六年级上册数学知识点梳理及典型题(经典)
六年级上专题复习题及知识归纳(分数乘除、比、百分数应用、简便运算、解方程)
一般来讲,出勤率、成活率、合格率、正确率能达到100%,出米率、出油率达不到100%,完成率、增长了百分之几等可以超过100%。
2、求一个数是另一个数的百分之几用一个数除以另一个数,结果写为百分数形式。
3、已知单位“1”的量(用乘法),求单位“1”的百分之几是多少,数量关系式和分数乘法解决问题中的关系式相同:(1)百分率前是“的”:单位“1”的量×百分率=百分率对应量(2百分率前是“多或少”的数量关系:单位“1”的量×(1±百分率)=百分率对应量4、未知单位“1”的量(用除法),已知单位“1”的百分之几是多少,求单位“1”。
方法与分数的方法相同。
解法:(1)方程:根据数量关系式设未知量为X,用方程解答。
(2)算术(用除法):百分率对应量÷对应百分率= 单位“1”的量5、求一个数比另一个数多(少)百分之几的方法与分数的方法相同。
只是结果要写为百分数形式。
看百分率前有没有比多或比少的问题;百分率前是“多或少”的关系式:(比少):具体量÷(1-百分率)= 单位“1”的量;(比多):具体量÷(1+百分率)= 单位“1”的量6、求一个数比另一个数多百分之几的方法:方法与分数的方法相同。
用两个数的相差量÷单位“1”的量=百分之几即①求一个数比另一个数多百分之几:用(大数–小数)÷另一个数(比那个数就除以那个数),结果写为百分数形式。
②求一个数比另一个数少几分之几:用(大数–小数)÷另一个数(比那个数就除以那个数),结果写为百分数形式。
说明:多百分之几不等于少百分之几,因为单位一不同。
7、如果甲比乙多或少a﹪,求乙比甲少或多百分之几,用a﹪÷(1±a﹪)8、求价格先降a﹪又上升a﹪后的价格:1×(1-a﹪)×(1+a ﹪)(假设原来的价格为“1”。
求变化幅度(求降价后的价格是涨价后价格的百分之几)用1-降价后又上升的百分率。
人教版小学六年级数学知识点归纳梳理及总复习归类讲解及训练中(含答案)附公式大全
5
2. 圆 弧 和 弦 :圆 上 任 意 两 点 间 的 部 分 叫 做 圆 弧 ,简 称 弧 。大 于 半 圆 的 弧 称 为 优 弧 ,小 于 半 圆 的 弧 称 为 劣 弧 ,半 圆 既 不 是 优 弧 ,也 不 是 劣 弧 。连 接 圆 上 任 意 两 点 的 线 段 叫 做 弦。圆中最长的弦为直径。 3. 圆 心 角 和 圆 周 角 :顶 点 在 圆 心 上 的 角 叫 做 圆 心 角 。顶 点 在 圆 周 上 ,且 它 的 两 边 分 别 与圆有另一个交点的角叫做圆周角。 4. 内 心 和 外 心 :和 三 角 形 三 边 都 相 切 的 圆 叫 做 这 个 三 角 形 的 内 切 圆 ,其 圆 心 称 为 内 心 。 过三角形的三个顶点的圆叫做三角形的外接圆,其圆心叫做三角形的外心。 5. 扇 形 :在 圆 上 ,由 两 条 半 径 和 一 段 弧 围 成 的 图 形 叫 做 扇 形 。圆 锥 侧 面 展 开 图 是 一 个 扇形。这个扇形的半径称为圆锥的母线。 6.圆 的 种 类 : ( 1) 整 体 圆 形 , ( 2) 弧 形 圆 , ( 3) 扁 圆 , ( 4) 椭 形 圆 , ( 5) 缠 丝 圆 ,( 6)螺 旋 圆 ,( 7)圆 中 圆 、圆 外 圆 ,( 8)重 圆 ,( 9)横 圆 ,( 10 )竖 圆 ,( 11 ) 斜圆。 7.圆和其他图形的位置关系:圆和点的位置关系:以点 P 与圆 O 的为例(设 P 是一点, 则 PO 是点到圆心的距离),P 在⊙O 外,PO>r;P 在⊙O 上,PO=r;P 在⊙O 内,0≤ PO<r。 8.百分数的由来
比的意义是两个数的除又叫做两个数的比,而比例的意义是表示两个比相等的式 子是叫做比例。比是表示两个数相除,有两项;比例是一个等式,表示两个比相等, 有四项。因此,比和比例的意义也有所不同。 而且,比号没有括号的含义 而另一种 形式,分数有括号的含义! 19.比和比例的联系:
六年级数学上册知识点汇总及例题解析
本资料分为简单概括版(上半部分)和重点精析版(下半部分)第一单元位置(1)用数据表示位置的方法:先横着数,看在第几行,这个数就是数据中的第一个数;再竖着数,看在第几列,这个数就是数据中的第二个数。
(第几行,第几列)第二单元分数乘法(1)分数乘以整数:整数与分子的乘积作分子,分母不变。
(能约分的可以先约分,再计算)(2)分数乘以分数:用分子乘以分子的积作分子,分母乘以分母的积做分子。
(能约分的可以先约分,再计算)(3)分数乘加、乘减混合运算顺序:Ⅰ、在没有括号的算式里,如果只有加、减法或者只有乘、除法,都要从左往右按顺序计算。
Ⅱ、在没有括号的算式里,有乘、除法和加、减法,要先算乘、除法后算加、减法。
Ⅲ、在有括号的算式里,要先算括号里面的,再算括号外面的。
(4)分数乘法运算定律⒈交换两个因数的位置,积不变,这叫做乘法交换律。
a×b=b×a⒉先乘前两个数,再乘第三个数;或者先乘后两个数,再乘第一个数,这叫做乘法结合律。
(a×b)×c=a×( b×c)⒊两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加,这叫做乘法分配律。
(a+b)×c=a×c+b×c⒋两个数的差与一个数相乘,可以先把它们与这个数分别相乘,再相减,这叫做乘法分配律。
(a-b)×c=a×c-b×c5.. 25×4=100 125×8=1000 25×8=200 125×4=500(5) 规律(比较大小要用到):1、一个数(0除外)乘以大于1的数,积大于这个数;2、一个数(0除外)乘以小于1的数(0除外),积小于这个数;3、一个数(0除外)乘以1,积等于这个数。
第一个数(6)谁是谁的几分之几,就用第一个数除以第二个数,用分数表示就是第二个数。
(7)求一个数的几倍,一个数×几倍;求一个数的几分之几是多少,一个数×几分之几。
小学六年级(上册)数学总复习知识点典型例题
小学六年级上册数学复习资料第一单元:位置与方向(一) 用数对表示位置 女口:第三列第二行表示为(3, 2)。
一般情况下表示为(列,行)位置与方向(二) 用方向和距离表示位置同一方向的不同描述:小明在小华的东偏北 30°方向上,距离15米。
也可以说成:小明在小华的 ___________________ 方向上,距离。
相对位置:小明在小华的东偏北 30°方向上,距离15米。
小华在小明的 _______________ 方向上,住 ___________ 。
第二单元:分数乘法1、 分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
55 5 (如:- >4表示4个—是多少或—的4倍是多少。
)7 7 7 2、 一个数乘分数的意义就是求这个数的几分之几是多少。
3 3 5 2 5 2 (如: 6>—表示6的是多少;>一表示一的一是多少。
)556 56 5分数乘法的计算法则:分子相乘的积作分子,分母相乘的积作分母。
(能约分的先约分)小于1的数,积小于这个数,等于1的数,积等于这个数,大于1的数,积大于这个数。
1的倒数是1, 0没有倒数。
(1) 8 + 8+ 8 + 8 =()>()=()5 2 (2)12 个 6 是( );24 的 3 是( )。
1 、(3) 边长分米的正方形的周长是( )分米。
第三单元:分数除法1、 分数除法的意义与整数除法的意义相同,就是已知两个因数的积与其中的一个因数,求 另一个因数的运算。
2、 分数除法的计算法则:被除数除以除数( 0除外)等于被除数乘除数的倒数。
13、 一个数除以真分数,商大于这个数(如:4-> 4);23一个数除以大于1的假分数,商小于这个数 (如: 3 —< 3)。
24、 两个数相除又叫做两个数的比。
在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。
比的前项除以后项所得的商,叫做比值。
人教版小学六年级上册数学精品讲义第5讲 圆(思维导图 知识梳理 例题精讲 易错专练)(含答案)
第5讲圆(思维导图+知识梳理+例题精讲+易错专练)一、思维导图二、知识点梳理知识点一:圆的认识1.圆心、半径、直径用圆规画圆时,针尖所在的点叫做圆心,一般用字母O表示,连接圆心和圆上任意一点的线段叫做半径,一般用字母r表示,通过圆心并且两端都在圆上的线段叫做直径,一般用字母d表示。
在任意一个圆中都可以画出无数条半径和无数条直径。
2.同圆或等圆中半径、之间的关系在同圆或等圆中,所有的半径都相等,所有的直径也都相等,直径是半径的2倍;圆心相同,半径不同的圆叫做同心圆;圆是轴对称图形,它有无数条对称轴。
3.用圆规画圆用圆规画圆的方法:先定好两脚之间的距离,再把带有针尖的脚固定在一点上,最后把装有铅笔的脚旋转一周,就画出了一个圆。
知识点二:圆的周长1.意义:围成圆的曲线的长叫做圆的周长,周长一般用字母C来表示。
2.测量方法:滚动法、绕绳法、直接测量法。
3.圆周率:圆的周长总是它的直径的3倍多一些,这个固定的比值叫做圆周率,用字母Π来表示,Π是一个无线不循环小数。
C=Πd或2Πr。
已知圆的半径,求周长时,用C=2Πr进行计算;已知圆的直径,求周长时,用C=Πd进行计算。
知识点三:圆的面积1.意义:圆所占平面的大小叫做圆的面积,圆的面积一般用S表示。
2.已知圆的半径为r,S=Πr2已知直径或周长求面积时,都要先求出半径,再求出面积。
3.圆环:两个半径不相等的同心圆之间的部分叫做圆环,也叫做环形。
S=ΠR2-Πr23.圆与正方形组合的面积问题的应用(1)“外方内圆”图形中,圆的直径等于正方形的边长。
如果圆的半径为r,那么正方形和圆之间部分的面积为0.86r2。
(2)“外圆内方”图形中,这个正方形的对角线等于圆的直径。
如果圆的半径为r,那么圆和正方形之间部分的面积为1.14r2。
知识点四:扇形1.意义:圆上两点之间的部分叫做弧;一条弧和经过这条弧两端的两条半径所围成的图形叫做扇形。
注意:扇形的大小由圆心角的度数和半径的长短决定。
小学六年级上册数学知识点和题型
小学六年级上册数学知识点和题型第一单元分数乘法(一)分数乘法意义:1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
注:“分数乘整数”指的是第二个因数必须是整数,不能是分数。
2、一个数乘分数的意义就是求一个数的几分之几是多少。
(二)分数乘法计算法则:1、分数乘整数的运算法则是:分子与整数相乘的积作分子,分母不变。
注:(1)为了计算简便能约分的可先约分再计算。
(整数和分母约分)(2)约分是用整数和下面的分母约掉最大公因数。
(整数千万不能与分母相乘,计算结果必须是最简分数)2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。
(分子乘分子,分母乘分母)注:①如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。
②分数化简的方法是:分子、分母同时除以它们的最大公因数。
③在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。
(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数)④分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。
3、小数乘分数的运算法则是:(1)把小数化成分数计算;(2)如果所乘分数可以化成有限小数,也可以把分数化成小数计算;(3)小数和分母能约分的,先约分在计算比较方便。
(三)积与因数的关系:一个数(0除外)乘大于1的数,积大于这个数。
a×b=c,当b >1时,c>a. 一个数(0除外)乘小于1的数,积小于这个数。
a×b=c,当b <1时,c<a (b≠0). 一个数(0除外)乘等于1的数,积等于这个数。
a×b=c,当b =1时,c=a .注:在进行因数与积的大小比较时,要注意因数为0时的特殊情况。
(四)分数乘法混合运算1、分数乘法混合运算顺序与整数相同,先乘、除后加、减,有括号的先算括号里面的,再算括号外面的。
第2讲 分数混合运算-六年级上册数学讲义(思维导图+知识梳理+例题精讲+易错专练)北师大版(含答案)
第2讲分数混合运算(思维导图+知识梳理+典型精讲+易错专练)一、思维导图二、知识点梳理知识点一:分数混合运算(一)1.分数混合运算的运算顺序与整数混合运算的运算顺序相同,没有括号的,按从左到右的顺序计算;有括号的,要先算括号里面的,再算括号外面的。
2.“连续求一个数的几分之几是多少”的解题方法:依据分数乘法的意义,用这个数连续乘几分之几。
知识点二:分数混合运算(二)1.“已知一个数比另一个数多(或少)几分之几,求这个数”(1)先根据分数乘法的意义,求出多(或少)的几分之几是多少,再用加(或减)法求这个数;(2)先求出另一个数占单位“1”的几分之几,再根据分数乘法的意义,用乘法计算。
2.“已知总量及一部分量占总量的几分之几,求另一部分量”(1)总量-总量×已知部分量占总量的分率=另一部分量;(2)总量×(1-已知部分量占总量的分率)=另一部分量。
知识点三:分数混合运算(三)1.“已知比一个数多(或少)几分之几的数是多少,求这个数”(1)先求比这个数多(或少)的数占这个数(即单位“1”)的几分之几,再根据分数乘法的意义列方程解答;(2)先求出比这个数(即单位“1”)多(或少)的几分之几是多少,再根据加减关系列方程解答。
2.“已知一部分量占总量的几分之几及另一部分量,求总量”把总量看作单位“1”,可以根据“总量×(1-已知部分量占总量的分率)=另一部分量”列方程解答;也可以根据“总量-总量×已知部分量占总量的分率=另一部分量”列方程解答。
三、典型精讲考点一:分数连乘【典型一】一桶油净重100千克,用去这桶油的以后,又买来这时桶里油的加进桶中,现在桶里还有90千克油.【分析】把油桶内原来油的质量看作单位“1”,用去这桶油的以后,剩下的占原来的(1),再油桶里剩下油的质量看作单位“1”,又买来这时桶里油的加进桶中,根据一个数乘分数的意义,用乘法解答.【解答】解:100×(1)+100×(1)×=100×+100×=60+30=90(千克)答:现在桶里还有90千克油.故答案为:90.【典型二】工程队要修一段400米长的路,第一天修了全长的15,第二天修的是第一天的34,第二天修了多少米?【分析】根据“第一天修了全长的15,第二天修的是第一天的34”可得:第一天修的长度=全长×1 5,第二天修的长度=第一天修的长度×34,代入数据计算即可。
【典例精讲】第7讲 百分数的应用-六年级上册数学精品讲义(思维导图+知识梳理+例题精讲+易错专练)
第7讲百分数的应用(思维导图+学问梳理+例题精讲+易错专练)一、思维导图二、学问点梳理学问点一:百分数的应用(一)1.确定单位“1”的方法:与哪个量相比,那个量就是单位“1”。
2.求一个数比另一个数多(或少)百分之几的方法:(1)先求一个数比另一个数多(或少)的具体量,再除以单位“1”的量,即两数差量÷单位“1”的量;(2)把另一个数看作单位“1”,即100%。
学问点二:百分数的应用(二)1.求“比一个数增加(削减)百分之几的数是多少”的方法:方法一:先求出增加(削减)部分的具体数量,然后用单位“1”所对应的具体数量加上(减去)增加(削减)部分的具体数量。
方法二:先求出增加(削减)后的数量是单位“1”的百分之几,然后用单位“1”所对应的具体数量乘这个百分数。
2.成数的意义。
在工农业生产和日常生活中经常用到成数,成数可以表示各行各业的进展变化状况。
“几成”就是格外之几,也就是百分之几十。
3.解决成数问题的方法。
解决成数的问题,关键是先将成数转化为百分数,然后依据百分数问题的解法进行解答。
学问点三:百分数的应用(三)1.已知两个部重量的差(和)及两个部重量对应的百分数,求总量,这类问题用方程解有两种方法:(1)A%x±B%x=两个部重量的差(和);(2)(A%±B%)x=两个部重量的差(和)。
(x代表总量;A%代表较大的部重量所占的百分数;B%代表较小的部重量所占的百分数)2.用方程解“已知比一个数增加百分之几的数是多少,求这个数”的问题有两种解答方法:(1)单位“1”的量×(1+比单位“1”多的百分率)=已知量;(2)单位“1”的量+单位“1”的量×比单位“1”多的百分率=已知量。
3.用方程解“已知一个部重量占总量的百分之几及另一个部重量,求总量”的问题有两种解答方法:(1)总量×(1-已知部重量占总量的百分率)=另一部重量;(2)总量-总量×已知部重量占总量的百分率=另一部重量。
人教版小学六年级上册数学精品讲义第2讲 位置和方向(二)(思维导图+知识梳理+例题精讲+易错专练)
第2讲位置和方向(二)(思维导图+知识梳理+典型精讲+易错专练)一、思维导图二、知识点梳理知识点一:用方向和距离确定物体的位置1、确定物体的位置时,要先找观测点,再用方向和距离两个要素来确定,两个要素缺一不可。
2、先确定(中心或观测点),然后确定(方向),再以图例选定的单位长度为基准来确定(距离);最后在具体位置标出(名称)。
知识点二:描述路线图1、描述路线时的要素:起点在哪,终点在哪,沿着什么方向,移动多少距离。
2、描述路线时,除起点和终点外的点,既是上一段的终点,又是下一段的起点。
三、典型精讲考点一:确定物体的位置【典型一】以学校为观测点,乐乐家在北偏西30°方向,笑笑家在南偏东30°方向,乐乐家、学校、笑笑家的位置在同一条直线上。
√(判断对错)【分析】根据图上确定方向的方法:上北下南、左西右东,分别画出乐乐家和笑笑家的大体位置,判断即可。
【解答】解:如图:以学校为观测点,乐乐家在北偏西30°方向,笑笑家在南偏东30°方向,乐乐家、学校、笑笑家的位置在同一条直线上。
原题说法正确。
故答案为:√。
【典型二】如图是第一小学附近区域的平面图.先量一量,再填一填.(1)图书馆在第一小学偏°方向米处.(2)电影院在第一小学偏°方向米处.【分析】(1)根据平面图上方向的辨别“上北下南,左西右东”,以第一小学的位置为观测点即即可确定图书馆的大致方向,再用量角器量出所偏的度数;用刻度尺量出两地的图上距离,再根据图中所标注的线段比例尺即可求出两地的实际距离.(2)同理,以第一小学的位置为观测点即即可确定电影院的大致方向,再用量角器量出所偏的度数;用刻度尺量出两地的图上距离,再根据图中所标注的线段比例尺即可求出两地的实际距离.【解答】(1)量得图书馆在第一小学东偏北45°方向,两地的图上距离是2.5厘米2.5×500=1250(米)答:图书馆在第一小学东偏北45°方向1250米处.(2)量得电影院在第一小学西偏南30°方向,两地的图上距离是4厘米500×4=2000(米)答:电影院在第一小学西偏南30°方向2000米处.故答案为:东,北,45,1250;西,南,30,2000.考点二:描述路线图【典型一】小企鹅迷路了,你能告诉它回家的路吗?它应该向偏的方向走,再向走,就可以到家了.【分析】根据平面图上方向的规定:上北下南,左西右东,以小企鹅现在的位置为观测点,向西偏北的方向走30米,再向正西方向走50米即可以吃到萝卜.【解答】它应该向东偏北10°的方向走500m,再向正北走80m,就可以到家了.故答案为:东,北10°,500m,正北,80m.【典型二】根据路线图信息,请写出小兔去小熊家所走的路线。
小学六年级上册数学知识点总结归纳(绝对经典)
小学六年级上册数学知识点总结归纳第一单元位置1、行和列的意义:竖排叫做列,横排叫做行。
2、数对可以表示物体的位置,也可以确定物体的位置。
3、数对表示位置的方法:先表示列,再表示行。
用括号把代表列和行的数字或字母括起来,再用逗号隔开。
例如:(7,9)表示第七列第九行。
4、两个数对,前一个数相同,说明它们所表示物体位置在同一列上。
如:(2,4)和(2,7)都在第2列上。
5、两个数对,后一个数相同,说明它们所表示物体位置在同一行上。
如:(3,6)和(1,6)都在第6行上。
6、物体向左、右平移,行数不变,列数减去或加上平移的各数。
物体向上、下平移,列数不变,行数减去或加上平移的各数。
第二单元分数乘法(一)、分数乘法的意义。
1、分数乘整数:分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数和得简便运算。
例如:512×6,表示:6个512相加是多少,还表示512的6倍是多少。
2、一个数(小数、分数、整数)乘分数:一个数乘分数的意义与整数乘法的意义不相同,是表示这个数的几分之几是多少。
例如:6×512,表示:6的512是多少。
2 7×512,表示:27的512是多少。
(二)、分数乘法的计算法则:1、整数和分数相乘:整数和分子相乘的积作分子,分母不变。
2、分数和分数相乘:分子相乘的积作分子,分母相乘的积作分母。
3、注意:能约分的先约分,然后再乘,得数必须是最简分数。
当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
(三)、分数大小的比较:1、一个数(0除外)乘以一个真分数,所得的积小于它本身。
一个数(0除外)乘以一个假分数,所得的积等于或大于它本身。
一个数(0除外)乘以一个带分数,所得的积大于它本身。
2、如果几个不为0的数与不同分数相乘的积相等,那么与大分数相乘的因数反而小,与小分数相乘的因数反而大。
(四)、解决实际问题。
1分数应用题一般解题步行骤。
(1)找出含有分率的关键句。
六年级数学上册总复习知识点和典型例题
一、分数乘法(一)、分数乘法的计算法则:1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。
(整数和分母约分)5 × 23= 18 × 163= 45 × 10 % = 2 % × 12 % =6 ×65 =2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。
53 × 23 = 74 × 167 = 1312 × 1312 = 94 × 43 = 232 × 158= 3、分数与小数相乘:先把小数换成分数,转化为分数与分数的乘法。
0.14 × 213 = 0.25 × 34 = 0.125 × 38 = 0.36 × 811 = 0.39 × 2625=3、为了计算简便,能约分的要先约分,再计算。
注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
1的数,积大于这个数。
一个数(01的数,积小于这个数。
1的数,积等于这个数。
53×23 ○23 53×45○53 85×85○85 1312×1 ○1312 94 ○94×65(三)、分数混合运算的运算顺序和整数的运算顺序相同。
(四)、整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。
乘法交换律:a ×b=b ×a乘法结合律:(a ×b)×c=a ×(b ×c)乘法分配律:(a+b )×c=a ×c+b ×c a ×c+b ×c=(a+b )×c 48)672145( ⨯-+ 2112117548⨯⨯⨯ 852368 ⨯ 511913541913⨯+⨯二、倒数1、倒数的意义: 乘积是1的两个数互为倒数。
人教版六年级数学上册第五单元圆(知识梳理+课本例题+练习)
人教版六年级数学上册第五单元圆(知识梳理+课本例题+练习)一、知识梳理1、圆心:圆中心一点叫做圆心。
用字母“O ”来表示。
半径:连接圆心和圆上任意一点的线段叫做半径,用字母“r ”来表示。
直径:通过圆心并且两端都在圆上的线段叫做直径,用字母“d ”表示。
2、圆心确定圆的位置,半径确定圆的大小。
3、在同一个圆内,所有的半径都相等,所有的直径都相等。
在同一个圆内,有无数条半径,有无数条直径。
在同一个圆内,直径的长度是半径的2倍,半径的长度是直径的一半。
用字母表示为:r d 2= d r 21= 4、圆的周长:围成圆的曲线的长度叫做圆的周长。
5、圆的周长总是直径的3倍多一些,这个比值是一个固定的数。
我们把圆的周长和直径的比值叫做圆周率,用字母π表示。
圆周率是一个无限不循环小数。
在计算时,取14.3π≈。
世界上第一个把圆周率算出来的人是我国的数学家祖冲之。
6、圆的周长公式:πd C = 或πr 2C =7、圆的面积:圆所占平面的大小叫圆的面积。
8、把一个圆割成一个近似的长方形,割拼成的长方形的长相当于圆周长的一半,宽相当于圆的半径,因为长方形面积=长×宽,所以圆的面积2πr r ×r ×π==9、圆的面积公式:22)÷π(d S = 或者2πr S = 或者22)÷π÷π(C S =10、在一个正方形里画一个最大的圆,圆的直径等于正方形的边长。
圆的面积和正方形面积的比是π:4。
在一个圆里画一个最大正方形的,圆的直径的长度等于正方形的对角线的长度,正方形的面积=对角线×对角线÷2=直径×直径÷2 。
11、在一个长方形里画一个最大的圆,圆的直径等于长方形的短边。
12、一个环形,外圆的半径是R,内圆的半径是r,它的面积是22πr πR S -=或 )r π(R S 22-=(其中R =r +环的宽度.)13、环形的周长=外圆周长+内圆周长14、半圆的周长等于圆的周长的一半加直径。
第二单元数学六年级上册
第二单元数学六年级上册一、知识点梳理。
1. 确定位置的方法。
- 在平面上确定物体的位置,需要知道方向和距离两个条件。
- 方向:一般先说北或南,再说偏东或偏西。
例如,北偏东30°,南偏西45°等。
- 距离:根据给定的比例尺来计算实际距离或者根据实际距离确定图上距离。
例如,如果比例尺是1:10000,图上1厘米代表实际距离10000厘米(即100米)。
2. 描述简单的路线图。
- 按行走路线,确定观测点、方向和距离。
- 从一个观测点转换到下一个观测点时,要重新确定方向和距离。
- 描述路线时,要明确从哪里出发,沿着什么方向走多远,到达哪里,再从这个点出发,按照新的方向和距离继续走等。
3. 绘制简单的路线图。
- 确定方向标和单位长度。
- 根据描述的路线,从起点开始,按照给定的方向和距离依次画出各个点和线段,最后标注出终点。
二、典型例题。
1. 确定位置。
- 例:小明家在学校的北偏东30°方向,距离学校500米处。
请在图上表示出小明家的位置。
- 解题步骤:- 先根据比例尺确定图上距离。
如果比例尺是1:10000(即图上1厘米代表实际距离100米),那么500米在图上就是5厘米。
- 以学校为观测点,画出北偏东30°的方向线,然后在这条方向线上量取5厘米的长度,这个点就是小明家的位置。
2. 描述路线。
- 例:小红从家出发,先向东走300米到超市,再从超市向南偏东45°走400米到公园,最后从公园向西走200米到图书馆。
描述小红从家到图书馆的路线。
- 解题步骤:- 以小红家为起点,说小红先朝着正东方向走300米到达超市。
- 然后以超市为观测点,朝着南偏东45°方向走400米到达公园。
- 最后以公园为观测点,朝着正西方向走200米到达图书馆。
3. 绘制路线图。
- 例:根据以下信息绘制路线图。
A地在B地的北偏西30°方向,距离B地400米;C地在A地的南偏东60°方向,距离A地300米。
人教版小学六年级上册数学精品讲义第3讲 分数除法(思维导图+知识梳理+例题精讲+易错专练)(含答案)
第3讲分数除法(思维导图+知识梳理+例题精讲+易错专练)一、思维导图二、知识点梳理知识点一:倒数的认识1、倒数的意义乘积是1的两个数互为倒数。
“互为”是指两个数的依存关系,所以不能单独说一个数是倒数,能说一个数是另一个数的倒数或两个数互为倒数。
2、求一个数的倒数的方法求一个分数的倒数,把这个分数的分子、分母交换位置即可;求小数的倒数,先把小数化成分数,再求倒数;求非0整数的倒数,让这个整数作分母,分子是1。
知识点二:分数除法1、分数除以整数的计算方法分数除以整数(0除外),等于分数乘这个整数的倒数。
2、一个数除以分数(1)整数除以分数的计算方法:整数除以分数,用这个整数乘这个分数的倒数。
(2)分数除以分数的计算方法:分数除以分数,用被除数乘除数的倒数。
(3)分数除法的一般方法:一个数除以一个不等于0的数,等于乘这个数的倒数。
3、被除数与商的变化规律(1)除以大于 1 的数,商小于被除数:a÷b=c 当 b>1 时,c<a (a≠0)(2)除以小于 1 的数,商大于被除数:a÷b=c 当 b<1 时,c>a (a≠0 b≠0)(3)除以等于 1 的数,商等于被除数:a÷b=c 当 b=1 时,c=a知识点三:分数四则混合运算分数四则混合运算的运算顺序:对于同一级运算,应按从左往右的顺序计算:没有小括号的,先算乘除法,再算加减法,有小括号的,先算小括号里面的,再算小括号外面的。
知识点四:简单的和复杂的“已知一个数的几分之几是多少,求这个数的实际问题”1、已知一个属的几分之几是多少,求这个数,用一个数除以几分之几就等于这个数;2、已知比一个数多(或少)几分之几的数是多少,求这个数的方法:一个数乘以(1加或减几分之几)就等于已知数;一个数加减一个数乘以几分之几等于已知数。
3、已知两个数的和(或差)及这两个数的倍数关系,求这两个数的方法:根据倍数关系设未知数,根据两个数的和(或差)等于已知量列出方程。
苏教版数学六年级上册各单元知识点整理(重点归纳)
苏教版数学六年级上册知识点第一单元:长方体和正方体1、长方体和正方体的特征发现:相对的2个面在展开图中不能相邻。
正方体展开图:(11种)6种:中间四个一连串,两边各一随便放。
简称“一四一”型3种:二三紧连错一个,三一相连一随便,简称“二三一”型1种:两两相连各错一,简称“二二二”型1种:三个两排一对齐简称“三三”型要求:理解并掌握这些情况,能找准哪2个面是相对的面。
3、表面积概念及计算s=(ab+ah+bh)×2=2ab+2ah+2bh正方体表面积= 棱长×棱长×6s= 6×a×a=6a2注:不足6个面的实际问题根据具体情况计算,例如鱼缸、无盖纸盒等等。
4、体积概念及计算5、相关例题:(1)已知长方体a=20cm,b=5cm,h=6cm,求体积。
V=abh=20×5×6=600(cm3)(2) 已知长方体S底=100cm2,h=6cm,求体积。
V=S底×h=100×6=600(cm3)(3) 已知长方体S侧=30cm2,a=20cm,求体积。
V=S侧×长=30×20=600(cm3)(4) 已知正方体的棱长是6cm,求表面积和体积。
S表=6a2=6×6×6=216 cm2;V= a3=6×6×6=216 cm3发现:棱长是6厘米的正方体体积和表面积相等。
(×)原因:虽然数值相等,但单位名称不一样。
(5)测P9(5)一张长40厘米、宽30厘米的长方形铁皮,四角各剪去一个边长5厘米的正方形,做成一个深5厘米的无盖长方体铁盒,这个铁盒的容积是多少?30-5-5=20(厘米)40-5-5=30(厘米) 30×20×5=3000(立方厘米)(6)测P11(4)长方体的长是12厘米,高8厘米,阴影部分两个面的面积和是180平方厘米,这个长方体的体积是多少立方厘米?180÷(12+8)=9(厘米) 12×9×8=864(立方厘米)(7)测P16(8)一个密封的长方体玻璃罐,长30厘米,宽18厘米,高12厘米。
人教版六年级上册数学期末专题复习(知识要点、易错易混题目、按类型整理)
六年级上册数学期末复习(概念与题型)一、分数、百分数应用题解题公式单位“1” 已知: 单位“1” × 对应分率 = 对应数量求单位“1”或单位“1”未知:对应数量 ÷ 对应分率 = 单位“1” 1、求一个数是另一个数的几分之几(或百分之几)公式: 一个数 ÷ 另一个数 = 一个数是另一个数的几分之几(百分之几) 2、求一个数比另一个数多几分之几(或百分之几)公式:多的数量÷单位“1” = 一个数比另一个数多几分之几(百分之几) 3、求一个数比另一个数少几分之几(或百分之几)公式:少的数量÷单位“1” = 一个数比另一个数少几分之几(百分之几) 二、熟练掌握:百分数和分数、小数的互化,熟练背诵:1 2 = 0.5 = 50% 1 4 = 0.25=25% 34 = 0.75 = 75% 1 5 = 0.2 = 20% 2 5 = 0.4 = 40% 35 = 0.6 = 60% 4 5 = 0.8 = 80% 1 8 =0.125=12.5% 38 =0.375=37.5% 5 8 =0.625=62.5% 7 8 =0.875=87.5% 1 10 =0.1=10% 1 20 =0.05=5% 1 25 =0.04=4% 150 =0.02=2% 1100=0.01=1%三、基本题型:(1)一条路全长1200米,第一天修了全长的 15 ,第二天修了全长的 14 ,还剩几分之没有修?(2)果园里有桃树200棵,梨树比桃树少 15 ,果园里有梨树多少棵?(3)果园里有桃树200棵,比梨树少 15 ,果园里有梨树多少棵?(4)一件上衣,打八折后是72元,这件上衣原价多少元?(5)一条路,第一天修了全长的 1 5 ,第二天修了全长的 14 ,第一天比第二天少修60米,这条路全长多少米?(6)五月份比六月份节约用水20吨,五月份用水80吨。
五月份比六月份用水节约百分之几?(7)一杯盐水,盐10克,水90克,这杯盐水的含盐率。
六年级数学上册重难点复习附经典题型及答案
六年级数学上册重难点复习附经典题型及答案六年级数学上册重难点复习附经典题型及答案一、整数1. 整数概念整数是由正整数、负整数和0组成的数集合,用Z表示。
其中正整数、负整数和0分别为Z+、Z-和{0}。
2. 整数的运算(1)加减法同号相加,异号相减。
(2)乘法正数和正数相乘,结果为正数;负数和负数相乘,结果为正数;正数和负数相乘,结果为负数。
(3)除法除法可以化为乘法,即a÷b=a×1/b。
3. 整数的比较(1)同号比较大小绝对值大的整数大。
(2)异号比较大小正负相比,正数大。
4. 整数组和整数组和是指一组整数的代数和,一般用Σ表示,例如Σa表示a1+a2+...+ an。
5. 绝对值绝对值是数的大小,与其正负无关,用|a|表示。
二、分数1. 分数概念分数是一个整数除以另一个不为零的整数得到的数,例如2/3,分子为2,分母为3。
2. 分数的运算(1)分数加减法将分数化为相同分母后,分子相加减即可。
(2)分数乘法将分子相乘,分母相乘。
(3)分数除法将除法转化为乘法,即a÷b=a×1/b。
3. 分数的比较分数的比较要将其化为相同分母再比较。
4. 分数的化简分数的化简是将分子和分母同时除以它们的公因数。
5. 分数的约分分数的约分是将分子和分母同时除以它们的公因数。
三、小数1. 小数的概念小数是表示小于1的有限或无限循环小数的方法。
2. 小数的运算(1)小数加减法将小数的位数补齐后,从小数点开始向左右对齐,然后按整数加减法计算即可。
(2)小数乘法将小数化为分数,再进行分数的乘法计算,最后将结果化成小数。
(3)小数除法将除数和被除数化为分数,再进行分数的乘法计算,最后将结果化成小数。
3. 小数的四舍五入小数的四舍五入规则:当小数位数比要求位数多一位时,若保留位数后一位大于或等于5,则保留后一位并进位,否则舍去后一位。
四、单位换算1. 长度单位长度单位包括米、分米、厘米和毫米。
北师大版小学数学六年级(上册)知识点及配套练习
北师大版小学数学六年级(上册)知识点第一单元 圆1、 圆的特征:圆是由一条曲线构成的封闭图形,圆上任意一点到圆心的距离都相等。
2、 圆经过多次对折后的折痕相交于圆中心的一点,这一点叫做圆心。
圆心一般用字母O表示。
3、 连接圆心和圆上任意一点的线段叫做半径。
半径一般用字母r 表示。
4、 把圆规的两脚分开,圆规两脚间的距离就是半径。
5、 直径。
通过圆心并且两端都在圆上的线段叫做直径。
直径一般用字母d 表示。
6、 圆心决定圆的位置,圆的半径决定圆的大小。
7、 圆是轴对称图形,直径所在的直线是圆的对称轴。
圆有无数条对称轴。
8、 同一个圆内半径与直径的关系:在同一个圆里,直径的长度是半径的2倍,可以表示为d=2r 或r= 2d ,半径有无数条,直径也有无数条。
9、 圆形的旋转对称性:正方形旋转一周,与原图形重合4次;等边三角形旋转一周,与原图形重合3次;圆旋转一周,与原图形重合无数次。
10、 圆的周长是指围成圆的曲线的长。
直径大的圆的周长大,直径小的圆的周长小。
11、圆周率的意义:圆的周长除以直径的商是一个固定的数,我们把它叫做圆周率,用字母π表示,计算时通常取3.14。
12、圆的周长的计算公式:如果用C 表示圆的周长,那么C=πd 或C=2πr 。
13、圆的周长计算公式的用:(1)已知圆的半径,求圆的周长:C=2πr(2)已知圆的直径,求圆的周长:C=πd(3)已知圆的周长,求圆的半径:r= C ÷π÷2(4)已知圆的周长,求圆的直径:d= C ÷π14、圆所占平面的大小叫做圆的面积。
15、把一个圆平均分成若干等分,然后拼在一起,可以拼成一个近似(长方形 )。
长方形的宽是圆的(半径),长是圆的(周长的一半),求圆面积用公式表示( )。
16、圆的计算公式的应用:(1)已知圆的半径,求圆的面积:(2)已知圆的直径,求圆的面积:r= 2d , (3)已知圆的周长,求圆的面积:r= C ÷π÷2,17、圆环的意义和计算方法:用S 表示圆环的面积,圆环的面积计算公式为:( )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一单元 分数乘法一、分数乘法(一)分数乘法的意义:1、分数乘整数与整数乘法的意义相同。
都是求几个相同加数的和的简便运算。
例如: 98×5表示求5个98的和是多少? 2、分数乘分数是求一个数的几分之几是多少。
例如: 98×75表示求98的75是多少?(二)分数乘法的计算法则:1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。
(整数和分母约分)2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。
3、为了计算简便,能约分的要先约分,再计算。
注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算.(三)规律:(乘法中比较大小时)一个数(0除外)乘大于1的数,积大于这个数。
一个数(0除外)乘小于1的数(0除外),积小于这个数。
一个数(0除外)乘1,积等于这个数。
●典型题:(四)分数混合运算的运算顺序和整数的运算顺序相同。
●典型题:(五)整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。
二、分数乘法的解决问题(已知单位“1”的量(用乘法),求单位“1”的几分之几是多少)1、画线段图:(1)两个量的关系:画两条线段图。
(2)部分和整体的关系:画一条线段图。
2、找单位“1”:在分率句中分率的前面; 或“占”、“是”、“比”的后面 3、求一个数的几倍:一个数×几倍;求一个数的几分之几是多少:一个数×几分之几 4、写数量关系式技巧: (1)“的”相当于“×”“占”、“是”、“比”相当于“ ÷ ” (2)分率前是“的”:单位“1”的量×分率=分率对应量(3)分率前是“多或少”的意思: 单位“1”的量×(分率)=分率对应量 ●典型题: 看图列式计算。
解决问题。
1、甲乙两地相距420千米,一辆汽车行驶了全程的75,行驶了多少千米?2、一个果园占地20公顷,其中的52种苹果树,41种梨树,苹果树和梨树各种了多少公顷? 3、某鞋店进来皮鞋600双。
第一周卖出总数的51,第二周卖出总数的83。
⑴两周一共卖出总数的几分之几?⑵两周一共卖出多少双?⑶还剩多少双?4、六年级同学给灾区的小朋友捐款。
六一班捐了500元,六二班捐的是六一班的54,六三班捐的是六二班的89。
六三班捐款多少元? 5、一件西服原价180元,现在的价格比原来降低了51,现在的价格是多少元? 6、希望小学三年级有学生216人,四年级人数比三年级多92,四年级有学生多少人?第二单元位置与方向课前回顾:(1)、用方位词描述物体的大体的位置。
(2)、路程、时间、速度之间的关系。
(3)、画角时注意事项。
概念整理:(1)、位置是相对的,要指出一个物体的位置,必须以另一个物体为参照物。
以谁为参照物,就以谁为观测点。
(2)、东偏北30度,也可以说成北偏东60度,但在生活中一般先说与物体所在方向离得较近(夹角较小)的方位。
(3)、主方向。
例如“北偏西”中“北”定为主方向(4)、确定一个物体的准确位置,只知道方向或距离是不可以的,要同时知道这两个条件才行。
(5)、A 在B 的某个方向,B在A 的相反方向。
(6)、观测点转换。
从一个地点到另一个地点,中间要经过一个或多个地点,那么观测点也依次转换。
例题:1、描述方向时以( )为主方向,用东偏北(南)或西偏北(南)多少度来描述。
2、确定物体位置的两个要素( )和( )。
3、商店在超市的南偏西40度,也可说( )偏()()度。
4、小明家在学校的西偏南,那么学校在小明家的()。
在平面图上画出物体位置的方法:1、确定观测点。
2、画出主方向。
3、并用量角器测量出被观测物体所在的方向(角度);4、绘制平面图时,要根据实际距离确定好单位长度,即线段代表多长距离。
5、画出物体的距离,标上名称。
例题:1、游乐园在公园的东偏南30度,画出游乐园的位置。
注:描述物体的位置与观测点有关,观测点不同,物体位置的描述就不同。
两地的位置具有相对性,方向相反(其夹角度数不变),距离相同。
如:游乐园在公园的东偏南30度600米处,那么公园就在游乐场的南偏东30度600米处。
描述物体移动路线的方法及画法:描述路线图时,要先按行走路线确定每一个观测点,然后以每一个观测点为参照物,再描述到下一个目标所行走的方向和路程。
以谁为观测点就以谁为中心画出方向标,然后判断出另一点所在的方向和距离。
绘制路线图的步骤:1、画出↑北,确定方向标和单位长度比例尺2、确定起点的位置。
3、根据描述,从起点出发,找好方向和距离,一段一段地画。
画每一段都要以每一段新的起点为观测点4、以谁为观测点,就以谁为中心画出“十字”方向标,然后判断下一点的方向和距离。
5、标出数据、名称、角度。
(绘制的路线图只有一条线,所作的线是首尾相连的)例题:“1路公共汽车从起点站向西偏北40°行驶3km后向西行驶_4km,最后向南偏西30°行驶3km到达终点站。
”(1)根据上面的描述,把公共汽车行驶的路线图画完整。
(2)根据路线图,说一说公共汽车沿原路返回时所行驶的方向和程。
第三单元 分数除法倒数:1、倒数的意义: 乘积是1的两个数互为倒数。
强调:互为倒数,即倒数是两个数的关系,它们互相依存,倒数不能单独存在。
(要说清谁是谁的倒数)2、求倒数的方法:(1)、求分数的倒数:交换分子分母的位置。
(2)、求整数的倒数:把整数看做分母是1的分数,再交换分子分母的位置。
(3)、求带分数的倒数:把带分数化为假分数,再求倒数。
(4)、求小数的倒数:把小数化为分数,再求倒数。
3、1的倒数是1; 0没有倒数。
因为1×1=1;0乘任何数都得0, (分母不能为0)4、对于任意数a(a ≠0),它的倒数为a 1;分数b a 的倒数是ab 。
5、真分数的倒数大于1;假分数的倒数小于或等于1;带分数的倒数小于1。
典型题:1、(1)、( )的两个数互为倒数。
(2)、65的倒数是( );1.7的倒数是 ( );411的倒数是;( );1的倒数是( );0( )倒数。
(3)、( )×31=6×( )=( )×32=1×( )=a×( )=1(4)、5的倒数与10的倒数比较,( )的倒数大于( )的倒数。
(5)、当a=( )时,a 的倒数与a 的值相等。
真分数的倒数( )1;假分数的倒数( )1;带分数的倒数( )1。
分数除法的意义和计算法则:1、分数除法的意义:分数除法与整数除法的意义相同,表示已知两个因数的积和其中一个因数,求另一个因数的运算。
2、分数除法的计算法则: 除以一个不为0的数,等于乘这个数的倒数。
3、 规律(分数除法比较大小时):(1)、当除数大于1,商小于被除数; (2)、当除数小于1(不等于 0),商大于被除数; (3)、当除数等于1,商等于被除数;4、 分数乘除混合运算顺序:从左到右依次计算。
一个算式里,如果既有小括号,又有中括号,要先算小括号里面的,再算中括号里面的。
典型题:1、填空:(1)2÷65的意义是( )。
(2)根据72×3=76写出两道除法算式( )( )(3) 3÷32 3 31÷85 3158÷1 582、计算: 30÷125 2521÷14367÷94÷2858÷78×143、一张长方形纸的面积是4平方分米,宽是149分米。
这张纸的长是多少分米?4、仓库里有一批稻谷,第一次取出240千克,正好占总数的61。
第二次取出总数的53,第二次取出了多少千克?分数除法解决问题1、已知单位“1”的几分之几是多少,单位“1”的量是要求的问题。
就用除法。
数量关系式和分数乘法解决问题中的关系式相同:(1)、分率前是“的”:单位“1”的量×分率=分率对应量(2)、分率前是“多或少”的意思: 单位“1”的量×(1 +-分率)=分率对应量 2、解法:(建议:最好用方程解答)(1)、方程:根据数量关系式设未知量为X,用方程解答。
(2)、算术(用除法): 分率对应量÷对应分率 = 单位“1”的 3、和(差)倍问题4、工程问题5、求一个数是另一个数的几分之几:就是 一个数÷另一个数 。
6、求一个数比另一个数多(少)几分之几:①求多几分之几:大数÷小数–1 或(大数-小数)÷比后面的数 ②求少几分之几:1 - 小数÷大数或(大数-小数)÷比后面的数。
典型题: 1、填空(1)、“男生占全班人数的95”,把( )看作单位“1”,数量关系式:( )×95=( )。
(2)、“男生比女生多31”,把( )看作单位“1”,数量关系式:( )×(131)=( )。
(3)、甲数是8,乙数是10,甲数是乙数的( ),乙数是甲数的( ),甲数比乙数少( ),乙数比甲数多( )。
2、美术班有男生20人,是女生人数的65。
女生有多少人?3、一台彩电,现价1800元,比原来降低了61。
原来的售价是多少元?第四单元 比和比的应用(一)、比的意义1、比的意义:两个数相除又叫做两个数的比。
2、在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。
比的前项除以后项所得的商,叫做比值。
例如: 15 :10 = 15÷10 =23 (比值通常用分数表示,也可以用小数或整数表示) 1 5 ∶ 1 0 = 23前项 比号 后项 比值3、比可以表示两个相同量的关系,即倍数关系。
也可以表示两个不同量的比,得到一个新量。
例: 路程÷速度=时间。
4、区分比和比值比:表示两个数的关系,可以写成比的形式,也可以用分数表示。
比值:相当于商,是一个数,可以是整数,分数,也可以是小数。
5、根据分数与除法的关系,两个数的比也可以写成分数形式。
6、 比和除法、分数的联系:比 : 前 项 比 号 “:” 后 项 比 值除 法 : 被除数 除 号 “÷” 除 数 商分 数: 分 子 分数线 “—” 分 母 分数值7、比和除法、分数的区别:除法是一种运算,分数是一个数,比表示两个数的关系。
8、根据比与除法、分数的关系,可以理解比的后项不能为0。
(注:体育比赛中出现两队的分是2:0等,这只是一种记分的形式,不表示两个数相除的关系。
)(二)、比的基本性质1、根据比、除法、分数的关系:商不变的性质:被除数和除数同时乘或除以相同的数(0除外),商不变。
分数的基本性质:分数的分子和分母同时乘或除以相同的数时(0除外),分数值不变。
比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变。