初中数学二次函数ppt
合集下载
22.1.1 二次函数 课件(共15张PPT)
新课导入
你 观 察 过 公 园 的 拱 桥 吗?
篮球入框,公 园里的喷泉, 雨后的彩虹都 会形成一条曲 线.这些曲线 能否用函数关 系式表示?
知识讲解
1.二次函数的定义
探究归纳
1 1
1
3
此式表示了种植面积y与边长x之间的关系,对于x的每一个值,y都有唯一 确定的一个对应值,即y是x的函数.
知识讲解
第 二十二章 二次函数
第二十二章 二次函数
22.1 二次函数的图象和性质 22.1.1 二次函数
温故知新
1. 函数的定义 一般地,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确 定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数.
2. 一次函数与正比例函数
3.一元二次方程的一般形式
30(1+x)2
30(1+x)2
30(1+x)
此式表示了两年后的产量y与计划增产的倍数x之间的关系,对于x的每一个值,y 都有唯一确定的一个对应值,即y是x的函数.
知识讲解
上述三个问题中的函数解析式具有哪些共同特征呢?
知识讲解
归纳总结
二次函数的定义:
注意
知识讲解
2.二次函数的应用 例1
不一定是,缺少 a≠0的条件
中y=0时得到的。
与前面我们学过的一元二 有什么联系和区别?
且a≠0; 可以看成是函数
区别:前者是函数,后者是方程;等式另一边前者是y,后 者是0。
随堂训练
B C
随堂训练
4.矩形的周长为16 cm,它的一边长为x(cm),面积为y(cm2). (1)求y与x之间的函数解析式及自变量x的取值范围; (2)求当x=3时矩形的面积.
初中数学人教九年级上册第二十二章二次函数二次函数 PPT
二次函数的定义:
一般地,形如 y=ax2+bx+c(a、b、c为常数 ,a≠0)的函数,叫做二次函数.其中,x是自变量
,a,b,c分别是函数表达式的二次项系数、一次 项系数和常数项.
(1) 一次函数的图象是一条_直__线__,反比例函数的图象是_双__曲__线___. (2) 通常怎样画一个函数的图象? 列表、描点、连线
|a|越大,抛物线的开口越小
xyxy 增 增增减 大 大大小
1、函数y=2x2的图象的开口 向上,对称轴
,顶点是y轴 ;
(0,0)
2、函数y=-3x2的图象的开口 向下,对称 轴 ,顶y轴点是 ; (0,0)
已知 y =(m+1)xm2+是m二次函数且其图象开 口向上,求m的值和函数解析式
m+1>0 ①
的图象,并考虑这些抛物
x ··· -4 -3 -2 -1 0 1 2 3
y
1 2
x2
···
-8
-4.5
-2 -0.5
0
-0.5
-2 -4.5
4 ··· ···
-8
x
·· -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 ···
y 2x2 · -8 -4.5 -2 -0.5 0 -0.5 -2 -4.5 -8
1
2
3 ···
y = x2 ··· 9 4 1 0 1 4 9 ···
2. 根据表中x,y的数值在坐标平面中描点(x,y)
3.连线 如图,再用平滑曲线顺次
9
连接各点,就得到y = x2 的图象
.
6
y=x2
3
-3
3
二次函数 y = x2的图象是一条曲线,它的形状类似于投篮球时球在空中 所经过的路线,只是这条曲线开口向上,这条曲线叫做抛物线 y = x2 ,
一般地,形如 y=ax2+bx+c(a、b、c为常数 ,a≠0)的函数,叫做二次函数.其中,x是自变量
,a,b,c分别是函数表达式的二次项系数、一次 项系数和常数项.
(1) 一次函数的图象是一条_直__线__,反比例函数的图象是_双__曲__线___. (2) 通常怎样画一个函数的图象? 列表、描点、连线
|a|越大,抛物线的开口越小
xyxy 增 增增减 大 大大小
1、函数y=2x2的图象的开口 向上,对称轴
,顶点是y轴 ;
(0,0)
2、函数y=-3x2的图象的开口 向下,对称 轴 ,顶y轴点是 ; (0,0)
已知 y =(m+1)xm2+是m二次函数且其图象开 口向上,求m的值和函数解析式
m+1>0 ①
的图象,并考虑这些抛物
x ··· -4 -3 -2 -1 0 1 2 3
y
1 2
x2
···
-8
-4.5
-2 -0.5
0
-0.5
-2 -4.5
4 ··· ···
-8
x
·· -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 ···
y 2x2 · -8 -4.5 -2 -0.5 0 -0.5 -2 -4.5 -8
1
2
3 ···
y = x2 ··· 9 4 1 0 1 4 9 ···
2. 根据表中x,y的数值在坐标平面中描点(x,y)
3.连线 如图,再用平滑曲线顺次
9
连接各点,就得到y = x2 的图象
.
6
y=x2
3
-3
3
二次函数 y = x2的图象是一条曲线,它的形状类似于投篮球时球在空中 所经过的路线,只是这条曲线开口向上,这条曲线叫做抛物线 y = x2 ,
《二次函数的图像和性质》PPT课件 人教版九年级数学
2
y=20x2+40x+20③
d=
学生以小组形式讨论,并由每组代表总结.
探究新知
【分析】认真观察以上出现的三个函数解析式,
分别说出哪些是常数、自变量和函数.
函数解析式
y=6x2
自变量
函数
x
y
n
d
x
y
这些函数自变量的最高次项都是二次的!
这些函数有什
么共同点?
探究新知
二次函数的定义
一般地,形如y=ax²+bx+c(a,b,c是常数,a≠ 0)的
总结二次
函数概念
二次函数y=ax²+bx+c
(a,b,c为常数,a≠0)
确定二次函数解
析式及自变量的
取值范围
二次函数的判别:
①含未知数的代数式为整式;
②未知数最高次数为2;
③二次项系数不为0.
人教版 数学 九年级 上册
22.1 二次函数的图象和性质
22.1.2
二次函数y=ax2的
图象和性质
导入新知
探究新知
方法点拨
运用定义法判断一个函数是否为二次函数的
步骤:
(1)将函数解析式右边整理为含自变量的代
数式,左边是函数(因变量)的形式;
(2)判断右边含自变量的代数式是否是整式;
(3)判断自变量的最高次数是否是2;
(4)判断二次项系数是否不等于0.
巩固练习
下列函数中,哪些是二次函数?
(1) y=3(x-1)²+1(是)
(1) 你们喜欢打篮球吗?
(2)你们知道投篮时,篮球运动的路线是什么
曲线?怎样计算篮球达到最高点时的高度?
素养目标
y=20x2+40x+20③
d=
学生以小组形式讨论,并由每组代表总结.
探究新知
【分析】认真观察以上出现的三个函数解析式,
分别说出哪些是常数、自变量和函数.
函数解析式
y=6x2
自变量
函数
x
y
n
d
x
y
这些函数自变量的最高次项都是二次的!
这些函数有什
么共同点?
探究新知
二次函数的定义
一般地,形如y=ax²+bx+c(a,b,c是常数,a≠ 0)的
总结二次
函数概念
二次函数y=ax²+bx+c
(a,b,c为常数,a≠0)
确定二次函数解
析式及自变量的
取值范围
二次函数的判别:
①含未知数的代数式为整式;
②未知数最高次数为2;
③二次项系数不为0.
人教版 数学 九年级 上册
22.1 二次函数的图象和性质
22.1.2
二次函数y=ax2的
图象和性质
导入新知
探究新知
方法点拨
运用定义法判断一个函数是否为二次函数的
步骤:
(1)将函数解析式右边整理为含自变量的代
数式,左边是函数(因变量)的形式;
(2)判断右边含自变量的代数式是否是整式;
(3)判断自变量的最高次数是否是2;
(4)判断二次项系数是否不等于0.
巩固练习
下列函数中,哪些是二次函数?
(1) y=3(x-1)²+1(是)
(1) 你们喜欢打篮球吗?
(2)你们知道投篮时,篮球运动的路线是什么
曲线?怎样计算篮球达到最高点时的高度?
素养目标
人教版九年级初中数学上册第二十二章二次函数-二次函数与一元二次方程PPT课件
新知探究
二次函数y=ax2+bx+c的图象和x轴交点的横坐标与一元二次方程ax2+bx+c=0的
根有什么关系?
抛物线y=ax2+bx+c(a≠0)
一元二次方程ax2+bx+c=0
与x轴的公共点的个数
(a≠0)的根的情况
b2-4ac>0
有两个
有两个不相等的实数根
b2-4ac=0
有一个
有两个相等的实数根
P(2,-2)
重复上述过程,不断缩小根的范围,根所在两端的值就越来越
接近根的值.因而可以作为根的近似值。
尝试求出方程y = 2 − 2 − 2两个根的近似值?
课堂练习
1. 抛物线 = 2 + 2 − 3与轴的交点个数有(
. 0个
. 1个
C.2个
C ).
D.3个
【分析】解二次函数 = 2 + 2 − 3得1 =
第二十二章 二次函数
2 2 . 2 二次函数与一元二次方程
人教版九年级(初中)数学上册
授课老师:XX
前 言
学习目标
1.二次函数与一元二次方程之间的联系。
2.二次函数的图象与x轴交点的三种位置关系。
3.利用二次函数图象求它的实数根。
重点难点
重点:让学生理解二次函数与一元二次方程之间的联系。
难点:让学生理解函数图象交点问题与对应方程间的相互转化,及用图象求方程
x1=x2 =-
x
2
与x轴没有
交点
一元二次方程
ax2+bx+c=0
(a≠0)的根
x
没有实数根
新知探究
九下数学课件 二次函数y=ax^2+k的图像与性质 (课件)
(2) BF=BC 理由:在y=kx+2中,令x=0,得y=2.∴ 点F的坐标为(0,2).
∴ OF=2.过点F作FH⊥BC,垂足为H.设点B的坐标为 t, 1 t2 + 1 ,
4
∵ 易知四边形OFHC为矩形,∴ OF=CH,FH=OC=t,BC=14t2+1.
∴
BH
=
BC
-
CH
=
BC
-
OF
=
1 4
当x<0时,y随x增大而减小.
抛物线关于y轴对称.
图像有最低点,过(0,0) y有最小值.
当x>0时,y随x增大而增大.
抛物线开口向上.
那么y=x2+1的图像与y=x2的图像有什么关系?
在同一坐标系中画出函数y=x2和y=x2+1的图像. (1)列表.
x
… -3 -2 -1 0 1 2 3 …
y=x2 … 9
位置上下平移规律,即:抛物线y=ax2+k 是由抛物线 y=ax2 上下平移| k |个单位长度得到的,“上加”表 示当k 为正数时,向上平移;“下减”表示当k为负数时, 向下平移;
“纵变横不变”表示坐标的平移规律,即:抛物线平 移时其对应点的纵坐标改变而横坐标不变.
l 归纳:
2. 二次函数y=ax2+k 的图像
l 归纳:
3. 二次函数y=ax2+k 的性质 (1)当a>0时,函数有最小值k,当a<0时,函数有 最大值k; (2)如果a>0,当x<0时,y随x的增大而减小,当 x>0时,y随x的增大而增大;如果a<0,当x<0 时,y随x的增大而增大,当x>0时,y随x的增 大而减小.
l 归纳:
4. 二次函数y=ax2+k 的图象的画法 (1)描点法:类比作二次函数y=ax2 图象的描点法,
人教版九年级初中数学上册第二十二章二次函数-二次函数的图像和性质PPT课件全文
你还记得如何画出一次函数的图像吗?
描点法画函数图像的一般步骤如下:
描点法
第一步,列表—表中给出一些自变量的值及其对应的函数值;
第二步,描点—在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,
描出表格中数值对应的各点;
第三步,连线—按照横坐标由小到大顺序,把所描出的各点用平滑的曲线连接起来。
抛物线y=ax2的图象性质:
(1)抛物线y=ax2的对称轴是y轴,顶点是原点.
(2)当a>0时,抛物线的开口向上,顶点是抛物线的最低点;
当a<0时,抛物线的开口向下,顶点是抛物线的最高点.
(3)|a|越大,抛物线的开口越小.
课堂练习
1.填表:
抛物线
y = ax2(a>0)
y = ax2(a<0)
顶点坐标
你能通过这种方法画出二次函数的图像吗?
新知探究
二次函数=^2 的图像
通过描点法画出 = 的图像?
【列表】
在 = 中,自变量可以取任意实数,列表取几组对应值:
…
-2
-1
0
1
2
…
…
4
1
0
1
2
…
新知探究
二次函数=^2 的图像
y
通过描点法画出 = 的图像?
9
【描点】
事实上,二次函数的图象都是抛物线,它们的开口或者
3
向上或者向下.一般地,二次函数 y =ax2+bx +c(a≠0)
的图象叫做抛物线y=ax2+bx+c.
-3
O
3
x
新知探究
二次函数=^2 的性质
观察 = 2 的图像,它有对称轴在哪里?图像与y轴的交点在哪里?
描点法画函数图像的一般步骤如下:
描点法
第一步,列表—表中给出一些自变量的值及其对应的函数值;
第二步,描点—在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,
描出表格中数值对应的各点;
第三步,连线—按照横坐标由小到大顺序,把所描出的各点用平滑的曲线连接起来。
抛物线y=ax2的图象性质:
(1)抛物线y=ax2的对称轴是y轴,顶点是原点.
(2)当a>0时,抛物线的开口向上,顶点是抛物线的最低点;
当a<0时,抛物线的开口向下,顶点是抛物线的最高点.
(3)|a|越大,抛物线的开口越小.
课堂练习
1.填表:
抛物线
y = ax2(a>0)
y = ax2(a<0)
顶点坐标
你能通过这种方法画出二次函数的图像吗?
新知探究
二次函数=^2 的图像
通过描点法画出 = 的图像?
【列表】
在 = 中,自变量可以取任意实数,列表取几组对应值:
…
-2
-1
0
1
2
…
…
4
1
0
1
2
…
新知探究
二次函数=^2 的图像
y
通过描点法画出 = 的图像?
9
【描点】
事实上,二次函数的图象都是抛物线,它们的开口或者
3
向上或者向下.一般地,二次函数 y =ax2+bx +c(a≠0)
的图象叫做抛物线y=ax2+bx+c.
-3
O
3
x
新知探究
二次函数=^2 的性质
观察 = 2 的图像,它有对称轴在哪里?图像与y轴的交点在哪里?
初中数学二次函数精华PPT课件
1、二次函数的定义 2、二次函数的图象及性质 3、抛物线的平移法则
4、二次函数解析式的三种形式 5、二次函数与一元二次方程的关系 6、二次函数的综合运用
第1页/共36页
变
量
之 间 的
函 数
关
系
一次函数
y=kx+b(k≠0)
正比例函数 y=kx(k≠0)
反比例函数
y= k (k≠0)
x
二次函数
第2页/共36页
顶点坐标是: 推2导ba过, 4程a!c4a b2
第13页/共36页
抛物线
开口方向
顶点坐标 对称轴
最 a>0 值
a<0
增 a>0 减 性 a<0
二、二次函数的图象及性质
y a(x h)2 k
y ax2 bx c a(x b )2 4ac b2
2a
4a
当a>0时开口向上;当a<0时开口向下.
• 解之得,b =-4
第26页/共36页
练习
选择合适的方法求二次函数解析式:
1、抛物线经过(2,0)(0,-2)(-2,4) 三点。
y x2 x 2
2、抛物线的顶点坐标是(6,-2),且与 X轴的一个交点的横坐标是8。
y 1 (x 6)2 2 1 x2 6x 16
2
2
第27页/共36页
第35页/共36页
感谢您的观看!
第36页/共36页
3、交点式:y a(x x1)(x x2 )
已知抛物线与x轴的交点坐标(x1,0).(x2,0)
第22页/共36页
2.已知抛物线过三点:A(-1,2),B(0,1), C(2,-7),求二次函数的解析式.
4、二次函数解析式的三种形式 5、二次函数与一元二次方程的关系 6、二次函数的综合运用
第1页/共36页
变
量
之 间 的
函 数
关
系
一次函数
y=kx+b(k≠0)
正比例函数 y=kx(k≠0)
反比例函数
y= k (k≠0)
x
二次函数
第2页/共36页
顶点坐标是: 推2导ba过, 4程a!c4a b2
第13页/共36页
抛物线
开口方向
顶点坐标 对称轴
最 a>0 值
a<0
增 a>0 减 性 a<0
二、二次函数的图象及性质
y a(x h)2 k
y ax2 bx c a(x b )2 4ac b2
2a
4a
当a>0时开口向上;当a<0时开口向下.
• 解之得,b =-4
第26页/共36页
练习
选择合适的方法求二次函数解析式:
1、抛物线经过(2,0)(0,-2)(-2,4) 三点。
y x2 x 2
2、抛物线的顶点坐标是(6,-2),且与 X轴的一个交点的横坐标是8。
y 1 (x 6)2 2 1 x2 6x 16
2
2
第27页/共36页
第35页/共36页
感谢您的观看!
第36页/共36页
3、交点式:y a(x x1)(x x2 )
已知抛物线与x轴的交点坐标(x1,0).(x2,0)
第22页/共36页
2.已知抛物线过三点:A(-1,2),B(0,1), C(2,-7),求二次函数的解析式.
二次函数(共26张PPT)
零点
零点
零点是函数与x轴的交点,对应于抛物线与x轴的交 点。
美丽的桥梁
这张照片是一张桥梁夕阳美景的照片,代表着美丽 与自然的结合。
判别式
二次函数的判别式Δ=b²-4ac表示抛物线与x轴的交点个数。如果Δ>0,则有两个 交点;如果Δ=0,则有一个交点;如果Δ<0,则没有交点。
基本形式
1 标准式
f(x)=ax²
二次函数
二次函数在数学中是一个重要的概念,涉及到图像、最值、应用等方面。本 次26张PPT涵盖了二次函数的各个方面,希望能帮助大家更好地理解这个概念。
定义
二次函数是形如f(x)=ax²+bx+c的函数,其中a、b、c为常数,且a≠0。二次函数的图像是一个开口朝上或朝下的 抛物线。
图像
二次函数图像
2 顶点式
f(x)=a(x-h)²+k
3 一般式
f(x)=ax²+bx+c
标准形式
定义
标准式是二次函数的一种形式, 其中二次项系数a=1,常数项 c=0。
公式
f(x)=x²
图像
开口朝上或下,左右对称
图像美学
蔚蓝海岸线和彩色天空构成完美背景,并营造出温 馨优美的氛围。
对称轴
二次函数的对称轴是过抛物线顶点的一条直线。对称轴可以是水平或垂直线。
顶点
顶点坐标
顶点坐标为(-b/2a, f(-b/2a))
寻找顶点
找到对称轴,然后代入函数公式求得顶点坐标
ห้องสมุดไป่ตู้
美丽的山景
这幅精美的照片展现了一个山丘和群山的自然美景,使我们感叹自然之美。
初中数学《二次函数》复习课名师教学PPT课件
3.某商场试销一种成本为每件60元的服装,规定试销期 间销售单价不低于成本单价,且获利不得高于45%,经 试销发现,销售量y(件)与销售单价x(元)符合一次 函数y=kx+b,且x=65时,y=55;x=75时,y=45;
(1)求一次函数的解析式;
(2)若该商场获得利润为W元,试写出利润W与销售单 价x之间的关系;销售单价定为多少时,商场可获得最 大利润,最大利润是多少元?
(3)若该商场所获得利润不低于500元,试确定销售单 价x的范围.
二次函数在几何问题中的应用
1.为了节省材料,某水产养殖户利用水库的岸堤(岸堤 足够长)为一边,用总长为80m的围网在水库中围成了 如图所示的①②③三块矩形区域,而且这三块矩形区 域的面积相等.设BC的长度为xm,矩形区域ABCD的 面积为ym2.
A.图象关于直线x=1对称 B.函数y=ax2+bx+c(a≠0)的 最小值是-4 C.抛物线y=ax2+bx+c(a≠0)与x轴 的两个交点的横坐标分别是-1,3 D.当x<1时,y随x的增大而增大
2.已知函数y=(k-3)x2+2x+1的图象与x轴有交点,则k的 取值范围是(B)
A.k<4 B.k≤4 C.k<4且k≠3 D.k≤4且k≠3
1 x
2.已知函数y=(m2+m)x2+mx+4为二次函数,则m的取值
范围是( C)
A.m≠0 B.m≠-1 C.m≠0,且m≠-1 D.m=-1
3.矩形的周长为24cm,其中一边为xcm(其中x>0), 面积为ycm2,则这样的矩形中y与x的关系可以写成 ( B)
A.y=x2 C. y=12-x2
B.y=(12-x)x D.y=2(12-x)
22.1.3二次函数的图像与性质 初中初三九年级数学教学课件PPT 人教版
y=2(x+3)2+5 y=-3(x-1)2-2 y = 4(x-3)2+7 y=-5(2-x)2-6
开口方向 对称轴 顶点坐标
向上 向下 向上
直线x=-3 直线x=1 直线x=3
(-3, 5 ) ( 1, -2 ) ( 3 , 7)
向下
直线x=2 ( 2 , -6 )
x=h 减小 h
x=h 增大 h
可以看作互相平移得到的.
平移规律
左 右 平 移 y = ax2 + k
பைடு நூலகம்
y = a( x - h )2 + k 上 下 平 移
简记为: 上下平移, 括号外上加下减;
y = a(x - h )2 左右平移,
上下平移 y = ax2 左右平移
括号内左加右减. 二次项系数a不变.
当堂练习
1.完成下列表格: 二次函数
左右平移:括号内 左加右减自变量; 上下平移:括号外 上加下减函数值.
一般地,抛物线 y = a(x-h)2+k与y = ax2形状相同,位置不同.
数学享有盛誉还有另一个原因: 正是数学给了各种精密自然科学一定程 度的可靠性,没有数学,它们不可能获 得这样的可靠性。
――艾伯特·爱因斯坦
这是函数 y=a(x-h)2+k 的性质
哦!
(h,k) 小
(h,k) 大
向上
增大 k
向下
减小 k
练一练
1.请回答抛物线y = 4(x-3)2+7由抛物线y=4x2怎样平移得到? 由抛物线向上平移7个单位再向右平移3个单位得到的.
2.如果一条抛物线的形状与 y 1 x2 2形状相同,且 3
顶点坐标是(4,2),试求这个函数关系式.
开口方向 对称轴 顶点坐标
向上 向下 向上
直线x=-3 直线x=1 直线x=3
(-3, 5 ) ( 1, -2 ) ( 3 , 7)
向下
直线x=2 ( 2 , -6 )
x=h 减小 h
x=h 增大 h
可以看作互相平移得到的.
平移规律
左 右 平 移 y = ax2 + k
பைடு நூலகம்
y = a( x - h )2 + k 上 下 平 移
简记为: 上下平移, 括号外上加下减;
y = a(x - h )2 左右平移,
上下平移 y = ax2 左右平移
括号内左加右减. 二次项系数a不变.
当堂练习
1.完成下列表格: 二次函数
左右平移:括号内 左加右减自变量; 上下平移:括号外 上加下减函数值.
一般地,抛物线 y = a(x-h)2+k与y = ax2形状相同,位置不同.
数学享有盛誉还有另一个原因: 正是数学给了各种精密自然科学一定程 度的可靠性,没有数学,它们不可能获 得这样的可靠性。
――艾伯特·爱因斯坦
这是函数 y=a(x-h)2+k 的性质
哦!
(h,k) 小
(h,k) 大
向上
增大 k
向下
减小 k
练一练
1.请回答抛物线y = 4(x-3)2+7由抛物线y=4x2怎样平移得到? 由抛物线向上平移7个单位再向右平移3个单位得到的.
2.如果一条抛物线的形状与 y 1 x2 2形状相同,且 3
顶点坐标是(4,2),试求这个函数关系式.
二次函数的图象与性质(第一课时) 课件(共34张PPT)北师大版初中数学九年级下册
(g为定值)
此外,二次函数在建筑学上也有重要应用,如抛物线型隧道、抛物线型拱桥、抛物线型吊桥、抛物线型弯道等.要确定这些抛物线的形状,需要对地质、地形、气象、水力、材料等因素进行综合分析.
这节课 你学到了什么?
同学们再见!
授课老师:
时间:2024年9月15日
1.某一物体的质量为m,它运动时的能量E与它的运动速度v之间的关系是:
(m为定值)
2.导线的电阻为R,当导线中有电流通过时,单位时间所产生的热量Q与电流强度I之间的关系是:
(R为定值)
Q=RI2
3.g表示重力加速度,当物体自由下落时,下落的距离s与下落时间t之间的关系是:
二次函数y=x2的图象形如物体抛射时所经过的路线,我们把它叫做抛物线 y=x2.
开口向上
(2)图象与x轴有交点吗?如果有,交点坐标是什么?
有,(0,0)
是,对称轴是 y 轴.
(-2,4)和(2,4);
(-3,9)和(3,9)等等.
(-1,1)和(1,1);
(3)图象是轴对称图形吗?如果是,它的对称轴是什么?请你找出几对对称点.
探究1 请作出二次函数 y=x2 的图象.
x
…
…
y
…
…
-3
-2
-1
0
1
2
3
(2)在直角坐标系中描点.
(3)用光滑的曲线顺次连接各点,便得到函数 y=x2 的图象.
y=x2
x
…
-3
-2
-1
0
1
2
3
…
y
…
9
4
1
0
1
4
9
…
(1)你能描述图象的形状吗?
此外,二次函数在建筑学上也有重要应用,如抛物线型隧道、抛物线型拱桥、抛物线型吊桥、抛物线型弯道等.要确定这些抛物线的形状,需要对地质、地形、气象、水力、材料等因素进行综合分析.
这节课 你学到了什么?
同学们再见!
授课老师:
时间:2024年9月15日
1.某一物体的质量为m,它运动时的能量E与它的运动速度v之间的关系是:
(m为定值)
2.导线的电阻为R,当导线中有电流通过时,单位时间所产生的热量Q与电流强度I之间的关系是:
(R为定值)
Q=RI2
3.g表示重力加速度,当物体自由下落时,下落的距离s与下落时间t之间的关系是:
二次函数y=x2的图象形如物体抛射时所经过的路线,我们把它叫做抛物线 y=x2.
开口向上
(2)图象与x轴有交点吗?如果有,交点坐标是什么?
有,(0,0)
是,对称轴是 y 轴.
(-2,4)和(2,4);
(-3,9)和(3,9)等等.
(-1,1)和(1,1);
(3)图象是轴对称图形吗?如果是,它的对称轴是什么?请你找出几对对称点.
探究1 请作出二次函数 y=x2 的图象.
x
…
…
y
…
…
-3
-2
-1
0
1
2
3
(2)在直角坐标系中描点.
(3)用光滑的曲线顺次连接各点,便得到函数 y=x2 的图象.
y=x2
x
…
-3
-2
-1
0
1
2
3
…
y
…
9
4
1
0
1
4
9
…
(1)你能描述图象的形状吗?
初中数学人教九年级上册第二十二章二次函数二次函数与一元二次方程(不等式)PPT
实数
无解
没有实数根 所有实数
无解
布置作业
练习册P34(必做 )
2.已知二次函数 yx26x8的图象,利用图象回
答问题:(选做)
(1)方程 x26x80的解是什么?
(2)x取什么值时,y>0 ?
y
(3)x取什么值时,y<0 ?
8
解:(1)x1=2,x2=4; (2)x<2或x>4; (3)2<x<4.
y
不等式ax2+bx+c<0的解集 是_-_1_<_x_<_3___.
-1 O 3 x
合作探究
拓广探索:
函数y=ax2+bx+c的图象如图,那么
方程ax2+bx+c=2的根是 _x_1_=_-_2_,__x_2_=_4___;
不等式ax2+bx+c>2的解集是x<-2或x>4
___________;
试一试:利用函数图象解下列方程和不等式:
(1) ①-x2+x+2=0; ②-x2+x+2>0; ③-x2+x+2<0.
(2) ①x2-4x+4=0; ②x2-4x+4>0; ③x2-4x+4<0.
(3) ①-x2+x-2=0; ②-x2+x-2>0;
x1=-1 , x2=2
1 < x<2 x1<-1 , x2>2 x=2 x≠2的一切实数 x无解 x无解 x无解
y>0,x2<x或x<x2 .
a<0
y>0,x1<x<x2. y<0,x2<x或x<x2.
有一个交点x0 没有交点
无解
没有实数根 所有实数
无解
布置作业
练习册P34(必做 )
2.已知二次函数 yx26x8的图象,利用图象回
答问题:(选做)
(1)方程 x26x80的解是什么?
(2)x取什么值时,y>0 ?
y
(3)x取什么值时,y<0 ?
8
解:(1)x1=2,x2=4; (2)x<2或x>4; (3)2<x<4.
y
不等式ax2+bx+c<0的解集 是_-_1_<_x_<_3___.
-1 O 3 x
合作探究
拓广探索:
函数y=ax2+bx+c的图象如图,那么
方程ax2+bx+c=2的根是 _x_1_=_-_2_,__x_2_=_4___;
不等式ax2+bx+c>2的解集是x<-2或x>4
___________;
试一试:利用函数图象解下列方程和不等式:
(1) ①-x2+x+2=0; ②-x2+x+2>0; ③-x2+x+2<0.
(2) ①x2-4x+4=0; ②x2-4x+4>0; ③x2-4x+4<0.
(3) ①-x2+x-2=0; ②-x2+x-2>0;
x1=-1 , x2=2
1 < x<2 x1<-1 , x2>2 x=2 x≠2的一切实数 x无解 x无解 x无解
y>0,x2<x或x<x2 .
a<0
y>0,x1<x<x2. y<0,x2<x或x<x2.
有一个交点x0 没有交点
二次函数图像(1)浙教版初中数学九年级上册课件(共14张PPT)
3
对称轴是
,顶点坐标是
点是这条抛物线的最 点;
, ,顶
(2)抛物线
y
1 3
x2的开口方向为
,
对称轴是
,顶点坐标是
,顶
点是这条抛物线的最
点.
例1、已知二次函数y=ax2(a≠0)的图像 经过点(-2,-3).
(1)求a的值,并写出这个二次函数的解析式.
(2)说出这个二次函数的顶点坐标、对称轴、 开口方向和图像的位置.
y=2x2 ... 8 4.5 2 0.5 0 0.5 2 4.5 8 ...
x
... -3 -2 -1.5 -1 0 1 1.5 2
3 ...
yy=2x22x2 ... -6 8 1.5 2 0 2
3
3
3
3
1.5
8 3
-6
...
y 1 x2 2
y 2x2
列表参考
y 2 x2 3
y 2x2
函数图象画法
描点法
列表
注意:列表时自变量 取值要y均 匀 2和对称。
x
y x2
y1 x
描点 连线
y x2
用光滑曲线连结时要 自左向右顺次连结
x ... -4 -3 -2 -1 0 1 2 3
4 ...
yy=12x2x2 ... 8 4.5 2 0.5 0
0.5 2 4.5
8
...
x ... -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 ...
y 1 x2 2
y 2x2
抛物线 顶点坐标 对称轴 位置 开口方向
最值
y=2x2
(0,0)
y轴 在x轴的上方 (除顶点外)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3、二次函数等号右边是关于x的二次多项式
4、二次函数y=ax²+bx+c( a≠0 )与一元二次方程 ax²+bx+c=0( a≠0 )有着密切联系(什么关系)
5、与其它函数一样,二次函数中x每取一个值,y都 有唯一确定的值与之对应,两者之间满足“一一对 应”
抓住机遇 展示自我
1.下列函数中,哪些是二次函数?
试一试:
要用长20m的铁栏杆,一面靠墙,围成一 个矩形的花圃,设连墙的一边为x,巨形的 面积为y,试(1)写出y关与x的函数关系式. (2)当x=3时,距形的面积为多少?
(2)你能说出这里自变量能取哪些值呢? x取任意实数
开动脑筋
问题:是否任何情况下二次函数中的自变量 的取值范围都是任意实数呢?
例如:圆的面积 y ( cm)与2 圆的半径 x(cm)
的函数关系是
y =πx2
其中自变量x能取哪些值呢? x 0
注意:当二次函数表示某个实际问题时,还必 须根据题意确定自变量的取值范围.
知识回顾
1.一元二次方程的一般形式是什么? 2。一次函数、正比例函数的定义是 什么?
合作学习,探索新知 :
请用适当的函数解析式表示下列问题情 境中的两个变量 y 与 x 之间的关系:
(1)圆的面积 y ( cm2 )与圆的半径 x ( cm ) y =πx2
(2)某商店1月份的利润是2万元,2、3月 份利润逐月增长,这两个月利润的月平 均增长率为x,3月份的利润为y
上述三个问题中的函数解析式具有哪些共同的 特征?
经化简后都具有y=ax²+bx+c 的形式. (a,b,c是常数, a≠0 )
❖ 我们把形如y=ax²+bx+c(其中a,b,c 是常数,a≠0)的函数叫做二次函数
称:a为二次项系数,ax2叫做二次项 b为一次项系数,bx叫做一次项 c为常数项,
又例:y=x²– 2x + 3
m2 m 2 m1 0
解得,m 2 当m 2时,函数为二次函数。
注意:二次函数的二次项系数不能为零
知识运用
练习1、m取何值时,函数是y= (m+1)x m2 2m1 +(m-3)x+m 是二次函数?
驶向胜利 的彼岸
练一练:
练习2、请举1个符合以下条件的y关于x的 二次函数的例子
(1)二次项系数是一次项系数的2倍, 常数项为任意值。
请说出其中的二次项、一次项及常数项
❖注:对二次函数y=ax²+bx+c(其中 a,b,c是常数,a≠0)的几点说明:
1、任何二次函数都可以化为一般式y=ax²+bx+c
2、二次函数y=ax²+bx+c( a≠0 )中,x,y是变量,a、 b、c是常量,b、c可以是任意实数,a必须是不等于 0的实数(为什么?)
10,当x=1时,函数值为4,当x=2时,函数值为7,求这
个二次函数的解析试.
解:设所求的二次函数 为y ax2 bx c,由题意得:
{a b c 10 abc 4
4a 2b c 7
待定系数法
解得,a 2,b 3, c 5
所求的二次函数是 y 2x2 3x 5
4. 已知二次函数y=x²+px+q,当x=1时,函数 值为4,当x=2时,函数值为- 5, 求这个二次 函数的解析式.
例2.写出下列各函数关系,并判断它们是什么类型的函数 (1)写出正方体的表面积S(cm2)与正方体棱长a(cm) 之间的函数关系; (2)写出圆的面积y(cm2)与它的周长x(cm)之间的函 数关系; (3)菱形的两条对角线的和为26cm,求菱形的面积S( cm2)与一对角线长x(cm)之间的函数关系.
解:把x=1,y=4和x=2,y=-5分别代入
函数y x2 px q,得:
{1 p q 4 4 2 p q 5
解得,p 12, q 15.
所求的二次函数是y x2 12x 15
牛刀小试
5.已知二次函数 y 2(x 1)2 4
(1)你能说出此函数的最小值吗? 当x=1时,函数y有最小值为4
(2)二次项系数为-5,一次项系数为 常数项的3倍。
展示才智
3、若函数 m的值。
为二次函数,求
解:因为该函数为二次函数,
则
解(1)得:m=2或-1 解(2)得: 所以m=2
超级链接
函数y ax2 bx c(其中a,b, c是常数), 当a,b, c满足什么条件时
(1)它是二次函数? (2)它是Байду номын сангаас次函数? (3)它是正比例函数?
y = 2(1+x)2
合作学习,探索新知 :
(3)拟建中的一个温室的平面图如图,
如果温室外围是一个矩形,周长为
120m , 室内通道的尺寸如图,设一条边
长为 x (m), 种植面积为 y (m2)。 1
1
1
y = (60-x-4)(x-2)
x
3
合作学习,探索新知 :
1.y =πx2 2.y = 2(1+x)2 3.y= (60-x-4)(x-2) =2x2+4x+2 =-x2+58x-112
(1) y x2
是
1 (2) y x2 (3) y x(1 x)
不是 是
(4) y (x 1)2 x2
不是
先化简后判断
2、下列函数中,哪些是二次函数?
(1) y 3x2 2
(是 )
(2) y x2 1 x
( 否)
(3) y (x 2)(x 3)
( 是)
(4)y x2 2x 3
(2)矩形的长是4厘米,宽是3厘米,如果将其长 增加x厘米,宽增加2x厘米,则面积增加到y平方厘 米,试写出y与x的关系式. 解:(1)y x2 (2) y (4 x)(3 2x) 2x2 11x 12
例1: 关于x的函数 y (m 1)xm2m 是二次函
数, 求m的值.
解: 由题意可得
( 否)
(5) y (x 2)( x 2) (x 1)2 ( 否 )
知识运用
3、下列函数中,哪些是二次函数?
(1)y=3x-1
(2)y=3x2
(3)y=3x3+2x2
(4)y=2x2-2x+1
(5)y=x-2+x
(6)y=x2-x(1+x)
做一做:
(1)正方形边长为x(cm),它的面积y(cm2) 是多少?
解: (1)由题意得 S 6a2 (a 0) 其中S是a的二次函数;
(2)由题意得 y x 2 (x 0) 其中y是x的二次函数;
4
(3)由题意得 S 1 x(26 x) 1 x2 13x(0 x 26)其中S是x的
2
2
二次函数
例3:已知关于x的二次函数,当x=-1时,函数值为
4、二次函数y=ax²+bx+c( a≠0 )与一元二次方程 ax²+bx+c=0( a≠0 )有着密切联系(什么关系)
5、与其它函数一样,二次函数中x每取一个值,y都 有唯一确定的值与之对应,两者之间满足“一一对 应”
抓住机遇 展示自我
1.下列函数中,哪些是二次函数?
试一试:
要用长20m的铁栏杆,一面靠墙,围成一 个矩形的花圃,设连墙的一边为x,巨形的 面积为y,试(1)写出y关与x的函数关系式. (2)当x=3时,距形的面积为多少?
(2)你能说出这里自变量能取哪些值呢? x取任意实数
开动脑筋
问题:是否任何情况下二次函数中的自变量 的取值范围都是任意实数呢?
例如:圆的面积 y ( cm)与2 圆的半径 x(cm)
的函数关系是
y =πx2
其中自变量x能取哪些值呢? x 0
注意:当二次函数表示某个实际问题时,还必 须根据题意确定自变量的取值范围.
知识回顾
1.一元二次方程的一般形式是什么? 2。一次函数、正比例函数的定义是 什么?
合作学习,探索新知 :
请用适当的函数解析式表示下列问题情 境中的两个变量 y 与 x 之间的关系:
(1)圆的面积 y ( cm2 )与圆的半径 x ( cm ) y =πx2
(2)某商店1月份的利润是2万元,2、3月 份利润逐月增长,这两个月利润的月平 均增长率为x,3月份的利润为y
上述三个问题中的函数解析式具有哪些共同的 特征?
经化简后都具有y=ax²+bx+c 的形式. (a,b,c是常数, a≠0 )
❖ 我们把形如y=ax²+bx+c(其中a,b,c 是常数,a≠0)的函数叫做二次函数
称:a为二次项系数,ax2叫做二次项 b为一次项系数,bx叫做一次项 c为常数项,
又例:y=x²– 2x + 3
m2 m 2 m1 0
解得,m 2 当m 2时,函数为二次函数。
注意:二次函数的二次项系数不能为零
知识运用
练习1、m取何值时,函数是y= (m+1)x m2 2m1 +(m-3)x+m 是二次函数?
驶向胜利 的彼岸
练一练:
练习2、请举1个符合以下条件的y关于x的 二次函数的例子
(1)二次项系数是一次项系数的2倍, 常数项为任意值。
请说出其中的二次项、一次项及常数项
❖注:对二次函数y=ax²+bx+c(其中 a,b,c是常数,a≠0)的几点说明:
1、任何二次函数都可以化为一般式y=ax²+bx+c
2、二次函数y=ax²+bx+c( a≠0 )中,x,y是变量,a、 b、c是常量,b、c可以是任意实数,a必须是不等于 0的实数(为什么?)
10,当x=1时,函数值为4,当x=2时,函数值为7,求这
个二次函数的解析试.
解:设所求的二次函数 为y ax2 bx c,由题意得:
{a b c 10 abc 4
4a 2b c 7
待定系数法
解得,a 2,b 3, c 5
所求的二次函数是 y 2x2 3x 5
4. 已知二次函数y=x²+px+q,当x=1时,函数 值为4,当x=2时,函数值为- 5, 求这个二次 函数的解析式.
例2.写出下列各函数关系,并判断它们是什么类型的函数 (1)写出正方体的表面积S(cm2)与正方体棱长a(cm) 之间的函数关系; (2)写出圆的面积y(cm2)与它的周长x(cm)之间的函 数关系; (3)菱形的两条对角线的和为26cm,求菱形的面积S( cm2)与一对角线长x(cm)之间的函数关系.
解:把x=1,y=4和x=2,y=-5分别代入
函数y x2 px q,得:
{1 p q 4 4 2 p q 5
解得,p 12, q 15.
所求的二次函数是y x2 12x 15
牛刀小试
5.已知二次函数 y 2(x 1)2 4
(1)你能说出此函数的最小值吗? 当x=1时,函数y有最小值为4
(2)二次项系数为-5,一次项系数为 常数项的3倍。
展示才智
3、若函数 m的值。
为二次函数,求
解:因为该函数为二次函数,
则
解(1)得:m=2或-1 解(2)得: 所以m=2
超级链接
函数y ax2 bx c(其中a,b, c是常数), 当a,b, c满足什么条件时
(1)它是二次函数? (2)它是Байду номын сангаас次函数? (3)它是正比例函数?
y = 2(1+x)2
合作学习,探索新知 :
(3)拟建中的一个温室的平面图如图,
如果温室外围是一个矩形,周长为
120m , 室内通道的尺寸如图,设一条边
长为 x (m), 种植面积为 y (m2)。 1
1
1
y = (60-x-4)(x-2)
x
3
合作学习,探索新知 :
1.y =πx2 2.y = 2(1+x)2 3.y= (60-x-4)(x-2) =2x2+4x+2 =-x2+58x-112
(1) y x2
是
1 (2) y x2 (3) y x(1 x)
不是 是
(4) y (x 1)2 x2
不是
先化简后判断
2、下列函数中,哪些是二次函数?
(1) y 3x2 2
(是 )
(2) y x2 1 x
( 否)
(3) y (x 2)(x 3)
( 是)
(4)y x2 2x 3
(2)矩形的长是4厘米,宽是3厘米,如果将其长 增加x厘米,宽增加2x厘米,则面积增加到y平方厘 米,试写出y与x的关系式. 解:(1)y x2 (2) y (4 x)(3 2x) 2x2 11x 12
例1: 关于x的函数 y (m 1)xm2m 是二次函
数, 求m的值.
解: 由题意可得
( 否)
(5) y (x 2)( x 2) (x 1)2 ( 否 )
知识运用
3、下列函数中,哪些是二次函数?
(1)y=3x-1
(2)y=3x2
(3)y=3x3+2x2
(4)y=2x2-2x+1
(5)y=x-2+x
(6)y=x2-x(1+x)
做一做:
(1)正方形边长为x(cm),它的面积y(cm2) 是多少?
解: (1)由题意得 S 6a2 (a 0) 其中S是a的二次函数;
(2)由题意得 y x 2 (x 0) 其中y是x的二次函数;
4
(3)由题意得 S 1 x(26 x) 1 x2 13x(0 x 26)其中S是x的
2
2
二次函数
例3:已知关于x的二次函数,当x=-1时,函数值为