形是菱形即可判断,▱ABCD 是菱形,本选项正确;C 选项:对角线相等的平行四边形是矩形,不一定是菱形,除非是正方形,本选项错误;D 选项:根据菱形的定义可得,当AD=CD 时▱ABCD 是菱形,本选项正确;故选C 【点睛】本题考查了菱形的判定定理,正确记忆定义和判定定理是关键.2.C 【解析】先把常数项移到方程右侧,再把方程两边加上9,然后把方程左边写成完全平方的形式即可.【详解】移项得:265x x -=-,配方得:26959x x -+=-+,即2(3)4x -=.故选:C .【点睛】本题考查了解一元二次方程-配方法:将一元二次方程配成2()x m n +=的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.3.D 【解析】【分析】利用“大量重复试验中,事件发生的频率逐渐稳定到某个常数附近,这个常数可以估计事件发生的概率”.【详解】解:连续抛掷2n 次不一定正好正面向上和反面向上的次数各一半,故A 、B 、C 错误,抛掷n 次,当n 越来越大时,正面朝上的频率会越来越稳定于0.5,故D 正确.故选:D .【点睛】本题考查了利用频率估计概率,解题的关键是掌握利用“大量重复试验中,事件发生的频率逐渐稳定到某个常数附近,这个常数可以估计事件发生的概率”.4.C 【解析】【分析】设方程的另一个解为x 1,根据两根之和等于﹣ba,即可得出关于x 1的一元一次方程,解之即可得出结论.【详解】设方程的另一个解为x 1,根据题意得:﹣1+x 1=2,解得:x 1=3,故选C .【点睛】本题考查了根与系数的关系以及一元二次方程的解,牢记两根之和等于﹣b a、两根之积等于ca是解题的关键.5.B 【解析】【分析】根据网格的特点求出三角形的三边,再根据相似三角形的判定定理即可求解.【详解】解:由题意得:AB =AC 2BC =、A1ABC 的三边对应边不成比例关系,不符合题意;B,11,∴对应边成比例,符合题意;C,3,与△ABC 的三边对应边不成比例关系,不符合题意;D2,与△ABC 的三边对应边不成比例关系,不符合题意;故选B .【点晴】此题主要考查相似三角形的判定和勾股定理,解题的关键是熟知相似三角形的判定定理.6.B 【解析】【分析】根据已知条件可得ADE ∠以及EDC ∠的度数,然后求出ODC 各角的度数便可求出BDE ∠.【详解】解:在矩形ABCD 中,90ADC ∠=︒,∵2ADE EDC ∠=∠,∴60ADE ∠=︒,30EDC ∠=︒,∵DE AC ⊥,∴903060DCE ∠=︒-︒=︒,∵OD OC =,∴60ODC OCD ∠=∠=︒,∴60DOC ∠=︒,∴9030BDE DOC ∠=︒-∠=︒.故选:B .【点睛】题目主要考查矩形的性质,三角形内角和及等腰三角形的性质,理解题意,综合运用各个性质是解题关键.7.B【解析】【分析】根据直角三角形斜边上的中线等于斜边的一半可得1 2.52DF AB==,再利用三角形中位线定理可得DE=4,进而可得答案.【详解】解:∵D为AB中点,∠AFB=90°,AB=5,∴1 2.52DF AB==,∵DE是△ABC的中位线,BC=8,∴DE=4,∴EF=4﹣2.5=1.5,故选:B.【点睛】此题主要考查了直角三角形的性质和三角形中位线定理,三角形的中位线平行于第三边,并且等于第三边的一半.8.B【解析】【分析】本题可以采用排除法,即根据已知中正三角形ABC中,D、E分别在AC、AB上,13 ADAC=,AE=BE,我们可以分别得到:△AED、△BCD为锐角三角形,△BED、△ABD为钝角三角形,然后根据锐角三角形不可能与钝角三角形相似排除错误答案,得到正确答案.【详解】解:由已知中正三角形ABC中,D、E分别在AC、AB上,13ADAC=,AE=BE,易判断出:△AED为一个锐角三角形,△BED为一个钝角三角形,故A错误;△ABD也是一个钝角三角形,故C也错误;但△BCD为一个锐角三角形,故D也错误;故选:B.【点睛】此题考查相似三角形的判定,解题关键在于可以直接根据相似三角形的定义,大小不同,形状相同,排除错误答案,得到正确结论.9.B【解析】【分析】球队总数×每支球队需赛的场数÷2=4×7,把相关数值代入即可.【详解】解:每支球队都需要与其他球队赛(x﹣1)场,但2队之间只有1场比赛,所以可列方程为:12x(x﹣1)=4×7.故选:B.【点睛】此题主要考查一元二次方程的应用,解题的关键是根据题意找到数量关系列方程.10.D【解析】【详解】分析:首先根据菱形的性质知AC垂直平分BD,再证出△ABC是正三角形,由三角函数求出BO,即可求出BD的长.详解:∵四边形ABCD菱形,∴AC⊥BD,BD=2BO,∵∠ABC=60°,∴△ABC是正三角形,∴∠BAO=60°,∴∴故选D.点睛:本题主要考查解直角三角形和菱形的性质的知识点,解答本题的关键是熟记菱形的对角线垂直平分,本题难度一般.11.x1=0,x2=1.【解析】【分析】首先把x移项,再把方程的左面分解因式,即可得到答案.【详解】解:x2=x,移项得:x2﹣x=0,∴x(x﹣1)=0,x=0或x﹣1=0,∴x1=0,x2=1.故答案为x1=0,x2=1.12.10%【解析】【分析】设这两年的绿地面积的平均增长率是x,利用经过两年时间后绿地的面积=绿地的原面积×(1+这两年的绿地面积的平均增长率)2,即可得出关于x的一元二次方程,解之取其正值即可得出结论.【详解】解:设这两年的绿地面积的平均增长率是x,依题意得:(1+x)2=1+21%,解得:x1=0.1=10%,x2=﹣2.1(不合题意,舍去).故答案为:10%.【点睛】本题主要考查了一元二次方程的应用,解题的关键在于能够正确理解题意列出方程求解.13.13【解析】【分析】先求出方程的两根,然后根据三角形的三边关系,得到合题意的边,进而求得三角形周长即可.【详解】解:x2﹣6x+8=0,(x﹣2)(x﹣4)=0,x﹣2=0,x﹣4=0,x1=2,x2=4,当x=2时,2+3<6,不符合三角形的三边关系定理,所以x=2舍去,当x=4时,符合三角形的三边关系定理,三角形的周长是3+6+4=13,故答案为:13.14.1 9【详解】解:观察这个图可知,阴影部分能够拼成4个小正方形,图中共有36个小正方形,∵阴影部分的面积:整个图形的面积=4:36=1 9,∴镖落在阴影部分的概率为19 P=,故答案为:1 9 .15.4.8【解析】由垂线段最短,可得AP⊥BC时,AP有最小值,由菱形的性质和勾股定理可求BC的长,由菱形的面积公式可求解.【详解】设AC与BD的交点为O,∵点P是BC边上的一动点,∴AP⊥BC时,AP有最小值,∵四边形ABCD是菱形,∴AC⊥BD,AO=CO=12AC=3,BO=DO=12BD=4,∴5 BC===,∵12ABCD S AC BD BC AP =⨯⨯=⨯菱形,∴24 4.85AP ==,故答案为:4.8.【点睛】本题考查了菱形的性质,勾股定理,确定当AP ⊥BC 时,AP 有最小值是本题关键.16.①②③【解析】【分析】根据翻折变换的性质和正方形的性质可证ABG ≌AFG ;在直角ECG 中,根据勾股定理可证BG GC =;通过证明AGB AGF GFC GCF ∠∠∠∠===,由平行线的判定可得AG //CF ;由于BG CG =,得到tan AGB 2∠=,求得AGB 60∠≠ ,根据平行线的性质得到FCG AGB 60∠∠=≠ ,求得GCF 不是等边三角形;【详解】四边形ABCD 是正方形,将ADE 沿AE 对折至AFE ,AB AD AF ∴==,在ABG 与AFG 中,90AB AF B AFG AG AG =⎧⎪∠=∠=⎨⎪=⎩,ABG ≌AFG ;故①正确,1EF DE CD 23=== ,设BG FG x ==,则CG 6x =-,在直角ECG 中,根据勾股定理,得222(6x)4(x 2)-+=+,解得x 3=,BG 363GC ∴==-=;故②正确,CG BG GF == ,FGC ∴是等腰三角形,GFC GCF ∠∠=,又AGB AGF ∠∠=,AGB AGF 180FGC GFC GCF ∠∠∠∠∠+=-=+ ,AGB AGF GFC GCF ∠∠∠∠∴===,AG //CF ∴;故③正确,BG CG = ,1BG AB 2∴=,tan AGB 2∠∴=,AGB 60 ∠∴≠,AG //CF ,FCG AGB 60∠∠∴=≠ ,GCF ∴ 不是等边三角形;故④错误.综上所述:正确结论有①②③,故答案为①②③.【点睛】本题考查了翻折变换的性质和正方形的性质,全等三角形的判定与性质,勾股定理,平行线的判定,此题综合性较强,难度较大,解题的关键是注意数形结合思想应用.17.(1)x 1=3,x 2=35;(2)x 1=﹣4,x 2=2【解析】【分析】(1)先移项,再利用提公因式法将方程的左边因式分解后求解可得;(2)先整理成一般式,再利用十字相乘法将方程的左边因式分解后求解可得.【详解】解:(1)∵3(x ﹣3)=5x (x ﹣3),∴3(x ﹣3)﹣5x (x ﹣3)=0,则(x ﹣3)(3﹣5x )=0,∴x ﹣3=0或3﹣5x =0,解得x 1=3,x 2=35;(2)整理成一般式,得:x 2+2x ﹣8=0,∴(x+4)(x ﹣2)=0,则x+4=0或x ﹣2=0,解得x 1=﹣4,x 2=2.【点睛】本题考查了解一元二次方程,熟练掌握解一元二次方程的几种方法,选择适当的方法可使计算变的简便.18.12(2)m m -,12【解析】【分析】根据分式的混合运算法则把原式化简,利用因式分解法解出方程,根据分式有意义的条件得到m 的值,把m 的值代入计算,即可得解.【详解】解:2253263m m m m m +⎛⎫÷++ --⎝⎭,()2295233m m m m m +-+=÷--,()()()232322m m m m m m +-=⨯-+-,()122m m =-,解方程2210x x --=得:11x =,21x =,∴当1m =时,原式12==;当1m =时,原式12==;∴求值为12.【点睛】题目主要考查分式的混合运算,解一元二次方程,熟练掌握分式的混合运算法则是解题关键.19.树高5.5m .【解析】【分析】先判定△DEF 和△DBC 相似,然后根据相似三角形对应边成比例列式求出BC 的长,再加上AC 即可得解.【详解】解:在△DEF 和△DCB 中,D D DEF DCB ∠∠⎧⎨∠∠⎩==,∴△DEF ∽△DCB ,∴DE EF DC CB =,即40208CB=解得BC=4,∵AC=1.5m ,∴AB=AC+BC=1.5+4=5.5m ,即树高5.5m .【点睛】本题考查了相似三角形的应用,主要利用了相似三角形对应边成比例的性质,比较简单,判定出△DEF 和△DBC 相似是解题的关键.20.【解析】【分析】根据平行线的性质以及角平分线的定义证明∠ADE =∠AED ,根据等角对等边,即可求得AE 的长,在直角△ABE 中,利用勾股定理求得BE 的长.【详解】解:在矩形ABCD 中,AD ∥BC ,AD =BC =10,AB =CD =6.∠B =∠C =90°,∴∠ADE =∠CED ,∵ED 平分∠AEC ,∴∠AED =∠CED ,∴∠AED =∠ADE ,∴AD =AE =10,在Rt △ABE 中,根据勾股定理,得BE8,∴EC=BC﹣BE=10﹣8=2,在Rt△DCE中,根据勾股定理,得DE=设点A到DE的距离为h,则12AD•CD=12DE•h,∴h=.答:点A到DE的距离为.【点睛】本题考查勾股定理的综合应用,熟练掌握平行线的性质、角平分线的定义三角形面积公式及勾股定理是解题关键.21.(1)见解析;(2)小明获胜的概率大,见解析【解析】【分析】(1)首先根据题意画出树状图,然后由树状图可得所有可能的结果;(2)画树状图展示所有12种等可能的结果数,m,n都是方程x2﹣5x+6=0的解的结果有4个,m,n都不是方程x2﹣5x+6=0的解的结果有2个,然后根据概率公式求解.【详解】(1)树状图如图所示:所有(m,n)可能的结果有(1,2),(1,3),(1,4),(2,2),(2,3),(2,4),(3,2),(3,3),(3,4),(4,2),(4,3),(4,4)共12种结果;(2)∵m,n都是方程x2﹣5x+6=0的解,∴m=2,n=3,或m=3,n=2,由树状图得:共有12个等可能的结果,m,n都是方程x2﹣5x+6=0的解的结果有4个(包括m =n =2,和m =n =3两种情况),m ,n 都不是方程x 2﹣5x+6=0的解的结果有2个,小明获胜的概率为41=123,小利获胜的概率为21=126,∴小明获胜的概率大.22.(1)证明见解析;(2)OE=2.【解析】(1)根据一组对边相等的平行四边形是菱形进行判定即可.(2)根据菱形的性质和勾股定理求出2OA ==,根据直角三角形斜边的中线等于斜边的一半即可求解.【详解】(1)证明:∵AB//CD ,∴CAB ACD ∠=∠,∵AC 平分BAD ∠,∴CAB CAD ∠=∠,∴CAD ACD ∠=∠,∴AD CD =,又∵AD AB =,∴AB CD =,又∵AB ∥CD ,∴四边形ABCD 是平行四边形,又∵AB AD =,∴ABCD 是菱形.(2)解:∵四边形ABCD 是菱形,对角线AC 、BD 交于点O ,∴AC BD ⊥,12OA OC AC ==,12OB OD BD ==,∴112OB BD ==,在Rt △AOB 中,90AOB ∠=︒,∴2OA ==,∵CE AB ⊥,∴90AEC ∠=︒,在Rt △AEC 中,90AEC ∠=︒,O 为AC 中点,∴122OE AC OA ===.23.(1)有3对相似三角形,分别为:DFC AFE ∽,BCE AFE ∽,DFC BCE ∽;(2)92AF =.【解析】(1)由菱形的性质:∥DC AE ,BC AD ∥,进而证明:~DFC AFE ,~BCE AFE ,DFC BCE ∽;(2)由(1)可知:DFC AFE ∽,利用相似三角形的性质和已知条件即可求出DF 的长,进而求出AF 的长.【详解】解:(1)∵四边形ABCD 是菱形,∴∥DC AE ,BC AD ∥,∴~DFC AFE ,~BCE AFE ,∴DFC BCE ∽,故:有3对相似三角形,分别为:DFC AFE ∽,BCE AFE ∽,DFC BCE ∽;(2)∵DFC AFE ∽,∴DF DC AF AE=,∵2BE AB =,3AB =,∴6BE =,9AE =,∴339DF DF =+,∴32DF =,∴39322AF AD DF =+=+=.24.(1)100+200x ;(2)1【解析】(1)销售量=原来销售量+增加销售量,列式即可得到结论;(2)根据销售量×每斤利润=总利润列出方程求解即可得到结论.【详解】解:(1)将这种水果每斤的售价降低x 元,则每天的销售量是100+0.1x ×20=100+200x 斤;故答案为:100+200x ;(2)根据题意得:(42)(100200)300x x --+=,解得:x=12或x=1,∵每天至少售出260斤,∴100+200x≥260,∴x≥0.8,∴x=1.答:张阿姨需将每斤的售价降低1元.25.(1)见解析;(2)PQ 的长不变,见解析;(3)AB+BF PB【解析】(1)连接PC ,由正方形的性质得到AB BC =,ABP CBP ∠=∠,然后依据全等三角形的判定定理证明APB CPB ≌,由全等三角形的性质可知PA PC =,PCB PAB ∠=∠,接下来利用四边形的内角和为360°可证明PFC PCF ∠=∠,于是得到PF PC =,故此可证明PF PA =;(2)连接AC 交BD 于点O ,依据正方形的性质可知AOB 为等腰直角三角形,于是可求得AO 的长,接下来,证明APO PFQ ≌,依据全等三角形的性质可得到PQ AO =;(3)过点P 作PM AB ⊥,PN BC ⊥,垂足分别为M ,N ,首先证明PBN 为等腰直角三角形于是得到BN PN +=,由角平分线的性质可得到PM PN =,然后再依据直角三角形全等的证明方法证明PAM PFN ≌可得到FN AM =,PM PN =,于是将AB BF +可转化为BN PN +的长.【详解】解:(1)证明:连接PC ,如图所示:∵ABCD 为正方形,∴AB BC =,ABP CBP ∠=∠,在APB 和CPB 中,AB BCABP CBP BP BP=⎧⎪∠=∠⎨⎪=⎩,∴APB CPB ≌,∴PA PC =,PCB PAB ∠=∠,∵90ABF APF ∠=∠=︒,∴180PAB PFB ∠+∠=︒.∵180PFC PFB ∠+∠=︒,∴PFC PAB ∠=∠.∴PFC PCF ∠=∠.∴PF PC =,∴PF PA =;(2)PQ 的长不变.理由:连接AC 交BD 于点O,如图所示:∵PF AE ⊥,∴90APO FPQ ∠+∠=︒.∵FQ BD ⊥,∴90PFQ FPQ ∠+∠=︒.∴APO PFQ ∠=∠.又∵四边形ABCD 为正方形,∴90AOP PQF ∠=∠=︒,2AO =.在APO 和PFQ 中,AOP PQFAPO PFQ AP PF∠=∠⎧⎪∠=∠⎨⎪=⎩,∴APO PFQ ≌.∴2PQ AO a ==;(3)如图所示:过点P 作PM AB ⊥,PN BC ⊥,垂足分别为M ,N .∵四边形ABCD 为正方形,∴45PBN ∠=︒.∵PN BN ⊥,∴2BN PN BP ==,∴BN PN +=.∵BD 平分ABC ∠,PM AB ⊥,PN BC ⊥,∴PM PN =.在RT PAM 和RT PFN 中,PA PF PM PN =⎧⎨=⎩,∴PAM PFN ≌.∴AM FN =.∵90MBN BNP BMP ∠=∠=∠=︒,∴MB PN =.∴AB BF AM MB BF FN BF PN BN PN +=++=++=+=.【点睛】题目主要考查正方形的性质,全等三角形的判定和性质,勾股定理解三角形,等腰三角形的性质等,理解题意,作出相应辅助线,综合运用这些性质定理是解题关键.。
2023-2024学年北师大新版九年级上册数学期中复习试卷(含答案)
2023-2024学年北师大新版九年级上册数学期中复习试卷一.选择题(共10小题,满分30分,每小题3分)1.若一元二次方程x2+px+2p=0的一个根为2,则p的值为( )A.1B.2C.﹣1D.﹣22.如图,在离某围墙AB的6米处有一棵树CD,在某时刻2米长的竹竿垂直地面,太阳光下的影长为3米,此时,树的影子有一部分映在地面上,还有一部分影子映在墙上AE处,墙上的影高为4米,那么这棵树高约为( )米.A.6B.8C.9D.103.两名同学在一次用频率估计概率的试验中统计了某一结果出现的频率,绘制出统计图如图所示,则符合这一结果的试验可能是( )A.抛一枚硬币,正面朝上的概率B.掷一枚正六面体的骰子,出现1点的概率C.转动如图所示的转盘,转到数字为奇数的概率D.从装有2个红球和1个蓝球的口袋中任取一个球恰好是蓝球的概率4.如图是某几何体的三视图,该几何体是( )A.正方体B.圆锥C.四棱柱D.圆柱5.如图,菱形ABCD的对角线AC,BD相交于O点,E,F分别是AB,BC边的中点,连接EF.若EF=,BD=4,则菱形ABCD的周长为( )A.4B.C.4D.286.如图,矩形ABCD中,BD=2,AB在x轴上.且点A的横坐标为﹣1,若以点A为圆心,对角线AC的长为半径作弧交x轴的正半轴于M,则点M的坐标为( )A.(2+,0)B.(2+1,0)C.(2﹣1,0)D.(2,0)7.下列一元二次方程中,无实数根的是( )A.x2﹣2x﹣3=0B.x2+3x+2=0C.x2﹣2x+1=0D.x2+2x+3=0 8.已知一元二次方程x2﹣8x+c=0有一个根为2,则另一个根为( )A.10B.6C.8D.﹣29.如图,EB为驾驶员的盲区,驾驶员的眼睛点P处与地面BE的距离为1.6米,车头FACD 近似看成一个矩形,且满足3FD=2FA,若盲区EB的长度是6米,则车宽FA的长度为( )米.A.2B.C.D.10.如图,四边形ABCD是正方形,以CD为边作等边△CDE,BE与AC相交于点M,则下列结论中:①BM=DM;②∠BEC=∠MDC=15°;③∠AMD的度数是75°;④△AMB≌△AMD≌△EMD.正确的有( )个.A.1B.2C.3D.4二.填空题(共5小题,满分15分,每小题3分)11.在△ABC中,点D,E分别在边AB和AC上,且DE∥BC,如果AD=2,DB=4,AE=3,那么AC= .12.今年五月上旬我市空气质量指数如下表,省外某单位组织了一次退休职工到我市旅游3天,则他们在我市旅游3天时,空气质量都是优良(空气质量指数不大于100表示空气质量优良)的概率是 .日期12345678910空气质量指数304236588095701155610113.如图,小芸用灯泡O(看作一个点)照射一个矩形相框ABCD,在墙上形成矩形影子A'B'C'D'.现测得OA=20cm,OA'=50cm,相框ABCD的周长为36cm,则影子A'B'C'D'的周长为 cm.14.如图,某同学拿着一把12cm长的尺子,站在距电线杆30m的位置,把手臂向前伸直,将尺子竖直,看到尺子恰好遮住电线杆,已知臂长60cm,则电线杆的高度是 m.15.如图,已知四边形ABCD为矩形,且AB=3,AD=4,将矩形ABCD绕点C顺时针旋转一定角度得到矩形A'B'CD',B'C与AD交于点O,且DO=B'O,则AO的长为 .三.解答题(共7小题,满分75分)16.用适当的方法解一元二次方程:(1)2x2﹣3x=2;(2)x2+6x﹣111=0.17.为推进社会主义新农村建设,东胜区某社区决定组建社区文体团队,现围绕“你最喜欢的文体活动项目(每人仅限一项)”,在全社区范围内随机抽取部分居民进行问卷调查,并将调查结果绘制如下两幅不完整的统计图.请你根据统计图解答下列问题:(1)扇形统计图中“纸牌”所在扇形的圆心角的度数为 ;并补全条形统计图;(2)若在“纸牌、象棋、跳棋、军棋”这四个项目中任选两项组队参加元旦节庆典活动,请用列表法或画树状图的方法,求恰好选中“象棋、军棋”这两个项目的概率.18.如图,在平面直角坐标系中,已知△ABC三个顶点的坐标分别为A(﹣3,2),B(1,5),C(3,4),画出△ABC,并画出以原点O为位似中心,将△ABC三条边放大为原来的2倍后的△A1B1C1.19.操作作图如图①,在Rt△ABC中,∠C=90°,AC=6,BC=8.点D在边AC上,请用圆规和直尺作菱形DEFG,使点E、F在边AB上,点G在边BC上(不写作法,但要保留作图痕迹).阅读理解我们把图①中的菱形DEFG称为△ABC的有一边平行于AB的内接菱形,简称AB类内接菱形.类似的可得到AB类内接矩形.若公共顶点为D的AB类内接菱形DEFG恰好以BC类内接矩形DFMC的一边为对角线,求CD的长.深入探究(1)当CD长度满足什么条件时,可作2个AB类内接菱形DEFG?说明理由;(2)直接写出AB类内接菱形DEFG面积的最大值.20.如图,在平面直角坐标系中,四边形ABCD是平行四边形,AD=6,若OA,OB的长是关于x的一元二次方程x2﹣7x+12=0的两个根,且OA>OB.(1)直接写出:OA= ,OB= ;(2)若点E为x轴上的点,且△AOE∽△DAO.求此时点E的坐标.21.小琴的父母承包了一块荒山地种植一批香梨树,今年收获一批香梨,小琴的父母打算以m元/斤的零售价销售5000斤香梨;剩余的5000(m+1)斤香梨以比零售价低1元的批发价批给外地客商,总共的销售额为55000元.(1)小琴的父母今年共收获这种香梨多少斤?(2)批发商买回这批香梨后,零售平均每天可售出200斤,每斤盈利2元.为了加快销售和获得较好的利润,采取了降价措施,发现销售单价每降低0.1元,平均每天可多售出40斤,应降价多少元使得每天销售利润为600元?22.综合与实践问题情境:在Rt△ABC中,∠ACB=90°,点D为斜边AB上的动点(不与点A,B重合).操作发现:(1)如图①,当AC=BC时,把线段CD绕点C逆时针旋转90°得到线段CE,连接DE,BE.①∠CBE的度数为 ;②探究发现AD和BE有什么数量关系,请写出你的探究过程;探究证明:(2)如图2,当BC=2AC时,把线段CD绕点C逆时针旋转90°后并延长为原来的两倍,记为线段CE.①在点D的运动过程中,请判断AD与BE有什么数量关系?并证明;②若AC=2,在点D的运动过程中,当△CBE的形状为等腰三角形时,直接写出此时△CBE的面积.参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.解:∵一元二次方程x2+px+2p=0的一个根为2,∴22+2p+2p=0.∴4p=﹣4.∴p=﹣1.故选:C.2.解:过点A作AF∥DE交CD于点F,则DF=AE=4m,△CAF∽△C′CD′.∴D′C′:C′C=CF:CA,即2:3=CF:6.∴CF=4.∴DC=4+4=8(m).即:这棵树高8m.故选:B.3.解:A、掷一枚硬币,出现正面朝上的概率为,故此选项不符合题意;B、掷一枚正六面体的骰子,出现1点的概率为,故此选项不符合题意;C、转动如图所示的转盘,转到数字为奇数的概率为,故此选项不符合题意;D、从装有2个红球和1个蓝球的口袋中任取一个球恰好是蓝球的概率,故此选项符合题意;故选:D.4.解:该几何体的视图为一个圆形和两个矩形.则该几何体可能为圆柱.故选:D.5.解:∵E,F分别是AB,BC边上的中点,EF=,∴AC=2EF=2,∵四边形ABCD是菱形,∴AC⊥BD,OA=AC=,OB=BD=2,∴AB==,∴菱形ABCD的周长为4.故选:C.6.解:∵四边形ABCD是矩形,∴BD=AC=2,由题意可知:AM=AC=2,∵OA=|﹣1|=1,∴OM=AM﹣OA=2﹣1,∴点M的坐标为(2﹣1,0),故选:C.7.解:在x2﹣2x﹣3=0中,Δ=b2﹣4ac=(﹣2)2﹣4×1×(﹣3)=16>0,即该方程有两个不等实数根,故选项A不符合题意;在x2+3x+2=0中,Δ=b2﹣4ac=32﹣4×1×2=1>0,即该方程有两个不等实数根,故选项B不符合题意;在x2﹣2x+1=0中,Δ=b2﹣4ac=(﹣2)2﹣4×1×1=0,即该方程有两个相等实数根,故选项C不符合题意;在x2+2x+3=0中,Δ=b2﹣4ac=22﹣4×1×3=﹣8<0,即该方程无实数根,故选项D 符合题意;故选:D.8.解:设方程的另一个根为t,根据题意得2+t=8,解得t=6,即方程的另一个根是6.故选:B.9.解:如图,过点P作PM⊥BE,垂足为M,交AF于点N,则PM=1.6,设FA=x米,由3FD=2FA得,FD=x=MN,∵四边形ACDF是矩形,∴AF∥CD,∴△PAF∽△PBE,∴=,即=,∴PN=x,∵PN+MN=PM,∴x+x=1.6,解得,x=,故选:D.10.解:∵四边形ABCD为正方形,AC为对角线,∴BC=DC,∠BCA=∠DCA=45°,BC=DC,∠BCD=90°,在△BCM和△DCM中,,∴△BCM≌△DCM(SAS),∴BM=DM,故结论①正确;∵△CDE为等边三角形,∴∠DCE=60°,DC=CE,∴BC=CE,∴∠BEC=∠EBC,∵∠BCE=∠BCD+∠DCE=90°+60°=150°,∴°,∵△BCM≌△DCM,∴∠MBC=∠MDC,即:∠BEC=∠MDC=15°;故结论②正确;∵∠MDC=15°,∠DCA=45°,∴∠AMD=∠MDC+∠DCA=60°,故结论③不正确;在△AMB和△AMD中,,∴△AMB≌△AMD(SAS),∵四边形ABCD为正方形,△CDE为等边三角形,∴AD=ED,∠ADC=90°,∠EDC=60°,∵∠MDC=15°,∴∠ADM=∠ADC﹣∠MDC=75°,∠EDM=∠MDC+∠EDC=75°,∴∠ADM=∠EDM=75°,在△AMD和△EMD中,,∴△AMD≌△EMD(SAS),∴△AMB≌△AMD≌△EMD,故结论④正确,综上所述:正确的结论是①②④,共有3个.故选:C.二.填空题(共5小题,满分15分,每小题3分)11.解:∵DE∥BC,∴AD:AB=AE:AC,∵AD=2,DB=4,AE=3,∴2:6=3:AC,∴AC=9,故答案为:9.12.解:由表格可得,所有的可能性是:(1,2,3),(2,3,4),(3,4,5),(4,5,6),(5,6,7),(6,7,8),(7,8,9),(8,9,10),其中旅游3天,空气质量都是优良的有5种结果,所以空气质量都是优良的概率是,故答案为:.13.解:∵OA=20cm,OA'=50cm,∴OA:OA′=20:50=2:5,∵AB∥A′B′,∵∠AOB=∠A′OB′,∴△AOB∽△A′OB′,∴AB:A′B′=OA:OA′=2:5,∴矩形ABCD的周长:矩形A′B′C′D′的周长为2:5,又矩形ABCD的周长为36cm,则矩形A′B′C′D′的周长为90cm.故答案为:90.14.解:如图,作AN⊥EF于N,交BC于M,∵BC∥EF,∴AM⊥BC于M,∴△ABC∽△AEF,∴,∵AM=0.6,AN=30,BC=0.12,∴EF===6(m).答:电线杆的高度是6m.故答案为:6.15.解:∵将矩形ABCD绕点C顺时针旋转一定角度得到矩形A'B'CD',∴AB=CD=3,B′C=BC=AD=4,∠D=90°.设OD=x,则B'O=x,OC=4﹣x.在Rt△COD中,∵∠D=90°,∴OC2=OD2+CD2,即(4﹣x)2=x2+32,解得x=,∴AO=AD﹣OD=4﹣=.故答案为:.三.解答题(共7小题,满分75分)16.解:(1)2x2﹣3x=2,2x2﹣3x﹣2=0,(2x+1)(x﹣2)=0,∴2x+1=0或x﹣2=0,∴x1=﹣,x2=2;(2)x2+6x﹣111=0,x2+6x+9=111+9,即(x+3)2=120,∴x+3=,∴x1=﹣3+2,x2=﹣3﹣2.17.解:(1)这次参与调查的居民人数为:24÷20%=120(人);∴喜欢“纸牌”的人数为:120﹣24﹣15﹣30﹣9=42(人),∴扇形统计图中“纸牌”所在扇形的圆心角的度数为360°×=126°,故答案为:126°,补全条形图如图所示:(2)设:纸牌为A,象棋为B,跳棋为C,军棋为D,根据题意画树状图:由树状图可知:一共有12种等可能的情况,其中恰好选中“象棋、军棋”这两个项目的有2种,∴恰好选中“象棋、军棋”这两个项目的的概率是同时选中B、D的概率为=.18.解:如图,△ABC和△A1B1C1为所作.19.解:操作作图:如图所示中的四边形DEFG为符合条件的其中一个菱形.阅读理解:符合条件的图形如图所示:∵公共顶点为D的AB类内接菱形DEFG恰好以BC类内接矩形DFMC的一边为对角线,∴DG=GF,DC=FM,∠C=∠FMC=90°=∠FMB.∴Rt△DCG≌Rt△FMG(HL).∴CG=MG.∵DG∥AB,∴∠DGC=∠B.∴△DCG≌△DMB(AAS).∴CG=BM.∴.∵△DCG∽△ACB,∴.即,∴DC=2.深入探究:(1)如图所示,当点E与点A重合时,此时存在符合条件的两个菱形.在Rt△ABC中,.∵四边形DEFG为菱形,∵DG∥AB,∴,即.解得DC=.如图,当DE⊥AB时,过点C作CH⊥AB,交DG于点Q,交AB于点H.在Rt△ABC中,.∵DG∥AB,∴△ABC∽△DGC.∴.即,∴.∴.即,∴.∴当<CD≤时,可作2个AB类内接菱形DEFG.(2)如图,过点C作CH⊥AB于点H,交DG于点Q.∵四边形DEFG为菱形,设DG=x,∵DG∥AB,∴△ABC∽△DGC.∴.即,∴CQ=.则QH=.∴S菱形DEFG=DG×CH=.配方得.当点F与点B重合时,可求得DG=,由(1)可知:.在此范围内S菱形DEFG随x的增大而增大,∴当x=时,S菱形DEFG最大,最大值为.∴AB类内接菱形DEFG面积的最大值为.20.解:(1)方程x2﹣7x+12=0,分解因式得:(x﹣3)(x﹣4)=0,可得:x﹣3=0,x﹣4=0,解得:x1=3,x2=4,∵OA>OB,∴OA=4,OB=3;故答案为4,3;(2)设点E的坐标为(m,0),则OE=|m|,∵△AOE∽△DAO,∴=,∴=,∴|m|=,∴m=±,∴点E的坐标为:(,0)或(﹣,0).21.解:(1)依题意,得5000m+(m﹣1)×5000(m+1)=55000,整理,得m2+m﹣12=0,解得:m1=3,m2=﹣4(不合题意,舍去),∴5000+5000(m+1)=25000.答:小琴的父母今年共收获这种香梨25000斤.(2)设降价x元,则每斤的利润为(2﹣x)元,每天的销售量为200+=(200+400x)斤,依题意,得(2﹣x)(200+400x)=600,整理,得2x2﹣3x+1=0,解得:x1=0.5,x2=1,又∵为了加快销售,∴x=1.答:应降价1元使得每天销售利润为600元.22.解:(1)①∵线段CD绕点C逆时针旋转90°得到线段CE,∴∠DCE=90°,DC=CE,∵∠ACB=90°,∴∠ACD=∠BCE,∵AC=BC,∴△ACD≌△BCE(SAS),∴∠CBE=∠CAD=45°,故答案为:45°;②AD=BE,理由如下:由①知△ACD≌△BCE,∴AD=BE;(2)①,理由如下:∵BC=2AC,CE=2CD,∴,∵∠ACB=∠DCE=90°,∴∠ACD+∠DCB=∠DCB+∠BCE,∴∠ACD=∠BCE,∴△ACD∽△BCE,∴,∴;②过C作CF⊥AB于F,CG⊥BE于G,如图:∵AC=2,BC=2AC,∴BC=4,AB==2,∴sin∠ABC====,cos∠ABC===,∴=,=,∴CF=,BF=,∵四边形CGBF是矩形,∴CG=BF=,BG=CF=,(Ⅰ)当CB=CE时,如图:∴BE=2BG=,∴△CBE的面积为××=;(Ⅱ)当BC=BE时,如图:此时BE=BC=4,∵CG=BF=,∴△CBE的面积为×BE•CG=×4×=(Ⅲ)当CE=BE时,如图:设BE=CE=t,则EG=t﹣,在Rt△CEG中,t2=()2+(t﹣)2,解得t=2,∴BE=2,∴△CBE的面积为CG•BE=××2=8,综上所述,△CBE的面积为或或8.。
北师大版九年级上册数学期中考试试卷带答案
北师大版九年级上册数学期中考试试题一、单选题1.若用配方法解一元二次方程22310x x --=时,下列变形正确的为()A .2317416x ⎛⎫+= ⎪⎝⎭B .23142x ⎛⎫-= ⎪⎝⎭C .231324x ⎛⎫-= ⎪⎝⎭D .2317416x ⎛⎫-= ⎪⎝⎭2.如果点C 是线段AB 延长线上的—点,且:5:2AC BC =,那么:AB BC 等于()A .5:2B .1:2C .3:2D .2:33.已知关于x 的一元二次方程x 2+bx ﹣1=0,则下列关于该方程根的判断,正确的是()A .有两个不相等的实数根B .有两个相等的实数根C .没有实数根D .实数根的个数与实数b 的取值有关4.下列各选项:①两个边长不等的等边三角形;②两个边长不等的正方形;③两个边长不等的菱形;④两个斜边不等的等腰直角三角形,其中的两个图形一定相似的有()A .①②B .①②③C .①②④D .①②③④5.小明与小刚一起玩抛掷两枚硬币的游戏,游戏规则:抛出两个正面--小明赢1分;抛出其他结果--小刚赢1分;谁先到10分,谁就获胜.这是个不公平的游戏规则,要把它修改成公平的游戏,下列做法中错误的是()A .把“抛出两个正面”改为“抛出两个同面”B .把“抛出其他结果”改为“抛出两个反面”C .把“小明赢1分”改为“小明赢3分”D .把“小刚赢1分”改为“小刚赢3分”6.如图,点()6,4P 在ABC 的边AC 上,以原点O 为位似中心,在第一象限内将ABC 缩小到原来的12,得到A B C '''V ,则点P 在A C ''上的对应点P '的坐标为()A .()2,3B .()3,4C .()3,2D .()3,37.如图,直线a b ∥,直线c 与直线a 、b 都相交,从1∠,2∠,3∠,4∠这四个角中任意选取2个角,则所选取的2个角互为补角的概率是()A .14B .12C .34D .238.一元二次方程x 2﹣4x+4=0的根的情况是()A .有两个不相等的实数根B .有两个相等的实数根C .无实数根D .无法确定9.如图,矩形ABCD 中,对角线AC ,BD 交于O 点.若60AOB ∠=︒,8AC =,则AB 的长为()A .4B .C .3D .510.如图,菱形ABCD 的面积为120cm 2,正方形AECF 的面积为50cm 2,则AB 的长为()A .9cmB .12cmC .13cmD .15cm二、填空题11.已知关于x 的一元二次方程2310mx x -+=有两个实数根,则m 的取值范围是______.12.已知0234a b c ==≠,则a b c +的值为______.13.在一个不透明的口袋中装有8个红球,若干个白球,这些球除颜色不同外其它都相同,若从中随机摸出一个球,它是红球的概率为25,则白球的个数为______.14.四边形具有不稳定性,对于四条边长确定的四边形,当内角度数发生变化时,其形状也会随之改变.如图,改变正方形ABCD 的内角度数,正方形ABCD 变为菱形ABC D '',若30BAD '∠=︒,且菱形ABC D ''的面积为16,则正方形ABCD 的面积为______.15.如图,是两个可以自由转动的转盘,转盘各被等分为三个扇形,并分别标有2、3、4和6、7、8这6个数字,如果同时转动这两个转盘各一次(指针落在等分线上重转),转盘停止后,则指针指向的数字之和为奇数的概率为______.16.如图,矩形ABCD 的边CD 上有一点E ,22.5DAE ∠=︒,EF AB ⊥,垂足为F ,将AEF 绕着点F 顺时针旋转,使得点A 的对应点M 落在EF 上,点E 恰好落在点B 处,连接BE .下列结论:①BM AE ⊥;②四边形EFBC 是正方形;③30EBM ∠=︒;④AB BE =,其中结论正确的为______.(填写序号即可)三、解答题17.用适当的方法解方程:2212033x x +-=18.已知关于x 的一元二次方程210(0)ax bx a ++=≠有两个相等的实数根,求222(2)4ab a b +--的值.19.一枚质地均匀的正方体骰子,六个面上分别标有数字-3,-1,0,1,2,4这六个数,若将第一次掷出的骰子正面朝上的数记为m ,第二次掷出的骰子正面朝上的数记为n ,则点P 记作(),m n .请用画树状图或列表法求点(),P m n 恰好落在第二象限的概率.20.在四边形ABCD 中,DC AB ∥,90DAB ∠=︒,AC BC ⊥,AC BC =,ABC ∠的平分线分别交AD 、AC 于点E 、F ,求EF BF 的值.21.某商店将进价为每件10元的商品以每件14元的价格售出,平均每天能售出220件.经市场调查发现:这种商品每件的售价每上涨1元,其销售量就将减少20件,该商店计划通过提高售价减少销售量的办法来增加利润.若物价部门规定此种商品每件利润不能超过进价的80%,且商店想要获得平均每天1080元的利润,则这种商品的售价应定为多少元?22.如图,在平行四边形ABCD 中,对角线AC 、BD 相交于点O ,以AC 为斜边的等腰直角三角形AEC 的边CE 与AD 交于点F ,连接OE ,使得OE OD =.在AD 上截取AH CD =,连接EH 、ED .(1)判断四边形ABCD 的形状,并说明理由;(2)若2AB =,6BC =,求EH 的长.23.如图,菱形ABCD 的对角线AC 、BD 相交于点O ,过点D 作DE AC ∥且12DE AC =,连接AE 交OD 于点F ,连接OE .(1)求证:OE AB =;(2)若菱形ABCD 的边长为4,60ABC ∠=︒,求AE 的长.24.已知四边形ABCD 是正方形,点P 在线段BC 上,点G 在线段AD 上(P 、G 不与正方形顶点重合,且在CD 的同侧),PD PG =,DF PG ⊥于点H ,交直线AB 于点F ,将线段PG 绕点P 逆时针旋转90°得到线段PE ,连接EF .(1)求证:DF PG =;(2)求证:四边形PEFD 是菱形;(3)若3AB =,1PC =.求四边形PEFD 的面积.25.如图,在ABC 和ADE 中,AB AC =,AD AE =,且BAC DAE ∠=∠,线段AC 与DE 交于点G ,连接BD ,CE .(1)如图1,当B ,D ,E 三点共线时,求证:BEC DAE ∠=∠;(2)如图2,当B ,D ,E 三点不共线时,延长ED 交BC 于点F ,求证:AD CG EG FC ⋅=⋅.参考答案1.D【解析】先将常数项移到等号的右边,根据等式的性质将二次项的系数化为1,在方程两边加上一次项系数一半平方,将方程左边配成一个完全平方式即可.【详解】解:原方程变形为:2231x x -=,23122x x -=,配方为:23919216216x x -+=+,23()46171x ∴-=.故选:D .【点睛】本题考查了运用配方法解一元二次方程的运用,配方法的解法的运用,解题的关键是熟练配方法的步骤.2.C【解析】【分析】先画出图形,设BC 为2k ,然后用k 表示出AB ,最后求出:AB BC 即可.【详解】根据题意可画出下图::5:2AC BC = ,设2BC k =,则5AC k =,523AB AC BC k k k ∴=-=-=,:3:23:2AB BC k k ∴==.故选:C .【点睛】本题主要考查了成比例线段,正确设出线段的长度是解题的关键.3.A【分析】先计算出判别式的值,再根据非负数的性质判断△>0,然后利用判别式的意义对各选项进行判断.【详解】解:∵△=b2﹣4×(﹣1)=b2+4>0,∴方程有两个不相等的实数根.故选:A.【点睛】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.4.C【解析】【分析】利用相似图形的判定方法:形状相同的图形称为相似形,进而分别判断得出即可.【详解】解:①两个边长不等的等边三角形一定相似,符合题意;②两个边长不等的正方形一定相似,符合题意;③两个边长不等的菱形的对应角不一定相等,故两个菱形不一定相似,不符合题意;④两个斜边不等的等腰直角三角形一定相似,符合题意;故选:C.【点睛】考查了相似图形的定义,解题的关键是了解对应角相等,对应边成比例的图形相似,难度不大.5.D【解析】【详解】解:如图,因为p (正,正)=14,则出现其他结果的概率为:34.A .根据出现抛出两个相同面的概率为:12,则把“抛出两个正面”改为“抛出两个同面”正确,故此选项正确不符合题意;B .把“抛出其他结果”改为“抛出两个反面”时,两人获胜概率都为:14,故此时公平,故此选项正确不符合题意;C .∵小明获胜概率为:14,小刚获胜概率为:34,故把“小明赢1分”改为“小明赢3分”,故此时公平,故此选项正确不符合题意;D .把“小刚赢1分”改为“小刚赢3分,此时不公平,故此选项错误符合题意;故选D .【点睛】本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.6.C【解析】【分析】直接利用在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k ,那么位似图形对应点的坐标的比等于k 或-k ,进而结合已知得出答案.【详解】解:∵点()6,4P 在△ABC 的边AC 上,以原点O 为位似中心,在第一象限内将△ABC 缩小到原来的12,得到△A′B′C′,∴点P 在A′C′上的对应点P′的的坐标为:(3,2).故答案选C【点睛】此题主要考查了位似变换,正确得出位似比是解题关键.7.B【解析】【分析】用列表法列出所有结果数,再求出所选取的2个角互为补角结果数,即可求解.【详解】解:从1∠,2∠,3∠,4∠这四个角中任意选取2个角,列表可得:1∠2∠3∠4∠1∠1∠,2∠1∠,3∠1∠,4∠2∠2∠,1∠2∠,3∠2∠,4∠3∠3∠,1∠3∠,2∠3∠,4∠4∠4∠,1∠4∠,2∠4∠,3∠共有12种结果,其中所选取的2个角互为补角有6种结果(1∠,2∠)、(2∠,1∠)、(2∠,3∠)、(3∠,2∠)、(2∠,4∠)、(4∠,2∠)所选取的2个角互为补角的概率为61122=故选B【点睛】此题考查了列表法或树状图求概率,涉及了平行线的性质以及补角的定义,解题的关键是掌握列表法或树状图求概率的方法.8.B【解析】【分析】把a=1,b=-4,c=4代入判别式△=b2-4ac 进行计算,然后根据计算结果判断方程根的情况.【详解】解:∵一元二次方程x2-4x+4=0,∴△=(-4)2-4×1×4=0,∴方程有两个相等的实数根.故选:B .【点睛】本题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0,方程有两个不相等的实数根;(2)△=0,方程有两个相等的实数根;(3)△<0,方程没有实数根.9.A【解析】【分析】根据矩形的对角线的性质可得OB=OC,求得∠ACB=30°,利用30°角所对的直角边等于斜边的一半即可求出AB的值.【详解】∵ABCD是矩形,∴OA=OB=OC,∵∠AOB=60°,∴∠ACB=30°,∵AC=8,∴AB=1184 22AC=⨯=,故选:A.【点睛】本题考查了矩形的性质、30°角所对的直角边等于斜边的一半,熟练掌握矩形的性质,30°角所对的直角边等于斜边的一半是解题的关键.10.C【解析】【分析】根据正方形的面积求出AC的长,根据菱形的面积求出BD的长,再利用菱形的对角线互相垂直平分计算菱形的边长.【详解】解:因为正方形AECF的面积为50cm2,所以AC=10cm=因为菱形ABCD的面积为120cm2,所以BD=21202410cm ⨯=所以菱形的边长=13cm 故选C .【点睛】此题考查正方形和菱形的性质,关键是根据正方形和菱形的面积进行解答.11.94m ≤且0m ≠【解析】【分析】由于关于x 的一元二次方程有实数根,计算根的判别式240b ac ∆=-≥,得关于m 的不等式,由于一元二次方程二次项系数不为0得出,0m ≠,求解即可.【详解】关于x 的一元二次方程2310mx x -+=有实数根,224(3)410b ac m ∴∆=-=--⨯⨯≥,且0m ≠.解得:94m ≤且0m ≠.故答案为:94m ≤且0m ≠.【点睛】本题考查的是一元二次方程的定义,一元二次方程根的判别式的应用,掌握“方程()200++=≠ax bx c a 有两个实数根,则240b ac ∆=-≥”是解题的关键.12.54【解析】【分析】设234a b c===k ,用k 表示出a 、b 、c ,代入求值即可.【详解】解:设234a b c===k 0≠,∴a=2k ,b=3k ,c=4k ,∴a b c +=234k k k +=54.故答案是:54.【点睛】本题考查了比例的性质,涉及到连比时一般假设比值为k ,这是常用的方法.13.12【解析】【分析】设该盒中白球的个数为x 个,根据意得8825x =+,解此方程即可求得答案.【详解】解:设该盒中白球的个数为x 个,根据题意得:8825x =+,解得:12x =,经检验:12x =是分式方程的解,所以该盒中白球的个数为12个,故答案为:12.【点睛】本题考查了概率公式的应用,解题的关键是掌握:概率=所求情况数与总情况数之比.14.32【解析】【分析】根据菱形ABC D '',AB 边上的高等于AD '边的一半,得到12ABC D S AD AB '''=⋅菱形,求出AB 边的长,从而得到正方形ABCD 的面积.【详解】∵12ABC D S AD AB '''=⋅菱形,即21116=22AD AB AB '=⋅∴232AB =∴232ABCD S AB ==正方形.故填32.【点睛】本题考查了特殊三角形的性质,菱形和正方形面积公式,利用30°所对直角边等于斜边的一半求出菱形的高是解决本题的关键.15.4 9【解析】【分析】首先画树状图,根据树状图求得所有的等可能的结果与指针指向的数字和为奇数的情况,然后根据概率公式即可求得答案.【详解】画树状图得:∴一共有9种等可能的结果,指针指向的数字和为奇数的有4种情况,∴指针指向的数字和为奇数的概率是:4 9.故答案为:4 9.【点睛】本题考查用列举法求概率,画出满足题意的树状图,并灵活运用概率公式求解是解题的关键.16.①②④【解析】【分析】延长BM交AE于N,连接AM,由垂直的定义可得∠AFE=∠EFB=90°,根据直角三角形的两个锐角互余得∠EAF=67.5°,从而有∠EAF+∠FBM=90°,得到①正确;根据三个角是直角可判断四边形EFBC是矩形,再由EF=BF可知是正方形,故②正确,计算出∠EBM =22.5°得③错误;由①知∠EAF=67.5°,∠AEF=22.5°,FB=FE,易得∠BEA=∠EAB=67.5°,所以AB=BE,故④正确.【详解】解:如图,延长BM交AE于N,连接AM,∵EF⊥AB,∴∠AFE=∠EFB=90°,∵∠DAE=22.5°,∴∠EAF=90°﹣∠DAE=67.5°,∵将△AEF绕着点F顺时针旋转得△MFB,∴MF=AF,FB=FE,∠FBM=∠AEF=∠DAE=22.5°,∴∠EAF+∠FBM=90°,∴∠ANB=90°,∴BM⊥AE,故①正确;∵四边形ABCD是矩形,∴∠ABC=∠C=90°,∵∠EFB=90°,∴四边形EFBC是矩形,又∵EF=BF,∴矩形EFBC是正方形,故②正确;∴∠EBF=45°,∴∠EBM=∠EBF﹣∠FBM=45°﹣22.5°=22.5°,故③错误;由①知∠EAF =67.5°,∠AEF =22.5°,FB =FE ,∴∠BEF=45°,∴∠BEA=∠AEF+∠BEF=22.5°+45°=67.5°=∠EAB ,∴AB=BE ,故④正确.故答案为:①②④.【点睛】本题考查了矩形的性质、旋转的性质、勾股定理和正方形的判定与性质,掌握常用辅助线的添加方法,灵活运用相关知识是解题的关键.17.123,22x x ==-【解析】【分析】先将方程转化为2260x x +-=,再利用因式分解法,即可求解.【详解】解:2212033x x +-=变形为2260x x +-=,∴()()2230x x +-=,解得:123,22x x ==-.【点睛】本题主要考查了解一元二次方程,熟练掌握一元二次方程的解法,并根据方程的特征灵活选用合适的方法是解题的关键.18.4【解析】【分析】先根据一元二次方程根的判别式可得240b a -=,从而可得24b a =,再代入计算即可得.【详解】解:∵关于x 的一元二次方程210(0)ax bx a ++=≠有两个相等的实数根,∴此方程根的判别式240b a ∆=-=,即24b a =,则22224(2)4(2)44ab a aa b a a ⋅=+--+--,2244444a a a a =++--,224a a =,4=.【点睛】本题考查了一元二次方程根的判别式、代数式求值,熟练掌握一元二次方程根的判别式是解题关键.19.16【解析】【分析】根据题意通过列表法求得所有可能,再根据在第二象限的点的特点即可求得(),P m n 恰好落在第二象限的概率.【详解】列表如下,\n m3-1-01243-(3-,3-)(1-,3-)(0,3-)(1,3-)(2,3-)(4,3-)1-(3-,1-)(1-,1-)(0,1-)(1,1-)(2,1-)(4,1-)0(3-,0)(1-,0)(0,0)(1,0)(2,0)(4,0)1(3-,1)(1-,1)(0,1)(1,1)(2,1)(4,1)2(3-,2)(1-,2)(0,2)(1,2)(2,2)(4,2)4(3-,4)(1-,4)(0,4)(1,4)(2,4)(4,4)共有36中等可能结果,点(,)P m n 恰好落在第二象限的有:(3-,1)(1-,1)(3-,2)(1-,2)(3-,4)(1-,4)共6种情形∴点(),P m n恰好落在第二象限的概率为63616=.【点睛】本题考查了第二象限点的坐标特征,列表法求概率,掌握以上知识是解题的关键.201-【解析】【分析】过点F作FG⊥AB于点G,由EA∥FG,得出EFBF=GABG,又BE是∠ABC的平分线,结合AC=BC,∠ACB=90°,得到BC,即可求解本题.【详解】解:作FG⊥AB于点G,∵∠DAB=90°,∴EA∥FG,∴EFBF=GABG,∵AC⊥BC,∴∠ACB=90°,又BE是∠ABC的平分线,∴FG=FC,在和Rt BFC Rt BFG 中,BF BFFG FC =⎧⎨=⎩,≌Rt BFC Rt BFG ∴ ,∴CB=GB ,∵AC=BC ,∠ACB=90°,∴BC ,∴EF BF =GA BG -1).【点睛】本题主要考查了平行线分线段成比例,角平分线上的点到角两边的距离相等及等腰直角三角倍,熟练掌握这几个知识点是解题的关键.21.16元【解析】【分析】设这种商品的售价应定为x 元,则每件的销售利润为(10)x -元,日销售量为(50020)x -件,根据日销售总利润=每件的销售利润⨯日销售量,即可得出关于x 的一元二次方程,解之即可得出x 的值,再结合此种商品的每件利润不能超过进价的80%,即可确定x 的值.【详解】解:设这种商品的售价应定为x 元,则每件的销售利润为(10)x -元,日销售量为22020(14)(50020)x x --=-件,依题意得:(10)(50020)1080x x --=,整理得:2353040x x -+=,解得:116x =,219x =.10(180%)18⨯+= (元),161819<<,16x ∴=.答:这种商品的售价应定为16元.【点睛】本题考查了一元二次方程的应用,解题的关键是:找准等量关系,正确列出一元二次方程.22.(1)矩形,理由见解析;(2)【解析】(1)先根据平行四边形的性质得到OA=OC=12AC,OB=OD=12BD,再由直角三角形斜边上的中线等于斜边的一半得到OE=12AC=OA,则OA=OD,即AC=BD,由此即可证明四边形ABCD是矩形;(2)先根据平行四边形ABCD是矩形,得到AD=BC=6,∠ADC=90°,CD=AB=2,则DH=AD -AH=4,然后证明△AEH≌△CED得到EH=ED,∠AEH=∠DEC,即可推出∠HED=90°,则EH2+ED2=DH2,由此求解即可.【详解】解:(1)四边形ABCD是矩形,理由如下:∵四边形ABCD是平行四边形,∴OA=OC=12AC,OB=OD=12BD,∵△AEC是等腰直角三角形,∴OE⊥AC,OE=12AC=OA,∵OE=OD,∴OA=OD,∴AC=BD,∴平行四边形ABCD是矩形;(2)∵平行四边形ABCD是矩形,∴AD=BC=6,∠ADC=90°,CD=AB=2,∵AH=CD,∴AH=2,∴DH=AD-AH=4,∵∠AEC=∠ADC=90°,∴∠DCF+∠DFC=∠EAF+∠AFE=90°∵∠AFE=∠DFC,∴∠DCF=∠EAF,∴△AEH≌△CED(SAS),∴EH=ED,∠AEH=∠DEC,∵∠AEH+∠HEC=∠AEC=90°,∴∠CED+∠HEC=∠HED=90°,∴EH2+ED2=DH2,∴2EH2=DH2,∴【点睛】本题主要考查了矩形的性质与判定,平行四边形的性质,直角三角形斜边上的中线,全等三角形的性质与判定,勾股定理等等,解题的关键在于能够熟练掌握矩形的性质与判定条件.23.(1)见解析;(2)【解析】(1)连接EC,由菱形ABCD中,DE//AC且DE=12AC,易证得四边形OADE是平行四边形,继而可得OE=AB即可;(2)由菱形的对角线互相垂直,可证得四边形OCED是矩形,根据菱形的性质得出AC=AB,再根据勾股定理得出AE的长度即可.【详解】(1)连接EC,∵四边形ABCD是菱形∴OA=OC=12AC,AD=AB.∵DE//AC 且DE=12AC∴DE=OA=OC∴四边形OADE 、四边形OCED 都是平形四边形,∴OE=AD ,∴OE=AB ;(2)∵AC ⊥BD ,∴平行四边形OCED 是矩形,∴∠OCE=90°.∵在菱形ABCD 中,∠ABC=60°,∴△ABC 为等边三角形,∴AC=AB=4,∴AO=12AC=2,∴在矩形OCED 中,∴在Rt △ACE 中,【点睛】本题考查了菱形的性质,矩形的判定与性质,勾股定理的应用.注意证得四边形OADE 是平行四边形,四边形OCED 是矩形是关键;24.(1)见解析;(2)见解析;(3)8【解析】【分析】(1)根据四边形ABCD 为正方形得AD =AB ,由四边形ABPM 为矩形得AB =PM ,则AD =PM ,再利用等角的余角相等得到∠GDH =∠MPG ,于是可根据“ASA”证明△ADF ≌△MPG ,得到DF =PG ;(2)如图2中,作PM ⊥AD 于M .则四边形CDMP 是矩形,CD =PM ,由△ADF ≌△MPG ,推出DP =PG =PE =PD ,再证明DF ∥PE ,推出四边形PEFD 是平行四边形,由PD =PE ,即可证明四边形PEFD 是菱形.(3)利用旋转的性质得∠EPG =90°,PE =PG ,所以PE =PD =DF ,再利用DF ⊥PG 得到DF ∥PE ,于是可判断四边形PEFD 为平行四边形,根据勾股定理得到PD,DF =PG =PDGH =5,于是得到结论.【详解】(1)证明:∵四边形ABCD 是正方形,∴AD=CD,∠A=∠C=∠ADC=90°,∵DF⊥PG,∴∠DHG=90°,∴∠HGD+∠ADF=90°,∠CDP+∠PDG=90°,∵PD=PG,∴∠PGD=∠PDG,∴∠ADF=∠CDP,∴△ADF≌△CDP(ASA),∴DF=DP,∵PD=PG,∴DF=PG.(2)如图,过点P作PM⊥AD于点M,则四边形CDMP是矩形,∵线段PG绕点P逆时针旋转90°得到线段PE,∴∠EPG=90°,PE=PG,∴PE=PD=DF而DF⊥PG,∴DF∥PE,且DF=PE,∴四边形PEFD为平行四边形,∵DF=PD,∴四边形PEFD为菱形.(3)在Rt△DCP中,CD=AB=3,PC=1,31 10,∴22易知DM=MG=PC=1,.DG=2DM=2,∵∠PMG=∠DHG=90°,∠DGH=∠PGM,∴△DHG∽△PMG,∴DGPG=GHMG1GH,∴∴PH=PG-,由(1)知DF=PG,∴四边形PEFD的面积=8.【点睛】本题属于四边形综合题,考查了旋转变换、等腰三角形的性质、正方形的性质、全等三角形的判定和性质、菱形的判定、相似三角形的性质和判定等知识,解题的关键是学会添加常用辅助线,正确寻找全等三角形解决问题,属于中考常考题型..25.(1)见解析;(2)见解析【解析】【分析】(1)由已知,结合等式的基本性质,易证△BAD≌△CAE,又∵当B,D,E三点共线时,∠AGB=∠EGC,∴∠BAC=∠BEC,∴∠BEC=∠DAE;(2)由题意,结合∠BAC=∠DAE,易证△BAC∽△DAE,又∠AGE=∠FGC,得到△AEG∽△FCG,故AEFC=EGCG,即AE·CG=EG·FC,结合AD=AE,故AD·CG=EG·FC.【详解】解:(1)证明:∵∠BAC=∠DAE,∴∠BAC-∠DAC=∠DAE-∠DAC,∴∠BAD=∠CAE,又∵AB=AC,AD=AE,∴△BAD≌△CAE,∴∠ABD=∠ACE,又∵当B,D,E三点共线时,∠AGB=∠EGC,∴∠BAC=∠BEC,∴∠BEC=∠DAE;(2)证明:∵AB=AC,AD=AE,∴ABAD=ACAE,又∠BAC=∠DAE,∴△BAC∽△DAE,∴∠AED=∠ACB,又∠AGE=∠FGC,∴△AEG∽△FCG,∴AEFC=EGCG,即AE·CG=EG·FC,又AD=AE,∴AD·CG=EG·FC.【点睛】本题考查的主要是全等三角形和相似三角形的综合应用,熟练使用相关的性质和判定,进行等量的转换是解题的关键.。
北师大版九年级上册数学期中考试试卷含答案
北师大版九年级上册数学期中考试试题一、单选题1.若x 2﹣3x 的值等于零,则x 的值为()A .﹣3B .0C .0或3D .0或﹣32.若234a b c==,a ﹣b+c =18,则a 的值为()A .11B .12C .13D .143.若两个等腰直角三角形斜边的比是1:3,则它们的面积比是()A .1:4B .1:6C .1:9D .1:104.三角形两边的长是2和4,第三边的长是方程x 2﹣12x+35=0的根,则该三角形的周长为()A .11B .13C .11或13D .以上都不对5.如图,P 是直角△ABC 斜边AB 上任意一点(A ,B 两点除外),过点P 作一条直线,使截得的三角形与△ABC 相似,这样的直线可以作()A .4条B .3条C .2条D .1条6.如图,已知正方形ABCD 的边长为6,点E ,F 分别在边AB ,BC 上,BE =CF =2,CE 与DF 交于点H ,点G 为DE 的中点,连接GH ,则GH 的长为()AB C .4.5D .4.37.如图,在▱ABCD 中,对角线AC ,BD 相交于点O ,在DC 的延长线上取一点E ,连接OE 交BC 于点F ,若AB =4,BC =6,CE =1,则CF 的长为()AB .1.5C D .18.如图,在正方形ABCD 中,△BPC 是等边三角形,BP 、CP 的延长线分别交AD 于点E 、F ,连接BD 、DP ,BD 与CF 交于点H .下列结论:①CF =2AE ;②△DFP ∽△BPH ;③DP 2=PH•PC ;④PE :BC =(3):3.正确的有()A .1个B .2个C .3个D .4个二、填空题9.一个不透明的口袋中装有10个黑球和若干个白球,小球除颜色外其余均相同,从中随机摸出一球记下颜色,再放回袋中,不断重复上述过程,一共摸了150次,其中有50次摸到黑球,由此估计口袋中白球的个数约为_____个.10.已知线段AB =4cm ,C 是AB 的黄金分割点,且AC >BC ,则AC =_____.11.若关于y 的一元二次方程24334ky y y --=+有实根,则k 的取值范围是______12.如图,矩形ABCD 的两条对角线AC ,BD 交于点O ,∠AOB =60°,AB =3,则矩形的周长为_____.13.如图,菱形ABCD 的周长为16cm ,BC 的垂直平分线EF 经过点A ,则对角线BD 长为_____________cm .14.某超市第二季度的营业额为200万元,第四季度的营业额为288万元.如果每季度营业额的平均增长率相同,那么每季度的平均增长率为_____.15.如图,正方形ABCD的面积为18,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为_____.16.如图,依次连接第一个矩形各边的中点得到一个菱形,再依次连接菱形各边的中点得到第二个矩形,按照此方法继续下去.已知第一个矩形的面积为1,则第n个矩形的面积为_____.三、解答题17.计算:(1)3x2+3=7x;(用配方法解方程)(2)4y(3﹣y)=(y﹣3)2.18.如图在平面直角坐标系中,△ABC的位置如图所示,顶点坐标分别为:A(﹣2,0),B(﹣3,2),C(﹣1,1).(1)做出△ABC关于y轴对称的图形△A1B1C1;(2)以原点O为位似中心,在y轴右侧画出△ABC的位似图形△A2B2C2,使它与△ABC的相似比是2:1;(3)若M(x,y)是线段AB上一点,则点M关于y轴对称的对应点M1的坐标为.19.为了参加全市中学生“党史知识竞赛”,某校准备从甲、乙2名女生和丙、丁2名男生中任选2人代表学校参加比赛.(1)如果已经确定女生甲参加,再从其余的候选人中随机选取1人,则女生乙被选中的概率是______;(2)求所选代表恰好为1名女生和1名男生的概率.20.某商场以每件280元的价格购进一批商品,当每件商品售价为360元时,每月可售出60件,为了扩大销售,商场决定采取适当降价的方式促销,经调查发现,如果每件商品降价1元,那么商场每月就可以多售出5件.要使商场每月销售这种商品的利润达到7200元,且更有利于减少库存,则每件商品应降价多少元?21.如图,△ABC中,AB=AC,D、F分别为BC、AC的中点,连接DF并延长到点E,使DF=FE,连接AE、AD、CE.(1)求证:四边形AECD是矩形.(2)当△ABC满足什么条件时,四边形AECD是正方形,并说明理由.22.如图,在▱ABCD中,对角线AC,BD交于点O,E是BD延长线上一点,且△ACE 是等边三角形.(1)求证:四边形ABCD是菱形;(2)若∠AED=2∠EAD,AB=a,求四边形ABCD的面积.23.如图,△ABD中,∠A=90°,AB=6cm,AD=12cm.某一时刻,动点M从点A出发沿AB方向以1cm/s的速度向点B匀速运动;同时,动点N从点D出发沿DA方向以2cm/s 的速度向点A匀速运动,运动的时间为ts.(1)求t为何值时,△AMN的面积是△ABD面积的2 9;(2)当以点A,M,N为顶点的三角形与△ABD相似时,求t值.24.如图,过矩形ABCD(AD>AB)的对角线AC的中点O作AC的垂直平分线EF,分别交AD、BC于点E、F,分别连接AF和CE.(1)判断四边形AFCE是什么特殊四边形,并证明;(2)过点E作AD的垂线交AC于点P,求证:2AE2=AC•AP.25.在四边形ABCD中,对角线AC、BD相交于点O,将△COD绕点O按逆时针方向旋转得到△C1OD1,旋转角为α(0°<α<90°),连接AC1、BD1,AC1与BD1交于点P.(1)如图1,若四边形ABCD是正方形.①求证:△AOC1≌△BOD1;②请直接写出AC1与BD1的位置关系;(2)如图2,若四边形ABCD是菱形,AC=3,BD=5,设AC1=kBD1.判断AC1与BD1的位置关系,请说明理由,并求出k的值.(3)如图3,若四边形ABCD 是平行四边形,AC =6,BD =12,连接DD 1,设AC 1=kBD 1.请直接写出k 的值和AC 12+(kDD 1)2的值.参考答案1.C 【解析】根据题意得出x 2﹣3x =0,再利用因式分解法求解即可.【详解】解:根据题意,得:x 2﹣3x =0,∴x (x ﹣3)=0,则x =0或x ﹣3=0,解得x 1=0,x 2=3,则x 的值为:0或3.故选:C .2.B 【解析】设234a b c===k ,则可利用k 分别表示a 、b 、c ,再利用a ﹣b+c =18,所以2k ﹣3k+4k =18,然后解k 的方程,从而得到a 的值.【详解】解:设234a b c===k ,∴a =2k ,b =3k ,c =4k ,∵a ﹣b+c =18,∴2k ﹣3k+4k =18,解得k =6,∴a =2×6=12故选:B .3.C 【解析】根据相似三角形的判定与性质即可得出答案.【详解】解:如图,△ABC 与△DEF 都为等腰直角三角形,且EF :AB =1:3,则△ABC ∽△EFD ,∴21(9EFD ABC S EF S AB ∆∆==,故选:C .【点睛】本题主要考查了等腰直角三角形的性质,相似三角形的判定与性质等知识,熟练掌握相似三角形的性质是解题的关键.4.A 【解析】先求出方程的解,再根据三角形的三边关系定理看看能否组成三角形,最后求出三角形的周长即可.【详解】解:解方程x2﹣12x+35=0得:x=7或5,当三角形的三边为2,4,7时,2+4<7,不符合三角形的三边关系定理,不能组成三角形;当三角形的三边为2,4,5时,符合三角形的三边关系定理,能组成三角形,此时三角形的周长是2+4+5=11;综合上述:三角形的周长是11,故选:A.【点睛】本题考查了解一元二次方程和三角形的三边关系定理,能求出符合的所有情况是解此题的关键.5.B【解析】根据已知及相似三角形的判定方法(或平行线截线段成比例)进行分析,从而得到最后答案.【详解】解:如图,过点P可作PE∥BC或PE″∥AC,∴△APE∽△ABC、△PBE″∽△ABC;过点P还可作PE′⊥AB,可得:∠EPA=∠C=90°,∠A=∠A∴△APE∽△ACB;∴满足这样条件的直线的作法共有3种.故选:B6.A【解析】根据正方形的四条边都相等可得BC=DC,每一个角都是直角可得∠B=∠DCF=90°,然后利用“边角边”证明△CBE≌△DCF,得∠BCE=∠CDF,进一步得∠DHC=∠DHE=90°,从而知GH =12DE ,利用勾股定理求出DE 的长即可得出答案.【详解】解:∵四边形ABCD 为正方形,∴∠B =∠DCF =90°,BC =DC ,在△CBE 和△DCF 中,BC CC B DCF BE CF =⎧⎪∠=∠⎨⎪=⎩,∴△CBE ≌△DCF (SAS ),∴∠BCE =∠CDF ,∵∠BCE+∠DCH =90°,∴∠CDF+∠DCH =90°,∴∠DHC =∠DHE =90°,∵点G 为DE 的中点,∴GH =12DE ,∵AD =AB =6,AE =AB ﹣BE =6﹣2=4,∴DE ===∴GH故选A .【点睛】本题主要考查了正方形的性质,全等三角形的性质与判定,勾股定理,直角三角形斜边上的中线,解题的关键在于能够熟练掌握相关知识进行求解.7.D 【解析】【分析】过O 作OM ∥BC 交CD 于M ,根据平行四边形的性质得到BO =DO ,CD =AB =4,AD =BC =6,根据三角形的中位线的性质得到CM =12CD =2,OM =12BC =3,通过△CFE ∽△MOE ,根据相似三角形的性质得到CF CE OM EM=,代入数据即可得到结论.【详解】解:过O作OM∥BC交CD于M,在▱ABCD中,BO=DO,CD=AB=4,AD=BC=6,∴CM=12CD=2,OM=12BC=3,∵OM∥CF,∴△CFE∽△MOE,∴CFOM=CEEM,即1 33 CF,∴CF=1.故选:D.【点睛】本题考查了平行四边形的性质、相似三角形的判定与性质等知识.解此题的关键是准确作出辅助线,合理应用数形结合思想解题.8.D【解析】【分析】由正方形的性质和相似三角形的判定与性质,即可得出结论.【详解】解:∵△BPC是等边三角形,∴BP=PC=BC,∠PBC=∠PCB=∠BPC=60°,在正方形ABCD中,∵AB=BC=CD,∠A=∠ADC=∠BCD=90°,∴∠ABE=∠DCF=30°,∴BE=2AE,∵AD∥BC,∴∠FEP=∠PBC,∠EFP=∠PCB,∵∠EPF=∠BPC,∴∠FEP=∠EFP=∠EPF=60°,∴△EFP是等边三角形,∴BE=CF,∴CF=2AE,故①正确;∵PC=CD,∠PCD=30°,∴∠PDC=75°,∴∠FDP=15°,∵∠DBA=45°,∴∠PBD=15°,∴∠FDP=∠PBD,∵∠DFP=∠BPC=60°,∴△DFP∽△BPH,故②正确;∵∠PDH=∠PCD=30°,∠DPH=∠DPC,∴△DPH∽△CPD,∴DP PH PC DP,∴DP2=PH•PC,故③正确;∵∠ABE=30°,∠A=90°,∴AE,∵∠DCF=30°,∴DF,∴EF=AE+DF﹣BC﹣BC,∴FE:BC=(3):3,∵EF=PE,∴PE:BC=(3):3,故④正确,综上,四个选项都正确,故选:D.【点睛】本题考查了相似三角形的判定和性质,正方形的性质,等边三角形的性质,解答此题的关键是熟练掌握性质和定理.9.20【解析】【分析】先由频率=频数÷数据总数计算出频率,再由题意列出方程求解即可.【详解】解:摸了150次,其中有50次摸到黑球,则摸到黑球的频率是50150=13,设口袋中大约有x个白球,则1010x+=13,解得x=20,经检验x=20是原方程的解,估计口袋中白球的个数约为20个.故答案为:20.【点睛】本题考查了用频率估计概率.大量反复试验下频率稳定值即概率.关键是得到关于黑球的概率的等量关系.10.2##2-+【解析】【分析】根据黄金分割点的定义,知AC是较长线段;所以AC AB,代入数据即可得出AC 的长度.【详解】解:由于C为线段AB=4的黄金分割点,且AC >BC ,则AC =12AB =12-×4=2.故答案为:.【点睛】本题考查了黄金分割问题,理解黄金分割点的概念.要求熟记黄金比的值.11.74k ≥-且0k ≠【解析】【分析】先将方程化为一般形式2770--=ky y ,根据方程有实数根得到.【详解】∵24334ky y y --=+,∴2770--=ky y ∵一元二次方程有实根,∴∆0≥,且0k ≠,∴49+28k 0≥,解得74k ≥-,故答案为:74k ≥-且0k ≠.12.6+6+【解析】根据矩形性质得出AD =BC ,AB =CD ,∠BAD =90°,OA =OC =12AC ,BO =OD =12BD ,AC =BD ,推出OA =OB =OC =OD ,得出等边三角形AOB ,求出BD ,根据勾股定理求出AD 即可.【详解】解:∵四边形ABCD 是矩形,∴∠BAD =90°,OA =OC =12AC ,BO =OD =12BD ,AC =BD ,∴OA =OB =OC =OD ,∵∠AOB=60°,OB=OA,∴△AOB是等边三角形,∵AB=3,∴OA=OB=AB=3,∴BD=2OB=6,在Rt△BAD中,AB=3,BD=6,由勾股定理得:AD=∵四边形ABCD是矩形,∴AB=CD=3,AD=BC=∴矩形ABCD的周长是AB+BC+CD+AD=故答案为:13.【详解】试题分析:连接AC,∵菱形ABCD的周长为16cm,∴AB=4cm,AC⊥BD,∵BC的垂直平分线EF经过点A,∴AC=AB=4cm,∴OA=12AC=2cm,∴,∴.故答案为考点:菱形的性质;线段垂直平分线的性质.14.20%【解析】先设增长率为x,那么第四季度的营业额可表示为200(1+x)2,已知第四季度营业额为288万元,即可列出方程,从而求解.【详解】解:设每季度的平均增长率为x,根据题意得:200(1+x )2=288,解得:x =﹣2.2(不合题意舍去),x =0.2,则每季度的平均增长率是20%.故答案为:20%15.【解析】由正方形的对称性可知,PB =PD ,当B 、P 、E 共线时PD+PE 最小,求出BE 即可.【详解】解:∵正方形中B 与D 关于AC 对称,∴PB =PD ,∴PD+PE =PB+PE =BE ,此时PD+PE 最小,∵正方形ABCD 的面积为18,△ABE 是等边三角形,∴BE =,∴PD+PE 最小值是故答案为:.【点睛】本题考查轴对称求最短距离,熟练掌握正方形的性质是解题的关键.16.(14)n-1【解析】【详解】试题分析:已知第一个矩形的面积为1;第二个矩形的面积为原来的(14)2-1=14;第三个矩形的面积是(14)3-1=116;…故第n 个矩形的面积为:11()4n -.考点:1.矩形的性质;2.菱形的性质.17.(1)1x =2x =;(2)13y =,235y =【解析】【分析】(1)先移项,再方程两边都除以3,再根据完全平方公式配方,开方,即可得出两个一元一次方程,再求出方程的解即可;(2)移项后分解因式,即可得出两个一元一次方程,再求出方程的解即可.【详解】解:(1)3x 2+3=7x ,移项,得3x 2﹣7x =﹣3,除以3,得x 2﹣73x =﹣1,配方,得x 2﹣73x+(76)2=﹣1+(76)2,即(x ﹣76)2=1336,开方,得x ﹣76=,解得:x 1,x 2=76;(2)4y (3﹣y )=(y ﹣3)2,移项,得﹣4y (y ﹣3)﹣(y ﹣3)2=0,(y ﹣3)(﹣4y ﹣y+3)=0,y ﹣3=0或﹣4y ﹣y+3=0,解得:y 1=3,235y =.【点睛】本题主要考查了解一元二次方程,熟练掌握一元二次方程的解法,并根据方程的特征选用合适的方法是解题的关键.18.(1)见解析;(2)见解析;(3)(,)x y 【解析】【分析】(1)利用轴对称的性质分别作出A ,B ,C 的对应点A 1,B 1,C 1即可;(2)利用位似变换的性质分别作出A ,B ,C 的对应点A 2,B 2,C 2即可;(3)利用轴对称的性质求解即可.【详解】解:(1)如图,△A 1B 1C 1即为所求;(2)如图,△A 2B 2C 2即为所求;(3)若M (x ,y )是线段AB 上一点,则点M 关于y 轴对称的对应点M 1的坐标为(﹣x ,y )..【点睛】本题考查作图-位似变换,作图-轴对称变换,作图-相似变换等知识,解题的关键是掌握轴对称变换,位似变换的性质,属于中考常考题型.19.(1)13;(2)23【解析】【分析】(1)由一共有3种等可能性的结果,其中恰好选中女生乙的有1种,即可求得答案;(2)先求出全部情况的总数,再求出符合条件的情况数目,二者的比值就是其发生的概率.【详解】解:(1)∵已确定女生甲参加比赛,再从其余3名同学中随机选取1名有3种结果,其中恰好选中女生乙的只有1种,∴恰好选中乙的概率为13;故答案为:13;(2)分别用字母A ,B 表示女生,C ,D 表示男生画树状如下:4人任选2人共有12种等可能结果,其中1名女生和1名男生有8种,∴P (1女1男)82123==.答:所选代表恰好为1名女生和1名男生的概率是23.【点睛】本题考查的是用列表法或画树状图法求概率与古典概率的求解方法.列表法或画树状图法可以不重复不遗漏地列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.20.要使商场每月销售这种商品的利润达到7200元,且更有利于减少库存,则每件商品应降价60元.【解析】【分析】设要使商场每月销售这种商品的利润达到7200元,且更有利于减少库存,则每件商品应降价x 元,由销售问题的数量关系建立方程求出其解即可.【详解】解:设要使商场每月销售这种商品的利润达到7200元,且更有利于减少库存,则每件商品应降价x 元,由题意,得(360280)(560)7200x x --+=,解得:18x =,260x =.有利于减少库存,x∴=.60答:要使商场每月销售这种商品的利润达到7200元,且更有利于减少库存,则每件商品应降价60元.【点睛】本题考查了销售问题的数量关系利润=售价-进价的运用,列一元二次方程解实际问题的运用,解题的关键是根据销售问题的数量关系建立方程.21.(1)见解析;(2)∠BAC=90°,理由见解析【解析】【分析】(1)利用平行四边形的判定首先得出四边形AECD是平行四边形,进而理由等腰三角形的性质得出∠ADB=90°,即可得出答案;(2)利用等腰直角三角形的性质得出AD=BD=CD,进而利用正方形的判定得出即可.【详解】(1)证明:∵D、F分别为BC、AC的中点,使DF=FE,∴CF=FA,∴四边形AECD是平行四边形,∵AB=AC,AD是△ABC的中线,∴AD⊥BC,∴∠ADC=90°,∴平行四边形AECD是矩形;(2)解:当∠BAC=90°时,四边形AECD是正方形,理由如下:∵∠BAC=90°,AB=AC,AD是△ABC的中线,∴AD=BD=CD,∵四边形AECD是矩形,∴矩形AECD是正方形.【点睛】此题主要考查了正方形的判定以及矩形的判定和等腰直角三角形的性质等知识,熟练掌握正方形和矩形的判定是解题关键.22.(1)见解析;(2)正方形ABCD的面积为2a【解析】【分析】(1)由等边三角形的性质得EO ⊥AC ,即BD ⊥AC ,再根据对角线互相垂直的平行四边形是菱形,即可得出结论;(2)证明菱形ABCD 是正方形,即可得出答案.【详解】(1)证明:∵四边形ABCD 是平行四边形,∴AO =OC ,∵△ACE 是等边三角形,∴EO ⊥AC (三线合一),即BD ⊥AC ,∴▱ABCD 是菱形;(2)解:∵△ACE 是等边三角形,∴∠EAC =60°由(1)知,EO ⊥AC ,AO =OC∴∠AEO =∠OEC =30°,△AOE 是直角三角形,∵∠AED =2∠EAD ,∴∠EAD =15°,∴∠DAO =∠EAO ﹣∠EAD =45°,∵▱ABCD 是菱形,∴∠BAD =2∠DAO =90°,∴菱形ABCD 是正方形,∴正方形ABCD 的面积=AB 2=a 2.【点睛】本题考查了菱形的判定与性质、正方形的判定与性质、平行四边形的性质、等边三角形的性质等知识,证明四边形ABCD 为菱形是解题的关键.23.(1)14t =,22t =;(2)t =3或245【解析】【分析】(1)由题意得DN=2t(cm),AN=(12﹣2t)cm,AM=tcm,根据三角形的面积公式列出方程可求出答案;(2)分两种情况,由相似三角形的判定列出方程可求出t的值.【详解】解:(1)由题意得DN=2t(cm),AN=(12﹣2t)cm,AM=tcm,∴△AMN的面积=12AN•AM=12×(12﹣2t)×t=6t﹣t2,∵∠A=90°,AB=6cm,AD=12cm∴△ABD的面积为12AB•AD=12×6×12=36,∵△AMN的面积是△ABD面积的2 9,∴6t﹣t2=236 9⨯,∴t2﹣6t+8=0,解得t1=4,t2=2,答:经过4秒或2秒,△AMN的面积是△ABD面积的2 9;(2)由题意得DN=2t(cm),AN=(12﹣2t)cm,AM=tcm,若△AMN∽△ABD,则有AM ANAB AD=,即122612t t-=,解得t=3,若△AMN∽△ADB,则有AM ANAD AB=,即122126t t-=,解得t=24 5,答:当t=3或245时,以A、M、N为顶点的三角形与△ABD相似.【点睛】本题考查了相似三角形的判定,直角三角形的性质和一元二次方程的应用,正确进行分类讨论是解题的关键.24.(1)四边形AFCE是菱形,见解析;(2)见解析【解析】【分析】(1)由过矩形ABCD (AD >AB )的对角线AC 的中点O 作AC 的垂直平分线EF ,易证得△AOE ≌△COF ,即可得EO =FO ,则可证得四边形AFCE 是平行四边形,又由EF ⊥AC ,可得四边形AFCE 是菱形;(2)由∠AEP =∠AOE =90°,∠EAP =∠OAE ,可证得△AOE ∽△AEP ,又由相似三角形的对应边成比例,即可证得2AE 2=AC•AP .【详解】证明:(1)四边形AFCE 是菱形.理由:由已知可知:AO =CO ,∵四边形ABCD 是矩形,∴AD ∥BC ,∴∠EAO =∠FCO ,∠AEO =∠CFO ,在△AOE 和△COF 中,EAO FCO AEO CFO AO CO ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AOE ≌△COF (AAS ),∴EO =FO ,∴四边形AFCE 是平行四边形,∵AC ⊥EF ,∴四边形AFCE 是菱形;(2)∵∠AEP =∠AOE =90°,∠EAP =∠OAE ,∴△AOE ∽△AEP ,∴AO AE =AE AP,∴AE 2=AO•AP ,又AC =2AO ,∴2AE 2=AC•AP .【点睛】本题考查了相似三角形的判定与性质、平行四边形的判定与性质、矩形的性质、菱形的判定与性质以及全等三角形的判定与性质.注意掌握数形结合思想的应用.25.(1)①见解析;②AC 1⊥BD 1;(2)AC 1⊥BD 1,见解析,35k =;(3)12k =,2211()36AC kDD +=【解析】【分析】(1)①由“SAS”可证△AOC 1≌△BOD 1;②由全等三角形的性质可得∠OBD 1=∠OAC 1,可证点A ,点B ,点O ,点P 四点共圆,可得结论;(2)由菱形的性质可得OC =OA =12AC ,OD =OB =12BD ,AC ⊥BD ,由旋转的性质可得OC 1=OC ,OD 1=OD ,∠COC 1=∠DOD 1,通过证明△AOC 1∽△BOD 1,可得∠OAC 1=∠OBD 1,由余角的性质可证AC 1⊥BD 1,由比例式可求k 的值;(3)与(2)一样可证明△AOC 1∽△BOD 1,可得11112122AC AC OA AC BD OB BD BD ====,可求k 的值,由旋转的性质可得OD 1=OD =OB ,可证△BDD 1为直角三角形,由勾股定理可求解.【详解】证明:(1)①如图1,∵四边形ABCD 是正方形,∴OC =OA =OD =OB ,AC ⊥BD ,∴∠AOB =∠COD =90°,∵△COD 绕点O 按逆时针方向旋转得到△C 1OD 1,∴OC 1=OC ,OD 1=OD ,∠COC 1=∠DOD 1,∴OC 1=OD 1,∠AOC 1=∠BOD 1=90°+∠AOD 1,在△AOC 1和△BOD 1中,1111OA OB AOC BOD OC OD =⎧⎪∠=∠⎨⎪=⎩,∴△AOC 1≌△BOD 1(SAS );②AC 1⊥BD 1;理由如下:∵△AOC 1≌△BOD 1,∴∠OBD 1=∠OAC 1,∴点A ,点B ,点O ,点P 四点共圆,∴∠APB =∠AOB =90°,∴AC 1⊥BD 1;(2)AC 1⊥BD 1,理由如下:如图2,∵四边形ABCD 是菱形,∴OC =OA =12AC ,OD =OB =12BD ,AC ⊥BD ,∴∠AOB =∠COD =90°,∵△COD 绕点O 按逆时针方向旋转得到△C 1OD 1,∴OC 1=OC ,OD 1=OD ,∠COC 1=∠DOD 1,∴OC 1=OA ,OD 1=OB ,∠AOC 1=∠BOD 1,∴11OCOA OD OB=,∴△AOC 1∽△BOD 1,∴∠OAC 1=∠OBD 1,又∵∠AOB =90°,∴∠OAB+∠ABP+∠OBD 1=90°,∴∠OAB+∠ABP+∠OAC1=90°,∴∠APB =90°∴AC 1⊥BD 1;∵△AOC 1∽△BOD 1,∴11132152AC AC OA AC BD OB BD BD ====,∴k =35;(3)如图3,与(2)一样可证明△AOC 1∽△BOD 1,∴11112122AC AC OA AC BD OB BD BD ====,∴k =12;∵△COD 绕点O 按逆时针方向旋转得到△C 1OD 1,∴OD 1=OD ,而OD =OB ,∴OD 1=OB =OD ,1111,BD O OBD DD O ODD ∠=∠∠=∠,∴1111BD O DD O OBD ODD ∠+∠=∠+∠,∴190BD D ∠=︒,∴△BDD 1为直角三角形,在Rt △BDD 1中,BD 12+DD 12=BD 2=144,∴(2AC 1)2+DD 12=144,∴AC 12+(kDD 1)2=36.【点睛】本题主要考查了菱形的性质,相似三角形的判定和性质,图形的旋转,圆周角定理等知识,熟练掌握相关知识点是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新北师大版九年级数学上册期中考试题
Document serial number【KK89K-LLS98YT-SS8CB-SSUT-SST108】
新北师大版数学九年级上册期中考试试卷
A B边上,折痕为A E,再将△A E D以DE为折痕向右折叠,A E与BC交于点F,则△C E F的面积为()。
A、4B、6C、8D、10
6.如图,已知△ABC和△C D E都是等边三角形,AD、B E交于点F,则∠A F B等于()
A.50°
B.60°
C.45°
D.∠BCD
7、关于x的方程:(m2-1)x2+mx-1=0是一元二次方程,则m的取值范围是()
A、m≠0
B、m≠1
C、m≠-1
D、m≠±1
8.用配方法解方程x2-4x+2=0,下列配方法正确的是()。
A.(x-2)2=2B.(x+2)2=2C.(x-2)2=-2D.(x-2)2=6
9.2011年某市政府投资2亿元人民币建设了廉租房8万平方米,预计到2013年底三年共累计投资9.5亿元人民币建设廉租房,若在这两年内每年投资的增长率相同.设每年市政府投资的增长率为x,根据题意,列出方程为().
A.2(1+x)22=9.5
C.2+2(1+x)+2(1+x)22=9.5
二.填空题(3*6=18分)
11.已知菱形的周长为40cm,一条对角线长为16c m,则这个菱形的
面积为_________cm2。
12.一元二次方程的一般形式是___________________。
13.为估计某地区黄羊的只数,先捕捉20只黄羊分别作上标志,然后放回,待有标志的黄羊完全混合于黄羊群后,第二次捕捉60只黄羊,发现其中2只有标志.从而估计该地区有黄羊________只。
14.关于x的一元二次方程(x+3)(x-1)=0的根是________.
15.已知正方形的面积为4,则正方形的边长为________,对角线长为________.
16.若关于x的方程3x2+mx+m-6=0有一根是0,则m的值为________.
三.解答题(共52分)
17.解下列方程:(每小题4分,共16分)
(1) x2+8x-20=0(用配方法)(2)x2-2x-3=0
(3)(x-1)(x+2)=4(4)3x2-6x=1(用公式法)
18.(5分)袋中有一个红球和两个白球,它们除了颜色外都相同。
任意摸出一个球,记下球的颜色,放回袋中;搅匀后再任意摸出一个球,记下球的颜色。
为了研究两次摸球出现某种情况
的概率,画出如下树状图。
(1)请把树状图填写完整。
(2)根据树状图可知,摸到一红一白两球的概率是________
19.(8分)四张大小质地均相同的卡片上分别标有数字1,2,3,4,现将标有数字的一面朝下扣在桌子上,从中随机抽取一张(不放回),再从桌子上剩下的3张中随机抽取第二张。
(1)用画树状图的方法,列出前后两次抽得的卡片上所标数字的所有可能情况;
(2)计算抽得的两张卡片上的数字之和为奇数的概率是多少?
(3)如果抽取第一张后放回,再抽第二张,(2)的问题答案是否改变?如果改变,变为多少?(只写出答案,不写过程)
20.(5分).如图,已知四边形ABCD是平行四边形,P、Q是对角线BD上的两个点。
且AP∥QC.求证:BP=DQ.
21.(9分)已知:如图,在正方形ABCD中,点E、F分别在BC和CD上,AE=AF.
(1)求证:BE=DF;(2)连接AC交EF于点O,延长OC至点M,使OM=OA
,连接EM、FM.判断四边形AEMF是什么特殊四边形?并证明你的结论
22、(9分)某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利45元,为了扩大销售、增加盈利,尽快减少库存......,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出4件,若商场平均每天盈利2100元,每件衬衫应降价多少元?。