计数原理说课课件

合集下载

计数原理课件

计数原理课件
1 2 3 1 2 3 1 2 3 4 5
课堂小结:
弄清两个原理的区别与联系,是正确使用这两个原理的前 提和条件. 这两个原理都是指完成一件事,区别在于: (1)分类加法计数原理是“分类”,每类办法 中的每一种方法都能独立完成一件事; (2)分步乘法计数原理是“分步”;每种方法 都只能做这件事的一步, 不能独立完成这件事, 只有各个步骤都完成才算完成这件事情!
变式:
若还有C大学,其中强项专业为:新闻学、生物 学、人力资源学.那么,这名同学可能的专业选择共 有多少种? A大学 B大学 数学 会计学 信息技术学 法学 C大学 新闻学
生物学
化学 医学
生物学
人力资源学
物理学
工程学
注意:分类加法计数做到不重,不漏!
如果完成一件事有三类不同方案,在第1类方 案中有m1种不同的方法,在第2类方案中有 m2种不同的方法,在第3类方案中有m3种不 同的方法,那么完成这件事共有多少种不同 的方法? 如果完成一件事情有类不同方案,在每一类中 都有若干种不同方法,那么应当如何计数呢?
N m1 m 2 m n
N=m1×m2×…×mn
种不同的方法.
理解分步乘法计数原理: 分步计数原理针对的是“分步”问题,完成一件事要分为 若干步,各个步骤相互依存,完成任何其中的一步都不 能完成该件事,只有当各个步骤都完成后,才算完成这 件事. 理解分类加法计数原理与分步乘法计数原理异同点 ①相同点:都是完成一件事的不同方法种数的问题 ②不同点:分类加法计数原理针对的是“分类”问题,完 成一件事要分为若干类,各类的方法相互独立,各类中 的各种方法也相对独立,用任何一类中的任何一种方法 都可以单独完成这件事,是独立完成;而分步乘法计数 原理针对的是“分步”问题,完成一件事要分为若干步, 各个步骤相互依存,完成任何其中的一步都不能完成该 件事,只有当各个步骤都完成后,才算完成这件事,是 合作完成.

计数原理_1-课件

计数原理_1-课件

• [点评] 本题求的是“选垄方法”,而不是 “种植方法”,若求不同种植方法,则A种 第1垄,B种第8垄与A种第8垄,B种第1垄为 不同方法,应有不同种植方法2×6=12 种.

9、有时候读书是一种巧妙地避开思考 的方法 。2021/3/52021/3/5Fr iday, March 05, 2021
• 由分类加法计数原理知,可以组成的不同 的自然数为4+16+64+256=340(个).
• [点评] (1)在同一题目中涉及到这两个定 理时,必须搞清是先“分类”,还是先 “分步”,“分类”和“分步”的标准又 是什么.
• (2)该题是先分类,后分步,按自然数的位 数“分类”,按组成数的过程“分步”.
• [点评] 解两个计数原理的综合应用题时, 最容易出现不知道应用哪个原理来解题的 情况,其思维障碍在于没有区分该问题是 “分类”还是“分步”,突破方法在于认 真审题,明确“完成一件事”的含义.具 体应用时灵活性很大,要在做题过程中不 断体会和思考,基本原则是“化繁为 简”.
• 一、选择题
• 1.一个礼堂有4个门,若从一个门进,从 任一门出,共有不同走法
• [答案] 13 42
• 5.在一块并排10垄的田地上,选择2垄分 别种植A、B两种作物,每种作物种植一垄, 为有利于作物生长,要求A、B两种作物的 间隔不小于6垄,则不同的选垄方法有 ________种(结果用数字作答).
• [答案] 6
• [解析] A种第1垄,B可种8、9、10垄有3 种方法,A种第2垄,B可种9、10垄有2种 方法,A种第3垄,B只能种第10垄,∴共 有选垄方法3+2+1=6种.
• [解析] 第一类:“多面手”去参加英语 时,选出只会日语的一人即可,有2种选 法.

计数的基本原理ppt课件

计数的基本原理ppt课件

为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
例2、如图,要给地图A、B、C、D四个区域 分别涂上3种不同颜色中的某一种,允许同一种 颜色使用多次,但相邻区域必须涂不同的颜色, 不同的涂色方案有多少种?
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
想一想?
问题 2. 从甲地到乙地,可以乘火车,也可 以乘汽车,还可以乘轮船。一天中,火车 有2班, 汽车有3班,轮船有4班。那么一天 中乘坐这些交通工具从甲地到乙地共有多 少种不同的走法?
甲 为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能 地
乙 地
分析: 完成由甲地到乙地这件事有三类办法:
第一类办法乘火车,有2种不同走法,
第二类办法乘汽车,有3种不同走法 第三类办法乘轮船,有4种不同走法。
因此,在一天中,此人由甲地到乙地不同的走法共 有 2+3+4=9 种。
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
例3:体育福利彩票的中奖号码有7位数码,每位数若是 0~9这十个数字中任一个,则产生中奖号码所有可能的 种数是多少?
变2: 0~9这十个数字可组成多少数字不重复的七位数?
两个计数原理的联系和区别:

计数原理-完整版课件

计数原理-完整版课件
解析: ∵C06+C16+C26+C36+C46+C56+C66=26=64, ∴C16+C26+C36+C46+C56=64-2=62. 答案: 62
• 7.某校高中部,高一有6个班,高二有7个班,高三有8个班,学 校利用星期六组织学生到某厂进行社会实践活动.
• 1.书架上有不同的语文书10本,不同的英语书7本,不同的数学 书5本,现从中任选一本阅读,不同的选法有( )
• A.22种 B.350种
• C.32种 D.20种
• 解析: 由分类加法计数原理得,不同的选法有10+7+5=22 种.
• 答案: A
• 2.一排9个座位坐了3个三口之家,若每家人坐在一起,则不同的 坐法种数为( )
两通项相乘得:C6r x3r Ck10x-4k=C6r C1k0x3r -4k,

r 3

k 4
=0,得4r=3k,这样一来,(r,k)只有三组:
(0,0),(3,4),(6,8)满足要求.
故常数项为:1+C36C410+C66C810=4 246.
答案: 4 246
6.C16+C26+C36+C46+C56的值为________.
• A.3×3! B.3×(3!)3
• C.(3!)4 D.9!
• 解析: 把一家三口看作一个排列,然后再排列这3家,所以有 (3!)4种.
• 答案: C
• 3.(2013·山东卷)用0,1,…,9十个数字,可以组成有重复数字的 三位数的个数为( )
• A.243 B.252
• C.261 D.279
• 解析: 能够组成三位数的个数是9×10×10=900,能够组成无 重复数字的三位数的个数是9×9×8=648,故能够组成有重复数字的三 位数的个数是900-648=252.

《高二数学计数原理》课件

《高二数学计数原理》课件

推荐参考书籍
提供一些优秀的数学计数 原理参考书籍,供学生进 一步学习和深入研究。
抽奖问题求解
实例分析抽奖问题的计数方法 和概率计算,培养学生的应用 能力。
号码问题求解
探讨号码问题的计数策略和应 用实例,挖掘计数原理在实际 生活中的意义。
总结与拓展
总结计数原理
归纳整理计数原理的核心 概念和应用技巧,巩固学 生对知识点的理解。
拓展应用场景
探讨计数原理在其他领域 的应用,并引导学生思考 更广阔的问题。
3
组合计数
4
介绍组合计数的概念、性质和计算方 法,通过实例让学生理解其应用。
定义与分类
介绍计数原理的定义及基本分类,为 后续内容打下坚实的基础。
加法原理
探讨加法原理的应用场景及计算方法, 并提供实例进行练习与巩固。
进阶计数方法
1 错排方法
2 名次问题
介绍错排问题的定义和计算方法,帮助学 生理解错排相关的思维与技巧。
高二数学计数原理
本PPT课件旨在介绍高二数学计数原理的基本概念与应用方法,帮助学生更好 地理解与掌握计数原理的重要性及实际应用。
引言
本节课程目标为学生了解计数原理的基本概念与应用范围,并为后续学习建立起正确的认知基础。
基本计数原理
1
乘法原理
2
详细解释乘法原理的应用和计算方法,
帮助学生掌握常见的计数实例。
解释名次问题的背景和计算方法,培养学 生在排列问题中的灵活思维。
3 通过 实例培养学生的分析和决策能力。
详细讲解容斥原理的应用步骤和计算技巧, 帮助学生掌握解决重叠计数问题的方法。
应用案例分析
生日悖论
解释生日悖论的原理和计算方 法,让学生了解概率与计数的 关系。

计数原理全部课件集PPT优秀课件(排列等14份) 7

计数原理全部课件集PPT优秀课件(排列等14份) 7

例5、某医院有内科医生12名,外科医生8名,现要 派5人参加支边医疗队,至少要有1名内科医生和1名 外科医生Байду номын сангаас加,有多少种选法?
例6:(1)平面内有9个点,其中4个点在一条直线 上,此外没有3个点在一条直线上,过这9个点可确 定多少条直线?可以作多少个三角形?
例7、8双互不相同的鞋子混装在一只口袋中,从中任 意取出4只,试求满足如下条件各有多少种情况: (1)4只鞋子恰有两双; (2) 4只鞋子没有成双的; (3) 4只鞋子只有一双。
1.2.2组合(二)
复习巩固:
1、组合定义:
一般地,从n个不同元素中取出m(m≤n)个元素并成 一组,叫做从n个不同元素中取出m个元素的一个组合.
2、组合数: 从n个不同元素中取出m(m≤n)个元素的所有组合的个 数,叫做从n个不同元素中取出m个元素的组合数,用符号 C nm 表示.
3、组合数公式:
例4:在100件产品中有98件合格品,2件次品。产品 检验时,从100件产品中任意抽出3件。 (1)一共有多少种不同的抽法?
(2)抽出的3件中恰好有1件是次品的抽法有多少种?
(3)抽出的3件中至少有1件是次品的抽法有多少种?
(4)抽出的3件中至多有一件是次品的抽法有多少种?
说明:“至少”“至多”的问题,通常用分类 法或间接法求解。
3 2 3 2 C . CC CC 8 7 7 8
3 2 1 DC . 8 C7 C11
4、从7人中选出3人分别担任学习委员、宣传委员、体育委员, 则甲、乙两人不都入选的不同选法种数共有( D)
A .C A
2 5
3 3
B .2 C A
3 5
3 3
C .A
3 5

《计数原理》ppt

《计数原理》ppt
326(种)
实例与练习:
5、某校电子八班有男生 26人,女生 20人,若要选男、女生各1人作为学生代 表参加学代会,共有多少种选法?
解:20x26=520(种)

6、两个袋子中分别装有10个红色球 和6个白色球。从中取出一个红色球和一 个白色球,共有多少种方法?
解:10x6=60(种)
分析: 第一步, 由长沙去郴州有3种方法,
第二步, 由郴州去广州有2种方法;
火车2 火车3 火车3
汽车2 汽车1 汽车2
所以 从长沙经郴州到广州共有3 ×2 = 6 种不同的方法。
[ 延伸]:如果小李回家的时候需要转一次车后再
乘飞机,飞机有两个航班(如图),则共有多少种不 同的走法?
重庆
火车1 火车2 火车 3
分析: 从重庆到西昌有2类方法,
火车1 火车2
Ⅰ.乘火车,3种方法;
火车 3
Ⅱ.乘汽车,2种方法; 重庆
汽车1
西昌
汽车2
所以 从重庆到西昌共有 3 + 2 = 5 种不同方法。
[延伸]:
如果重庆到西昌,除了3班火车2班汽车外还有 2班飞机,那么王先生有多少种不同的走法呢?
共有: 3+2+2=7 种
3×3×3×3 =34 = 81
作业:
第122页,习题, 第1、2、4、5题
例2:体育福利彩票的中奖号码有7位数码,每 位数若是0~9这十个数字中任一个,则每次摇 奖产生的号码有多少种可能?
第一位 第二位 第三位 第四位 第五位 第六位 第七位
10 × 10 ×10 × 10 × 10 × 10 × 10 =107
法中有 mn 种不同的方法,那么 mn 种不同的方法,那么完成

《基本计数原理》课件

《基本计数原理》课件
事件的独立性和事件的互斥性。
分布乘法计数原理的公式为
$n(A) = n(A_1) times n(A_2 | A_1) times n(A_3 | A_1, A_2) times ldots$
分布乘法计数原理的实例
假设有一个班级有30名学生,其中10名是男生,20名是女生。现在要选择一个 由3名学生组成的代表队,要求其中必须有1名男生和2名女生,问有多少种不同 的选择方式?
分类加法计数原理的数学表达式
$M = |A_1| + |A_2| + ldots + |A_n|$,其中$M$表示完成这件事情的总方法数 ,$|A_i|$表示第$i$个分类的方法数。
分类加法计数原理的实例
分类加法计数原理在排列组合中的应用
在排列组合中,分类加法计数原理常用于计算不同元素分组的方法数。例如,计算从$n$个不同元素中取出$k$ 个元素(不考虑顺序)的分组方法数,可以按照元素的性质进行分类,然后利用分类加法计数原理计算。
统计学
在统计学中,计数原理用于描述和预测数据 分布。
PART 02
分类加法计数原理
分类加法计数原理的概述
分类加法计数原理定义
对于具有两个或多个互斥的分类$A_1, A_2, ldots, A_n$,若完成一件事情,则 该事情可以由$A_1, A_2, ldots, A_n$中的某一类单独完成。因此,完成这件事 情的方法数等于各个分类方法数的和,即$n$个互斥的分类方法数之和。
随机试验
计数原理可以用于分析随机试验中的结果数量,例如在抛硬币试验中,可以用计数原理计算出现正面 的次数。
在组合数学中的应用
排列组合
计数原理是组合数学中的基本原理,可 以用于计算排列和组合的数量。例如, 通过计数原理可以计算从n个不同元素中 取出r个元素的组合数。

计数原理(优秀课件)

计数原理(优秀课件)

THANKS
感谢观看
在社会科学中,分类计数原理可以应用于 社会调查和统计分析等方面,例如调查问 卷的数据分析和人口统计等。
03
分步计数原理
定义与解释
定义
分步计数原理,也称为分治法,是计数原理中的一种基本方法。它基于将一个复杂问题分解为若干个 简单子问题,然后分别对每个子问题进行计数,最后将各个子问题的计数结果相乘得到总计数。
同样地,我们考虑第一个学 生有5门课程可以选择,第 二个学生也有5门课程可以 选择,依此类推,直到最后 一个学生。根据分步计数原 理,总的不同选课方案为 $5 times 5 times 5 times ... times 5 = 5^{30}$。
应用场景
应用场景1
在组合数学中,分步计数原理常被用于解决排列组合问题。例如,在求解排列数、组合数 或概率分布时,可以通过将问题分解为若干个子问题,然后利用分步计数原理进行计算。
首先,我们考虑第一个学生 有5门课程可以选择,第二 个学生也有5门课程可以选 择,依此类推,直到最后一 个学生。根据分步计数原理 ,总的不同选课方案为 $5 times 5 times 5 times ... times 5 = 5^{30}$。
一个班有30名学生,每个学 生需要从5门课程中选1门课 程。问有多少种不同的选课 方案?
应用场景2
在计算机科学中,分步计数原理被广泛应用于算法设计和数据结构。例如,在求解图论中 的路径、遍历等问题时,可以利用分步计数原理来计算不同路径的数量。
应用场景3
在实际生活中,分步计数原理也被广泛应用于各种场景。例如,在制定计划或决策时,可 以将整个过程分解为若干个子步骤或子任务,然后利用分步计数原理来计算完成整个任务 所需的总时间或总成本。

《计数原理》公开课课件

《计数原理》公开课课件

(2)每一步都不能独 立完成这件事情,各个 步骤相互依存,只有每
个步骤完成了,这件事
情才能完成。
1、 2、
课堂小结: 1.解决计数问题的基本方法:
分类加法计数原理、分布乘法计数原理 2.选择两个原理解题的关键是:
根据题目,弄清完成一件事的要求至关重要, 只有这样才能正确区分“分类”和“分步”.
两大原理妙无穷,
2、尝试区分分类加法计数原理与分步乘法计 数原理的区别和联系?
分类加法计数原理与分步乘法计数原理的区别和联系:
分类(加法)原理
分步(乘法)原理
联系 都是关于统计完成一件事情的不同方法数
(1)完成一件事情共 有n类办法,关键词是 “分类”
(1)完成一件事情,共 分n个步骤,关键词是 “分步”
区 别
(2)每类办法都能独立 完成这件事情。
常州到杭州火车时刻表
常州到杭州汽车时刻表
由题意,画图得知 常州
火车 1 火车 2 火车3 火车 4 火车 5 火车 6
汽车1 汽车2
Ⅰ.乘火车,6种方法; Ⅱ.乘汽车,2种方法;
杭州
定义
做一件事情,完成它可以有2类方案,在 第一类方案中有m1种不同方法,在第二类方 案中有m2种不同方法,无论通过哪类方案的 哪种方法,都可以独立完成这件事,那么完 成这件事共有
解 选择一人去领奖,有2个方案 第一类方案:选男生有2+3=5种方法
2、分步乘法计数原理
某班级三好学生中男生有2人,女生有3人。从中 各选一人去参加座谈会, 有多少种不同的选法?
男生
女生
男1
女1
男2
女2 23=6
女3
某班级三好学生中男生有2人,女生有3人。从中 各选一人去参加座谈会, 有多少种不同的选法?

计数的基本原理ppt课件

计数的基本原理ppt课件

祝愿同学们学习进步!
机会钟爱有准备的人, 机会钟爱爱学习的人。
3.一个口袋内有6个不同的黑球,4个不同的白球,5个 不同的红球,从中任取1个球,共有多少种不同的取法
4.某商业大厦有东、南、西三个大门,某人从一个门进 从另一个门出,共有多少种不同的走法
实践应用
课后作业
1.从2,3,5,7这4个数字,任取2个不同的数做成分数,这 样的分数共有多少个.
2.一座山的南坡有3条路、北坡有2条路通往山顶.问: (1)从南坡上山,再由北坡下山,共有多少种不同的走法. (2)要求上、下坡走不同的山路,共有多少种不同的走法. (3)随意选择上、下坡路线,共有多少种不同的走法.
问题探究
问题一:某人从甲地到乙地,可以乘火 车,也可以乘汽车,还可以乘轮船.一天中, 火车有2班,汽车有5班,轮船有3班.那么一 天中此人乘坐这些交通工具从甲地到乙地共 有多少种不同的走法?
甲地
火车2班 汽车5班
乙地
解:因为一天中乘火轮车船3班有2种走法,乘汽车有5 种走法,轮船有3班,每一种走法都可以从甲 地到乙地,所以共有 2+5+3=10 种不 同的走法。
归纳探究
分类计数原理 完成一件事,有n类方 式,在第1类方式中有m1种不同的方法,在 第2类方式中有m2种不同的方法,…,在第 n类方式中有mn种不同的方法,那么完成这 件事共有:
N m1 m2 mn
种不同的方法。
分类计数原理又称为加法原理。
实践探究
例1:书架上层有不同的数学书15本,中层有不同 的语文书18本,下层有不同的物理书7本。现要从 书架上任取一本书,有多少种不同的取法?
解: 根据分类计数原理得
N m1 m2 m3
15 18 7 究

计数原理说课ppt课件

计数原理说课ppt课件

根据分类计数原理, 从A到B共有N=3+1+4=8条 不同的线路可通电。
最新版整理ppt
1 创设学习情景,让学生走进数学,凸显职高数学有效教学的“大众性”. 生活情景,正视差异,促进数学意识的提高.
2 活化学习内容,让学生爱上数学,凸显职高数学有效教学的“趣味性”.
动画形式,探索新知,促进思维过程的形成. 3 提供实践空间,让学生会用数学,凸显职高数学有效教学的“应用性”
[设计意图]: 动画激发兴趣,培养学生提炼数学信息的能力。
学生在情境中发现问题、引起思考、自我建构。
13
最新版整理ppt
创设情境 动脑思考 模拟场景 理论升华 运用知识 目标检测 兴趣导入 探索新知 解决问题 整体建构 专业实践 反思评价
(约10分钟)
师生
引领 思考 分析 概括
播放 观察 图片 提炼
体验情景法
迁移法
教法 学法
总结提升法
引导启发式
实物演示教学
实践探究法题·探究·发展”模式
10
最新版整理ppt
5分钟
目标检测
7分钟 专业实践
3分钟 整体建构
16分钟 解决问题
10分钟 探索新知
4分钟
创设情境
45分钟
教学流程
发展提升 深化原理 提炼方法 体验原理 形成原理 提出问题
竞赛抢答方式, 调动学习热情。
18
最新版整理ppt
创设情境 动脑思考 模拟场景 理论升华 运用知识 目标检测 兴趣导入 探索新知 解决问题 整体建构 专业实践 反思评价
(约3分钟)
师生
提出 系统 问题 梳理
分类完成 加法原理 互相独立 不重不漏
计数问题? 如何解决计数问题?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
本教案针对基本计数原理进行全面而深入的教学设计。首先,对教材进行简析,明确教学目标和教学重难点,确保教学内容符合学生实际需求。通过学情分析,了解学生的认知特点和心理状况,为选择合适的教学方法和学法指导提供依据。在教学过程中,注重创设情境,激发学生的学习兴趣,引导学解计数原理,并掌握其基本方法。同时,运用知识解决实际问题,提高学生的应用能力和数学素养。整个教学过程注重发挥学生的主体地位,鼓励学生在对比讨论中理解知识,在竞赛抢答中巩固知识,在系统总结中提升能力。最后,通过专业实践环节,将计数原理应用于实际生活中,增强学生的实践能力和创新意识。本教案旨在通过科学的教学设计和丰富的教学活动,帮助学生全面掌握基本计数原理,并培养其数学思维和解决问题的能力。
相关文档
最新文档