生活中的数学校本课程

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

目录

第一讲:生活中的趣味数学

第二讲:数学中的悖论

第三讲:对称——自然美的基础

第四讲:斐波那契数列

第五讲:龟背上的学问

第六讲:巧用数学看现实

第七讲:运用数学函数方程解决生活中的问题

第八讲:生活中的优化问题举例

第一讲:生活中的趣味数学

1.“荡秋千”问题:

我国明朝数学家程大位(1533~1606年)写过一本数学著作叫做《直指算法统宗》,其中有一道与荡秋千有关的数学问题是用《西江月》词牌写的:

平地秋千未起,踏板一尺离地;送行二步与人齐,五尺人高曾记;

仕女佳人争蹴,终朝笑语欢嬉;良工高士素好奇,算出索长有几?

词写得很优美,翻译成现代汉语大意是:有一架秋千,当它静止时,踏板离地1尺,将它往前推送10尺(每5尺为一步),秋千的踏板就和人一样高,这个人的身高为5尺,如果这时秋千的绳索拉得很直,试问它有多长?

下面我们用勾股定理知识求出答案:

如图,设绳索AC=AD=x(尺),则AB=(x+1)-5(尺),BD=10(尺)

在Rt△ABD中,由勾股定理得AB2+BD2=AD2,即(x-4)2+102=x2,

解得x=,即绳索长为尺.

2.方程的应用:

小青去植物园春游,回来以后爸爸问他春游花掉多少钱。小青并不直接回答,却调皮地说:“我带出去的钱正好花了一半,剩下的元数是带出去角数的一半,剩下的角数与带出去元数相同。”爸爸踌躇一下,有些为难。

你能否帮助他把钱数算出来,小青到底带了多少钱?花了多少钱?还剩多少钱?

方法一:设带出去x元,y角.根据"剩下的元数是带出去角数的一半"知道y是偶数

花了的钱分x为奇数与偶数情况

(1)x是奇数时候,花一半就是花了=剩下=(x-1)/2元,(y/2+5)角

根据后面两句话知道,剩下=y/2元,x角

有二元一次方程组:(x-1)/2=y/2,y/2+5=x 解得x=9,y=8

(2)x是偶数时候,花一半就是花了=剩下=x/2元,(y/2+5)角

剩下的同上面情况

有二元一次方程组:x/2=y/2,y/2+5=x 解得x=y=10 但是没有10角钱说法不符合实际(舍)

∴答案是9元8角

方法二:设带出去X元Y角,还剩a元b角

按照用掉一半还剩一半的等式:

10a + b = ( 10x + y)/ 2

又因为: a = y / 2

b = x

带入等式化简即可得:x / y = 9 / 8

因为 y 只能是小于10的整数

所以,小青带了9元8角!用了4元9角,还剩4元9角!

3.工资的选择:

假设你得到一份新的工作,老板让你在下面两种工资方案中进行选择:

(A)工资以年薪计,第一年为4000美元以后每年加800美元;

(B)工资以半年薪计,第一个半年为2000美元,以后每半年增加200美元。

你选择哪一种方案?为什么?

答案:第二种方案要比第一种方案好得多

4.我们大家一起来试营一家有80间套房的旅馆,看看知识如何转化为财富。

经调查得知,若我们把每日租金定价为160元,则可客满;而租金每涨20元,就会失去3位客人。每间住了人的客房每日所需服务、维修等项支出共计40元。

问题:我们该如何定价才能赚最多的钱?

答案:日租金360元。

虽然比客满价高出200元,因此失去30位客人,但余下的50位客人还是能给我们带来360*50=18000元的收入;扣除50间房的支出40*50=2000元,每日净赚16000元。而客满时净利润160*80-40*80=9600元。当然,所谓“经调查得知”的行情实乃本人杜撰,据此入市,风险自担。

第二讲数学中的悖论

“悖论”也可叫“逆论”,或“反论”,这个词的意义比较丰富,它包括一切与人的直觉和日常经验相矛盾的数学结论,那些结论会使我们惊异无比。悖论有三种主要形式。

1.一种论断看起来好像肯定错了,但实际上却是对的(佯谬)。

2.一种论断看起来好像肯定是对的,但实际上却错了(似是而非的理论)。

3.一系列推理看起来好像无懈可击,可是却导致逻辑上自相矛盾。

悖论有点像魔术中的变戏法,它使人们在看完之后,几乎没有—个不惊讶得马上就想知道:“这套戏法是怎么搞成的?”当把技巧告诉他时,他就会不知不觉地被引进深奥而有趣的数学世界之中。正因为如此,悖论就成了一种十分有价值的教学手段。

悖论是属于领域广阔、定义严格的数学分支的一个组成部分,这一分支以“趣味数学”知名于世。这就是说它带有强烈的游戏色彩。然而,切莫以为大数学家都看不起“趣味数学”问题。欧拉就是通过对bridge-crossing 之谜的分析打下了拓扑学的基础。莱布尼茨也写到过他在独自玩插棍游戏(一种在小方格中插小木条的游戏)时分析问题的乐趣。希尔伯特证明了切割几何图形中的许多重要定理。冯·纽曼奠基了博弈论。最受大众欢迎的计算机游戏—生命是英国著名数学家康威发明的。爱因斯坦也收藏了整整一书架关于数学游戏和数学谜的书。

悖论一览

1.理发师悖论(罗素悖论):某村只有一人理发,且该村的人都需要理发,理发师规定,给且只给村中不自己理发的人理发。试问:理发师给不给自己理发?

如果理发师给自己理发,则违背了自己的约定;如果理发师不给自己理发,那么按照他的规定,又应该给自己理发。这样,理发师陷入了两难的境地。

2.芝诺悖论——阿基里斯与乌龟:公元前5世纪,芝诺用他的无穷、连续以及部分和的知识,引发出以下著名的悖论:他提出让阿基里斯与乌龟之间举行一场赛跑,并让乌龟在阿基里斯前头1000米开始。假定阿基里斯能够跑得比乌龟快10倍。比赛开始,当阿基里斯跑了1000米时,乌龟仍前于他100米;当阿基里斯跑了下一个100米时,乌龟依然前于他10米……所以,阿基里斯永远追不上乌龟。

3.说谎者悖论:公元前6世纪,古希腊克里特岛的哲学家伊壁门尼德斯有如此断言:“所有克里特人所说的每一句话都是谎话。”

如果这句话是真的,那么也就是说,克里特人伊壁门尼德斯说了一句真话,但是却与他的真话——所有克里特人所说的每一句话都是谎话——相悖;如果这句话不是真的,也就是说克里特人伊壁门尼德斯说了一句谎话,则真话应是:所有克里特人所说的每一句话都是真话,两者又相悖。

所以怎样也难以自圆其说,这就是著名的说谎者悖论。

公元前4世纪,希腊哲学家又提出了一个悖论:“我现在正在说的这句话是真的。”同上,这又是难以自圆其说!

4.跟无限相关的悖论:

{1,2,3,4,5,…}是自然数集:

{1,4,9,16,25,…}是自然数平方的数集。

这两个数集能够很容易构成一一对应,那么,在每个集合中有一样多的元素吗?

5.伽利略悖论:我们都知道整体大于部分。由线段BC上的点往顶点A连线,每一条线都会与线段DE(D点在AB 上,E点在AC上)相交,因此可得DE与BC一样长,与图矛盾。为什么?

6.谷堆悖论:显然,1粒谷子不是堆;

如果1粒谷子不是堆,那么2粒谷子也不是堆;

如果2粒谷子不是堆,那么3粒谷子也不是堆;……

如果99999粒谷子不是堆,那么100000粒谷子也不是堆;

7、“意外绞刑”悖论:“一名囚犯被法官告知将于周一到周五间的某一天被绞死。法官并且声明说:绞刑的具体日期将是完全出人意料的。这个囚犯非常聪明 (也许以前是逻辑学教授),他由此推断出他根本不会被绞死,为什么?

相关文档
最新文档