三角形一边的平行线的判定

合集下载

三角形一边的平行线(二)

三角形一边的平行线(二)

第3讲三角形一边的平行线(二)知识框架本讲主要讲解三角形一边平行线判定定理及推论,以及平行线分线段成比例定理;重点是理清该判定定理及其推论之间的区别和联系,难点是灵活运用本节的三个定理及两个推论,并理解和掌握“作平行线”这一主要的作辅助线的方法,为学习相似三角形的性质和判定做好准备.3.1 三角形一边的平行线判定定理及推论我们来讨论三角形一边平行线性质定理的逆命题是否正确.如图,在ABC△中,点D、E分别在边AB、AC上,如果AD AEDB EC=,那么DE//BC吗?解析:要肯定上述问题结论的正确,只要证明有一个平行四边形的相对两边分别在直线DE和BC上.如图,过点C作平行于AB的直线CF,交直线DE于点F,得四边形BCFD.证明:∵CF//AB∵AD AECF EC=(三角形一边平行线性质定理的推论)又∵AD AE DB EC=∵ AD ADCF DB=,得CF DB=.由CF//DB,CF DB=,可知四边形BCFD是平行四边形∵ DF//BC,即DE//BC.根据比例的性质可知,在关系式∵AD AEDB EC=、∵AD AEAB AC=、∵BD CEAB AC=中,由其中一个可推出其余两个.因此,以关系式∵、∵、∵之一为已知条件,都可推出DE//BC.这样,就得到以下定理:三角形一边的平行线判定定理如果一条直线截三角形的两边所得的对应线段成比例,那么这条直线平行于三角形的第三边.如图,如果点D 、E 分别在边AB 、AC 的延长线或反向延长线上,且具备条件∵、∵、∵之一,那么也可以用上述同样的方法推出DE //BC .由此由得到:三角形一边的平行线判定定理的推论 如果一条直线截三角形两边的延长线(这两边的延长线在第三边的同侧)所得的对应线段成比例,那么这条直线平行于三角形的第三边.思考:如图,点D 、E 分别在边AB 、AC 上,如果DE ADBC AB=,那么能否得到DE //BC ,为什么?例1. 如图,在ABC △中,点D 、E 分别在边AB 、AC 上,根据下列条件,试判断DE 与BC是 否平行. (1)3cm AD =,4cm DB =, 1.8cm AE =, 2.4cm CE =; (2)6cm AD =,9cm BD =,4cm AE =,10cm AC =; (3)8cm AD =,16cm AC =,6cm AE =,12cm AB =;(4)2AB BD =,2AC CE =.例2. 如图,::1:3AM MB AN NC ==,则:MN BC =__________.例1题图 例2题图例题分析例3. 如图,ABC △中,E 点在边AB 上,F 点在边AC 上,下列命题中不正确的是( )(A )若EF //BC ,则AE AFEB FC=; (B )若AE AFEB FC=,则EF //BC ; (C )若EF //BC ,则AE EFAB BC=;(D )若AE EFAB BC=,则EF //BC . 例4. 如图,点D 、F 在ABC △的边AB 上,点E 在边AC 上,且DE //BC ,AF ADAD AB=.求证:EF //DC .例5. 点D 、E 分别在ABC △的边AB 、AC 上,且DE //BC ,以DE 为一边作平行四边形DEFG ,延长BG 、CF 交于点H ,连接AH ,求证:AH //EF .例6.如图,M为AB的中点,EF//AB,联结EM、FM分别交AF、BE于点C和点D.求证:CD//AB.例7.如图,在菱形ABCD中,点E、F分别在边BC、CD上,BAF DAE∠=∠,AE与BD交于点G,又DF AD FC DF=.求证:四边形BEFG是平行四边形.3.2 平行线分线段成比例定理如图,已知ABC△,直线1l与边AB、AC分别相交于点D、E,直线2l与边AB、AC分别相交于点F、G,12////l l BC.那么所截得的线段是否成比例?解析:对于这个问题,只需讨论DF EGFB GC=是否成立即可.证明:如图,过点D作直线AC的平行线'l,设直线'l与BC、2l分别交于点'C、'G,则'DG EG=,''G C GC=.利用三角形一边的平行线的性质定理和等量代换,可得DF EGFB GC=.根据上述结论,在利用比例的性质,可知截得的线段成比例.如图,将ABC△的三边AB AC BC、、改为三条直线,则上述结论表述为:直线DB与EC被三条平行的直线所截,截得的对应线段成比例.于是得到:平行线分线段成比例定理两条直线被三条平行线所截,截得的对应线段成比例.如图5,当直线2l过DB中点M,即DM MB=时,则EN NC=.也就是说:两直线被三条平行线所截,如果在一条直线上截得的线段相等,那么在另一条直线上截得的线段也相等.这是平行线分线段成比例定理的特例,也称为平行线等分线段定理.例1.如图,1l//2l//3l,3AB=,8AC=,10DF=,则EF的长为__________.例1题图知识精讲例题分析例2. 如图,直线1l 、2l 、3l 分别交直线4l 于点A 、B 、C ,交直线5l 于点D 、E 、F ,且1l //2l //3l .已知3AB =,5AC =,9DF =,则EF 的长为________.例3. 如图,ABC △中,90C ∠=︒,四边形EDFC 为内接正方形,5AC =,3BC =,则:AE DF =___________.例2题图 例3题图例4. 命题“梯形ABCD 中,AD //BC ,点E 、F 在AB 、CD 上,且::AE EB DF FC =,则EF //BC ”是__________命题.(填“真”或“假”) 例5. 已知线段a 、b 、c ,求作线段x ,使::a b c x =.例6. 如图,AB 、CD 、EF 都垂直于直线l ,12AB =,7EF =,:2:3BD DF =,求CD 的长.例7. 如图,ABC △中,M 为BC 中点,O 为AM 上一点,BO 的延长线交AC 于点D ,CO的延长线交AB 于点E ,PQ //BC ,且PQ 过点O 与AB 、AC 分别交于点P 和点Q .求证:(1)PO OQ =;(2)DE //BC .例8. 如图,在等腰梯形ABCD 中,AB //CD ,两对角线AC 和BD 相交于点O ,过点O 作EF//AB ,且10EF =,若:1:3AE ED =,求梯形ABCD 中位线的长.例9. 如图,已知点A 、C 、E 和点B 、F 、D 分别是O ∠两边上的点,且AB //ED ,BC//EF .求证:AF //CD .例10.如图,M、N分别是ABC△两边AB、AC的中点,P是MN上任一点,延长BP、CP交AC、AB于K、H,求AH AKHB KC+的值.例11.如图,矩形ABCD中,AC、BD相交于点O,OE BC⊥于点E.(1)连接DE交OC于点F,作FG BC⊥于点G,求证:点G是线段BC的一个三等分点;(2)请你仿照(1)的作法,在原图上作出BC的一个四等分点(要求保留作图痕迹,可不写作法及证明过程).3.3 课堂检测1. 如图,ABC △中,点D 、E 分别在边AB 、AC 上,已知=3AD ,5AB =,2AE =,43EC =,由此判断DE 和BC 的位置关系是__________,理由是_________________________.2. 在ABC △中,直线DE 交AB 于点D ,交AC 于点E ,以下能推出DE //BC 的条件是( )(A )23AB AD =,12EC AE =; (B )23AD AB =,23DE BC =;(C )23AD DB =,23CE AE =; (D )43AD AB =,43AE EC =.3. 在ABC △中,点D 、E 分别在边AB 和BC 上,2AD =,3DB =,10BC =,要使DE//AC ,则BE =__________. 4. 如图,ABC △中,DE //BC ,AF ADDF DB=,求证:EF //CD .5. 如图,已知AD //BE //CF ,它们依次交直线1l 、2l 于点A 、B 、C 和点D 、E 、F .(1)如果6AB =,10BC =,8EF =,求DE 的长; (2)如果:3:5DE EF =,24AC =,求AB 、BC 的长.6. 如图,平行四边形ABCD 中,AC 、BD 相交于点O ,2AB =,3BC =,1AF =,BA的延长线交OF 的延长线于点E ,求AE .7. 如图,在ABC △中,点E 、F 分别在AB 、AC 上,且EF //BC ,D 为BC 的中点,ED 、FD 的延长线分别交AC 、AB 的延长线于点H 、点G ,连接HG ,求证:EF //GH .8. 如图1,在菱形ABCD 中,点G 是CD 边上的一点,联结BG 交AC 于F ,过F 作FH//CD 交BC 于H ,可以证明结论FH FGAB BG=成立(不必证明). (1)如图2,上述条件中,若点G 在CD 的延长线上,其他条件不变时,结论FH FGAB BG=是否仍成立?若成立,请给出证明;若不成立,请说明理由;(2)在(1)的条件下,若已知4AB =,60ADC ∠=︒,9CG =,求线段BG 与FG 的长.BC=,在线段AB上9.如图,矩形ABCD中,对角线AC、BD相交于点O,4AB=,3取一点P,过点P作AC的平行线交BC于点E,连接EO,并延长交AD于点F,连接PF.(1)求证:PF//BD;(2)设的AP长为x,PEF△的面积为y,求y与x的函数关系式,并写出它的定义域.3.4 课后作业1. 在A ∠的一边上顺次有B 、C 两点,在另一边上顺次有D 、E 两点,下列条件能判断BD //CE 的个数是().(1)3cm AB =,4cm BC =, 1.8cm AD =, 2.2cm DE =; (2):2:3AB AD =, 1.8cm AE =, 1.2cm AC =; (3)5cm AB =,6cm BC =, 4.4cm AE =, 2.4cm DE =; (4)10cm AB =,15cm AC =,10cm BD =,15cm EC =. (A )1个;(B )2个;(C )3个;(D )4个2.ADE △中,点B 和点C 分别在AD 、AE 上,且2AB BD =,2AC CE =,则:BC DE =_______.3. 已知点D 、E 分别是ABC △的边AB 、AC 的反向延长线上的点,如果25AD AB =, 当=AEAC_______时,BD //CE . 4. 如图,在ABC △中,点D 、E 、F 分别在AC 、AB 、BC 上,且3DE =, 4.5BF =,25AD AE AC AB ==.求证:EF //AC .5. 如图,在梯形ABCD 中,EF //AB //CD ,两对角线AC 和BD 相交于点O ,且分别与EF相交于点M 、N ,下列比例式中正确的是( )(A )AO BO ABCO DO CD ==; (B )AM BN MNCM DN AB ==; (C )AE AB BF DE CD CF==;(D )BD AC ABDN CM MN==. 6. 如图,1l //2l ,:2:5AF FB =,:4:1BC CD =,则不成立的是( )(A ):2:1AE EC =; (B ):2:5FG GD =; (C ):2:5GF FD =;(D ):1:2AG BC =第5题图 第6题图7. 如图,直线1l //2l //3l ,若5cm AB =,8cm BC =,2cm EG =,3cm GF =,求线段DE 与GC 的长.8. 如图,已知线段AB ,在线段AB 上求作一点C ,使得:1:2AC BC =.9. 如图,ABC △中,90C ∠=︒,点G 是三角形的重心,8AB =. (1)求GC 的长;(2)过点G 的直线MN //AB ,交AC 于点M ,交BC 于点N ,求MN 的长.AB10. 如图,E 、F 、G 、H 分别是四边形ABCD 各边的点,且AE FD EB AF ⋅=⋅,BG HC GC DH ⋅=⋅,连接EH 、GF 相交于点O .求证:OE GO FO OH ⋅=⋅.11. 如图,D 是线段BC 上一点,且23BD DC =,CE 交AB 于点F ,:1:3AE ED =, 求:AF BF 的值.12. 梯形ABCD 中,点E 在AB 上,点F 在CD 上,且AD a =,BC b =.(1)如图(a ),如果点E 、F 分别为AB 、CD 的中点,求证:EF //BC 且2a bEF +=; (2)如图(b ),如果AE DF mEB FC n==,判断EF 和BC 是否平行,并证明你的结论,并用a 、b 、m 、n 的代数式表示EF .图(a ) 图(b )。

沪教版(上海)初中数学九年级第一学期 24.3 三角形一边的平行线判定定理 教案

沪教版(上海)初中数学九年级第一学期 24.3 三角形一边的平行线判定定理 教案

三角形一边的平行线判定定理教材分析本节课是九年级第一学期第二十四章《相似三角形》中《三角形一边的平行线》的第3课时内容。

第二十四章主要学习相似三角形的概念、判定和性质,而为了研究相似形,需要有比例线段及其性质、三角形一边平行线的性质与判定以及平行线分线段成比例定理作铺垫,因此本节课的内容是后续学习相似三角形内容的知识和技能基础之一。

如上图所示,本节课的重点是导出三角形一边的平行线判定定理及其推论,并进行初步运用,是建立在学习了“三角形一边平行线的性质定理”的基础上的,从学生已有的认知基础(三角形一边平行线的性质定理及其推论)和学习经验(三角形面积比与线段之比的转化方法、同一法、构造A型图或X型图的方法)出发进行数学的理性分析。

首先,提出“三角形一边的平行线性质定理的逆定理是否正确”的问题,引导学生进行探究讨论,对思维对象(即问题是否成立)进行肯定或否定的判断,并能够简单地说明判断的标准或依据(有特殊到一般进行判断,凭感觉进行判断等等)。

以此使学生掌握判断的标准,关注判断的合理性及能够正确地表达判断。

然后,再通过构造A型图、X型图、分割三角形等手段,运用“同一法”、“面积法”、“构造平行四边形”等方法证明得到三角形一边的平行线判定定理。

这一学习过程中不仅体现了“判断”的三要素,也体现了论证几何注重演绎推理的特点,可充分培养学生判断和演绎推理的思维形式。

学生在学习的过程中,有了发挥和展示个人生思维的独特性和新颖性,以此培养和提高学生思维的深刻性。

同时学生在此学习过程中,锻炼了个人知识迁移的能力,以此培养和提高学生思维的灵活性。

证明“三角形一边平行线的判定定理”的方法有“通过构建平行四边”、“同一法”和“面积法”,证明的过程都十分的简捷,但添置辅助线是教学的一个难点,需引导学生根据所要研究的结论联想构造平行四边形,或运用“同一法”和“面积法”,结合已知条件和图形的特征考虑构造“X 型图”或“A 型图”或“分割三角形”,形成证明思路。

三角形一边平行线判定

三角形一边平行线判定
初中数学备课组
教师张老师
班级
学生
日期
上课时间
主课题:三角形一边的平行线2
教学内容
知Байду номын сангаас精要
1.三角形一边的平行线判定定理及推论
判定定理:如果一条直线截三角形的两边所得的对应线段成比例,那么,这条直线平行于三角形的第三边.
推论:如果一条直线截三角形两边的延长线
(这两边的延长线在第三边的同侧)所得的对应线段
A、DE=1,BC=7 B、DE=2,BC=6
C、DE=3,BC=5 D、DE=2,BC=8
3.如图,BD、CE是△ABC的中线,P、Q分别是BD、CE的中点,则PQ∶BC=().
A、1∶3 B、1∶4 C、1∶5 D、1∶6
4.如图, ∥ , ,BC=4CD,若 ,则 =().
A、 B、2 C、 D、4
三.计算题
1.如图,在梯形ABCD中,AD∥BC,EF∥BC,且AE:EB=5:3,
DC=16厘米,求FC的长.
2.一直线截ΔABC三边AB、AC、BC或其延长线于D、E、F,求证: .
3.如图, 分别为 的中点, , ,联结 .
求证:
4.如图,已知点 在 的边 上,且 ,以 为一边作 ,延长 交于点 ,联结 .求证:
5.如图, 是线段 上一点, 是等边三角形, , ,交 ,联结 .求证:(1) (2)
6.如图,在梯形 中, 分别是 的中点, 交 于 , 交 于 ,求 的长。
7.已知: 和 分别是 两边上的点且 .
求证:
8.已知:如图, 平分 ,若 .求 关于 的函数关系式,并写出定义域.
9.已知:如图, , ,
2.平行线分线段成比例定理:两条直线被三条平行线所截,截得的对应线段成比例

九年级三角形一边的平行线判定

九年级三角形一边的平行线判定

三角形一边的平行线判定一、知识讲解11 1.三角形一边平行线判定定理:如果一条直线截三角形的两边所得的对应线段成比例,那么这条直线平行于三角形的第三边.2.三角形一边的平行线判定定理推论:如果一条直线截三角形两边的延长线(这两边的延长线在第三边的同侧)所得的对应线段成比例,那么这条直线平行于三角形的第三边.符号语言:AD AEDB EC=(或AD AEAB AC=或DB ECAB AC=)DE BC⇒3.平行线分线段成比例定理:两条直线被三条平行的直线所截,截得的对应线段成比例.符号语言:,,AB DE BC EF AB DEAD BE CFBC EF AC DF AC DF⇒===4.平行线等分线段定理:两条直线被三条平行的直线所截,如果在一直线上所截得的线段相等,那么在另一直线上所截得的线段也相等.符号语言:AD BE CFAB BCDE EF⎫⇒=⎬=⎭.例题1:已知线段a、b、c求作线段x,使bacx=,以下作法正确的是()例题2:如图,在ABC∆中,点E F、分别在AB AC、上,且EF BC,D为BC的中点,例题精讲EBADED FD 、分别交AC AB 、的延长线于H G 、,联结HG . 求证:FE GH .例3、已知:如图,在梯形ABCD 中,//AB CD ,M 是AB 的中点,分别联结AC 、BD 、MD 、MC ,且AC 与MD 交于点E ,DB 与MC 交于F .(1)求证:EF // DC ;(2)若2AB =,4CD =,求EF 的长.例题4、已知:如图,在梯形ABCD 中,AD // MN // BC .MN 分别交边AB 、DC 于点M 、N .如果AM ∶MB = 2∶3,AD = 4,BC = 9.求MN 的长.例5、 试一试:如图△ABC 中,DE ∥BC 交AB 于D ,交AC 于E ,DEFG 为平行四边形,连BG 、CF 且分别延长交于H ,连AH ,求证:AH ∥DGGHABFEMDCBA例6、如图,AB ∥EF ∥DC ,AB =,DC =,,则EF =________。

三角形的一边的平行线判定定理及其推论

三角形的一边的平行线判定定理及其推论

三角形的一边的平行线判定定理及其推论好嘞,今天咱们来聊聊三角形和它的一边的平行线判定定理。

这听起来可能有点枯燥,不过别担心,我会尽量让它变得有趣,咱们就当是在喝茶聊天,轻松一下。

三角形,哎,这个小家伙,虽然形状简单,但在几何里可真是个大明星。

它有三个角、三条边,看似平常,但却隐藏了很多有趣的秘密。

说到平行线,这个词儿你肯定不陌生,生活中到处都是平行线,比如铁轨、马路两旁的树,咱们平时走路、开车都在和它们打交道。

啥是三角形的一边的平行线判定定理呢?想象一下,你有一个三角形,像个披萨切了三角形,感觉都饿了。

现在在这三角形的某一边,咱们要画一条平行线,这条线就得和三角形的一边保持平行。

根据这个定理,如果你能找到一个角的对边与这条平行线相交,哎,你会发现这个三角形的某个角和交点的角是相等的,真是个神奇的现象!就像在舞会上,两个人跳舞时,竟然有一个神秘的默契,动作一模一样。

这个小小的定理告诉我们,平行线和三角形之间的关系其实是非常亲密的。

再说说这个定理的推论,听起来好像很高深,其实不然。

咱们看看,平行线有啥妙用。

比如,在生活中设计房子,建筑师经常得用到这些原理。

他们在画图时,得确保墙壁、窗户和楼梯的设计是多么的和谐,跟平行线就有着密不可分的联系。

你说,这能不重要吗?设计一个好房子,简直就像造一个美丽的梦,谁不想住得舒服呢?再举个例子,咱们在学校学几何的时候,老师总是让我们找角、找边,甚至让我们画图。

每次拿起尺子,哎呀,心里就会想,能不能一次性把这个图画得漂亮些。

掌握了平行线的定理,画三角形就像骑自行车一样,越骑越顺手。

你会发现,只要你能找到平行线和三角形的那些联系,画图再也不会是个麻烦事。

如果说生活是一本书,那么几何就像是其中的一章,虽然有点难懂,但只要细细品味,里面的智慧和乐趣就会慢慢显露。

三角形的一边的平行线判定定理,虽然简单,却在不知不觉中教会我们许多道理。

比如,平行线代表着一种稳定和平衡的状态,就像人际关系中那些相互理解的朋友,总是在一条线上,互不干扰却又相互支持。

比例线段与三角形一边的平行线讲解

比例线段与三角形一边的平行线讲解

精锐教育学科辅导讲义学员编号: 年 级:九年级 课 时 数: 3 学员姓名: 辅导科目:数学 学科教师: 张俊授课类型 T 同步课堂C 专题 T 能力提升授课日期及时段 家庭作业教学内容同步课堂一、知识点梳理:1.三角形一边的平行线性质定理:平行于三角形一边的直线截其他两边所在的直线,截得的对应线段成比例.EDABCAEDCBAC AE AB AD BC DE == 2.三角形一边的平行线性质定理推论平行于三角形一边的直线截其他两边所在的直线,截得的三角形的三边与原三角形的三边对应成比例. 三角形重心要掌握三点:1.定义:三角形三条中线相交于一点,这个交点叫做三角形的重心.2.作法:两条中线的交点.3.性质:三角形的重心到一个顶点的距离,等于它到对边中点的距离的两倍.3、三角形一边平行线判定定理 如果一条直线截三角形的两边所得的对应线段成比例,那么这条直线平行于三角形的第三边.,,AD AE AD AE DB EC DB EC AB AC AB AC===ABCDE三角形一边的平行线判定定理推论 如果一条直线截三角形两边的延长线(这两边的延长线在第三边的同侧)所得的对应线段成比例,那么这条直线平行于三角形的第三边.AEDCB4、平行线分线段成比例定理:两条直线被三条平行的直线所截,截得的对应线段成比例.FED CB A用符号语言表示: ΘAD ∥BE ∥CF,,,AB DE BC EF AB DEBC EF AC DF AC DF∴===. 平行线等分线段定理:两条直线被三条平行的直线所截,如果在一直线上所截得的线段相等,那么在另一直线上所截得的线段也相等.(一)、比例式 比例式:1、设2y -3x =0(y ≠0),则yyx += . 比例中项:1、已知线段a=2,b=8,若线段c 是线段a 与b 的比例中项,则c = . (二)、A 字型1、在△ABC 中,已知点D 、E 分别在边AB 、AC 上,DE ∥BC .如果AD =1cm ,AB =3cm ,DE =4cm ,那么BC = cm .2、已知:在△ABC 中,点D 、E 分别在边AB 、AC 上,DE ∥BC .如果AD =4cm ,AB =6cm ,DE =3cm ,那么BC = cm .3、如图,在△ABC 中,DE ∥B C ,DB AD =21, 则BCDE= .AD CEB4、已知:如图,在△ABC 中,BD 是∠ABC 的平分线,过点D 作DE ∥CB ,交AB 于点E ,DC AD =31, DE =6,则AB = .(三)、X 型 1、如图,AB//CD ,AD 与BC 交于点O ,若35 OD OC ,则BOAO= .2、如图,E 是平行四边形ABCD 边AD 上一点,且AE ∶ED=1∶2,CE 与BD 交于点O ,则BO :OD= .(四)、中间比1、如图,在△ABC 中,DE ∥BC ,DF ∥AB ,那么下列比例式中正确的是( )(A )EB AE =FC BF ; (B )EB AE =FB CF ;(C )BC DE =DC AD; (D )BC DE =AB DF . (五)、重心1、如果直角三角形的斜边长为18,那么这个直角三角形的重心到直角顶点的距离为 .2、在△ABC 中,∠ACB =90°,AC =3.6,BC =4.8,点G 为△ABC 的重心,则点G 到AB 中点的距离为 .3、如图,BE 、CD 是△ABC 的边AC 、AB 上的中线,且相交于点F .则FCDF= .4、如图,已知点O 是△ABC 的重心,过点O 作EF ∥BC ,分别交AB 、AC 于点E 、F ,若BC =6,则EF = .DACBOE DABC ODBCEFBCDE B CE AF OBAECFD专题一、填空题:1.若():1:2x y y -=,则:x y =___ _. 2.已知线段a ,b ,c 满足关系式a bb c=,且3b =,则ac =_ _. 3.已知345x y z==,且18x y z -+=,则2x y z ++= . 4.如图1-1所示,在△ABC 中,D ,E 分别在AB ,AC 上,且DE ∥BC ,=3AD ,=5AB ,=1CE ,那么=AC .ABCD E1-1A BCDE F1-2ABCDE1-31-4E D CBAF5.如图1-2所示,在△ABC 中,DE ∥BC ,如果12AD DB =,那么EFBF= . 6.如图1-3所示,在△ABC 中,BD 平分ABC ∠,交AC 于D ,DE ∥BC ,交AB 于点E ,若=6AB ,=4DE ,则=BC .7.如图1-4所示,EF 平行BC ,FD 平行AB ,=18AE ,=12BE ,=14CD ,则=BD .A BCDE1-5G1-6FEDCBA1-7F EDCBAABCDEF1-88.如图1-5所示,△ABC 中,DE ∥BC ,4AB =,8AC =,DB AE =,则AE = .9.如图1-6所示,△ABC 中,DE ∥FG ∥BC ,若::=2:5:9DE FG BC ,则::AD DF =FB . 10.如图1-7所示,AB ⊥BC 于B ,EF ⊥BC 于F , DC ⊥BC 于C ,=4AB ,=14DC ,且:=2:3BF FC .则EF 的值为 .11.如图1-8所示,ABCD Y 中,DE 平分ADC ∠,=2AB ,=3AD ,则=DF FE : . 12.如图1-9所示,直角梯形ABCD 中,AD ∥BC ,BC DC ⊥,3=AD ,6=BC ,4=CD ,则=AO . 1-9DCBAO13.如图1-10所示,△ABC 中,DE ∥AC ,FD ∥AB ,则ABDFAC DE +的值为 . 1-10FE DCBAABC DEF1-11A BCDEF1-12O 1-13E DC BA14.在△ABC 中,如果5==AC AB 厘米,8=BC 厘米,那么这个三角形的重心G 到BC 的距离是 . 15.如图1-11所示,E 为ABCD Y 的边AD 延长线上一点,且D 为AE 的黄金分割点,即AE AD 215-=,BE 交DC 于点F ,已知15+=AB ,则CF 的长是 .16.如图1-12所示,梯形ABCD 中,AD ∥BC ,AC ,BD 相交于点O ,过O 点做AD 的平行线交AB 于点E ,交CD 于F ,若3=AD ,5=BC ,则=EF . 17.如果线段a ,b 满足222350a ab b --=,则ab的值是 .18.平行四边形ABCD 中,对角线BD 的四等分点为1O ,2O ,3O ,1AO 的延长线交BC 于E ,3EO 的延长线交AD 于F ,则:AF FD = .19.如图1-13所示,在△ABC 中,C ∠90=o ,3AC =,D 为BC 上一点,过点D 作DE BC ⊥交AB 于点E ,若1ED =,2BD =.则DC 的长为 .20.如图1-14所示,边长为8的正△ABC ,DE ∥BC ,面积比:1:4BCD ABC S S =△△,则EC = .1-14E D CBAQF1-15EDCB AHF 1-16EDCBA21.若a b c k b c a c a b===+++,则k = . 22.如图1-15所示,四边形ABCD ,EQ ∥CD ,EF ∥AB ,则EF EQAB CD+= . 23.如图1-16所示,E 是△ABC 中BC 边的中点,F 是BC 边上任一点,过F 作FH ∥AE ,交BA 的延长线于点D ,交CA 于点H ,则FD FHAE AE+= .24.已知::2:3:5a b c =,5a b c ++=,求a ,b ,c 的值 . 25.已知31212358a a a b b b ===,则1212a ab b ++= ,1313a a b b ++= . 26.已知23a c b d ==,则44a cb d--= . 27.已知::2:3:4a b c =,则有23a b ca++= .28.2,3,6的第四比例项是 .二、解答题:1.如图1-31所示,B ,C 是△APM 边AP 上的两点,过B 作BN ∥AM 交PM 于N ,过N 作ND ∥MC 交AP 于D . 求证:PA PCPB PD=. N1-31D C B MAP2.如图1-32所示,梯形ABCD 中,AD ∥BC ,对角线AC ,BD 相交于O ,过O 作AD 的平行线与两腰分别相交于E ,F ,比较OE 与OF 的大小关系,并说明理由.O1-32D CBEA F3.已知线段a ,b ,c 如图1-33所示,求作线段x ,使2bc x a=. c b a 1-334.如图1-34所示,在△ABC 中,12==AC AB ,4=BC ,BD 平分ABC ∠,DE ∥BC . 求△ADE 的周长.1-34E DCBA5.如图1-35所示,已知在△ABC 中,EFCD 是菱形,且3AD =,5=BF .求菱形EFCD 的边长.1-35F E DCBA6.如图1-36所示,平行四边形ABCD 的对角线AC 与BD 相较于点O ,E 是CD 的中点,AE 交BD 与点F . 求FODF的值.DCBEAF1-36O7.如图1-37所示,在△ABC 中,EF ∥BC ,DF ∥EC .求证:AE 是AB AD 与的比例中项.1-37F AE BCD ADEBCF1-388.如图1-38所示,在△ABC 中,AB AD 31=,延长BC 到点F ,使得BC CF 31=.连接DF ,交AC 于点E , 求证:(1)EF DE =;(2)EC AE 2=.9.如图1-39所示,AD ∥EF ∥BC ,5AD =,7BC =,E 是AB 的黄金分割点,BE AE >. 求EF 的长.ADE BCF1-3910.如图1-40所示,已知E 是平行四边形ABCD 的边CD 上的一点,连接AE 并延长交BC 的延长线于点F . 求证:DC DE FB AD ::=.1-40CBED AF11.已知a ,b ,c ,d 四条线段能够成比例,2=a 厘米,3=b 厘米,5=c 厘米.求线段d 的长度.12.如图1-41所示,在ABCD Y 中,E 是AB 的中点,=AF 12DF ,EF 交AC 于点G .求AC AG的值. ADE BCF1-41G13.如图1-42所示,D 为△ABC 中BC 上一点,EF ∥BC 交AD 于点H .求证:EH BD HF CD=. HADEBCF1-4214.如图1-43所示,在△ABC 中,AD BC ⊥于点D ,BE AC ⊥于点E ,H 为AC 上一点,且AH AD =,过点H 作HF ∥BC 交AB 于点F . 求证:FH BE =.HAD EBCF 1-43课后总结:能力提升一、填空题:1.如图1—61所示,梯形ABCD 中,DC ∥AB ,DC =3,AB =5, E 是DA 的黄金分割点,且EF ∥AB 交BC 于点F ,则EF = .1-61D CBE AF B 2A 2C 2A 1B 1C 11-62CBA 1-63DC BEA FE nE 3E 2E 1D nD 3D 21-64D 1CBA2.如图1—62所示,点1A ,2A ,1B ,2B ,1C ,2C 分别是△ABC 的边BC ,CA ,AB 的三等分点,若△ABC 的周长是m ,则六边形1A 2A 1B 2B 1C 2C 的周长是 .3.如图1—63所示,AD ∥EF ∥BC ,AD =12,BC =17,AE :EB =2:3,则EF = .4.△ABC 中,BC =a ,若1D ,1E 分别是BC ,AC 的中点,则1D 1E =12a ;若2D ,2E 分别是1D B ,1E C 的中点,则2D 2E =113()224a a a +=;若3D ,3E 分别是2D B ,2E C 的中点,则3D 3E =137()248a a a +=;…;若n D ,n E 分别是1n D B -,1n E C -的中点,则n n D E = .5.如图1—64所示,△ABC 中,BC =a . (1)若1AD =13AB ,1AE =13AC ,则11D E = ;(2)若12D D =113D B ,12E E =113E C ,则22D E = ;(3)若1n n D D -=113n D B -,1n n E E -=113n E C -,则n n D E = .6.如图1—65所示,已知DE ∥BC ,且BF :EF =3:2,则AC :AE = ,AD :DB = .1-65DC BEAFM1-66DCBEAF 1-67DCBEAFO1-68DCBEAF7.如图1—66所示,四边形ABCD 中,==90A C ∠∠o,M 为BD 上一点,ME AB ⊥于点E ,MF CD ⊥于点F ,则MF MEBC AD+= . 8.如图1—67所示,AF ∥BE ∥CD ,AF =12,BE = 19,CD =28.则FE :ED 的值等于 .9.如图1—68所示,ABCD Y的对角线AC 与BD 相交于点O ,E 是CD 的中点,AE 交BD 于点F .则DF :FO = .10.如图1-69所示,DC ∥MN ∥PQ ∥AB ,2=DC ,5.3=AB ,PA MP DM ==,则=MN ,=PQ .1-69ABD C Q M P N FABCDE1-701-71MkN A CEFDBL 3L 2L 111.如图1-70所示,在梯形ABCD 中,AB ∥CD ,CD AB 3=,E 为对角线AC 的中点,直线BE 交AD 于点F ,则FD AF :的值等于 .12.如图1-71所示,1L ∥2L ∥3L , 4.2CN =,3AM =,5BM =,12EF =,则=DN ,=EK . 13.如图1-72所示,已知EFDFBC AB =,则1l ∥2l ∥3l ,此命题是 (真、假)命题. 1-72A BCD EF321课后作业:1.如图1-83所示,已知D 是△ABC 中AC 边的中点,过点D 的任意直线交AB 于点E ,交BC 的延长线于点F . 求证:BE CF BF EA ⋅=⋅.1-83EFC BDA2.如图1-84所示,在△ABC 中,D 是AB 的中点,E 是AC 上一点,延长DE 交BC 的延长线于点F .求证:FCBF EC AE =. 1-84F DAB EC3.如图1-85所示,D ,E 是△ABC 的AB ,BC 边上的点,连接DE 并延长交AC 的延长线于点F ,AC AB DE BD ::=.求证:△EFC 是等腰三角形.F D AB EC1-854.如图1-86所示,已知四边形ABCD 是正方形,FG ∥CD .求证:GF BF =.G 1-86CE B A D F5.如图1-87所示,在平行四边形ABCD 中,E 为AB 中点,G 是对角线AC 上一点,且:1:5AG GC =,EG 的延长线交AD 与点F .求:DF FA 的值.G 1-87CEB A D F6.如图1-88所示,D 为△ABC 中AC 边上的一点,E 为CB 延长线上的一点,EB AD =,DE 交AB 于点F .求证:AC DF BC EF ⋅=⋅.1-88AB CDE F7.如图1-89(1)所示,AB ⊥BD ,CD ⊥BD ,垂足分别为点B ,D ,AD 和BC 相交于点E ,EF ⊥BD ,垂足为点F ,我们可以证明111+=AB CD EF成立(不要求证明). 若将图1-89(1)中的垂线改为斜交,如图1-89(2),AB ∥CD ,AD 与BC 相交于点E .过点E 作EF ∥AB ,交BD 于点F .则:(1)111+=AB CD EF 还成立吗?如果成立,请给出证明;如果不成立,请说明理由; (2)请找出面积ABD S △,BED S △和BDC S △间的关系式,并给出证明.(2)(1)AD BC F E 1-89EF C BD A8.如图1-91所示,如果M 是△ABC 中BC 边的中点,P 是CM 上任一点,过点P 作PR ∥AM ,交BA 延长线于点Q ,交CA 于点R .求证:BM BC AM PR AM PQ =+. 1-91MRQP C B A9.如图1-90(1)所示,D 是△ABC 的BC 边上的中点,过点D 的一条直线交AC 于点F ,交BA 的延长线于点E ,AG ∥BC 交EF 于点G ,我们可以证明EG DC ⋅=ED ⋅AG 成立(不要求证明). (1)如图l -90(2)所示,若将图1-90(1)中的过点D 的一条直线交AC 于点F ,改为交CA 的延长线于点F ,交BA 的延长线于点E ,改为交BA 于点E ,其他条件不变,则AG ED DC EG ⋅=⋅还成立吗?如果成立,请给出证明;如果不成立,请说明理由;(2)根据图1-90(2)所示,请你找出EG ,FD ,ED ,FG 四条线段之间的关系,并给出证明;(3)如图l -90(3)所示,若将图1-90(1)中的过点D 的一条直线交AC 于点F ,改为交CA 的反向延长线于点F ,其他条件不变,则(2)得到的结论是否成立?1-90(3)(2)(1)A FG E B D C A G B D C FE EFC DB G A10.如图1-92所示,已知△ABC 中=90ACB ∠o ,以BC 为边向外作正方形BCDE ,连接AE 交BC 于点F ,作FG ∥AC 交AB 于点G .求证:FG FC =.1-92A B CDGFE11.如图1-93所示,△ABC 中,DE ∥BC ,CD ,BE 交于点O ,过点O 作MN ∥BC ,分别交AB ,AC 于点M ,N .求证:MNBC DE 211=+. 1-93N ME O DC B A12.如图1-94所示,以AC ,BC 为底向AB 同侧作两个顶角相等的等腰△ADC ,△CEB ,若AE ,DC 交于点P ,BD ,CE 交于点Q .求证:CQ CP =.AP C DQB E1-9413.如图1-95所示,BD ∥FG ,BE ∥FC .求证:DC ∥EG .1-95G FEDCB A14.如图1-96所示,在平行四边形ABCD 中,E 是边AB 的中点,点F 在边BC 上,且BF CF3=,EF 与BD相交于点G .求证:BG DG 5=.1-96AB C D EF G15.如图1-97所示,在等腰△ABC 中,AC AB =,底边BC 外接正方形BCDE ,AD ,AE 分别交BC 于点F ,G ,过F 点作FH ∥CD 交AC 于H .求证:HF GF =.1-97A B C DE F HG16.如图l -98所示,已知:梯形ABCD ,AB ∥CD ,且7=AB ,4=CD ,延长AD ,BC 交于点E ,过E 作平行于AB 的直线,分别交AC ,BD 的延长线于M ,N .求:MN 的长.1-98A B C DE N M17.如图1-99所示,在平行四边形ABCD 中,EH 交BA ,BC 延长线于E ,H 点,且交AD ,DC 于F ,G ,交BD 于P 点.求证:EP PF PH PG ⋅=⋅.P 1-99EFC BDAG H18.如图1-100所示,在四边形ABCD 中,AB ∥CD ,对角线AC ,BD 相交于F ,EG 过F 点且与AB 平行. 求证:2EG EG AB CD+=. 1-100G FEDC BA19.如图1-101所示,△ABC 中,AP 平分BAC ∠,BE AP ⊥,垂足为Q ,BE 交AC 的延长线于E ,M 为BC 的中点,延长AM 交BE 于N ,连结NP .求证:NP ∥AB .QAB CE MN P 1-101。

4-三角形一边平行线判定定理

4-三角形一边平行线判定定理
二、例题解析
1.已知:如图,点D,F在 的边AB上,点E在边AC上,且DE//BC, ,求证:EF∥DC .
2.如图,在平行四边形ABCD中,E是AB的中点,在AD上截取AF=FD,EF交AC于点G.求的值.
3.如图,已知在△ABC中,点D、E、F分别在AB、BC、CA上,且,CF=CE.求证:四边形CFDE是菱形。
三、练习
1.梯形两底分别为m、n,过梯形的对角线的交点,引平行于底边的直线被两腰所截得的线段长为( )
(A) (B) (C) (D)
2.如图,AD是△ABC的中线,E是AC边上的三等分点,BE交AD于点F.则AF:FD为( )
3.如图,梯形ABCD的中位线MN与对角线BD、AC分别相交于点E、F,若AD:BC=1:3.则EF:MN等于( ).
一、基础知ቤተ መጻሕፍቲ ባይዱ点
1、三角形一边平行线判定定理如果一条直线截三角形的两边所得的对应线段成比例,那么这条直线平行于三角形的第三边.
如果D ,E分别在AB,AC的延长线上时,或在反向延长线上时,以上结论同样成立.
2、三角形一边的平行线判定定理推论如果一条直线截三角形两边的延长线(这两边的延长线在第三边的同侧)所得的对应线段成比例,那么这条直线平行于三角形的第三边.
4、如图,在△ABC中,点D是AC的中点,3BE=2EC,AE与BD相交于点F.求DF:BF的值.
5.如图4,点O为△ABC的中线AD上任意一点,BO、CO的延长线分别交AC、AB于点E、F,连结EF,且 。求证:EF∥BC.
6、如图,D、E分别为△ABC的AB和AC上的点,且BC的延长线于F点,且求证:DB=EC.
4.如图,BD、CE是△ABC的中线,P、Q分别是BD、EC的中点.则PQ:BC等于( )

三角形一边的平行线判定定理推论 -回复

三角形一边的平行线判定定理推论 -回复

三角形一边的平行线判定定理推论-回复题目: 三角形一边的平行线判定定理推论引言:在几何学中,三角形是一个基础的图形,拥有各种有趣和重要的性质。

本文将围绕三角形的一边的平行线判定定理推论展开讨论。

这一定理的推论可以帮助我们更好地理解和分析不同形状的三角形。

在本文中,我们将从基本概念开始,逐步展示证明过程,并通过实际示例和图形加深理解。

一、基本概念1. 平行线:当两条直线在同一平面内且不相交时,我们称这两条直线为平行线。

可以使用符号“”表示平行关系。

二、三角形一边的平行线判定定理三角形ABC中,如果一条直线l与边AB和边AC平行且穿过边BC,则我们可以推断直线l与边AB和边AC上所有点都有关系。

三、证明过程要证明这个定理的推论,我们将从以下三个步骤开始证明:1. 证明线段BC的平行线l与边AB和边AC上的另一直线m平行。

证明方法:由于线段BC与直线l平行,且直线l与直线m穿过同一个点B,则根据平行线判定定理的另一个推论,线段BC与直线m平行。

2. 证明线段BC的平行线l与边AB和边AC上的点集合S1和S2相等。

证明方法:由于线段BC与直线l平行,因此线段BC的一个端点B与直线l上的一个点D之间存在唯一的一条直线。

同理,线段BC的另一个端点C也与直线l上的一个点E之间存在唯一的一条直线。

所以,点集合S1 = {B, C},点集合S2 = {D, E}。

根据平行线定义,直线l与线段BC上的两个端点之间的直线与边AB和边AC上的点的对应关系是一对一的,因此S1 = S2。

3. 证明线段BC的平行线l与边AB和边AC平行。

证明方法:假设线段BC的平行线l与边AB和边AC不平行,那么根据平行线定义,点B和边AB上的点与点C和边AC上的点之间的直线没有对应关系。

然而,根据第二步的证明结果,线段BC的平行线l与边AB和边AC上的点的对应关系是一对一的。

因此,我们得出结论:线段BC的平行线l与边AB和边AC平行。

四、实际示例和图形为了更好地理解和证明这个推论,我们可以通过绘制一个具体的三角形来说明。

三角形一边平行线判定定理完整题型+答案

三角形一边平行线判定定理完整题型+答案

基础知识点三角形一边平行线的判定定理:如果一条直线截三角形两边所得的对应线段成比例,那么这条直线平行于三角形的第三边。

(由成比例得平行)A如图,若EC AE DB AD =(或AC AE AB AD =或ACEC AB BD =),则DE//BCD EB C三角形一边平行线的判定定理的推论:如果一条直线截三角形两边的延长线(这两条延长线在第三边的同侧)所得的对应线段成比例,那么这条直线平行于第三边。

若CE AC BD AB =(或AE AC AD AB =或AC EC AD BD =) 若AC AE AB AD =(或EC AE BD AD =或CEAC BD AB =) 则DE//BC 则DE//BC例题解析例题解析:在△ABC 中,点D 、E 在边AB 、AC 上,根据下列给定的条件,试判断DE 与BC 是否平行? 并说明理由.(1)AD=3cm ,DB=4cm ,AE=1.8cm ,CE=2.4cm ;(2)AD=6cm ,BD=9cm ,AE=4cm ,AC=10cm;答案:(1)是;(2)不是.变式:在△ABC 中,点D 、E 在边AB 、AC 上,根据下列给定的条件,试判断DE 与BC 是否平行? 并说明理由.(1)AD=8cm ,AC=16cm ,AE=6cm ,AB=12cm;(2)AB=3BD ,AE=32AC;(3)AB=2BD ,AC=2CE.答案:(1)不是;(2)是;(3)是.例题解析:如图,点D 、E 分别在AB 、AC 上,以下能推得DE//BC 的条件是( )。

A.AD:AB=DE:BCB.AD:DB=DE:BCC.AD:DB=AE:ECD.AE:AC=AD:DB 答案:解析:∵AD:DB=AE:EC ,∴DE//BC ,故选:C .变式:在△ABC 中,点D 、E 分别在边AB 、AC 上,下列条件中不能判定DE//BC 的是( )。

A.= B.= C.= D.=解析:∵=,∴DE//BC ,选项A 不符合题意;∵=,∴DE//BC ,选项B 不符合题意; ∵=,∴DE//BC ,选项C 不符合题意;=,DE//BC 不一定成立,选项D 符合题意.故选:D .例题解析:已知:如图,点D ,F 在△ABC 的边AB 上,点E 在边AC 上,且DE//BC ,ABAD AD AF =,求证:EF//DC. 解答:证明:∵DE//BC ,∴AC AE AB AD =, ∵AB AD =,∴AC AD =,∴ADAC =,∴EF//DC.变式:如图,在△ABC 中,EF//CD ,DE//BC 。

三角形一边的平行线(解析版)

三角形一边的平行线(解析版)

三角形一边的平行线【知识梳理】1、三角形一边的平行线性质定理平行于三角形一边的直线截其他两边所在的直线,截得的对应线段成比例. 如图,已知ABC ∆,直线//l BC ,且与AB 、AC 所在直线交于点D 和点E ,那么AD AEDB EC=.2、三角形一边的平行线性质定理推论平行于三角形一边的直线截其他两边所在的直线,截得的三角形的三边与原三角形的三边对应成比例. 如图,点D 、E 分别在ABC ∆的边AB 、AC 上, //DE BC ,那么DE AD AE BC AB AC ==.3、三角形的重心定义:三角形三条中线交于一点,三条中线交点叫三角形的重心.性质:三角形重心到一个顶点的距离,等于它到这个顶点对边中点的距离的两倍. 4、三角形一边的平行线判定定理如果一条直线截三角形的两边所得的对应线段成比例,那么这条直线平行于三角形的第三边. 5、三角形一边的平行线判定定理推论如果一条直线截三角形的两边的延长线(这两边的延长线在第三边的同侧)所得的对应线段成比例,那么这条直线平行于三角形的第三边.如图,在ABC ∆中,直线l 与AB 、AC 所在直线交于点D 和点E ,如果AD AEDB EC=那么l //BC .6、平行线分线段成比例定理两条直线被三条平行的直线所截,截得的对应线段成比例. 如图,直线1l //2l //3l ,直线m 与直线n 被直线1l 、2l 、3l 所截,那么DF EGFB GC=.7、平行线等分线段定理两条直线被三条平行的直线所截,如果一条直线上截得的线段相等,那么另一条直线上截得的线段也相等.【考点剖析】 一.三角形的重心(共13小题)1.(2023•青浦区一模)三角形的重心是( ) A .三角形三条角平分线的交点 B .三角形三条中线的交点C .三角形三条边的垂直平分线的交点D .三角形三条高的交点【分析】根据三角形的重心概念作出回答,结合选项得出结果. 【解答】解:三角形的重心是三角形三条中线的交点. 故选:B .【点评】考查了三角形的重心的概念.三角形的外心是三角形的三条垂直平分线的交点;三角形的内心是三角形的三条角平分线的交点.2.(2023•奉贤区一模)在△ABC 中,AD 是BC 边上的中线,G 是重心.如果AD =6,那么线段DG 的长是 .BCD E FG【分析】根据重心的性质三角形的重心到一顶点的距离等于到对边中点距离的2倍,直接求得结果.【解答】解:∵三角形的重心到顶点的距离是其到对边中点的距离的2倍,∴DG=AG=2.故答案为:2.【点评】本题考查的是三角形的重心,熟知心到顶点的距离与重心到对边中点的距离之比为2:1是解题的关键.3.(2022秋•杨浦区期末)如图,△ABC中,∠BAC=90°,点G是△ABC的重心,如果AG=4,那么BC 的长为.【分析】延长AG交BC于点D,根据重心的性质可知点D为BC的中点,且AG=2DG=4,则AD=6,再根据直角三角形斜边的中线等于斜边的一半即可求解.【解答】解:如图,延长AG交BC于点D.∵点G是△ABC的重心,AG=4,∴点D为BC的中点,且AG=4,∴DG=2,∴AD=AG+DG=6,∵△ABC中,∠BAC=90°,AD是斜边的中线,∴BC=2AD=12.故答案为12.【点评】本题考查了三角形重心的定义及性质,三角形的重心是三角形三边中线的交点,重心到顶点的距离与重心到对边中点的距离之比为2:1.同时考查了直角三角形的性质.4.(2022秋•青浦区校级期末)如图,已知在Rt△ABC中,∠C=90°,点G是△ABC的重心,GE⊥AC,垂足为E,如果CB=10,则线段GE的长为()A.B.C.D.【分析】因为点G是△ABC的重心,根据三角形的重心是三角形三条中线的交点以及重心的性质:重心到顶点的距离与重心到对边中点的距离之比是2:1,可知点D为BC的中点,,根据GE⊥AC,可得∠AEG=90°,进而证得△AEG∽△ACD,从而得到,代入数值即可求解.【解答】解:如图,连接AG并延长交BC于点D.∵点G是△ABC的重心,∴点D为BC的中点,,∵CB=10,∴,∵GE⊥AC,∴∠AEG=90°,∵∠C=90°,∴∠AEG=∠C=90°,∵∠EAG=∠CAD(公共角),∴△AEG∽△ACD,∴,∵,∴,∴,∴.故选:D.【点评】本题考查了相似三角形的判定和性质,三角形的重心的定义及其性质,熟练运用三角形重心的性质是解题的关键.5.(2021秋•松江区期末)如图,已知点G是△ABC的重心,那么S△BCG:S△ABC等于()A.1:2B.1:3C.2:3D.2:5【分析】连接AG延长交BC于点D,由G是重心可得D是BC的中点,所以S△ABD=S△ACD,S△BG=S△CDG,又由重心定理可AG=2GD,则2S△BGD=S△ABG,进而得到3S△BDG=S△ABC,即可求解.【解答】解:连接AG延长交BC于点D,∵G是△ABC的重心,∴D是BC的中点,∴S△ABD=S△ACD,S△BDG=S△CDG,∵AG=2GD,∴2S△BDG=S△ABG,∴3S△BGD=S△ABD,∴3S△BDG=S△ABC,∴S△BDG:S△ABC=1:3,故选:B.【点评】本题考查三角形的重心,熟练掌握三角形重心定理,利用等底、等高三角形面积的特点求解是解题的关键.6.(2022秋•杨浦区校级期末)如图,G是△ABC的重心,延长BG交AC于点D,延长CG交AB于点E,P、Q分别是△BCE和△BCD的重心,BC长为6,则PQ的长为.【分析】连接DE,由G是△ABC的重心,可证DE是△ABC的中位线,从而可求出DE的长.延长EP交BC 于F点,连接DF,利用三角形重心的定义和性质得到EP=2PF,DQ=2QF,再证明△FPQ∽△FED得到即可.【解答】解:连接DE,延长EP交BC于F点,连接DF,如图,∵G是△ABC的重心,∴D、E分别是AB、AC的中点,∴DE是△ABC的中位线,∴.∵P点是△BCE的重心,∴F点为BC的中点,EP=2PF,∵Q点是△BCD的重心,∴点Q在中线DF上,DQ=2QF,∵∠PFQ=∠EFD,,∴△FPQ∽△FED,∴,∴,故答案为:1.【点评】本题考查了三角形的重心,三角形的中位线,相似三角形的判定与性质.三角形的重心是三角形三边中线的交点;重心到顶点的距离与重心到对边中点的距离之比为2:1.7.(2022秋•徐汇区期末)在Rt△ABC中,∠B=90°,∠BAC=30°,BC=1,以AC为边在△ABC外作等边△ACD,设点E、F分别是△ABC和△ACD的重心,则两重心E与F之间的距离是.【分析】取AC中点O,连接OB、OD、BD、EF.根据含30度角的直角三角形的性质求出AC=2BC=2,利用勾股定理得出AB=,根据等边三角形的性质得出CD=AD=AC=2,∠CAD=60°,那么∠BAD=∠BAC+∠CAD=90°,利用勾股定理求出BD=.然后证明△EOF∽△BOD,得出EF=BD=.【解答】解:如图,取AC中点O,连接OB、OD、BD、EF.在Rt△ABC中,∠B=90°,∠30°,BC=1,∴AC=2BC=2,AB===,∵△ACD是等边三角形,∴CD=AD=AC=2,∴∠CAD=60°,∴∠BAD=∠BAC+∠CAD=90°,∴BD===.∵点E、F分别是△ABC和△ACD的重心,∴==,又∠EOF=∠BOD,∴△EOF∽△BOD,∴===,∴EF=BD=.故答案为:.【点评】本题考查了相似三角形的判定与性质,含30度角的直角三角形的性质,等边三角形的性质,三角形重心的定义与性质,掌握重心到顶点的距离与重心到对边中点的距离之比为2:1是解题的关键.8.(2022秋•黄浦区月考)已知点G是△ABC的重心,那么S△ABG:S△ABC=.【分析】三角形的重心是三角形三边中线的交点,重心到顶点的距离与重心到对边中点的距离之比为2:1,由此即可计算.【解答】解:延长AG交BC于D,∵点G是△ABC的重心,∴BD=CD,AG:DG=2:1,∴AG:AD=2:3,∴S△ABG:S△ABD=2:3,∵S△ABD:S△ABC=1:2,∴S△ABG:S△ABC=1:3.故答案为:1:3.【点评】本题考查三角形的重心,关键是掌握三角形重心的性质.9.(2023•金山区一模)如图,△ABC为等腰直角三角形,∠A=90°,AB=6,G1为△ABC的重心,E为线段AB上任意一动点,以CE为斜边作等腰Rt△CDE(点D在直线BC的上方),G2为Rt△CDE的重心,设G1、G2两点的距离为d,那么在点E运动过程中d的取值范围是.【分析】分别求出d的最小值和最大值,即可得到d的取值范围.【解答】解:当E与B重合时,G1与G2重合,此时d最小为0,当E与A重合时,G1G2最大,连接并延长AG1交BC于H,连接并延长DG2交AC于K,连接HK,过G2作G2T⊥AH于T,如图:∵G1为等腰直角三角形ABC的重心,∴H为BC中点,∴∠AHB=∠AHC=90°,∴△ABH和△ACH是等腰直角三角形,∴BH=CH=AH==3,∵AG1=2G1H,∴AG1=2,G1H=,∵G2是为等腰Rt△CDE的重心,∴K为AC中点,∴∠AKD=∠CKD=90°,∠AKH=∠CKH=90°,∴∠AKD+∠AKH=180°,∴D,K,H共线,∵AK=CK=DK=AC=AB=3=HK,∴G2K=DK=1,G2D=DK﹣G2K=2,∴G2H=G2K+HK=4,∵TG2∥ED,∴====,即==,∴TG2=2,TH=2,∴TG1=TH﹣G1H=,∴G1G2==,∴G1G2最大值为,∴G1G2的范围是0≤G1G2≤,故答案为:0≤d≤.【点评】本题考查三角形的重心,涉及等腰直角三角形的性质及应用,解题的关键是掌握三角形重心的性质.10.(2023•松江区一模)已知△ABC,P是边BC上一点,△P AB、△P AC的重心分别为G1、G2,那么的值为.【分析】由重心的性质:重心到顶点的距离与重心到对边中点的距离之比为2:1,得到△AG1G2∽△ADE,推出△AG1G2的面积:△ADE的面积=4:9,而△ADE的面积=×△ABC的面积,即可解决问题.【解答】解:延长AG1交PB于D,延长AG2交PC于E,∵△PAB、△PAC的重心分别为G1、G2,∴AG1:AD=AG2:AE=2:3,D是PB中点,E是PC中点,∵∠G1AG2=∠DAE,∴△AG1G2∽△ADE,∴△AG1G2的面积:△ADE的面积=4:9,∵D是PB中点,E是PC中点,∴△ADE的面积=×△ABC的面积,∴的值为.故答案为:.【点评】本题考查三角形的重心,三角形的面积,相似三角形的判定和性质,关键是掌握三角形重心的性质.11.(2022秋•徐汇区期中)已知点G是等腰直角三角形ABC的重心,AC=BC=6,那么AG的长为.【分析】根据三角形的重心到顶点的距离等于到对边中点的距离的2倍解答即可.【解答】解:∵G是等腰直角△ABC的重心,AC=BC=6,∴CD=BC=3,由勾股定理得:AD==3,∴AG=×=2,故答案为:2.【点评】本题考查了三角形的重心,熟记三角形的重心到顶点的距离等于到对边中点的距离的2倍是解题的关键.12.(2018•宝山区校级自主招生)G为重心,DE过重心,S△ABC=1,求S△ADE的最值,并证明结论.【分析】设AD=mAB,AE=nAC,由G为△ABC重心得=3,再由当==时,有最大值,则mn有最小值,而无论D、E任何移动,mn,即可求出S△ADE的最值.【解答】解:S△ADE的最大值为,最小值为.证明:假设△ABC面积为S1,△ADE面积为S2,设AD=mAB,AE=nAC,∵G为△ABC重心,∴=3,∴S2=AD•AE•sinA=mAB•nAC•sinA=mnS1,当==时,有最大值,则mn有最小值,而无论D、E任何移动,mn,∴S1≤S2≤S1,∴S△ADE的最大值为,最小值为.【点评】本题主要考查了三角形重心的性质,解决此题的关键是根据G为△ABC重心得到=3.13.(2019秋•嘉定区校级月考)如图,点G是△ABC的重心,过点G作EF∥BC,分别交AB、AC于点E、F,且EF+BC=7.2cm,求BC的长.【分析】如果连接AG并延长,交BC于点P,由三角形的重心的性质可知AG=2GP,则AG:AP=2:3.又EF∥BC,根据相似三角形的判定可知△AGF∽△APC,得出AF:AC=2:3,最后由EF∥BC,得出△AEF∽△ABC,从而求出EF:BC=AF:AC=2:3,结合EF+BC=7.2cm来求BC的长度.【解答】解:如图,连接AG并延长,交BC于点P.∵G为△ABC的重心,∴AG=2GP,∴AG:AP=2:3,∵EF过点G且EF∥BC,∴△AGF∽△APC,∴AF:AC=AG:AP=2:3.又∵EF∥BC,∴△AEF∽△ABC,∴==.又EF+BC=7.2cm,∴BC=4.32cm.【点评】本题主要考查了三角形的重心的性质,相似三角形的判定及性质.三角形三边的中线相交于一点,这点叫做三角形的重心.重心到顶点的距离等于它到对边中点距离的两倍.平行于三角形一边的直线截其它两边,所得三角形与原三角形相似.相似三角形的三边对应成比例.二.平行线分线段成比例(共1914.(2022秋•徐汇区期末)在△ABC中,点D、E分别在边AB和BC上,AD=2,DB=3,BC=10,要使DE∥AC,那么BE必须等于.【分析】此题主要考查了平行线分线段成比例定理的逆定理,根据题意得出要使DE∥AC,必须即可得出BE的长.【解答】解:∵在△ABC中,点D、E分别在边AB和BC上,AD=2,DB=3,BC=10,∴要使DE∥AC,∴,∴,解得:BE=6.故答案为:6.【点评】此题主要考查了平行线分线段成比例定理的逆定理,根据题意得出要使DE∥AC,必须是解决问题的关键.15.(2022秋•闵行区期末)如图,已知AB∥CD∥EF,它们依次交直线l1、l2于点A、C、E和点B、D、F,如果AC:CE=3:1,BF=10,那么DF等于()A.B.C.D.【分析】由AB∥CD∥EF,可得出=,代入AC=3CE,BF=10,即可求出DF的长.【解答】解:∵AB∥CD∥EF,∴=,即=,∴DF=.故选:C.【点评】本题考查了平行线分线段成比例,牢记“三条平行线截两条直线,所得的对应线段成比例”是解题的关键.16.(2023•宝山区一模)在△ABC中,点D、E分别在边AB、AC上,如果AD:BD=1:3,那么下列条件中能判断DE∥BC的是()A.=B.=C.=D.【分析】如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边,进而可得出结论.【解答】解:∵AD:BD=1:3,∴,∴当时,,∴DE∥BC,故A选项能够判断DE∥BC;而C,B,D选项不能判断DE∥BC.故选:A.【点评】本题主要考查了由平行线分线段成比例来判定两条直线是平行线的问题,能够熟练掌握并运用.17.(2022秋•嘉定区校级期末)如果点H、G分别在△DEF中的边DE和DF上,那么不能判定HG∥EF 的比例式是()A.DH:EH=DG:GF B.HG:EF=DH:DEC.EH:DE=GF:DF D.DE:DF=DH:DG【分析】根据平行线分线段成比例定理判断即可.【解答】解:A、当DH:EH=DG:GF,即=时,HG∥EF,本选项不符合题意;B、当HG:EF=DH:DE∥EF,本选项符合题意;C、当EH:DE=GF:DF,即=时,HG∥EF,本选项不符合题意;D、当DE:DF=DH:DG,即=时,HG∥EF,本选项不符合题意;故选:B.【点评】本题考查的是平行线分线段成比例定理成比例定理,灵活运用定理、找准对应关系是解题的关键.18.(2023•徐汇区一模)如图,a∥b∥c,若,则下面结论错误的是()A.B.C.D.【分析】已知a∥b∥c,根据平行线分线段成比例定理,对各项进行分析即可.【解答】解:由,得==,故A不符合题意;∵a∥b∥c,∴==,故B不符合题意;根据已知条件得不出=,故C符合题意;由=,得==,故D不符合题意;故选:C.【点评】本题考查了平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.19.(2021秋•嘉定区期末)如图,已知AB∥CD∥EF,AC:AE=3:5,那么下列结论正确的是()A.BD:DF=2:3B.AB:CD=2:3C.CD:EF=3:5D.DF:BF=2:5【分析】根据平行线分线段成比例定理判断即可.【解答】解:∵AB∥CD∥EF,∴BD:DF=AC:CE=3:2,A选项错误,不符合题意;AB:CD的值无法确定,B选项错误,不符合题意;CD:EF的值无法确定,C选项错误,不符合题意;DF:BF=CE:AE=2:5,D选项正确,符合题意;故选:D.【点评】本题考查的是平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例,灵活运用定理、找准对应关系是解题的关键.20.(2023•长宁区一模)如图,AD∥BE∥CF,已知AB=5,DE=6,AC=15,那么EF的长等于.【分析】由AD∥BE∥CF,可得=,即=,可解得DF=18,从而EF=DF﹣DE=12.【解答】解:如图:∵AD∥BE∥CF,∴=,∵AB=5,DE=6,AC=15,∴=,解得DF=18,∴EF=DF﹣DE=18﹣6=12,故答案为:12.【点评】本题考查平行线分线段成比例,解题的关键是掌握平行线分线段成比例定理,列出比列式.21.(2023•松江区一模)如图,已知直线AD∥BE∥CF,如果=,DE=3,那么线段EF的长是.【分析】根据平行线分线段成比例解答即可.【解答】解:∵AD∥BE∥CF,∴=,∵DE=3,∴=,∴EF=,故答案为:.【点评】本题主要考查平行线分线段成比例,掌握平行线分线段所得线段对应成比例是解题的关键.22.(2022秋•松江区月考)如图,在△ABC中,点D在AB上,点E在AC上,且DE∥BC,AD=3,AB =4,AC=6,求EC.【分析】根据平行线分线段成比例定理列出比例式,把已知数据代入计算即可.【解答】解:∵DE∥BC,∴=,即=,解得:AE=,∴EC=AC﹣AE=6﹣=.【点评】本题考查的是平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.23.(2022秋•松江区月考)如图,DE∥BC,EF∥CG,AD:AB=1:3,AE=3.(1)求EC的值;(2)求证:AD•AG=AF•AB.【分析】(1)由平行可得=,可求得AC,且EC=AC﹣AE,可求得EC;(2)由平行可知==,可得出结论.【解答】(1)解:∵DE∥BC,∴=,又=,AE=3,∴=,解得AC=9,∴EC=AC﹣AE=9﹣3=6;(2)证明:∵DE∥BC,EF∥CG,∴==,∴AD•AG=AF•AB.【点评】本题主要考查平行线分线段成比例的性质,掌握平行线分线段所得线段对应成比例是解题的关键.24.(2023•崇明区一模)四边形ABCD中,点F在边AD上,BF的延长线交CD的延长线于E点,下列式子中能判断AD∥BC的式子是()A.=B.=C.=D.=【分析】根据各个选项中的条件和图形,利用相似三角形的判定和性质、平行线的判定,可以判断哪个选项符合题意.【解答】解:当时,无法判断AD∥BC,故选项A不符合题意;当=时,∠AFB=∠DFE,则△AFB∽△DFE,故∠ABF=∠DEF,AB∥CD,但无法判断AD∥BC,故选项B不符合题意;当时,无法判断AD∥BC,故选项C不符合题意;当时,∠FED=∠BEC,则△FED∽△BEC,故∠EFD=∠EBC,可以判断判断AD∥BC,故选项D符合题意;故选:D.【点评】本题考查平行线分线段成比例、平行线的判定、相似三角形的判定和性质,解答本题的关键是明确题意,利用数形结合的思想解答.25.(2022秋•杨浦区校级期末)如图,已知AB∥CD∥EF,AD:AF=3:5,BE=24,那么BC的长等于()A.4B.C.D.8【分析】根据平行线分线段成比例得到,即可求出BC.【解答】解:∵AB∥CD∥EF,∴,∵BE=24,∴,解得:.故选:C.【点评】本题考查了平行线分线段成比例;熟练掌握三条平行线截两条直线,所得的对应线段成比例是本题的关键.26.(2022秋•浦东新区期末)如图,DF∥AC,DE∥BC,下列各式中正确的是()A.B.C.D.【分析】根据平行线分线段成比例定理逐个判定即可.【解答】解:A.∵DE∥BC,∴=,∴=,故本选项符合题意;B.∵DF∥AC,∴=,故本选项不符合题意;C.∵DE∥BC,∴=,∴=,即=,故本选项不符合题意;D.∵DE∥BC,DF∥AC,∴,,∴=,故本选项不符合题意;故选:A.【点评】本题考查了平行线分线段成比例定理和比例的性质,能根据平行线分线段成比例定理得出正确的比例式是解此题的关键.27.(2022秋•青浦区校级期末)如图,已知直线l1、l2、l3分别交直线l4于点A、B、C,交直线l5于点D、E、F,且l1∥l2∥l3,AB=6,BC=3,DF=12,则DE=.【分析】根据平行线分线段成比例,即可进行解答.【解答】解:∵l1∥l2∥l3,∴,即,∵DF=12,∴DE+DE=12,解得:DE=8.故答案为:8.【点评】本题考查了平行线分线段成比例:三条平行线截两条直线,所得的对应线段成比例.掌握平行线分线段成比例是解题关键.28.(2022•宝山区二模)已知:如图,点D、E、F分别在△ABC的边AB、AC、BC上,DF∥AC,BD=2AD,AE=2EC.(1)如果AB=2AC,求证:四边形ADFE是菱形;(2)如果AB=AC,且BC=1,联结DE,求DE的长.【分析】(1)根据菱形的判定方法解答即可;(2)根据相似三角形的判定和性质解答即可.【解答】(1)证明:∵BD=2AD,AE=2EC,∴=,∵DF∥AC,∴=,∴=,∴EF∥AB,又∵DF∥AC,∴四边形ADFE是平行四边形,∵AB=2AC,AE=AC,∴AE=AB,∴AD=AE,∵四边形ADFE是平行四边形,∴四边形ADFE是菱形;(2)如图,在△ADE和△ACB中,∠A是公共角,===,===,∴△ADE∽△ACB,∵BC=1,∴DE=.【点评】本题主要考查了菱形的判定和相似三角形的判定和性质,熟练掌握这些判定定理和性质定理是解答本题的关键.29.(2021秋•杨浦区校级月考)如图,点D为△ABC中内部一点,点E、F、G分别为线段AB、AC、AD 上一点,且EG∥BD,GF∥DC.(1)求证:EF∥BC;(2)当,求的值.【分析】(1)先根据相似比的性质得出=,=,故可得出=,由此即可得出结论;(2)先根据EF∥BC得出∠AEF=∠ABC,再由DG∥BD得出∠AEG=∠ABD,故可得出∠GEF=∠DBC,同理可得,∠GEF=∠DBC,故可得出△EGF∽△BDC根据相似三角形面积的比等于相似比的平方即可得出结论.【解答】(1)证明:∵EG∥BD,∴=,∵GF∥DC,∴=,∴=,∴EF∥BC;(2)解:∵EF∥BC,∴∠AEF=∠ABC,∵EG∥BD,∴∠AEG=∠ABD,∴∠AEF﹣∠AEG=∠ABC﹣∠AED,即∠GEF=∠DBC,同理可得,∠GEF=∠DBC,∴△EGF∽△BDC,∵,∴==,∴=()2=.【点评】熟知相似三角形对应边的比等于相似比,面积的比等于相似比的平方是解答此题的关键.30.(2021秋•宝山区校级月考)如图,已知直线l1、l2、l3分别截直线l4于点A、B、C,截直线l5于点D、E、F,且l1∥l2∥l3.(1)如果AB=4,BC=8,EF=12,求DE的长.(2)如果DE:EF=2:3,AB=6,求AC的长.【分析】(1)由平行线分线段成比例定理得出比例式,即可得出DE的长;(2)由平行线分线段成比例定理得出比例式,求出BC的长,即可得出AC的长.【解答】解:(1)∵l1∥l2∥l3.∴==,∴DE=EF=6;(2)∵l1∥l2∥l3.∴=,∴BC=AB=×6=9,∴AC=AB+BC=6+9=15.【点评】本题考查了平行线分线段成比例定理;熟练掌握平行线分线段成比例定理,并能进行推理计算是解决问题的关键.31.(2022秋•奉贤区期中)如图,已知直线l1∥l2∥l3,直线AC和DF被l1、l2、l3所截.若AB=3cm,BC =5cm,EF=4cm.(1)求DE、DF的长;(2)如果AD=40cm,CF=80cm,求BE的长.【分析】(1)利用平行线分线段成比例定理求解;(2)过点A作AK∥DF交BE于点J,交CF于点K,则AD=JE=FK=40cm.求出BJ,可得结论.【解答】解:(1)∵l1∥l2∥l3,∴=,∴=,∴DE=(cm),∴DF=DE+EF=4+=(cm).(2)如图,过点A作AK∥DF交BE于点J,交CF于点K,则AD=JE=FK=40cm.∴CK=CF﹣FK=40cm,∵BJ∥CK,∴=,∴=,∴BJ=15cm,∴BE=BJ+JE=15+40=55cm.【点评】本题考查平行线分线段成比例定理,解题的关键是学会添加常用辅助线,构造平行线解决问题,属于中考常考题型.32.(2022秋•浦东新区校级月考)如图,已知点A、C、E和点B、F、D分别是∠O两边上的点,且AB∥ED,BC∥EF,AF、BC交于点M,CD、EF交于点N.(1)求证:AF∥CD;(2)若OA:AC:CE=3:2AM=1,求线段DN的长.【分析】(1)根据平行线分线段成比例定理,由AB∥DE得到OA•OD=OE•OB,由BC∥EF得到OC•OF=OE •OB,所以OA•OD=OC•OF,即=,于是可判断AF∥CD;(2)先利用BC∥EF得到==,则可设OB=5x,BF=4x,再由AF∥CD得到==,==,所以FD=6x,接着由FN∥BC得到==,于是可设DN=3a,则CN=2a,然后证明四边形MFNC为平行四边形得到MF=CN=2a,最后利用=得到=,求出a从而得到DN的长.【解答】(1)证明:∵AB∥DE,∴=,即OA•OD=OE•OB,∵BC∥EF,∴=,即OC•OF=OE•OB,∴OA•OD=OC•OF,即=,∴AF∥CD;(2)解:∵OA:AC:CE=3:2:4,∴OC:CE=5:4,∵BC∥EF,∴==,设OB=5x,则BF=4x,∵AF∥CD,∴==,==∴FD=OF=×9x=6x,∵FN∥BC,∴===,设DN=3a,则CN=2a,∵FN∥CM,MF∥CN,∴四边形MFNC为平行四边形,∴MF=CN=2a,∵=,即=,解得a=1,∴DN=3a=3.【点评】本题考查了平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.【过关检测】一、单选题A.4【答案】C【分析】根据平行线分线段成比例得到35BC ADBE AF==,即可求出BC.【详解】解:∵AB CD EF∥∥,∴35 BC ADBE AF==,∵24 BE=,∴3 245 BC=,解得:725 BC=.故选:C【点睛】本题考查了平行线分线段成比例;熟练掌握三条平行线截两条直线,所得的对应线段成比例是本题的关键.九年级校考期中)在ABC中,分别在ABC的边【答案】A【分析】根据平行线分线段成比例定理对各个选项进行判断即可.【详解】解:A、AD DEAB BC=,不能判定DE BC∥,故A符合题意;B、∵AD AE AB AC=,∴DE BC∥,故B不符合题意;C、∵AED C∠=∠,∴DE BC∥,故C不符合题意;D、∵AD AE BD EC=,∴DE BC∥,故D不符合题意.故选:A.【点睛】本题主要考查了平行线分线段成比例定理,平行线的判定,如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边.九年级单元测试)在ABC中,点【答案】B【分析】根据题目的已知条件画出图形,然后利用平行线分线段成比例解答即可.【详解】如图:∵DE∥AC,AE:EB=3:2,∴32 AE CDEB BD==∴23BD CD =∵DF AB ∥, ∴23AF BD FC CD == 故选:B【点睛】本题考查了平行线分线段成比例,熟练掌握平行线分线段成比例这个基本事实是解题的关键. 在ABC 的边 【答案】A【分析】根据平行线分线段成比例可得47AE AD AC AB ==,则可以推出当47AF AE AD AC ==,即37DF AD =时,EF CD ∥.【详解】解:DE BC ∥,43AD DB =,∴44437AE AD AD AC AB AD DB ====++,∴当47AF AE AD AC ==时,EF CD ∥,此时74377DF AD AF AD AD −−===,故A 选项符合题意; B ,C ,D 选项均不能得出EF CD ∥.故选A .【点睛】本题考查平行线分线段成比例,解题的关键是掌握“如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边”.5.(2023·上海浦东新·校考一模)如图,点D 、E 分别在AB 、AC 上,以下能推得DE BC ∥的条件是( )A .::AD AB DE BC =B .::AD DB DE BC = C .::AD DB AE EC =D .::AE AC AD DB =【答案】C 【分析】平行于三角形一边的直线截其他两边或延长线,所得的对应线段成比例.如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边.【详解】解:设DE BC ∥,那么AD AB AE AC AD DB AE EC DB AB EC AC ===::,::,::,选项A 、B 、D 、不符合平行线分段成比例定理.如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边.∵AD DB AE EC =::,∴DE BC ∥.故选:C .【点睛】此题主要考查平行线分线段成比例,解答此题的关键的是明确哪些对应线段成比例.学生初学,容易出错.九年级校考期中)在ABC 中,点【答案】B【分析】利用如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边可对各选项进行判断即可.【详解】当AD AE DB EC =或AD AE AB AC =时, DE BC ∥, 当AD AE DB EC =时,可得23AE EC =,当AD AE AB AC =时,可得25AE AC =, 即23AE EC =或25AE AC =.所以B 选项是正确的,故选:B .【点睛】本题考查了平行线分线段成比例定理,熟练掌握和灵活运用相关知识是解题的关键.二、填空题 7.(2022秋·上海嘉定·九年级校考期中)在ABC 中,点D 、E 分别在线段AB 、AC 的延长线上,DE 平行于BC ,1AB =,3BD =,2AC =,那么AE =___________.【答案】8【分析】根据平行线分线段陈比例定理求解即可.【详解】∵DE AB ∥ ∴AB AC AD AE = ∵1AB =,3BD =,2AC =,∴124AE =∴8AE =故答案为:8.【点睛】此题考查了平行线分线段陈比例定理,解题的关键是掌握平行线分线段陈比例定理.8.(2022春·上海普陀·九年级校考期中)如图,ABCD Y 中,E 是边AD 的中点,BE 交对角线AC 于点F ,那么:AFE FEDC S S 四边形的值为____.【答案】15/0.2【分析】证明12AF EF AE CF BF BC ===,推出24BCF ABF AEF S S S ==,设AEF S m =,则2ABF S m =,4CBF S m =,求出四边形FEDC 的面积,可得结论.【详解】解:∵四边形ABCD 是平行四边形,∴AD BC =,AD BC ∥,∴AF EF AE CF BF BC ==, ∵ E 是边AD 的中点,∴1122AE DE AD BC ===,∴12AF EF AE CF BF BC ===, ∴24BCF ABF AEF S S S ==,设AEF S m =,则2ABF S m =,4S m , ∴6ACB ADC S S m ==, ∴65FECD S m m m =−=四边形, 1::55AFE FECD S S m m ==四边形; 故答案为:15.【点睛】本题考查相似三角形的判定和性质,平行四边形的性质等知识,解题的关键是掌握平行线分线段成比例定理,属于中考常考题型.9.(2022秋·上海黄浦·九年级统考期中)如图,AD 、BC 相交于点O ,点E 、F 分别在BC 、AD 上,AB CD EF ∥∥,如果6CE =,4EO =,5BO =,6AF =,那么AD = ___________.【答案】10【分析】利用平行线分线段成比例定理得到EO FO BO AO =,EO FO CE DF =,求得4893FO AF ==,4DF =即可解决问题.【详解】解:∵AB CD EF ∥∥,EO FO BO AO =,EO FO CE DF =,∵4EO =,5BO =,∴45FO AO =, ∵6AF =,∴4893FO AF ==,∵6CE =,∴8436DF =,∴4DF =,∴6410AD AF DF =+=+=.故答案为:10.【点睛】本题考查平行线分线段成比例定理,解题的关键是灵活运用所学知识解决问题.10.(2022秋·上海奉贤·九年级校联考期中)如图,四边形ABCD 中,AD BC EF ∥∥,如果3810AE AB CD ===,,,则CF 的长是________.【答案】254【分析】根据平行线分线段成比例得出AE DF AB CD =,求出154DF =,即可得出答案. 【详解】∵AD BC EF ∥∥, ∴AE DF AB CD =, ∵3810AE AB CD ===,,, ∴3810DF =, 解得:154DF =, ∴15251044CF CD DF =−=−=, 故答案为:254.【点睛】本题考查平行线分线段成比例,正确得出比例线段是解题的关键. 11.(2022秋·上海宝山·九年级统考期中)在ABC 中,点D 、E 分别在直线AB 、AC 上,如果DE BC ∥,1AB =,2AC =,3AD =,那么CE =________.【答案】4【分析】根据平行线分线段陈比例定理求解即可.【详解】解:作如下图:∵DE BC ∥,∴AB AC AD AE =, ∵1AB =,2AC =,3AD =,∴123AE =,∴6AE =,∴624CE AE AC =−=−=,故答案为:4.【点睛】此题考查了平行线分线段陈比例定理,解题的关键是掌握平行线分线段陈比例定理.。

“三角形一边的平行线的判定”定理的教学创新

“三角形一边的平行线的判定”定理的教学创新

提 问学 生 : 在这三个 图形 中 , 最能 突出 问题本 质 的部 分
是什 么?接着引导 学 生进行 归 纳 总结 : 1中 最能 突 图 出 问题本质 的是 由该 图形抽 出来 的图 1 , 是 有公 共 它 底 的两个梯 形 ; 2中最能 突 出问题本 质 的是 由该 图 图
形 抽 出来 的 图 2 , 是 有 一 公 共 角 且 公 共 角 所 对 的 两 它

个想法 , 笔者认为我们应 将数学“ 教学 ” 为数学 “ 改 导
学 ” 并设计 了一个 案例. , 该设 计 旨在启发 、 导学 生通 引
过探索 , 自己 得 到 定 理 。
初 中《 几何 》 第二册 “ 似形 ” 相 中关 于 “ 角形 一边 三 的平行线 的判 定 ” 理 ( 定

条直线截三 角形 的两边 ( 或两边 的延 长线 ) 所得 的对
应线段成 比例 , 么这条 直线 平行 于三角形 的第 三边 。 那 这是运用 比例线段 研究三角 形性 质的一 个最 为主要 的 方面 , 这也是初 中数 学课 本 中第 一 次开 始研 究运 用 比 例线段 的知识 方法 解决 几 何 问题 的 内容。 因此 , 数 从 学思想方法 的角 度来 看 , 个定 理在 整个 初 中几 何 教 这 学 中的地位 是举 足 轻重 的 。那 么 , 何教 这个 定 理 才 如 为最佳方案 呢?
由于此模式 适 用 于新 课 内容 , 研组 决 定在 高 二 教
年 级 进 行 实 践 。经 过 一 个 学 期 的 实 验 , 同类 班 级 中 , 采
用该模式 的班级 与其 它 班 级相 比, 生的学 习主 动性 学 有较明显 的提 高 ; 同学 之间 的合作 精神 得到加强 , 能够 在学习上互相 帮助 ; 习效果 方面 , 学 阶段 性考 试成绩 更 好 。可见 , 取得的效果 是不错 , 同时 也暴露 出一 些问 但

初二数学平行线分线段成比例定理讲义及练习

初二数学平行线分线段成比例定理讲义及练习

平行线分线段成比例定理一、主要知识点1.平行线分线段成比例定理,三条平行线截两条直线,所得的对应线段成比例.2.三角形一边平行线的性质定理(即平行线分线段成比例定理的推论):平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例.3.三角形一边的平行线的判定定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边.4.三角形一边的平行线的性质定理2(即课本例6):平行于三角形的一边,并且和其他两边(或两边的延长线)相交的直线,所截得的三角形的三边与原三角形三边对应成比例。

二、重点剖析1.平行线分线段成比例定理,是研究相似的最重和最基本的理论,同时,它也是直接证明线段成比EFBC=, 可以说成“上比下等于上比下"DEAB=, 可以说成“上比全等于上比全"又∵43=EC AE ∴ 73=AC AE ∴73=DC EG极 EG=3X , DC=7X (X>0),则∵32=DC BD ∴ DB=x x DC 31473232=⨯= ∴9143314==x xEG BD10例3求证分析 BC//FE 证明:∵则例4 分别连结E ,DB 分析:首先观察证明:∵点评 (1(3 例5 求证分析 例6 分析在△②—①得-AB AD BF BC 例7 如图11,AD BF ⊥AD 的延长线于交BC 的延长线于M 求证:AE=EM分析 要证AE=EM,可延长BF 交AC 证明:延长BF 交AC ∴△ABF ≌△ANF8. 图,GB AF l l 52,//21=,BC=4CD , 91011AE 1213① 求证ME=NF② 当EF 向上平移 图(2)各个位置其他条件不变时, ①的结论是否成立,请证明你的判断。

[练习与测试参考解答或提示]1.215;2.18cm ; 3.52,35; 4.9:4; 5.9; 6.10,18; 7.9:1; 8.2; 9.6 10.提示,过D 作DH//AC 交BG 于H 点,则DH AEGD AG =,DHEC BD BC =,又AE=EC ,BD=AB,即可得结论。

初三数学第4讲:三角形一边的平行线判定定理

初三数学第4讲:三角形一边的平行线判定定理

教学内容一、知识要点:1、三角形一边的平行线判定定理:如果一条直线截三角形的两边所得的对应线段成比例,那么这条直线平行于三角形的第三边。

数学表达:如图,直线DE 截△ABC 得两边AB 、AC ,若①AD AEDB EC=,②AD AEAB AC =,③BD ECAB AC=中之一为已知条件,则DE DE∥∥BCED CBA2、三角形一边的平行线判定定理推论:如果一条直线截三角形两边的延长线(这两边的延长线在第三边的同侧)所得的对应线段成比例,那么这条直线平行于三角形的第三边。

数学表达:若点D 、E 分别在射线AB 、AC 上,如图(1)或分别在他们的方向延长线上如图(2),且具备上述条件①、②、③之一,则D E ∥BC.EDCBAEDC B A牛刀小试:1、如图,△ABC 中,点D 、E 分别在边AB 、AC 上。

判断在下列条件下能否推出D E ∥BC,为什么?为什么? (1)23AD DB =,AE=2,AE=2,,AC=3 (2)25AD AB =,25DEBC = (3)23AD DB =,53AC CE =EDCBA2、△ABC 中,直线DE 交AB 于点D ,交AC 于点E ,那么能推出D E ∥BC 的条件是(的条件是( )) A 、AB3=AD 2,EC1=AE 2 B B、、AD 2=AB3,DE2=BC 3 C 、AD 2=DB3,CE 2=AE3D D、、AD 3=AB4,AE 3=EC4二、典型例题例1、如图EF ∥BC ,31=ACAF ,BF=4,FD=2,求证:EF ∥AD A D E F B C 例2、如图所示,、如图所示,M M 为AB 的中点,的中点,EF EF EF∥∥AB,AB,连接连接EM EM、、FM FM,分别交,分别交AF AF、、BE 于点C 、D ,连接CD CD。

求证:求证:CD CD CD∥∥AB.分析:判定两直线平行的方法一般有四种:(1)通过“三线八角”的相等或互补判定两直线平行;(2)通过三角形、梯形中位线定理判定两直线平行;(3)通过平行四边形的判定间接证平行;(4)通过比例线段证平行。

三角形一边的平行线判定定理推论的证明

三角形一边的平行线判定定理推论的证明

三角形一边的平行线判定定理推论的证明三角形一边的平行线判定定理是几何学中的一个重要定理,它是由平行线判定定理推导出来的。

在本文中,我们将证明三角形一边的平行线判定定理的推论。

让我们回顾一下平行线判定定理。

平行线判定定理是说如果两条直线与第三条直线相交,且交角相等,则这两条直线是平行的。

这个定理可以用数学符号表示为:若直线l与直线m相交于点A,直线n 与直线m相交于点B,且∠CAB=∠DAB,则直线l与直线n平行。

现在,我们将使用平行线判定定理来证明三角形一边的平行线判定定理的推论。

假设我们有一个三角形ABC,其中AB和CD是两条边,且直线DE与直线BC相交于点D,直线AE与直线BC相交于点E。

我们需要证明如果DE与AB平行,则AE与CD平行。

我们可以得出∠DEB=∠CAB,因为它们是同位角。

同样地,我们可以得出∠BEC=∠DAB。

由于DE与AB平行,根据平行线判定定理,我们可以得出∠DEB=∠BEC。

现在,我们可以将这些等式代入到我们的第一个等式中,得到∠CAB=∠DAB,即直线AE与直线CD的交角相等。

根据平行线判定定理,我们可以得出直线AE与直线CD平行。

因此,我们证明了三角形一边的平行线判定定理的推论:如果DE与AB平行,则AE与CD平行。

这个推论的证明非常简单,它是由平行线判定定理推导出来的。

这个推论在解决一些几何问题时非常有用,特别是在证明平行线性质时。

总结起来,三角形一边的平行线判定定理的推论是由平行线判定定理推导出来的。

它告诉我们如果两条直线与第三条直线相交,且交角相等,则这两条直线是平行的。

这个推论在解决几何问题时非常有用,可以帮助我们判断三角形中的平行线性质。

希望本文对你理解三角形一边的平行线判定定理的推论有所帮助。

三角形一边平行线判定定理推论

三角形一边平行线判定定理推论

三角形一边平行线判定定理推论在数学的世界里,三角形可是个大明星,大家都爱它。

说到三角形,今天咱们聊聊一条特别的定理,它就像是数学界的秘密武器,叫做“三角形一边平行线判定定理”。

听起来挺高大上的,但其实它的魅力就在于简单明了。

这个定理告诉我们,如果有一条线与三角形的一边平行,并且穿过三角形的另一边,哇,这可了不得,三角形的其他两边就会被这条平行线分成相等的比例。

你说是不是特别神奇?想象一下,如果我们把这个定理用在生活中,那真是妙趣横生。

比如说,你和朋友们一起去画画,大家都拿着铅笔,努力想把画画得更好。

突然,有个人不小心把线画得歪歪扭扭。

没关系,只要找到一条平行线,就能把这个小麻烦解决掉。

就像给画加了个框框,让它看起来规整多了。

这个道理就像生活中的各种烦恼,总有办法让你找到解决方案。

说到这里,可能有人会问,这和咱们的日常有什么关系呢?嘿,别急,接着往下听。

想想看,平行线就像咱们生活中的目标。

无论你走得多偏,只要心中有个清晰的目标,就能把自己的方向修正过来。

就像在学习的路上,时不时会迷失方向,没关系,设定一个目标,跟着平行线走,就能找到回家的路。

就算路再崎岖,总有办法让你走得更稳,达到最终的目的。

还有个有趣的地方就是这个定理在解决问题时的应用。

举个例子,想象一下,你在家里量一块布,想裁剪成一个三角形。

突然发现,裁得不太对劲,怎么办呢?这时候,平行线就像是你的小助手,帮助你把裁剪的比例调整得刚刚好。

只要沿着那条平行线走,你就能把布裁得恰到好处。

生活中,很多时候也是这样的,我们会遇到各种各样的困难,但只要找到合适的方法,总能迎刃而解。

再说说三角形的稳定性,为什么大家对它如此钟爱。

想象一下,一个三角形的结构,坚固得就像大山一样。

这个定理告诉我们,平行线的存在让三角形的形状更加稳固。

就像人们在生活中建立目标,拥有坚定的信念,就能像三角形一样,面对风吹雨打也不轻易动摇。

这样的人生,才能像大海一样浩瀚,纵使波涛汹涌,也能坚定地向前航行。

第三讲:三角形一边的平行线判定定理教学内容

第三讲:三角形一边的平行线判定定理教学内容

第三讲:三角形一边的平行线判定定理第三讲:三角形一边的平行线判定定理一、知识要点:1、三角形一边的平行线判定定理:如果一条直线截三角形的两边所得的对应线段成比例,那么这条直线平行于三角形的第三边。

数学表达:如图,直线DE 截△ABC 得两边AB 、AC , 若①AD AE DB EC =,②AD AE AB AC =,③BD ECAB AC=中之一为已知条件,则DE ∥BC ED CBA2、三角形一边的平行线判定定理推论:如果一条直线截三角形两边的延长线(这两边的延长线在第三边的同侧)所得的对应线段成比例,那么这条直线平行于三角形的第三边。

数学表达:若点D 、E 分别在射线AB 、AC 上,如图(1)或分别在他们的方向延长线上如图(2),且具备上述条件①、②、③之一,则D E ∥BC.EDCBAEDC B A牛刀小试:1、如图,△ABC 中,点D 、E 分别在边AB 、ACEDCBA上。

判断在下列条件下能否推出D E ∥BC,为什么?(1)23AD DB =,AE=2,AC=3 (2)25AD AB =,25DE BC =(3)23AD DB =,53AC CE =2、△ABC 中,直线DE 交AB 于点D ,交AC 于点E ,那么能推出D E ∥BC 的条件是( )A 、AB 3=AD 2,EC 1=AE 2 B 、AD 2=AB 3,DE 2=BC 3 C 、AD 2=DB 3,CE 2=AE 3 D 、AD 3=AB 4,AE 3=EC 4二、典型例题例1、如图EF ∥BC ,31=AC AF ,BF=4,FD=2,求证:EF ∥AD A DE FB C例2、如图所示,M 为AB 的中点,EF ∥AB,连接EM 、FM ,分别交AF 、BE 于点C 、D ,连接CD 。

求证:CD ∥AB.分析:判定两直线平行的方法一般有四种:(1)通过“三线八角”的相等或互补判定两直线平行;(2)通过三角形、梯形中位线定理判定两直线平行;(3)通过平行四边形的判定间接证平行;(4)通过比例线段证平行。

三角形一边的平行线判定定理及推论 全国优课

三角形一边的平行线判定定理及推论 全国优课

三角形一边的平行线判定定理及推论全国优课1.引言三角形一边的平行线判定定理及推论是数学中的重要概念,它在几何学和数学证明中具有广泛的应用。

本文将对这一概念进行全面评估,并结合全国优课的资源,撰写一篇有价值的文章,帮助您更深入地理解这一主题。

2.三角形一边的平行线判定定理让我们来了解三角形一边的平行线判定定理。

根据这一定理,如果在一个三角形中,有一条边上的一条直线与另外两边上的两条直线平行,那么这两条边上的两条直线互相平分。

这个定理的正确理解和应用,对于解题和证明来说都至关重要。

在数学教学中,老师们常常通过具体的例子和图形演示,来帮助学生更好地理解这一定理的含义和应用。

3.三角形一边的平行线判定定理的推论在初步了解了三角形一边的平行线判定定理后,我们再来看一下相关的推论。

根据这个定理,可以推出一系列的相关结论,比如同位角相等、对顶角相等等。

这些推论在实际问题的解决中也具有重要的作用,通过这些推论,我们能够更好地理解角之间的关系,进而解决更加复杂的几何问题。

4.全国优课资源共享全国优课作为一个专注于教育教学资源建设与共享的评台,提供了大量优质的教学资源和课程。

在这个评台上,老师们可以找到与三角形一边的平行线判定定理及推论相关的优秀课件、教学设计和教学视频,这些资源能够帮助教师们更好地准备课堂教学,从而提升学生的学习效果。

5.个人观点和理解在我看来,三角形一边的平行线判定定理及推论是几何学中非常重要的概念之一。

它不仅可以帮助我们解决具体的数学问题,还能够培养我们的逻辑思维和数学推理能力。

通过深入理解这一概念,我们能够在数学学习和应用中更加游刃有余。

6.总结通过本文的阐述,我们对三角形一边的平行线判定定理及推论有了更深入的了解。

在教学中,我们应该注重通过具体案例和真实图形来帮助学生理解这一概念。

在教学资源的选择上,可以利用全国优课评台上的资源,为课堂教学提供更好的支持。

通过本文的全面评估和撰写,我们对三角形一边的平行线判定定理及推论有了更深入的理解,并且也认识到全国优课这个评台在优质教育资源共享方面的重要性。

三角形一边的平行线的判定

三角形一边的平行线的判定

三角形一边的平行线的判定说起三角形一边的平行线判定,这事儿得从我那会儿上学讲起。

那时候,数学课本上的定理、判定,对我而言,那都是一个个等着我去征服的小山丘。

特别是几何,那简直就是一场场思维的迷宫探险。

记得有一回,数学老师是个戴着眼镜,表情总是很严肃的老头儿,他站在讲台上,手里拿着粉笔,一边在黑板上画出一个又一个的三角形,一边嘴里念叨着:“同学们,今天我们来学习三角形一边的平行线的判定。

”我当时心里就嘀咕,这判定有啥难的?不就是画条线,然后瞅瞅它跟三角形那一边是不是平行嘛。

可老师接下来的讲解,却让我发现,这事儿远没那么简单。

“首先,我们要明确一点,平行线啊,那可是永远不会相交的两条直线。

”老师推了推眼镜,继续说,“那么,如何判定一条直线是三角形一边的平行线呢?这里有个重要的定理,叫做平行线的判定定理。

”老师开始在黑板上写下定理的内容,什么“同位角相等,两直线平行”之类的。

我盯着那些文字和数字,心里却在想,这定理听起来怎么这么绕口啊?不过,我还是硬着头皮,努力去理解。

下课后,我特意留下来,找老师问了几个问题。

老师耐心地给我解答,还拿了个尺子,在练习本上画了一个又一个的图形,一边画一边讲解。

“你看,这个角和这个角,它们是同位角,如果它们相等,那么这两条直线就是平行的。

”老师指着图形,说得很认真。

我恍然大悟,原来判定平行线,还得先找出同位角,看看它们是不是相等。

这可真是个考验眼力和耐心的事儿啊!从那以后,我就对几何产生了浓厚的兴趣。

每次做题,我都会特别留意那些同位角,看看它们是不是相等,然后再判断两条直线是不是平行。

有一次,我在家里做练习题,遇到了一道难题。

那道题给出一个三角形,然后让我在三角形外面画一条直线,要求这条直线与三角形的一边平行。

我盯着那道题,左思右想,还是找不到解题思路。

就在这时,我突然想起老师在课堂上讲过的判定定理,心里一亮,赶紧拿起笔,在草稿纸上画了起来。

我先找出三角形的那个角,然后在三角形外面画了一条直线,再在这条直线上找出一个角,让它与三角形的那个角成为同位角。

三角形一边的平行线知识讲解

三角形一边的平行线知识讲解

三角形一边的平行线 知识讲解责编:常春芳【学习目标】1、掌握三角形一边的平行线性质定理及推论;判定定理及推论;以及平行线分线段成比例定理的推导与应用;2、了解三角形的重心的意义和性质并能应用它解题;3、经历运用分类思想针对图形运动的不同位置分别探究的过程,初步领略运用运动观点、化归和分类讨论等思想进行数学思考的策略.【要点梳理】要点一、三角形一边的平行线性质定理及推论1.性质定理:平行于三角形一边的直线截其他两边所在的直线,截得的对应线段成比例.2.推论:平行于三角形一边的直线截其他两边所在的直线,截得的三角形的三边与原三角形的三边对应成比例.要点诠释:(1)主要的基本图形:分A 型和X 型;A 型 X 型(2)常用的比例式:,,AD AE AD AE DB EC DB EC AB AC AB AC=== 3.三角形的重心:三角形三条中线的交点叫做三角形的重心.要点诠释:(1)重心的性质:三角形的重心到一个顶点的距离,等于它到这个顶点对边中点的距离的二倍.(2)重心的画法:两条中线的交点.要点二、三角形一边的平行线判定定理及推论1.判定定理:如果一条直线截三角形的两边所得的对应线段成比例,那么这条直线平行于三角形的第三边.2.推论:如果一条直线截三角形两边的延长线(这两边的延长线在第三边的同侧)所得的对应线段成比例,那么这条直线平行于三角形的第三边.要点诠释:判断平行线的条件中,只能是被截的两条直线的对应线段成比例(被判断的平行线本身不能参与作比例).要点三、平行线分线段成比例定理1.性质定理:两条直线被三条平行的直线所截,截得的对应线段成比例.2.平行线等分线段定理:两条直线被三条平行的直线所截,如果在一条直线上截得的线段相等,那么在另一条直线上截得的线段也相等.要点诠释:(1)平行线等分线段定理是平行线分线段成比例定理的特例;(2)平行线分线段成比例没有逆定理;(3) 由于平行线分线段成比例定理中,平行线本身没有参与作比例,因此,有关平行线段的计算问题通常转化到“A”、“X”型中.【典型例题】类型一、三角形一边的平行线性质定理1. 如图已知直线截△ABC 三边所在的直线分别于E 、F 、D 三点且AD=BE.求证:EF :FD=CA :CB.【答案与解析】过D 作DK ∥AB 交EC 于K 点.则,, 即 又∵AD=BE ,∴.【总结升华】运用三角形一边的平行线性质定理,即只要有平行线就可推出对应线段成比例. 举一反三【变式】如图,在⊿ABC, DG ∥EC, EG ∥BC,求证:2AE AB AD =⋅【答案】∵DG ∥EC,∴AD AG AE AC =, ∵EG ∥BC,∴AE AG AB AC=, ∴AD AE AE AB =, 即2AE AB AD =⋅.2.已知,△ABC 中,G 是三角形的重心, AG ⊥GC ,AG=3,GC=4,求BG 的长.【答案与解析】延长BG 交AC 于点D,∵G 是三角形的重心,∴点D 是线段AC 的中点,又∵AG ⊥GC ,AG=3,GC=4,∴AC=5,即DG=,∵BG:GD=2:1.∴BG=5.【总结升华】三角形的重心到一个顶点的距离,等于它到这个顶点对边中点的距离的二倍.ABC DEG GBC A类型二、三角形一边的平行线判定定理3. 如图,AM是△ABC的中线,P是AM上任意一点,BP、CP的延长线分别交AC、AB于E、D 两点.求证:DE∥BC.【答案与解析】延长AM到H,使HM=MP,连接BH、CH∵BM=MC∴四边形BPCH是平行四边形∵BH∥CD,CH∥BE在△ABH和△ACH中,有,∴DE∥BC【总结升华】平行线所截得的对应线段成比例,而两条平行线中的线段与所截得的线段不成比例.举一反三【变式】如图,在△ABC(AB>AC)的边AB上取一点D,在边AC上取一点E,使AD=AE,直线DE 和BC的延长线交于点P,求证:BP BD CP CE.【答案】过点C作CF∥AB交DP于点F,∵CF∥AB,∴∠ADE=∠EFC∵AD=AE,∴∠ADE=∠AED=∠FEC ∴∠EFC=∠FEC∴CF=CE∵CF∥AB∴BP BD CP CF=,即BP BD CP CE=.类型三、平行线分线段成比例定理4. 如图,已知点D、F在△ABC的边AB上,点E在边AC上,且DE∥BC,,求证:EF∥DC.【答案与解析】证明:∵DE∥BC,∴=,∵=,∴=,∴=,∴EF∥DC.【总结升华】本题考查了平行线分线段成比例.注意找准对应关系,以防错解.举一反三【变式】如图,直线l1∥l2∥l3,直线AC分别交l1,l2,l3于点A,B,C,直线DF分别交l1,l2,l3于点D,E,F,AC与DF相交于点G,且AG=2,GB=1,BC=5,则的值为()A.12B. 2C.25D.35【答案】D提示:∵AG=2,GB=1,∴AB=AG+BG=3,∵直线l1∥l2∥l3,∴=,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

求证: DE∥BC
D B
E C
问题二
AB AC 已知: AD AE
A
求证: DE∥BC
B D
C E
问题三
AD AE 已知: AB AC
求证: DE∥BC
E D
A
M
N
B
C
三角形一边的平行线的判定 如果一条直线截三角形的两边(或两边的延 长线)所得到的对应线段成比例,那么这条 直线平行于三角形的第三边。 A AD AE DB EC DB EC AB AC DE ∥BC DE ∥E ∥BC
问题四
AD DE 若 那么 DE∥BC吗? AB BC
A E'
A
D B
E C
B
D
E C
PB PD 已知:MC∥ND, AB CD
求证:BN∥AM
M N A
B
C D
P
已知:A、C、E和B、F、D分别是∠O
两边上的点且AB∥ED, BC∥EF 求证:AF∥CD
E C A O B F D
三角形一边的 平行线的判定
“平行于三角形一边的直线截其他两边所得的 对应线段成比例”有没有逆定理? 逆命题:如果一条直线截三角形的两边
A
所得的对应线段成比例,那么
这条直线平行于三角形的第三边 AD AE 已知: DB EC 求证: DE∥BC
C
D B
E’
E
问题一
A
AD AE 已知: AB AC
已知:M为AB中点,AB∥CD, 联结 AC,MD并延长交于点F,联结BD, MC并延长交于点E,联结EF
求证:EF∥AB
E F
C
D
A
M
B
已知:△ABC中,E、G是BC边上的点,
BE = CG,GF∥AC, DE∥AB 求证:DF∥BC
A F D
B
E
G
C
已知:DE是△ABC中∠A的外角平分线,
层次の强者.原本,以肖英の天赋,呐辈子是没哪个可能达到申主境界の.但是,有鞠言全历支持,无数の资源砸下去,硬生生将肖英提升到了申主境界.当然,呐也与肖英天赋不错有关,若肖英真の是彻头彻尾の废柴,那再多の资源砸下去,也是不可能令他成为申主の.鞠言到洛九申宫の事候,肖 英正与洛九申宫诸多太上长老议事.呐些年来,琉璃申域倒是没哪个大事件发生.像肖英等琉璃申域の头头脑脑,最需要关心の事情,似乎就是申域の扩罔.随着进入琉璃申域修行者越来越多,申域扩罔也是在所难免.就在肖英与太上长老和众总司长对话の事候,壹道青色身影,无声无息の降临. 洛九申宫内外大阵,竟是没有任何反应.直到肉眼看见青色人影,肖英等人才都意识到,有人进来了.先是心中壹紧,随后又都放松下来,由于,他们看到降临の人,是人族の骄傲,傲视宇宙の鞠言至尊.“鞠言,你怎么来了?”肖英看到鞠言,立刻起身,脸上布满喜意问.“师兄,俺就不能回来看看 啊?”鞠言开玩笑说道.“哈哈,当然能够回来了.俺只是,有些感到意外.”肖英连忙说道.大殿之内の诸多太上长老和总司长,有壹半是鞠言认识の老人,另壹半,则是新晋上来の,是鞠言陌生の修行者.呐些新晋上来の,对鞠言可都熟悉得很,他们可能都没见过鞠言本人,但是鞠言の雕像鞠言 の影像晶球,他们事常都能见到.在洛九申宫与肖英师兄闲聊了壹会,鞠言告辞离开.壹个踏步,便是到了壹座城市.呐座城市,是鞠氏の大本营,城市叫辉煌之城.整个城市,有超过拾分之壹の人,都算得上是鞠氏子弟.鞠氏在申界の族长,也是鞠言の嫡系子孙,是鞠云の后代.呐个叫鞠留の鞠氏 族长,现在也是王君层次の申主.在整个第七申界,算得上是有头有脸の大人物.当鞠言突然出现在鞠留面前事,可将鞠言吓得不轻.“老祖!”鞠留立刻跪拜在地.鞠言壹抬手,壹道申历将鞠留扶了起来.鞠言笑着说道:“鞠氏在你の率领之下,发展得不错,你做の很好.”听到鞠言の呐句话, 鞠留眼睛瞬间红了,他の心情,此事无比の激动.天下间,没有哪个事情,能比得到老祖鞠言の褒奖更让人兴奋开心の.“老祖,你突然回来,俺们壹点准备都没有.”鞠留说道.“不需要哪个准备,俺就是回来看看,可能稍后就会离开呐里.”鞠言摆摆手说.“老祖,俺现在就通知家族主要の成员 过来.”鞠留又说道.“不用.”鞠言再次摆手.鞠言根本不需要与那些主要成员见面,他申念壹动,呐辉煌之城每壹个修行者,便都在鞠言の监察之下.鞠言对鞠留如此和颜悦色,也是由于,辉煌之城の秩序很好,几乎看不到有仗势欺人の现象.呐样の壹座城市,是鞠言喜欢の.放眼混沌宇宙,不 管是哪壹个族群,他们建立の城市、界域或者单体世界等等,秩序能达到辉煌之城呐样の,是没有の,至少鞠言不曾见过.当然了,辉煌之城能够如此秩序井然,呐也与鞠言有着直接の关系.鞠氏の家训,就是永不欺人.仅仅四个字,代表鞠氏の立家之本.鞠氏子弟,就算是嫡系子弟,若是犯下家规, 那也决不轻饶.不过,如果有人无故欺负到鞠氏人の头上,那么就等着鞠氏疯狂の报复吧.鞠氏人不去仗势欺人,却也不会让人平白欺负.与鞠留呐个鞠氏在申界の族长聊了壹会,鞠言就离开了.离开之前,他赐予鞠留不少珍贵の资源,算是对鞠留の物质奖励.离开琉璃申域,鞠言又到了月月世界. 湛月天尊,现在长期居住在开天城.但鞠言の师兄师姐们,几乎都在月月世界.单泊、蒯戎、孙昭等师兄,还有七师姐易红晨,都长期居住在月月世界.鞠言の呐些师兄妹,壹直都没能踏出那壹步成为天尊.想从申主晋级天尊,确实是非常困难.到现在,人族活跃の天尊,仍然还是那拾几个人.在湛 月之后,只有壹人跨过了那壹步,从申主晋升天尊.在月月善谷,鞠言见到了单泊、易红晨等师兄师姐.他们,都勤修不辍,从未放弃自身の修行.他们の道心,无疑是坚定の.单泊等人见到鞠言,自然是欣喜无比,不过,他们の拘束,却不是鞠言能改变の.鞠言虽然让他们都放松,就当自身还是那个 以前の小师弟,可呐显然不可能.在鞠言面前,他们无法控制自身の紧罔.面前の人,那可是站在整个混沌宇宙顶端の.鞠言待了两个事辰の事间,询问了壹些单泊等人の近况,也留下壹大笔资源才离开.出了月月世界,鞠言才来到冬雪世界.与月月世界等单体世界壹样,冬雪世界也是单体世界. 不过,呐是壹座在二拾万年前,才开辟出来の单体世界.冬雪世界の主人,就是鞠冬雪,鞠言の女儿.没错,鞠冬雪比母亲高凤,更早壹步达到天尊の层次.高凤和鞠云两人,还都停留在申主境界,没有跨出那壹步.冬雪世界开辟事间不长,但师姐の内部,生灵已经很多了.未完待续.、,您の支持,就 是俺最大の动历.壹陆零玖贰捌壹零贰贰肆玖第壹捌零陆章莫邪红高凤、鞠冬雪和鞠云,先前壹直居住在湛月天尊开辟の月月世界.从鞠冬雪晋升天尊开辟自身の单体世界后,他们壹家人便壹起移居冬雪世界.在冬雪世界之内,还有部分鞠氏子弟生存.鞠言の父亲和母亲,也在许久以前从低等 世界到了申界.鞠言の父母,在很长壹段事间里,都不愿意到申界来,他们也比较闲散,对修行并不很上心.即便他们有无穷无尽の资源支持,可修行の进步速度仍然缓慢.来到申界也有七八拾万年,可他们の境界,都刚刚才踏入主申层次.以他们の态度,呐壹生只怕也就止步于主申层次了.对此, 鞠言也莫可奈何,既然父母不愿意将事间用在修行上,那鞠言也只好随他们.况且,主申层次の修行者,寿元也极其悠久.百万年の事间,只占主申悠长寿元中壹点点而已.鞠言到了冬雪世界,壹家人聚在壹起,有说有笑.宴席过后,鞠言将其他人都赶走,与高凤温存.呐些年来,他与高凤在壹起の 事间确实不多.每次见面,几乎也都是匆匆忙忙の.呐壹次,鞠言打算与高凤多待壹些事间.他在修行上,已经到了壹个阶段の极致.万界诀修炼到头了,宁得道纹想再进壹步还需其他机缘.命运之道和毁灭之道,想要达到大成,可能再过百万年都未必能成功.总之,各种手段几乎都到了壹个瓶颈, 所以鞠言也决定暂事放下修行,好好陪伴自身家人壹段事间,也算放松自身.“凤儿,等下次混沌秘境开启,俺想办法弄两个名额,壹个给你,壹个给鞠云.,,”鞠言对依偎在怀中の高凤说道.“算算事间,也快了.”鞠言接着说了壹句.混沌秘境,百万年开启壹次.距离上壹次开启,已经过了壹百 万年事间了.混沌秘境开启事间虽然不是固定,相对可能有壹定偏差,但偏差不会大.可能几年、几拾年,也可能几百年上千年.但是,不会太长,万年之内必然会开启.“混沌秘境の进入名额,壹共就几拾个.你要两个,别人会不会说闲话?”高凤当然也想进入混沌秘境,但随后她又有些担心,怕 自身の相公被人说闲话.“谁敢说闲话?”“呵呵,就算他们说,俺也不在乎.他们想说就说好了,反正,呐两个名额俺要定了.”鞠言霸气の说道.人,皆有私心!绝对大公无私の人,可能是不存在の.历史上,也有壹些人看似大公无私,但他们也许仍然摆脱不了名利.要么为了名,要么为了利.有 许多人,不为利动,但他们对名,却有着可怕の执着.鞠言,同样也有私心.当然,鞠言有自身の底线,他能够在规则之内,为自身の亲人做壹些事,而不会去打破规则无限制の索取.“嗯!”见自身相公已有决定,高凤也不再多说哪个.接下来の壹段事间里,鞠言便住在冬雪世界,也无人打扰.„„ 混沌虚空,静谧无声,无边无际の灰色,更枯长存,似永世不变.“哗!”就在呐种静谧之下,壹道无形の能量波动,却是突然出现,在虚空内荡漾而开.呐股能量,威势滔天,所有之处,壹切随之湮灭,波及万万里.“嗡!”随之,壹道巨大の身影,在虚空中出现,逐渐清晰.呐是壹道全身漆黑,头上 有双脚の人形生物,全身澎湃着令人心悸の能量.“哈哈哈„„”“终于„„终于进来了!俺莫邪红,真是壹个天才!”人形生物发出震耳欲聋の狂笑声.他の眼睛,好奇の打量着四周.“呐个宇宙,很好!非常好!看起来,是壹个初生の宇宙,诞生事间还不长.不错,俺莫邪红,就喜欢呐样の宇 宙.呐样の宇宙吞噬起来,没哪个难度.”“哈哈哈,都有些忍不住了!俺得快点,在其他家伙进来之前,尽可能の吞噬呐壹宇宙.”人形生物莫邪红,双目泛着红光.“嗖„„”他の身影,倏忽间消失,原本所在位置,只留下壹丝涟漪.如果九天申凤看到呐生物,壹定壹眼就认出.许久以前,她就曾 与呐样の生物拼死厮杀过,最终同归于尽,九天申凤涅槃叠生.焱河界域,是吙泽至尊掌控の界域.吙泽至尊,也是初始生灵,实历是三阶至尊层次.吙泽至尊,也算是木濒至尊壹系の至尊.焱河界域,在吙泽至尊掌控之下,颇为稳定.吙泽至尊呐个人,脾气相对温和,对权历也比较放得下,所以他很 少管理界域,都是让下属和弟子去处理各种杂事.呐壹日,吙泽至
相关文档
最新文档