2018年全国高考文科数学2卷
2018年高考真题——文科数学(全国卷Ⅱ )+Word版含详细解析
绝密★启用前2018年普通高等学校招生全国统一考试文科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.作答时,将答案写在答题卡上。
写在本试卷及草稿纸上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
学@科网 1.()i 23i += A .32i -B .32i +C .32i --D .32i -+2.已知集合{}1,3,5,7A =,{}2,3,4,5B =,则AB =A .{}3B .{}5C .{}3,5D .{}1,2,3,4,5,73.函数()2e e x xf x x--=的图像大致为4.已知向量a ,b 满足||1=a ,1⋅=-a b ,则(2)⋅-=a a b A .4B .3C .2D .05.从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为 A .0.6B .0.5C .0.4D .0.36.双曲线22221(0,0)x y a b a b-=>>A .y =B .y =C .y x =D .y =7.在ABC △中,cos 2C 1BC =,5AC =,则AB =A .BCD .8.为计算11111123499100S =-+-++-,设计了如图的程序框图,则在空白框中应填入A .1i i =+B .2i i =+C .3i i =+D .4i i =+9.在正方体1111ABCD A B C D -中,E 为棱1CC 的中点,则异面直线AE 与CD 所成角的正切值为 A B C D 10.若()cos sin f x x x =-在[0,]a 是减函数,则a 的最大值是A .π4B .π2C .3π4D .π11.已知1F ,2F是椭圆C 的两个焦点,P 是C 上的一点,若12PF PF ⊥,且2160PF F ∠=︒,则C 的离心率为 A .1-B .2-CD 1-12.已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则(1)(2)(f ff++(50)f ++=A .50-B .0C .2D .50二、填空题:本题共4小题,每小题5分,共20分。
(精校版)2018年全国卷Ⅱ文数高考试题文档版(含答案)
绝密★启用前2018年普通高等学校招生全国统一考试文科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.作答时,将答案写在答题卡上。
写在本试卷及草稿纸上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
学@科网 1.()i 23i += A .32i -B .32i +C .32i --D .32i -+2.已知集合{}1,3,5,7A =,{}2,3,4,5B =,则AB =A .{}3B .{}5C .{}3,5D .{}1,2,3,4,5,73.函数()2e e x xf x x --=的图像大致为4.已知向量a ,b 满足||1=a ,1⋅=-a b ,则(2)⋅-=a a b A .4B .3C .2D .05.从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为 A .0.6B .0.5C .0.4D .0.36.双曲线22221(0,0)x y a b a b-=>>的离心率为3,则其渐近线方程为A .2y x =±B .3y x =±C .22y x =±D .32y x =±7.在ABC △中,5cos 25C =,1BC =,5AC =,则AB = A .42 B .30 C .29D .258.为计算11111123499100S =-+-++-,设计了如图的程序框图,则在空白框中应填入 开始0,0N T ==S N T =-S 输出1i =100i <1N N i =+11T T i =++结束是否A .1i i =+B .2i i =+C .3i i =+D .4i i =+9.在正方体1111ABCD A B C D -中,E 为棱1CC 的中点,则异面直线AE 与CD 所成角的正切值为 A .22B .32C .52D .7210.若()cos sin f x x x =-在[0,]a 是减函数,则a 的最大值是A .π4B .π2C .3π4D .π11.已知1F ,2F 是椭圆C 的两个焦点,P 是C 上的一点,若12PF PF ⊥,且2160PF F ∠=︒,则C 的离心率为 A .312-B .23-C .312- D .31-12.已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则(1)(2)(f ff++(50)f ++=A .50-B .0C .2D .50二、填空题:本题共4小题,每小题5分,共20分。
2018年高考全国二卷数学文科(word版)试题(含答案)
绝密★启用前2018年普通高等学校招生全国统一考试文科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.作答时,将答案写在答题卡上。
写在本试卷及草稿纸上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.学@科网 1.()i 23i += A .32i -B .32i +C .32i --D .32i -+2.已知集合{}1,3,5,7A =,{}2,3,4,5B =,则AB =A .{}3B .{}5C .{}3,5D .{}1,2,3,4,5,73.函数()2e e x xf x x --=的图像大致为4.已知向量a ,b 满足||1=a ,1⋅=-a b ,则(2)⋅-=a a b A .4B .3C .2D .05.从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为 A .0.6B .0.5C .0.4D .0.36.双曲线22221(0,0)x y a b a b-=>>3A .2y x =B .3y x =±C .2y = D .3y = 7.在ABC △中,5cos 2C =1BC =,5AC =,则AB = A .42B 30C 29D .258.为计算11111123499100S =-+-++-,设计了如图的程序框图,则在空白框中应填入A .1i i =+B .2i i =+C .3i i =+D .4i i =+9.在正方体1111ABCD A B C D -中,E 为棱1CC 的中点,则异面直线AE 与CD 所成角的正切值为 A B C D 10.若()cos sin f x x x =-在[0,]a 是减函数,则a 的最大值是A .π4B .π2C .3π4D .π11.已知1F ,2F 是椭圆C 的两个焦点,P 是C 上的一点,若12PF PF ⊥,且2160PF F ∠=︒,则C 的离心率为A .1-B .2CD 112.已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则(1)(2)(3)f f f ++(50)f ++=A .50-B .0C .2D .50二、填空题:本题共4小题,每小题5分,共20分。
2018全国高考新课标2卷文科数学试题(解析版)
2018年普通高等学校招生全国统一考试新课标2卷文科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.作答时,将答案写在答题卡上。
写在本试卷及草稿纸上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.i(2+3i)=( )A .3-2iB .3+2iC .-3-2iD .-3+2i 解析:选D2.已知集合A={1,3,5,7},B={2,3,4,5},则A ∩B=( )A .{3}B .{5}C .{3,5}D .{1,2,3,4,5,7} 解析:选C3.函数f(x)= e x-e-xx2的图像大致为 ( )解析:选B f(x)为奇函数,排除A,x>0,f(x)>0,排除D,取x=2,f(2)= e 2-e-24>1,故选B4.已知向量a ,b 满足|a|=1,a ·b=-1,则a ·(2a-b)= ( )A .4B .3C .2D .0解析:选B a ·(2a-b)=2a 2-a ·b=2+1=35.从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为 A .0.6 B .0.5 C .0.4 D .0.3解析:选D 5人选2人有10种选法,3人选2人有3中选法。
6.双曲线x 2a 2-y2b 2=1(a >0,b >0)的离心率为3,则其渐近线方程为( )A .y=±2xB .y=±3xC .y=±22x D .y=±32x 解析:选A e= 3 c 2=3a 2b=2a7.在ΔABC 中,cos C 2=55,BC=1,AC=5,则AB= ( )A .4 2B .30C .29D .2 5解析:选A cosC=2cos 2C 2 -1= - 35AB 2=AC 2+BC 2-2AB ·BC ·cosC=32 AB=4 28.为计算S=1- 12 + 13 - 14 +……+ 199 - 1100,设计了右侧的程序框图,则在空白框中应填入( )A .i=i+1B .i=i+2C .i=i+3D .i=i+4 解析:选B9.在正方体ABCD-A 1B 1C 1D 1中,E 为棱CC 1的中点,则异面直线AE 与CD 所成角的正切值为( ) A .22B .32C .52D .72解析:选C 即AE 与AB 所成角,设AB=2,则BE=5,故选C10.若f(x)=cosx-sinx 在[0,a]是减函数,则a 的最大值是( ) A .π4B .π2C .3π4D .π解析:选C f(x)= 2cos(x+π4),依据f(x)=cosx 与f(x)= 2cos(x+π4)的图象关系知a 的最大值为3π4。
2018全国高考新课标2卷文科数学试题(解析版)
2018年普通高等学校招生全国统一考试新课标2卷文科数学注意事项:1.答卷前,考生务必将自己得姓名、准考证号填写在答题卡上。
2.作答时,将答案写在答题卡上。
写在本试卷及草稿纸上无效。
3.考试结束后,将本试卷与答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分,在每小题给出得四个选项中,只有一项就是符合题目要求得。
1.i(2+3i)=( )A.3-2iB.3+2iC.-3-2iD.-3+2i解析:选D2.已知集合A={1,3,5,7},B={2,3,4,5},则A∩B=( )A.{3}B.{5}C.{3,5}D.{1,2,3,4,5,7}解析:选C3.函数f(x)= e x-e-xx2得图像大致为 ( )解析:选B f(x)为奇函数,排除A,x>0,f(x)>0,排除D,取x=2,f(2)=e2-e-24>1,故选B4.已知向量a,b满足|a|=1,a·b=-1,则a·(2a-b)= ( )A.4B.3C.2D.0解析:选B a·(2a-b)=2a2-a·b=2+1=35.从2名男同学与3名女同学中任选2人参加社区服务,则选中得2人都就是女同学得概率为A.0、6B.0、5C.0、4D.0、3解析:选D 5人选2人有10种选法,3人选2人有3中选法。
6.双曲线x2a2-y2b2=1(a>0,b>0)得离心率为3,则其渐近线方程为( )A.y=±2xB.y=±3xC.y=±22x D.y=±32x解析:选A e= 3 c2=3a2 b=2a7.在ΔABC中,cos C2=55,BC=1,AC=5,则AB= ( )A.4 2B.30C.29D.2 5解析:选A cosC=2cos2C2 -1= -35AB2=AC2+BC2-2AB·BC·cosC=32 AB=4 28.为计算S=1- 12 + 13 - 14 +……+ 199 - 1100,设计了右侧得程序框图,则在空白框中应填入( )A.i=i+1B.i=i+2C.i=i+3D.i=i+4 解析:选B9.在正方体ABCD-A 1B 1C 1D 1中,E 为棱CC 1得中点,则异面直线AE 与CD 所成角得正切值为( ) A.22B.32C.52D.72解析:选C 即AE 与AB 所成角,设AB=2,则BE=5,故选C10.若f(x)=cosx-sinx 在[0,a]就是减函数,则a 得最大值就是( ) A.π4B.π2C.3π4D.π解析:选C f(x)= 2cos(x+π4),依据f(x)=cosx 与f(x)= 2cos(x+π4)得图象关系知a 得最大值为3π4。
2018年高考全国二卷数学文科(word版)试题(含答案)
绝密★启用前2018年普通高等学校招生全国统一考试文科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上. 2.作答时,将答案写在答题卡上。
写在本试卷及草稿纸上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
学@科网 1.()i 23i += A .32i -B .32i +C .32i --D .32i -+2.已知集合{}1,3,5,7A =,{}2,3,4,5B =,则AB =A .{}3B .{}5C .{}3,5D .{}1,2,3,4,5,73.函数()2e e x xf x x --=的图像大致为4.已知向量a ,b 满足||1=a ,1⋅=-a b ,则(2)⋅-=a a b A .4B .3C .2D .05.从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为 A .0.6B .0.5C .0.4D .0.36.双曲线22221(0,0)x y a b a b-=>>3则其渐近线方程为A .2y x =B .3y x =±C .2y = D .3y = 7.在ABC △中,5cos 2C =1BC =,5AC =,则AB = A .42B 30C 29D .258.为计算11111123499100S =-+-++-,设计了如图的程序框图,则在空白框中应填入A .1i i =+B .2i i =+C .3i i =+D .4i i =+9.在正方体1111ABCD A B C D -中,E 为棱1CC 的中点,则异面直线AE 与CD 所成角的正切值为 A B C D 10.若()cos sin f x x x =-在[0,]a 是减函数,则a 的最大值是A .π4B .π2C .3π4D .π11.已知1F ,2F是椭圆C 的两个焦点,P 是C 上的一点,若12PF PF ⊥,且2160PF F ∠=︒,则C 的离心率为A .1-B .2CD 112.已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则(1)(2)(3)f f f ++(50)f ++=A .50-B .0C .2D .50二、填空题:本题共4小题,每小题5分,共20分. 13.曲线2ln y x =在点(1,0)处的切线方程为__________.14.若,x y 满足约束条件250,230,50,x y x y x +-⎧⎪-+⎨⎪-⎩≥≥≤ 则z x y =+的最大值为__________.15.已知5π1tan()45α-=,则tan α=__________. 16.已知圆锥的顶点为S ,母线SA ,SB 互相垂直,SA 与圆锥底面所成角为30︒,若SAB △的面积为8,则该圆锥的体积为__________.三、解答题:共70分。
(精校版)2018年全国卷Ⅱ文数高考试题文档版(含答案)
绝密★启用前2018年普通高等学校招生全国统一考试文科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.作答时,将答案写在答题卡上。
写在本试卷及草稿纸上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
学@科网 1.()i 23i += A .32i -B .32i +C .32i --D .32i -+2.已知集合{}1,3,5,7A =,{}2,3,4,5B =,则AB =A .{}3B .{}5C .{}3,5D .{}1,2,3,4,5,73.函数()2e e x xf x x --=的图像大致为4.已知向量a ,b 满足||1=a ,1⋅=-a b ,则(2)⋅-=a a b A .4B .3C .2D .05.从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为 A .0.6B .0.5C .0.4D .0.36.双曲线22221(0,0)x y a b a b-=>>的离心率为3,则其渐近线方程为A .2y x =±B .3y x =±C .22y x =±D .32y x =±7.在ABC △中,5cos 25C =,1BC =,5AC =,则AB = A .42 B .30 C .29D .258.为计算11111123499100S =-+-++-,设计了如图的程序框图,则在空白框中应填入 开始0,0N T ==S N T =-S 输出1i =100i <1N N i =+11T T i =++结束是否A .1i i =+B .2i i =+C .3i i =+D .4i i =+9.在正方体1111ABCD A B C D -中,E 为棱1CC 的中点,则异面直线AE 与CD 所成角的正切值为 A .22B .32C .52D .7210.若()cos sin f x x x =-在[0,]a 是减函数,则a 的最大值是A .π4B .π2C .3π4D .π11.已知1F ,2F 是椭圆C 的两个焦点,P 是C 上的一点,若12PF PF ⊥,且2160PF F ∠=︒,则C 的离心率为 A .312-B .23-C .312- D .31-12.已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则(1)(2)(f ff++(50)f ++=A .50-B .0C .2D .50二、填空题:本题共4小题,每小题5分,共20分。
2018年高考全国二卷数学文科(word版)试题(含答案)
绝密★启用前2018年普通高等学校招生全国统一考试文科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上. 2.作答时,将答案写在答题卡上.写在本试卷及草稿纸上无效。
3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
学@科网 1.()i 23i += A .32i -B .32i +C .32i --D .32i -+2.已知集合{}1,3,5,7A =,{}2,3,4,5B =,则AB =A .{}3B .{}5C .{}3,5D .{}1,2,3,4,5,73.函数()2e e x xf x x --=的图像大致为4.已知向量a ,b 满足||1=a ,1⋅=-a b ,则(2)⋅-=a a b A .4B .3C .2D .05.从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为 A .0.6B .0.5C .0.4D .0.36.双曲线22221(0,0)x y a b a b-=>>3A .2y x =B .3y x =±C .2y = D .3y = 7.在ABC △中,5cos 2C =1BC =,5AC =,则AB = A .42B 30C 29D .258.为计算11111123499100S =-+-++-,设计了如图的程序框图,则在空白框中应填入A .1i i =+B .2i i =+C .3i i =+D .4i i =+9.在正方体1111ABCD A B C D -中,E 为棱1CC 的中点,则异面直线AE 与CD 所成角的正切值为 A B C D 10.若()cos sin f x x x =-在[0,]a 是减函数,则a 的最大值是A .π4B .π2C .3π4D .π11.已知1F ,2F 是椭圆C 的两个焦点,P 是C 上的一点,若12PF PF ⊥,且2160PF F ∠=︒,则C 的离心率为 A .1-B .2CD 112.已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则(1)(2)(3)f f f ++(50)f ++=A .50-B .0C .2D .50二、填空题:本题共4小题,每小题5分,共20分。
(精校版)2018年全国卷Ⅱ文数高考试题文档版(含答案)
绝密★启用前2018年普通高等学校招生全国统一考试文科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.作答时,将答案写在答题卡上。
写在本试卷及草稿纸上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
学@科网 1.()i 23i += A .32i -B .32i +C .32i --D .32i -+2.已知集合{}1,3,5,7A =,{}2,3,4,5B =,则AB =A .{}3B .{}5C .{}3,5D .{}1,2,3,4,5,73.函数()2e e x xf x x --=的图像大致为4.已知向量a ,b 满足||1=a ,1⋅=-a b ,则(2)⋅-=a a b A .4B .3C .2D .05.从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为 A .0.6B .0.5C .0.4D .0.36.双曲线22221(0,0)x y a b a b-=>>的离心率为3,则其渐近线方程为A .2y x =±B .3y x =±C .22y x =±D .32y x =±7.在ABC △中,5cos 25C =,1BC =,5AC =,则AB = A .42B .30C .29D .258.为计算11111123499100S =-+-++-,设计了如图的程序框图,则在空白框中应填入 开始0,0N T ==S N T =-S 输出1i =100i <1N N i =+11T T i =++结束是否A .1i i =+B .2i i =+C .3i i =+D .4i i =+9.在正方体1111ABCD A B C D -中,E 为棱1CC 的中点,则异面直线AE 与CD 所成角的正切值为 A .22B .32C .52D .7210.若()cos sin f x x x =-在[0,]a 是减函数,则a 的最大值是A .π4B .π2C .3π4D .π11.已知1F ,2F 是椭圆C 的两个焦点,P 是C 上的一点,若12PF PF ⊥,且2160PF F ∠=︒,则C 的离心率为 A .312-B .23-C .312- D .31-12.已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则(1)(2)(f ff++(50)f ++=A .50-B .0C .2D .50二、填空题:本题共4小题,每小题5分,共20分。
2018年普通高等学校招生全国统一考试文科数学试题卷II卷(附带答案及详细解析)
绝密★启用前2018年普通高等学校招生全国统一考试文科II卷数学试题卷本试卷共5页,23题(含选考题)。
全卷满分150分。
考试用时120 分钟。
★祝考试顺利★注意事项:1.答题前,先将白己的姓名、准考证号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2. 选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
写在试卷、草稿纸和答题卡上的非答题区域均无效。
3. 非选择题的作答:用黑色签字笔直接答在答题卡.上对应的答题区域内。
写在试卷、草稿纸和答题卡,上的非答题区域均无效。
4.选考题的作答: 先把所选题目的题号在答题卡上指定的位置用2B铅笔涂黑。
答案写在答题卡.上对应的答题区域内,写在试卷、草稿纸和答题卡.上的非答题区域均无效。
.5.考试结束后,请将本试卷和答题卡-并上交。
一、选择题1.i(2+3i)=()A. 3-2iB. 3+2iC. -3-2iD. -3+2i2.已知集合A={1、3、5、7},B={2、3、4、5},则A∩B=()A. {3}B. {5}C. {3、5}D. {1、2、3、4、5、7}3.函数f(x)=e x−e−x的图像大致为( )x2A. B.C. D.4.已知向量a→,b→满足|a→|=1, a→⋅b→=−1 ,则a→·(2a→-b→)=()A. 4B. 3C. 2D. 05.从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为()A. 0.6B. 0.5C. 0.4D. 0.36.双曲线x2a2−y2b2=1(a>0,b>0)的离心率为√3,则其渐近线方程为()A. y=±√2xB. y=±√3xC. y=±√22x D. y=±√32x7.在ΔABC中,cos C2=√55,BC=1,AC=5则AB=()A. 4√2B. √30C. √29D. 2√58.为计算S=1−12+13−14+⋅⋅⋅+199−1100,设计了右侧的程序框图,则在空白框中应填入()A. i =i +1B. i =i +2C. i =i +3D. i =i +4 9.在正方体ABCD-A 1B 1C 1D 1中,E 为棱CC 1的重点,则异面直线AE 与CD 所成角的正切值为( ) A. √22 B. √32 C. √52 D. √72 10.若 f(x)=cosx −sinx 在 [0,a] 是减函数,则a 的最大值是( )A. π4B. π2C. 3π4D. π 11.已知 F 1 、 F 2 是椭圆C 的两个焦点,P 是C 上的一点,若 PF 1⊥PF 2 ,且 ∠PF 2F 1=60∘ ,则C 的离心率为( )A. 1- √32B. 2-√3C. √3-12D. √3-1 12.已知 f(x) 是定义域为 (−∞,+∞) 的奇函数,满足 f(1−x)=f(1+x) 。
2018年全国卷2文科数学试题与答案解析
绝密★启用前2018 年普通高等学校招生全国统一考试文科数学注意事项:1.答卷前,考生务必将自己的XX 、XX 号填写在答题卡上。
2.作答时,将答案写在答题卡上。
写在本试卷及草稿纸上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12 小题,每小题5 分,共 60 分,在每小题给出的四个选项中,只有一项是符合题目要求的。
学 @科网1. i 2 3iA . 3 2iB . 3 2iC . 3 2iD . 3 2i2.已知集合 A1,3,5,7 , B 2,3,4,5,则 ABA . 3B . 5C .3,5D . 1,2,3,4,5,73.函数 e x e xf xx 2的图像大致为4.已知向量a ,b 满足 | a | 1 ,a b1 ,则a (2 ab )A . 4B .3C . 2D . 05.从 2 名男同学和3 名女同学中任选 2 人参加社区服务,则选中的2 人都是女同学的概率为 A . 0.6B . 0.5C . 0.4D . 0.36.双曲线x 2y 21( a 0, b 0) 的离心率为3 ,则其渐近线方程为a 2b 2A .y2xB .y3xC . y2 x D . y3 x227.在△ABC 中, cosC5,BC1 , AC5,则AB25A .4 2B . 30C . 29D .2 58.为计算 S 111111,设计了如图的程序框图,则在空白框中应填入23499100开始N0,T0i1是i否100N N1S N TiT T1输出 S1i结束A . i i1B. i i2C.i i3D. i i49.在正方体 ABCD A1B1C1D1中, E 为棱 CC1的中点,则异面直线AE 与 CD 所成角的正切值为A.2B.3C.5D.7 222210.若 f (x)cos x sin x 在 [0, a] 是减函数,则 a 的最大值是A.πB.πC.3πD.π42411.已知 F1, F2是椭圆 C 的两个焦点,P 是C上的一点,若PF1PF2,且PF2 F160 ,则 C 的离心率为A. 13B.23C.31D.31 2212.已知 f (x)是定义域为(,) 的奇函数,满足 f (1 x) f (1 x) .若 f ( 1 ),2 则f ( 1 ) f ( 2 )f( f ( 5 0 )A. 50B. 0C. 2D. 50二、填空题:本题共 4 小题,每小题 5 分,共20 分。
2018年高考全国二卷数学文科(word版)试题(含答案)
绝密★启用前2018年普通高等学校招生全国统一考试文科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.作答时,将答案写在答题卡上.写在本试卷及草稿纸上无效。
3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.学@科网 1.()i 23i += A .32i -B .32i +C .32i --D .32i -+2.已知集合{}1,3,5,7A =,{}2,3,4,5B =,则AB =A .{}3B .{}5C .{}3,5D .{}1,2,3,4,5,73.函数()2e e x xf x x --=的图像大致为4.已知向量a ,b 满足||1=a ,1⋅=-a b ,则(2)⋅-=a a b A .4B .3C .2D .05.从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为 A .0.6B .0.5C .0.4D .0.36.双曲线22221(0,0)x y a b a b-=>>3A .2y x =±B .3y x =±C .2y =D .3y x = 7.在ABC △中,5cos 2C 1BC =,5AC =,则AB = A .42B 30 C 29D .258.为计算11111123499100S =-+-++-,设计了如图的程序框图,则在空白框中应填入A .1i i =+B .2i i =+C .3i i =+D .4i i =+9.在正方体1111ABCD A B C D -中,E 为棱1CC 的中点,则异面直线AE 与CD 所成角的正切值为 A B C D 10.若()cos sin f x x x =-在[0,]a 是减函数,则a 的最大值是A .π4B .π2C .3π4D .π11.已知1F ,2F是椭圆C 的两个焦点,P 是C 上的一点,若12PF PF ⊥,且2160PF F ∠=︒,则C 的离心率为A .1B .2CD 112.已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则(1)(2)(3)f f f ++(50)f ++=A .50-B .0C .2D .50二、填空题:本题共4小题,每小题5分,共20分.13.曲线2ln y x =在点(1,0)处的切线方程为__________.14.若,x y 满足约束条件250,230,50,x y x y x +-⎧⎪-+⎨⎪-⎩≥≥≤ 则z x y =+的最大值为__________.15.已知5π1tan()45α-=,则tan α=__________. 16.已知圆锥的顶点为S ,母线SA ,SB 互相垂直,SA 与圆锥底面所成角为30︒,若SAB △的面积为8,则该圆锥的体积为__________.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23为选考题。
2018年高考全国二卷数学文科(word版)试题(含答案)
绝密★启用前2018年普通高等学校招生全国统一考试文科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.作答时,将答案写在答题卡上。
写在本试卷及草稿纸上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
学@科网 1.()i 23i += A .32i -B .32i +C .32i --D .32i -+2.已知集合{}1,3,5,7A =,{}2,3,4,5B =,则AB =A .{}3B .{}5C .{}3,5D .{}1,2,3,4,5,73.函数()2e e x xf x x --=的图像大致为4.已知向量a ,b 满足||1=a ,1⋅=-a b ,则(2)⋅-=a a b A .4B .3C .2D .05.从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为 A .0.6B .0.5C .0.4D .0.36.双曲线22221(0,0)x y a b a b-=>>3A .2y x =B .3y x =±C .2y = D .3y = 7.在ABC △中,5cos 2C =1BC =,5AC =,则AB = A .42B 30C 29D .258.为计算11111123499100S =-+-++-,设计了如图的程序框图,则在空白框中应填入A .1i i =+B .2i i =+C .3i i =+D .4i i =+9.在正方体1111ABCD A B C D -中,E 为棱1CC 的中点,则异面直线AE 与CD 所成角的正切值为 A B C D 10.若()cos sin f x x x =-在[0,]a是减函数,则a 的最大值是A .π4B .π2C .3π4D .π11.已知1F ,2F 是椭圆C的两个焦点,P 是C 上的一点,若12PF PF ⊥,且2160PF F ∠=︒,则C 的离心率为A .1-B .2CD 112.已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则(1)(2)(3)f f f ++(50)f ++=A .50-B .0C .2D .50二、填空题:本题共4小题,每小题5分,共20分。
2018全国高考新课标2卷文科数学试题(解析版)
2018年普通高等学校招生全国统一考试新课标2卷文科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.作答时,将答案写在答题卡上。
写在本试卷及草稿纸上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.i(2+3i)=( )A.3-2i B.3+2i C.-3-2i D.-3+2i解析:选D2.已知集合A={1,3,5,7},B={2,3,4,5},则A∩B=( )A.{3} B.{5} C.{3,5} D.{1,2,3,4,5,7}解析:选C3.函数f(x)= e x-e-xx2的图像大致为( )解析:选B f(x)为奇函数,排除A,x>0,f(x)>0,排除D,取x=2,f(2)= e2-e-24>1,故选B4.已知向量a,b满足|a|=1,a·b=-1,则a·(2a-b)= ( ) A.4 B.3 C.2 D.0解析:选B a·(2a-b)=2a2-a·b=2+1=35.从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为A.0.6 B.0.5 C.0.4 D.0.3解析:选D 5人选2人有10种选法,3人选2人有3中选法。
6.双曲线x2a2-y2b2=1(a>0,b>0)的离心率为3,则其渐近线方程为( )A.y=±2x B.y=±3x C.y=±2 2xD.y=±3 2x解析:选A e= 3 c2=3a2b=2a7.在ΔABC中,cos C2=55,BC=1,AC=5,则AB= ( )A.4 2 B.30 C.29 D.2 5解析:选 A cosC=2cos2C2-1= -35AB2=AC2+BC2-2AB·BC·cosC=32 AB=4 28.为计算S=1- 12+13-14+……+199-1100,设计了右侧的程序框图,则在空白框中应填入( )A.i=i+1 B.i=i+2 C.i=i+3 D.i=i+4解析:选B9.在正方体ABCD-A1B1C1D1中,E为棱CC1的中点,则异面直线AE 与CD所成角的正切值为( )A.22B.32C.52D.72解析:选C 即AE与AB所成角,设AB=2,则BE=5,故选C 10.若f(x)=cosx-sinx在[0,a]是减函数,则a的最大值是( )A.π4B.π2C.3π4D.π解析:选C f(x)= 2cos(x+π4),依据f(x)=cosx与f(x)= 2cos(x+π4)的图象关系知a的最大值为3π4。
2018年高考全国2卷文科数学带答案解析
2018年普通高等学校招生全国统一考试文科数学本试卷共注意事项:23题,共150分,共4页。
考试结束后,将本试卷和答题卡一并交回。
1•答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在 条形码区域内。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用 0.5毫米黑色字迹的签字笔 书写,字体工整、笔迹清楚。
3•请按照题号顺序在各题目的答题区域内作答, 超出答题区域书写的答案无效; 在草稿纸、试题卷上答题无效。
4 •作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮 纸刀。
一、选择题:本题共 12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有 项是符合题目要求的。
1. i(2+3i)=A. 3-2iB. 3 2iC. -3 _2iD. -3 2i2.已知集合A=「1,3,5,7 匚 B -「2,3,4,5 [则 A^B =A.「3 ?B.C. :3,5;D. 11,2,3,4,5,7 /3.函数 f(x)e x- e e 2e的图象大致为2 x4.已知向量 a , b 满足 | a |=1 , a b - -1,则 a (2a -b )=A. 0.6B. 0.5C. 0.4D. 0.32 26 •双曲线笃-1( a 0, b 0)的离心率为-3,则其渐近线方程为a bA. y =. 2xB. y = 3xC 占 C ・yx2D. y =二 3x2C7.在"Be 中,co 丁 5, BC=1 ,AC =5,贝U AB =A. 42B. , 30C.29D. 2 5绝密★启用前A. 45•从2名男同学和 B . 3 3名女同学中任选 C. 2 2人参加社区服务,则选中D. 02人都是女同学的概率为A CD&为计算S -1---- —,设计了右侧的程 2 3 499 100序框图,则在空白框中应填入A. i =i 1B. i =i 2C. i =i 3D. i =i 49.在长方体 ABCD -A 1B 1C 1D 1中,E 为棱CC 1的中点,则异面直线 AE 与CD 所成角的正切值为 A.二B.二C.」2 2 210 .若f (x) = cosx -sinx 在[0, a ]是减函数,则 a 的最大值是则C 的离心率为f(1) f (2) f(3) Hl • f (50)=二、 填空题:本题共 4小题,每小题5分,共20分。
2018年高考全国二卷数学文科(word版)试题(含答案)
绝密★启用前2018年普通高等学校招生全国统一考试文科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.作答时,将答案写在答题卡上。
写在本试卷及草稿纸上无效。
3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
学@科网 1.()i 23i += A .32i -B .32i +C .32i --D .32i -+2.已知集合{}1,3,5,7A =,{}2,3,4,5B =,则AB =A .{}3B .{}5C .{}3,5D .{}1,2,3,4,5,73.函数()2e e x xf x x --=的图像大致为4.已知向量a ,b 满足||1=a ,1⋅=-a b ,则(2)⋅-=a a b A .4B .3C .2D .05.从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为 A .0.6B .0.5C .0.4D .0.36.双曲线22221(0,0)x y a b a b-=>>3A .2y x =B .3y x =±C .2y = D .3y = 7.在ABC △中,5cos 2C =1BC =,5AC =,则AB = A .42B 30C 29D .258.为计算11111123499100S =-+-++-,设计了如图的程序框图,则在空白框中应填入A .1i i =+B .2i i =+C .3i i =+D .4i i =+9.在正方体1111ABCD A B C D -中,E 为棱1CC 的中点,则异面直线AE 与CD 所成角的正切值为 A B C D 10.若()cos sin f x x x =-在[0,]a 是减函数,则a 的最大值是A .π4B .π2C .3π4D .π11.已知1F ,2F是椭圆C 的两个焦点,P 是C 上的一点,若12PF PF ⊥,且2160PF F ∠=︒,则C 的离心率为A .1-B .2CD 112.已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则(1)(2)(3)f f f ++(50)f ++=A .50-B .0C .2D .50二、填空题:本题共4小题,每小题5分,共20分。
【真题】2018年全国卷II高考数学(文科)试题含答案解析
【试题来源】2018 年高考文数真题(全国Ⅱ卷)
三、解答题
17. (2018•卷Ⅱ)记 Sn 为等差数列(an)的前 n 项和,已知 a1=-7,S1=-15. (1)求{an}的通项公式; 【答案】设数列的公差为 d,由题意有:
a1=-7,S3=3a2=-15 a2=-5,d=2 ∴an=a1+(n-1)d=-7+2(n-1)=2n-9
7. (2018•卷Ⅱ)在 ABC 中, cos C 5 , BC 1, AC 5 则 AB ( ) 25
A. 4 2
B. 30
C. 29
D. 2 5
【答案】A cos C 5
【解析】【解答】 2 5 ,
cos C 2 cos2 C 1 2 1 1 3
y' 2 x
y' 2 x1
∴在点(0,0)处的切线方程为:y=2(x-1)=2x-2
故答案为:y=2x-2
【分析】 【题型】填空题 【考查类型】高考真题 【试题级别】高三 【试题地区】全国 【试题来源】2018 年高考文数真题(全国Ⅱ卷)
x 2y 5 0 14. (2018•卷Ⅱ)若 x,y 满足约束条件 x 2 y 3 0 ,则 z x y 的最大值为_______.
∴amax= 3 4
故答案为:C
【分析】 【题型】单选题 【考查类型】高考真题 【试题级别】高三 【试题地区】全国 【试题来源】2018 年高考文数真题(全国Ⅱ卷)
11.
(2018•卷Ⅱ)已知 F1 、 F2 是椭圆 C 的两个焦点,P 是 C 上的一点,若 PF1 PF2 ,且
PF2F1 60 ,则 C 的离心率为( )
A.4
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年普通高等学校招生全国统一考试(新课标II 卷)
文科数学
本试卷4页,23小题,满分150分.考试用时120分钟.
一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要
求的.
1.=+i)32(i ( )
A .2i 3-
B .2i 3+
C .2i 3--
D .2i 3+- 2.已知集合}7,5,3,1{=A ,}5,4,3,2{=B ,则=B A ( )
A .}3{
B .}5{
C .}5,3{
D .}7,5,4,3,2,1{
3.函数2
)(x e e x f x
x --=的图像大致为( )
A
B
C D
41-,则=-⋅)2(b a a ( )
A .2 D .0
5.从22人参加社区服务,则选中的2人都是女同学的概率为( )
A .4.0 D .3.0
6.双曲线)0,0(122
22>>=-b a b
y a x 的离心率为3,则其渐近线方程为( )
A .x y 2±=
B .x y 3±=
C .x y 22±
= D .x y 2
3
±= 7.在ABC ∆中,5
5
2cos
=C ,1=BC ,5=AC ,则=AB ( ) A .24 B .30 C .29 D .52
8.为计算100
1
9914131211-
++-+-= S ,设计了右侧的 程序框图,则在空白框中应填入( )
A .1+=i i
B .2+=i i
C .3+=i i
D .4+=i i
9.在正方体1111D C B A ABCD -中,E 为棱1CC 的中点,则异面直线AE 与CD 所成角的正切值为( )
A .22
B .23
C .25
D .2
7
10.若x x x f sin cos )(-=在],0[a 上是减函数,则a 的最大值是( )
A .
4π B .2
π
C .43π
D .π
11.已知21,F F 是椭圆C 的两个焦点,P 是C 上的一点,若21PF PF ⊥,且
6012=∠F PF ,则C 的离心率为( )
A .231-
B .32-
C .2
1
3- D .13-
D 1
A
B
C D
A 1
C 1 B 1 E
12.已知)(x f 是定义域为),(+∞-∞的奇函数,满足)1()1(x f x f +=-.若2)1(=f ,则
=++++)50()3()2()1(f f f f ( )
A .50-
B .0
C .2
D .50 二、填空题:本题共4小题,每小题5分,共20分.
13.曲线x y ln 2=在点)0,1(处的切线方程为 .
14.若y x ,满足约束条件⎪⎩
⎪
⎨⎧≤-≥+-≥-+05032052x y x y x ,则y x z +=的最大值为 .
15.已知5
1
)45tan(=-
πα,则=αtan . 16已知圆锥的顶点为S ,母线SB SA ,互相垂直,SA 与圆锥底面所成角为
30,若SAB ∆的面积为8,则该圆锥的体积为 .
三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分. 17.(12分)
记n S 为等差数列{}n a 的前n 项和,已知71-=a ,153-=S . (1)求{}n a 的通项公式; (2)求n S ,并求n S 的最小值. 18.(12分)
下图是某地区2000年至2016年环境基础设施投资额y (单位:亿元)的折线图.
A
S
B
O
为了预测该地区2018年的环境基础设施投资额,建立了y 与时间变量t 的两个线性回归模型,根据2000
年至2016年的数据(时间变量t 的值依次为17,,2,1 )建立模型①:t y 5.134.30ˆ+-=;根据2010年至2016年的数据(时间变量t 的值依次为7,,2,1 )建立模型②:t y
5.1799ˆ+=. (1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值; (2)你认为哪个模型得到的预测值更可靠并说明理由. 19.(12分)
如图,在三棱锥ABC P -中,22==BC AB ,4====AC PC PB PA ,O 为AC 的中点. (1)证明:⊥PO 平面ABC ;
(2)若点M 在棱BC 上,且MB MC 2=,求点C 到平面POM
的距离.
20.(12分)
设抛物线x y C 4:2
=的交点为F ,过F 且斜率为)0(
>k k 的直线l 与C 交于B A ,两点,8=AB . (1)求l 的方程;
(2)求过点B A ,且与C 的准线相切的圆的方程. 21.(12分)
已知函数)1(3
1)(23
++-=
x x a x x f . (1)若3=a ,求)(x f 的单调区间; (2)证明:)(x f 只有一个零点.
02000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 年份
A
B
C
M
O
P
(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分. 22.[选修4—4:坐标系与参数方程](10分)
在直角坐标系xOy 中,曲线C 的参数方程为θθ
θ
( sin 4cos 2⎩⎨
⎧==y x 为参数),直线l 的参数方程为
t t y t x ( sin 2cos 1⎩⎨
⎧+=+=α
α
为参数) (1)求C 和l 的直角坐标方程;
(2)若曲线C 截直线l 所得线段的中点坐标为)2,1(,求l 的斜率. 23.[选修4—5:不等式选讲](10分)
设函数25)(--+-=x a x x f .
(1)当1=a 时,求不等式0)(≥x f 的解集; (2)若1)(≤x f ,求a 的取值范围.。