(全国Ⅰ卷)2020届高考数学百日冲刺金卷(一)文(含答案)

合集下载

2020年百校联考高考百日冲刺数学试卷(文科)(一)(全国Ⅰ卷)(附答案详解)

2020年百校联考高考百日冲刺数学试卷(文科)(一)(全国Ⅰ卷)(附答案详解)

2020年百校联考高考百日冲刺数学试卷(文科)(一)(全国Ⅰ卷)一、单选题(本大题共12小题,共60.0分)1. 已知集合A ={x|4x 2−3x ≤0},B ={x|y =√2x −1},则A ∩B =( )A. [0,34]B. ⌀C. [0,12]D. [12,34]2. 设复数z =4−2i7−3i ,则复数z 的虚部为( )A. −1729B. 1729C. −129D. 1293. 为了调查某地区不同年龄、不同等级的教师的工资情况,研究人员在A 学校进行抽样调查,则比较合适的抽样方法为( )A. 简单随机抽样B. 系统抽样C. 分层抽样D. 不能确定4. 若双曲线C :x 2a2−y 2b 2=1(a >0,b >0)的离心率为√133,则双曲线C 的渐近线方程为( )A. y =±√2xB. y =±√22x C. y =±23xD. y =±32x5. 执行如图所示的程序框图,若判断框中的条件为n <2019,则输出A 的值为( )A. 12 B. 2 C. −1 D. −26. 《九章算术(卷第五)⋅商功》中有如下问题:“今有冥谷上广二丈,袤七丈,下广八尺,袤四丈,深六丈五尺,问积几何”.译文为:“今有上下底面皆为长方形的墓坑,上底宽2丈,长7丈;下底宽8尺,长4丈,深6丈5尺,问它的容积量是多少?”则该几何体的容积为( )(注:1丈=10尺.)A. 45000立方尺B. 52000立方尺C. 63000立方尺D. 72000立方尺7.记单调递减的等比数列{a n}的前n项和为S n,且S3=769,若a2=83,则数列{a n}的公比为()A. 12B. 13C. 23D. 348.图中小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的表面积为()A. 104+8√5+√2πB. 104+4√5+(√2−2)πC. 104+8√5+(√2−2)πD. 104+8√5+(2√2−2)π9.设函数f(x)=e|x|−5cosx−x2,则函数f(x)的图象大致为()A. B.C. D.10.设抛物线C:y2=2px(p>0)的焦点F到其准线l的距离为2,点A,B在抛物线C上,且A,B,F三点共线,作BE⊥l,垂足为E,若直线EF的斜率为4,则|AF|=()A. 178B. 98C. 1716D. 331611.记等差数列{a n}的前n项和为S n,且a4+a6=18,S11=121.若3a2,a14,S m成等比数列,则a m=()A. 13B. 15C. 17D. 1912.已知a=sin45,b=43sin34,c=43cos34,则a,b,c的大小关系为()A. a<b<cB. b<c<aC. a<c<bD. b<a<c二、单空题(本大题共4小题,共20.0分)13.已知向量m⃗⃗⃗ =(2,5),n⃗=(1,λ),若m⃗⃗⃗ ⊥(2m⃗⃗⃗ +n⃗ ),则实数λ的值为______.14.已知首项为1的数列{a n}满足a n+1=5a n−9,则数列{a n}的通项公式为a n=______.15.已知函数f(x)=6√3sinxcosx−6sin2x+3,则函数f(x)在[π2,π]上的取值范围为______.16.已知函数f(x)=x3−6x2+11x−3,若直线l与曲线y=f(x)交于M,N,P三点,且|MN|=|NP|,则点N的坐标为______.三、解答题(本大题共7小题,共82.0分)17.在△ABC中,∠BAC=π4,AB=2,BC=√172,M是线段AC上的一点,且tan∠AMB=−2√2.(Ⅰ)求AM的长度;(Ⅱ)求△BCM的面积.18.如图,在四棱锥P−ABCD中,∠ABC=∠BCD=90°,BC⊥PD,AB=2BC=2CD=2.(1)在线段AB上作出一点E,使得BC//平面PDE,并说明理由;(2)若PA=AD,∠PDA=60°,求点B到平面PAD的距离.19.为了响应绿色出行,某市推出了一款新能源租赁汽车,并对该市市民对这款新能源租赁汽车的使用态度进行调查,具体数据如表1所示:相关研究人员还调查了某一辆新能源租赁汽车一个月内的使用时间情况,统计如表2所示:根据上述事实,研究人员针对租赁的价格作出如下调整,该价格分为两部分:①根据行驶里程数按1元/公里计费;②行驶时间不超过45分钟,按0.12元/分计费;超过45分钟,超出部分按0.20元/分计费.(1)是否有99.9%的把握认为该市市民对这款新能源租赁汽车的使用态度与性别有关;(2)根据表(2)中的数据求该辆汽车一个月内的平均使用时间;(3)若小明的住宅距离公司20公里,且每天驾驶新能源租赁汽车到公司的时间在30~60分钟之间,若小明利用滴滴打车到达公司需要27元,讨论:小明使用滴滴打车上班还是驾驶新能源租赁汽车上班更加合算.附:K2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d)20. 已知△PF 1F 2中,F 1(−1,0),F 2(1,0),|PF 1|=4,点Q 在线段PF 1上,且|PQ|=|QF 2|.(Ⅰ)求点Q 的轨迹E 的方程;(Ⅱ)若点M ,N 在曲线E 上,且M ,N ,F 1三点共线,求△F 2MN 面积的最大值.21. 已知函数f(x)=x 2lnx −12x 2.(1)求曲线y =f(x)在(e,f(e))处的切线方程;(2)已知函数g(x)=f(x)+ax(1−lnx)存在极大值和极小值,且极大值和极小值分别为M ,N ,若M =g(1),N =ℎ(a),求ℎ(a)的最大值.22. 在平面直角坐标系xOy 中,曲线C 的参数方程为{x =3cosθy =3+3sinθ(θ为参数),点M 是曲线C 上的任意一点,将点M 绕原点O 逆时针旋转90°得到点N.以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系. (Ⅰ)求点N 的轨迹C′的极坐标方程;(Ⅱ)若曲线y =−√33x(y >0)与曲线C ,C′分别交于点A ,B ,点D(−6,0),求△ABD的面积.23.已知函数f(x)=|x−1|+|3x+5|.(Ⅰ)求不等式f(x)>8的解集;(Ⅱ)若关于x的不等式f(x)+m≤2x2+|3x+5|在R上恒成立,求实数m的取值范围.答案和解析1.【答案】D【解析】解:依题意,A={x|4x2−3x≤0}={x|0≤x≤34},B={x|y=√2x−1}={x|x≥12},故A∩B=[12,34 ].故选:D.可以求出集合A,B,然后进行交集的运算即可.考查描述法、区间表示集合的定义,函数的定义域,不等式的解法以及交集的运算.2.【答案】C【解析】解:∵z=4−2i7−3i =(4−2i)(7+3i)(7−3i)(7+3i)=34−2i58=1729−129i,∴复数z的虚部为−129.故选:C.直接利用复数代数形式的乘除运算化简得答案.本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题.3.【答案】C【解析】解:A学校不同年龄、不同等级的教师的工资情况相差较大,研究人员在A学校进行抽样调查时,则比较合适的抽样方法是按照年龄或等级,采取分层抽样的方法,故选:C.由题意利用分层抽样的定义和方法,得出结论.本题主要考查分层抽样的定义和方法,属于基础题.4.【答案】C【解析】解:双曲线C:x2a2−y2b2=1(a>0,b>0)的离心率为√133,可得c2a2=139,即a2+b2a2=139,解得ba =23,双曲线C的渐近线方程为:y=±23x.故选:C.利用双曲线的离心率求出a,b关系,即可区间双曲线的渐近线方程.本题考查双曲线的简单性质的应用,是基本知识的考查,基础题.5.【答案】B【解析】解:由题意,模拟程序的运行,可得n=1,A=12满足条件n<2019,执行循环体,A=−1,n=2满足条件n<2019,执行循环体,A=2,n=3满足条件n<2019,执行循环体,A=12,n=4…观察规律可知A的取值周期为3,且2018=672×3+2,可得n=2018时,满足条件n<2019,执行循环体,A=2,n=2019此时,不满足条件n<2019,退出循环,输出A的值为2.故选:B.由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量A的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.6.【答案】B【解析】解:进行分割如图所示,故V=2(V A−A1MNE +V AMN−DPQ+V D−PQFD1)+V BCGH−ADFE=2×(13×15×6×65×2+12×65×15×8)+(8+20)×652×40=52000立方尺.故选:B.利用分割几何体为锥体,棱柱,然后求解几何体的体积即可.本题考查几何体的体积的求法,考查转化思想以及计算能力,是中档题.7.【答案】C【解析】解:设单调递减的等比数列{a n}的公比为q≠1,∵S3=769,a2=83,∴83q+83+83q=769,解得:q=23,或32(舍去).则数列{a n}的公比为23.故选:C.设单调递减的等比数列{a n}的公比为q≠1,由S3=769,a2=83,可得:83q+83+83q=769,解得:q.本题考查了等比数列的通项公式、求和公式及其单调性,考查了推理能力与计算能力,属于基础题.8.【答案】C【解析】解:由三视图还原原几何体如图,该几何体为组合体,上面部分为两个四分之一圆锥,底面半径为2,高为2,中间部分为棱长是4的正方体,下面部分为直三棱柱.则其表面积:S=2×12×4×2+2×4+4×4×4+4×4−12×π×22+4×12×2×2+12×π×2×2√2=104+8√5+(√2−2)π.故选:C.由三视图还原原几何体,该几何体为组合体,上面部分为两个四分之一圆锥,底面半径为2,高为2,中间部分为棱长是4的正方体,下面部分为直三棱柱,则其表面积可求.本题考查由三视图求面积、体积,关键是由三视图还原原几何体,是中档题.9.【答案】B【解析】解:函数的定义域为R,f(−x)=e|−x|−5cos(−x)−(−x)2=e|x|−5cosx−x2=f(x),则函数f(x)为偶函数,可排除选项C;当x→+∞时,f(x)→+∞,可排除选项D;又f(π2)=eπ2−5cosπ2−(π2)2=eπ2−(π2)2>0,可排除A.故选:B.根据函数解析式判断奇偶性,结合极限和特殊值进行排除选项,即可得解.本题考查根据函数解析式选择合适的函数图象,关键在于熟练掌握函数性质,结合特殊值与极限求解,此类问题常用排除法解决.10.【答案】C【解析】解:由抛物线的性质可得:焦点F到其准线l的距离为2,可得p=2,所以抛物线的方程为:y2=4x所以可得焦点F(1,0),准线方程为x=−1,设A(x1,y1),B(x2,y2),由题意可得E(−1,y2),可得k EF=y2−1−1=4,所以y2=−8,将y2=−8代入抛物线中,64=4x2,x2=16,及B(16,−8),所以k BF=16−1−8=−158,所以直线AB的方程为:y=−158(x−1),与抛物线联立可得225x2−706x+225=0,所以x1x2=1,所以x1=116,所以|AF|=x1+1=1716,故选:C.由抛物线的性质,焦点到准线的距离为p,由题意可得p的值,可求出抛物线的方程,设A,B的坐标,由题意可得E的坐标,求出直线EF的斜率,由题意可得E的坐标,将E的纵坐标代入抛物线求出B的坐标,进而求出直线AB的斜率及方程,代入抛物线的方程求出A的横坐标,由抛物线的性质可得|AF|的值.本题考查抛物线的性质,及直线与抛物线的综合,属于中档题.11.【答案】C【解析】解:等差数列{a n}的公差设为d,前n项和为S n,由a4+a6=18,可得2a1+8d=18,即a1+4d=9,由S11=121,可得11a1+55d=121,即a1+5d=11,解得a1=1,d=2,则a n=1+2(n−1)=2n−1,S n=12n(2n−1+1)=n2,若3a2,a14,S m成等比数列,则a142=3a2S m,即为272=9m2,可得m=9,则a m=a9=17.故选:C.等差数列{a n}的公差设为d,运用等差数列的通项公式和求和公式,解方程可得首项和公差,再由等比数列的中项性质,解方程可得m,进而得到所求值.本题考查等差数列的通项公式和求和公式的运用,同时考查等比数列的中项性质,考查方程思想和运算能力,属于基础题.12.【答案】A【解析】解:由于0<34<π4,根据三角函数的值cos34>sin34,则c=43cos34>b=43sin34,由于π2>45>34>0,所以sin 45>sin 34,根据近似值的运算,整理得b =43sin 34>a =sin 45. 故c >b >a . 故选:A .直接利用三角函数的值和正弦函数的图象的应用求出结果.本题考查的知识要点:三角函数的值的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.13.【答案】−12【解析】解:根据题意,向量m⃗⃗⃗ =(2,5),n ⃗ =(1,λ),则2m ⃗⃗⃗ +n ⃗ =(5,10+λ), 若m⃗⃗⃗ ⊥(2m ⃗⃗⃗ +n ⃗ ),则m ⃗⃗⃗ ⋅(2m ⃗⃗⃗ +n ⃗ )=10+50+5λ=60+5λ=0,则λ=−12; 故答案为:−12.根据题意,由向量的坐标公式可得2m ⃗⃗⃗ +n ⃗ =(5,10+λ),由向量垂直与数量积的关系可得m⃗⃗⃗ ⋅(2m ⃗⃗⃗ +n ⃗ )=10+50+5λ=60+5λ=0,解可得λ的值,即可得答案. 本题考查向量数量积的计算,涉及向量的坐标计算,属于基础题.14.【答案】−5n 4+94【解析】解:∵a n+1=5a n −9, ∴a n+1−94=5(a n −94),又a 1−94=−54,∴数列{a n −94}是首项为−54,公比为5的等比数列, ∴a n −94=(−54)×5n−1=−5n 4,∴a n =−5n 4+94,故答案为:−5n 4+94.由a n+1=5a n −9可得a n+1−94=5(a n −94),所以构造出等比数列{a n −94},再利用等比数列的通项公式即可求出a n .本题主要考查了数列的递推式,以及构造等比数列求数列的通项,是中档题.15.【答案】[−6,3]【解析】解:f(x)=3√3sin2x −6×1−cos2x2+3=3√3sin2x +3cos2x=6(√32sin2x +12cos2x)=6sin(2x +π6),当π2≤x ≤π时,π≤2x ≤2π,7π6≤2x +π6≤13π6,则当2x +π6=13π6时,函数f(x)取得最大值,最大值为6sin13π6=6sin π6=6×12=3,当2x +π6=3π2时,函数f(x)取得最小值,最小值为6sin 3π2=−6,即f(x)的取值范围是[−6,3], 故答案为:[−6,3].利用三角函数的倍角公式,以及辅助角公式进行化简,求出角的范围,结合三角函数的单调性和最值关系求出最大值和最小值即可.本题主要考查三角函数的图象和性质,利用辅助角公式进行化简,求出角的范围,结合三角函数的单调性和最值关系是解决本题的关键.难度不大.16.【答案】(2,3)【解析】解:函数f(x)=x 3−6x 2+11x −3,若直线l 与曲线y =f(x)交于M ,N ,P 三点,且|MN|=|NP|,所以N 是MP 的中点, 因为函数f(x)=x 3−6x 2+11x −3,可得f′(x)=3x 2−12x +11,f″(x)=6x −12,令f″(x)=6x −12=0,解得x =2, 此时f(2)=3,所以函数的对称中心的坐标(2,3). 所以N(2,3), 故答案为:(2,3).利用已知条件说明N 是函数的对称中心的坐标,通过平方转化求解即可.本题考查函数的导数的应用,函数的极值以及函数的对称中心的关系,是基本知识的考查.17.【答案】解:(Ⅰ)∵tan∠AMB =−2√2;∴sin∠AMB =2√23,cos∠AMB =−13;由正弦定理,BMsin∠A =ABsin∠AMB,即BM√22=22√23,解得BM=32;由余弦定理,cos∠AMB=AM2+BM2−AB22AM⋅BM ,即−13=AM2+94−42×AM×32,解得AM=√2−12;(Ⅱ)∵cos∠CMB=cos(π−∠AMB)=−cos∠AMB=13,∴sin∠CMB=2√23,在△BCM中,由余弦定理,有BC2=BM2+CM2−2BM⋅CM⋅cos∠CMB∴CM=2,∴S△BCM=12BM⋅CM⋅sin∠CMB=12×32×2×2√23=√2.【解析】(Ⅰ)先求出∠AMB的正弦值和余弦值,利用正弦定理求出BM的长,利用余弦定理求出AM的长;(Ⅱ)利用正弦定理求出sin∠CMB的值,利用余弦定理求出CM的值,最后使用公式S△BCM=12BM⋅CM⋅sin∠CMB求出△BCM的面积.本题考查了利用正弦定理和余弦定理解三角形,已知条件较多,难度不大,但是计算量较大,属中档题.18.【答案】解:(1)取AB的中点E,连接PE,DE,∵AB=2CD=2,∴DC=BE,又∠ABC=∠BCD=90°,∴DC//BE,则四边形DCBE为平行四边形,可得BC//DE.∵DE⊂平面PDE,BC⊄平面PDE,则BC//平面PDE;(2)∵BC⊥PD,BC⊥CD,且PD∩CD=D,∴BC⊥平面PCD,又BC⊂平面ABCD,∴平面PCD⊥平面ABCD,平面PCD∩平面ABCD=CD,在平面PCD内过P作PF⊥CD,可得PF⊥平面ABCD,在Rt△PFA与Rt△PFD中,∵PA=PD,∴AF=√PA2−PF2=√PD2−PF2=DF,又由题意,∠FDA=45°,∴AF⊥FD,由已知求得AD=√2.∴AF=DF=PF=1.连接BD,则V P−ABD=13×12×2×1=13,又求得S△PAD=√32,设B到平面PAD的距离为ℎ,则由V P−ABD =V B−PAD ,得13=13×√32ℎ,即ℎ=2√33.【解析】(1)取AB 的中点E ,连接PE ,DE ,可证四边形DCBE 为平行四边形,得BC//DE ,由直线与平面平行的判定可得BC//平面PDE ;(2)由已知证明BC ⊥平面PCD ,可得平面PCD ⊥平面ABCD ,在平面PCD 内过P 作PF ⊥CD ,得PF ⊥平面ABCD ,求解三角形求得AF =DF =PF =1,再由等体积法求点B 到平面PAD 的距离.本题考查直线与平面平行的判定,考查空间想象能力与思维能力,训练了利用等体积法求点到面的距离,是中档题.19.【答案】解:(1)补充完整的2×2列联表如下所示,∴K 2=2000×(800×600−200×400)21000×1000×1200×800≈333.33>10.828,故有99.9%的把握认为该市市民对这款新能源租赁汽车的使用态度与性别有关. (2)表2中的数据整理如下, ∴所求的平均使用时间为25×0.3+35×0.4+45×0.2+55×0.1=36(分钟). (3)设小明驾驶新能源租赁汽车到达公司需要y 元,上班所用的时间为t 分钟, 当30≤t ≤45时,y =0.12t +20;当45<t ≤60时,y =0.12×45+0.20×(45−t)+20=0.2t +16.4. 故y ={0.12t +20,30≤t ≤450.2t +16.4,45<t ≤60,当30≤t ≤45时,23.6≤y ≤25.4;当45<t ≤60时,25.4<t ≤28.4, 令0.2t +16.4=27,解得t =53, 综上所述:当30≤t <53时,使用驾驶新能源租赁汽车上班更加合算; 当53<t ≤60时,使用滴滴打车上班更加合算; 当t =53时,两种方案情况相同.【解析】(1)先根据现有数据补充完整2×2列联表,再利用K 2的公式计算出其观测值,并与附表中的临界值进行对比即可作出判断;(2)根据表格2中的频数分布,计算出每一组的频率,再利用平均数的计算方法求解即可; (3)设小明驾驶新能源租赁汽车到达公司需要y 元,上班所用的时间为t 分钟,写出y 关于t 的分段函数,并求出每段中对应的y 的取值范围,便于知道滴滴打车花费的27元在租赁新能源汽车花费中对应的上班时间,然后0.2t +16.4=27,解得t =53,最后分类说明哪种方式上班更合算即可.本题考查独立性检验,根据频数分布表计算平均数,利用函数模型来解决优化问题等,解题的关键是熟练掌握相关计算公式,考查学生对数据的分析能力、逻辑推理能力和运算能力,属于中档题.20.【答案】解:(Ⅰ)设Q(x,y),y ≠0,∵|PF 1|=4,点Q 在线段PF 1上,且|PQ|=|QF 2|,∴|PF 1|=4=|QF 1|+|QF 2|>|F 1F 2|=2 ∴点Q 为焦点在x 轴上,长轴长2a =4,焦距2c =2的椭圆上的点,且b 2=4−1=3,∴点Q 的轨迹E 的方程为x 24+y 23=1(y ≠0);(Ⅱ)设直线MN 的方程为x =ky +1,联立{x =ky +1x 24+y 23=1可得(3k 2+4)y 2+6ky −9=0,设M(x 1,y 1),N(x 2,y 2),则 y 1+y 2=−6k3k 2+4,y 1y 2=−93k 2+4. ∵|MN|=√1+k 2×√(y 1+y 2)2−4y 1y 2=12(k 2+1)3k 2+4,点F 2到直线MN 的距离d =2√1+k 2,∴S △MNF 2=12|MN|⋅d =12√k 2+13k 2+4,令√k 2+1=t ≥1,则S △MNF 2=12t3t 2+1=123(t+13t)在[1,+∞)上单调递减,故当t =1也即k =0时,△F 2MN 面积的最大值为3.【解析】(Ⅰ)先设点Q 的坐标,再由椭圆的定义求得其轨迹方程;(Ⅱ)先设出直线MN 的方程与椭圆方程联立求得y 1+y 2=−6k3k 2+4,y 1y 2=−93k 2+4,进而求得|MN|与点F 2到直线MN 的距离d ,找出△F 2MN 面积的表达式,最后解决其最值问题. 本题主要考查椭圆的定义及圆锥曲线中的最值问题,属于中档题.21.【答案】解:(1)依题意,函数的定义域为(0,+∞),f′(x)=2xlnx +x −x =2xlnx ,故f′(e)=2e ,而f(e)=e 2−12e 2=12e 2,故所求切线方程为y −12e 2=2e(x −e),即y =2ex −32e 2; (2)依题意,g(x)=x 2lnx −12x 2+ax(1−lnx), 故g′(x)=(2x −a)lnx ,显然a >0,令g′(x)=0,解得x =a2或x =1, 因为极大值M =g(1),故a >2, 此时,函数N =ℎ(a)=g(a2)=−a 24ln a 2+38a 2,所以ℎ′(a)=−12a(ln a2−1),令ℎ′(a)=−12a(ln a2−1)=0,得a =2e , 当a 变化时,ℎ′(a),ℎ(a),变化情况如下表:所以函数ℎ(a)的最大值为ℎ(2e)=e 22.【解析】(1)根据导函数求出切线斜率,利用点斜式写出直线方程化简得解; (2)根据导函数讨论单调性求出极大值N =ℎ(a)=g(a2)=−a 24ln a 2+38a 2,讨论ℎ(a)的单调性即可求得最值.本题考查导数的几何意义,求解切线方程,利用导函数讨论函数单调性,求解极值和最值问题,属于中档题.22.【答案】解:(Ⅰ)依题意,曲线C的普通方程为x2+(y−3)2=9,即x2+y2−6y=0,整理可得:ρ2=6ρsinα,故曲线C的极坐标方程为ρ=6sinα,设N(ρ,φ),则M(ρ,φ−π2),则有ρ=6sin(φ−π2)=−6cosφ,故点N的轨迹C′的极坐标方程为ρ=−6cosφ.(Ⅱ)曲线y=−√33x(y>0)的极坐标方程为θ=5π6(ρ>0),D到曲线θ=5π6的距离为d=6sinπ6=3,曲线θ=5π6与曲线C交点A(3,5π6),曲线θ=5π6与曲线C′交点B(3√3,5π6),∴|AB|=3√3−3,故△ABD的面积S=12×|AB|×d=9√3−92.【解析】(Ⅰ)直接利用转换关系,把参数方程极坐标方程和直角坐标方程之间进行转换.(Ⅱ)利用直线和圆的位置关系的应用和极径的应用及三角形的面积公式的应用求出结果.本题考查的知识要点:参数方程极坐标方程和直角坐标方程之间的转换,直线和圆的位置关系的应用,极径的应用,三角形面积公式的应用,主要考查学生的运算能力和转换能力及思维能力,属于中档题型.23.【答案】解:(Ⅰ)依题意,|x−1|+|3x+5|>8,当x<−53时,原式化为1−x−3x−5>8,解得x<−3,故x<−3,当−53≤x≤1时,原式化为1−x+3x+5>8,解得x>1,故无解,当x>1时,原式化为x−1+3x+5>8,解得x>1,故x>1,综上所述,不等式f(x)>8的解集为(−∞,−3)∪(1,+∞).(Ⅱ)依题意,|x−1|+|3x+5|+m≤2x2+|3x+5|,则|x −1|≤2x 2−m ,即−2x 2+m ≤x −1≤2x 2−m , 即{2x 2+x −(m +1)≥02x 2−x +(1−m)≥0, 则只需{1+8(m +1)≤01−8(1−m)≤0,解得m ≤−98,∴实数m 的取值范围是(−∞,−98].【解析】(Ⅰ)依题意,|x −1|+|3x +5|>8,运用零点分区间和绝对值的定义,去绝对值,解不等式,求并集,可得所求解集;(Ⅱ)依题意可得|x −1|≤2x 2−m ,即−2x 2+m ≤x −1≤2x 2−m ,再由二次函数的性质,结合判别式小于等于0,解不等式可得所求范围.本题考查绝对值不等式的解法,注意运用分类讨论思想,考查不等式恒成立问题解法,注意运用绝对值不等式的解法和二次函数的性质,考查运算能力和推理能力,属于中档题.。

2020年高考数学金榜冲刺卷(北京版)(一)(含答案解析)

2020年高考数学金榜冲刺卷(北京版)(一)(含答案解析)

2020年高考数学金榜冲刺卷(一)注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回. 4.测试范围:高中全部内容.一、选择题共10题,每题4分,共40分.在每题列出的四个选项中,选出符合题目要求的一项.1.在复平面内,复数11i-的共轭复数对应的点位于 A .第一象限 B .第二象限 C .第三象限 D .第四象限 2.集合{}2,A x x x R =>∈,{}2230B x x x =-->,则A B =I ( )A .(3,)+∞B .(,1)(3,)-∞-+∞UC .(2,)+∞D .(2,3)3.下列函数中,既是偶函数又在区间()0,+?上单调递增的是( )A .y =B .()sin f x x x =C .()2f x x x =+D .1y x =+4.已知直线l 过点()2,0P -,当直线l 与圆222x y x +=有两个交点时,其斜率k 的取值范围为( )A .(-B .⎛ ⎝⎭C .(D .11,88⎛⎫- ⎪⎝⎭ 5.如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为( )A .310B .15C .110D .1206.已知函数()44cos sin x x f x =-,下列结论中错误的是( )A .()cos2f x x =B .函数()f x 的图象关于直线0x =对称C .()f x 的最小正周期为πD .()f x 的值域为⎡⎣7.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有刍甍,下广三丈,袤四丈,上袤二丈,无广,高二丈,问:积几何?”其意思为:“今有底面为矩形的屋脊状的楔体,下底面宽3丈,长4丈,上棱长2丈,高2丈,问:它的体积是多少?”已知l 丈为10尺,该楔体的三视图如图所示,其中网格纸上小正方形边长为1,则该楔体的体积为( )A .10000立方尺B .11000立方尺C .12000立方尺D .13000立方尺8.如图:在正方体1111ABCD A B C D -中,点P 是1B C 的中点,动点M 在其表面上运动,且与平面11A DC 的距离保持不变,运行轨迹为S ,当M 从P 点出发,绕其轨迹运行一周的过程中,运动的路程x 与11l MA MC MD =++之间满足函数关系()l f x =,则此函数图像大致是( )A .B .C .D .9.“数列{}n a 既是等差数列又是等比数列”是“数列{}n a 是常数列”的( ). A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件10.数学的对称美在中国传统文化中多有体现,譬如如图所示的太极图是由黑白两个鱼形纹组成的圆形图案,充分展现了相互转化、对称统一的和谐美.如果能够将圆的周长和面积同时平分的函数称为这个圆的“优美函数“,下列说法错误的是( )A .对于任意一个圆,其“优美函数“有无数个B .()3f x x =可以是某个圆的“优美函数”C .正弦函数sin y x =可以同时是无数个圆的“优美函数”D .函数()y f x =是“优美函数”的充要条件为函数()y f x =的图象是中心对称图形 二、填空题共5题,每题5分,共25分.11.抛物线2y ax =的焦点为()1,0-,则a =______.12.已知向量(3,2)m =u r ,(,1)n λ=r ,其中R λ∈.若向量m u r 与23m n -u r r共线,则λ=_____.13.已知双曲线222:1(0)4x y C b b-=>的左、右顶点分别为A 、B ,点P 在双曲线C 上,且直线PA 与直线PB 的斜率之积为1,则双曲线C 的焦距为__________.14.已知等差数列{}n a 的公差0d ≠,且139,,a a a 构成等比数列{}n b 的前3项,则1392410a a a a a a ++=++________;又若2d =,则数列{}n b 的前n 项的和n S =________.15.对定义在[0,1]上的函数()f x ,如果同时满足以下两个条件:(1)对任意的[0,1]x ∈总有()0f x …; (2)当10x …,20x …,121x x +„时,总有()()()1212f x x f x f x ++…成立. 则称函数()f x 称为G 函数.若()21xh x a =⋅-是定义在[0,1]上G 函数,则实数a 的取值范围为________.三、解答题共6题,共85分.解答应写出文字说明,演算步骤或证明过程. 16.(本小题14分)如图,直四棱柱ABCD –A 1B 1C 1D 1的底面是菱形,AA 1=4,AB =2,∠BAD =60°,E ,M ,N 分别是BC ,BB 1,A 1D 的中点.(1)证明:MN ∥平面C 1DE ;(2)求AM 与平面A 1MD 所成角的正弦值. 17.(本小题14分)已知ABC V 满足 ,且23b A π==,求sinC 的值及ABC V 的面积.(从①4B π=,②a =③a =这三个条件中选一个,补充到上面问题中,并完成解答.)18.(本小题14分)如图是2019年11月1日到11月20日,某地区甲流疫情新增数据的走势图.(1)从这20天中任选1天,求新增确诊和新增疑似的人数都超过100的概率;(2)从新增确诊的人数超过100的日期中任选两天,用X 表示新增确诊的人数超过140的天数,求X 的分布列和数学期望;(3)根据这20天统计数据,预测今后该地区甲流疫情的发展趋势. 19.(本小题15分)已知函数()sin ln f x x x =+.(Ⅰ)求曲线()y f x =在点ππ(,())22M f 处的切线方程;(Ⅱ)证明:函数()f x 在区间(1,3)上存在唯一的极大值点; (Ⅲ)证明:函数()f x 有且仅有一个零点. 20.(本小题14分)已知椭圆()222210x y a b a b+=>>离心率为45,椭圆上的点到右焦点的最小距离是1,直线:1l y kx =+交椭圆于A 、B 两点,O 为坐标原点, (1)求椭圆的方程;(2)求三角形AOB 面积的最大值,并求此时直线l 的方程. 21.(本小题14分)数字()1,2,3,...,2n n ≥的任意一个排列记作()12,,...,n a a a ,设n S 为所有这样的排列构成的集合.集合(){12,,...,n n n A a a a S =∈任意整数,.1,i j i j n ≤<≤都有}i j a i a j -≤-,集合(){12,,...,n n n B a a a S =∈任意整数,,1,i j i j n ≤<≤都有}i j a i a j +≤+(1)用列举法表示集合33,A B ;(2)求集合n n A B I 的元素个数;(3)记集合n B 的元素个数为n b ,证明:数列{}n b 是等比数列.2020年高考数学金榜冲刺卷(一)注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回. 4.测试范围:高中全部内容.一、选择题共10题,每题4分,共40分.在每题列出的四个选项中,选出符合题目要求的一项.1.在复平面内,复数11i-的共轭复数对应的点位于 A .第一象限 B .第二象限 C .第三象限 D .第四象限 【答案】D【解析】11111(1)(1)22i i i i i +==+--+的共轭复数为1122i -对应点为11(,)22-,在第四象限,故选D. 2.集合{}2,A x x x R =>∈,{}2230B x x x =-->,则A B =I ( )A .(3,)+∞B .(,1)(3,)-∞-+∞UC .(2,)+∞D .(2,3)【答案】A【解析】{}()()2230,13,B x x x =-->=-∞-⋃+∞,{}2,A x x x R =>∈,故(3,)A B =+∞I .故选:A .3.下列函数中,既是偶函数又在区间()0,+?上单调递增的是( )A .y =B .()sin f x x x =C .()2f x x x =+D .1y x =+【答案】C【解析】A :y =B :()sin f x x x =在()0,∞+上不单调,不符合题意;C :2y xx =+为偶函数,且在()0,∞+上单调递增,符合题意;D :1y x =+为非奇非偶函数,不符合题意. 故选:C.4.已知直线l 过点()2,0P -,当直线l 与圆222x y x +=有两个交点时,其斜率k 的取值范围为( )A.(- B.,44⎛- ⎝⎭C.( D .11,88⎛⎫- ⎪⎝⎭ 【答案】B【解析】直线l 为20kx y k -+=,又直线l 与圆222x y x +=有两个交点,1<,∴44k -<<,故选B .5.如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为( )A .310B .15C .110D .120【答案】C【解析】试题分析:从1,2,3,4,5中任取3个不同的数共有10种不同的取法,其中的勾股数只有3,4,5,故3个数构成一组勾股数的取法只有1种,故所求概率为110,故选C. 6.已知函数()44cos sin x x f x =-,下列结论中错误的是( )A .()cos2f x x =B .函数()f x 的图象关于直线0x =对称C .()f x 的最小正周期为πD .()f x的值域为⎡⎣【答案】D【解析】由442222()cos sin (cos sin )(cos sin )cos2f x x x x x x x x =-=+-=,故A 正确;由定义可知()cos 2f x x =为偶函数,故B 正确;由周期公式可得()f x 的最小正周期为:22T ππ==,故C 正确;由余弦函数的性质可得()cos 2f x x =的值域为[1-,1],故D 错误;故选:D .7.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有刍甍,下广三丈,袤四丈,上袤二丈,无广,高二丈,问:积几何?”其意思为:“今有底面为矩形的屋脊状的楔体,下底面宽3丈,长4丈,上棱长2丈,高2丈,问:它的体积是多少?”已知l 丈为10尺,该楔体的三视图如图所示,其中网格纸上小正方形边长为1,则该楔体的体积为( )A .10000立方尺B .11000立方尺C .12000立方尺D .13000立方尺 【答案】A【解析】由题意,将楔体分割为三棱柱与两个四棱锥的组合体,作出几何体的直观图如图所示:沿上棱两端向底面作垂面,且使垂面与上棱垂直,则将几何体分成两个四棱锥和1个直三棱柱, 则三棱柱的体积V 1=12×3×2×2=6, 四棱锥的体积V 2=13×1×3×2=2,由三视图可知两个四棱锥大小相等,∴V =V 1+2V 2=10立方丈=10000立方尺.故选A .8.如图:在正方体1111ABCD A B C D -中,点P 是1B C 的中点,动点M 在其表面上运动,且与平面11A DC 的距离保持不变,运行轨迹为S ,当M 从P 点出发,绕其轨迹运行一周的过程中,运动的路程x 与11l MA MC MD =++之间满足函数关系()l f x =,则此函数图像大致是( )A .B .C .D .【答案】D【解析】画出图象如图所示,由于平面1//B AC 平面11A DC ,故三角形1AB C 即M 点的运行轨迹.以D 为坐标原点建立空间直角坐标系,故()()111,0,1,0,1,1A C .当M 在11,1,22P ⎛⎫⎪⎝⎭时,0l =,当M 在()11,1,1B是,102l l =>,由此排除,A C 两个选项.根据图象的对称性可知,当M 在1PB 和1B Q 上运动时,图象应该对称,故排除B 选项.所以选D.9.“数列{}n a 既是等差数列又是等比数列”是“数列{}n a 是常数列”的( ). A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】A【解析】数列{}n a 既是等差数列又是等比数列,则可知{}n a 是常数列,所以充分性成立;若{}n a 是0n a =常数列,则{}n a 不是等比数列,所以必要性不成立,所以“数列{}n a 既是等差数列又是等比数列”是“数列{}n a 是常数列”的充分不必要条件,故选A .10.数学的对称美在中国传统文化中多有体现,譬如如图所示的太极图是由黑白两个鱼形纹组成的圆形图案,充分展现了相互转化、对称统一的和谐美.如果能够将圆的周长和面积同时平分的函数称为这个圆的“优美函数“,下列说法错误的是( )B .对于任意一个圆,其“优美函数“有无数个 B .()3f x x =可以是某个圆的“优美函数”C .正弦函数sin y x =可以同时是无数个圆的“优美函数”D .函数()y f x =是“优美函数”的充要条件为函数()y f x =的图象是中心对称图形 【答案】D【解析】对于A :过圆心的直线都可以将圆的周长和面积同时平分,所以对于任意一个圆,其“优美函数”有无数个,故选项A 正确;对于B :因为函数()3f x x =图象关于原点成中心对称,所以将圆的圆心放在原点,则函数()3f x x =是该圆的“优美函数”,故选项B 正确;对于C :将圆的圆心放在正弦函数sin y x =的对称中心上,则正弦函数sin y x =是该圆的“优美函数”,故选项C 正确;对于D :函数()y f x =的图象是中心对称图形,则函数()y f x =是“优美函数”,但是函数()y f x =是“优美函数”时,图象不一定是中心对称图形,如图所示:,所以函数()y f x =的图象是中心对称图形是函数()y f x =是“优美函数”的充分不必要条件,故选项D 错误,故选:D.二、填空题共5题,每题5分,共25分.11.抛物线2y ax =的焦点为()1,0-,则a =______. 【答案】-4【解析】由焦点为()1,0-,得抛物线开口向左0a <,且12p=,即2p =,所以24a p =-=-. 故答案为:4-12.已知向量(3,2)m =u r ,(,1)n λ=r ,其中R λ∈.若向量m u r 与23m n -u r r共线,则λ=_____.【答案】32【解析】由题可得23(63,1)m n λ-=-u r r ,因为向量m u r 与23m n -u r r共线,所以(63)230λ-⨯-=,解得32λ=.故答案为:32.13.已知双曲线222:1(0)4x y C b b-=>的左、右顶点分别为A 、B ,点P 在双曲线C 上,且直线PA 与直线PB 的斜率之积为1,则双曲线C 的焦距为__________.【答案】【解析】由双曲线方程知:()2,0A -,()2,0B ,设()00,P x y ,则200020001224PA PBy y y k k x x x ⋅=⋅==+--,即22004x y -=, 又2200214x y b-=,24b ∴=,2228c a b ∴=+=,∴双曲线C的焦距为2c =.故答案为:.14.已知等差数列{}n a 的公差0d ≠,且139,,a a a 构成等比数列{}n b 的前3项,则1392410a a a a a a ++=++________;又若2d =,则数列{}n b 的前n 项的和n S =________.【答案】131631n - 【解析】因为139,,a a a 构成等比数列{}n b 的前3项,所以2319a a a =,则()()211128a d a a d +=+,化简得1a d =,所以*()n a nd n N =∈,1392410(139)13(2410)16a a a d a a a d ++++==++++;当2d =时,1392,6,18a a a ===, 所以等比数列{}n b 的首项为2,公比为3,数列{}n b 的前n 项和()2133113n n nS -==--.故答案为:1316;31n - 15.对定义在[0,1]上的函数()f x ,如果同时满足以下两个条件:(1)对任意的[0,1]x ∈总有()0f x …; (2)当10x …,20x …,121x x +„时,总有()()()1212f x x f x f x ++…成立. 则称函数()f x 称为G 函数.若()21xh x a =⋅-是定义在[0,1]上G 函数,则实数a 的取值范围为________.【答案】{}1【解析】因为()21xh x a =⋅-是定义在[0,1]上G 函数,所以对任意的[0,1]x ∈总有()0h x ≥,则12x a ≥对任意的[0,1]x ∈恒成立,解得1a ≥, 当1a ≥时,又因为10x …,20x …,121x x +„时, 总有()()()1212h x x h x h x ++…成立, 即()()()121112122221x x x x h x x h x h x a a a ++-+=⋅-⋅-⋅+⎡⎤⎣⎦()()12212110x x a a =--+-≥恒成立,即()()1212121x x a a-≤--恒成立, 又此时()()122121xx--的最小值为0,即10a a-≤恒成立, 又因为1a ≥解得1a =. 故答案为:{}1三、解答题共6题,共85分.解答应写出文字说明,演算步骤或证明过程. 16.(本小题14分)如图,直四棱柱ABCD –A 1B 1C 1D 1的底面是菱形,AA 1=4,AB =2,∠BAD =60°,E ,M ,N 分别是BC ,BB 1,A 1D 的中点.(1)证明:MN ∥平面C 1DE ;(2)求AM 与平面A 1MD 所成角的正弦值.【答案】(1)见解析(2【解析】(1)连接ME ,BC ∵M ,E 分别为B 1B ,BC 的中点 ∴112ME B C =P又∵11A B AB CD ==PP∴A 1DCB 1是平行四边形 ∴11A D B C =P∴ND ME =P∴NDEM 是平行四边形 ∴NM ∥DE 又NM ⊄平面C 1DE ∴NM ∥平面C 1DE(2)由题意得DE 与BC 垂直,所以DE 与AD 垂直:以D 为原点,DA ,DE ,DD 1三边分别为x ,y ,z 轴,建立空间坐标系O -xyz则A (2,0,0),A 1(2,0,4),M (12) 设平面A 1MD 的法向量为(,,)n x y z =r则100n DA n DM ⎧⋅=⎨⋅=⎩u u u u v v u u u u v v∴24020x z x z +=⎧⎪⎨++=⎪⎩ 解得(2,0,1)n =-r又(2)AM =-u u u u r∴cos 5AM n AM n AM n⋅⋅===-u u u u r ru u u u r r u u u u r r ∴AM 与平面A 1MD19.(本小题14分)已知ABC V 满足 ,且23b A π==,求sinC 的值及ABC V 的面积.(从①4B π=,②a =③a =这三个条件中选一个,补充到上面问题中,并完成解答.) 【答案】见解析【解析】选择①时:4B π=,23A π=,故()sin sin sin cos cos sin 4C A B A B A B =+=+= 根据正弦定理:sin sin a b A B =,故3a =,故1sin 2S ab C ==.选择②时,a =b ,故B A >,A 为钝角,故无解.选择③时,a B =,根据正弦定理:sin sin a bA B==,解得sin B ,()sin sin sin cos cos sin C A B A B A B =+=+= 根据正弦定理:sin sin a b A B =,故3a =,故19sin 24S ab C -==.20.(本小题14分)如图是2019年11月1日到11月20日,某地区甲流疫情新增数据的走势图.(1)从这20天中任选1天,求新增确诊和新增疑似的人数都超过100的概率;(2)从新增确诊的人数超过100的日期中任选两天,用X 表示新增确诊的人数超过140的天数,求X 的分布列和数学期望;(3)根据这20天统计数据,预测今后该地区甲流疫情的发展趋势.【答案】(1)320;(2)分布列见解析,()23E X =;(3)见解析 【解析】(1)由图知,在统计出的20天中,新增确诊和新增疑似人数超过100人的有3天, 设事件A 为“从这20天中任取1天,新增确诊和新增疑似的人数都超过100”,则()320P A =. (2)由图知,新增确诊的日期中人数超过100的有6天中,有2天人数超过140, 所以X 的所有可能值为0,1,2.所以()2426205C P X C ===,()1124268115C C P X C ===,()22261215C P X C ====. 所以X 的分布列为所以X 的数学期望为()012515153E X =⨯+⨯+⨯=. (3)预测一:新增确诊和新增疑似的人数逐渐减少. 预测二:新增确诊和新增疑似的人数每天大致相当. 预测三:该地区甲流疫情趋于减缓.预测四:该地区甲流疫情持续走低,不会爆发.(答案不唯一,只要结论是基于图表的数据得出的,都给分). 19.(本小题15分)已知函数()sin ln f x x x =+.(Ⅰ)求曲线()y f x =在点ππ(,())22M f 处的切线方程;(Ⅱ)证明:函数()f x 在区间(1,3)上存在唯一的极大值点; (Ⅲ)证明:函数()f x 有且仅有一个零点. 【答案】(Ⅰ)2π=ln π2y x +(Ⅱ)证明见解析(Ⅲ)证明见解析 【解析】(Ⅰ)因为()sin ln ,0f x x x x =+>,所以1'()cos 0f x x x x=+>,,π2'()2πk f ==,又因为ππ()1+ln22f =,所以切线方程为π2π(1ln )()2π2y x -+=-, 即:2π=ln π2y x +. (Ⅱ)证明:因为cos y x =和1y x=在()1,3上单调递减, 所以'()f x 在()1,3上单调递减,且'(1)cos110f =+>.又121111'(3)cos3cos π0333236f =+<+=-+=-<, 所以在()1,3内有且仅有一个实数0x ,使得0'()f x =0,并且当01x x <<时,0'()'()0f x f x >=,当03x x <<时,0'()'()0f x f x <=, 所以()f x 在区间()1,3上有唯一的极大值点0x . (Ⅲ)证明:当еx >时,ln 1x >,sin 1x ≥-,此时()sin ln 0f x x x =+>. 当1еx ≤≤时,ln 0x ≥,sin 0x >,此时()sin ln 0f x x x =+>.当01x <<时,因为1'()cos 0f x x x=+>,所以()f x 在()0,1内单调递增. 因为11()1sin0ееf =-+<,(1)sin10f =>, 所以()f x 在()0,1上有且仅有一个零点. 综上所述,函数()f x 有且仅有一个零点. 20.(本小题14分)已知椭圆()222210x y a b a b+=>>离心率为45,椭圆上的点到右焦点的最小距离是1,直线:1l y kx =+交椭圆于A 、B 两点,O 为坐标原点, (1)求椭圆的方程;(2)求三角形AOB 面积的最大值,并求此时直线l 的方程.【答案】(1)221259x y +=(2)面积的最大值为3,此时直线l 的方程是1y =. 【解析】(1)因为45c a =,1a c -=,所以5a =,4c =,3b =,221259x y +=,(2)把直线:1l y kx =+代入椭圆,得,()22925502000k xkx ++-=,>0∆设()11,A x y ,()22,B x y ,则12250925k x x k -+=+,122200925x x k -=+AB ===O到直线l 的距离为d =12S AB d ==,设29259t k =+≥,则S ===1109t ⎛⎫<≤ ⎪⎝⎭当119t=,即9t =,即0k =时,max 3S =,此时直线l 的方程是1y =. 21.(本小题14分)数字()1,2,3,...,2n n ≥的任意一个排列记作()12,,...,n a a a ,设n S 为所有这样的排列构成的集合.集合(){12,,...,n n n A a a a S =∈任意整数,.1,i j i j n ≤<≤都有}i j a i a j -≤-,集合(){12,,...,n n n B a a a S =∈任意整数,,1,i j i j n ≤<≤都有}i j a i a j +≤+(1)用列举法表示集合33,A B ;(2)求集合n n A B I 的元素个数;(3)记集合n B 的元素个数为n b ,证明:数列{}n b 是等比数列.【答案】(1)(){}31,2,3A =,()()()(){}31,2,3,1,3,2,2,1,3,3,2,1B = ;(2) n n A B I 的元素个数为1;(3)证明见解析【解析】(1)(){}31,2,3A =,()()()(){}31,2,3,1,3,2,2,1,3,3,2,1B = (2)考虑集合n A 中的元素()12,,...,n a a a .由已知,对任意整数,.1,i j i j n ≤<≤都有i j a i a j -≤-,所以i j a i i a j j -+≤-+,所以<i j a a .由,i j 的任意性可知,()12,,...,n a a a 是1,2,3,...,n 的单调递增排列,所以(){}1,2,3,...,n A n =.又因为当(),1k a k k N k n +=∈≤≤时,对任意整数,.1,i j i j n ≤<≤ 都有i j a i a j ≤++.所以()1,2,3,...,n n B ∈,所以n n A B ⊆.所以集合n n A B I 的元素个数为1.(3)由(2)知,0n b ≠.因为()(){}21,2,2,1B =,所以22b =. 当3n ≥时,考虑n B 中的元素()12,,...,n a a a .(i )假设(),1k a n k N k n +=∈≤≤.由已知, ()11k k a k a k ++≤++,所以()111k k a a k k n +≥+-+=-,又因为11k a n +≤-,所以+11k a n =-.依此类推,若k a n =,则+11k a n =-,+22k a n =-,n a k =. ①若1k =,则满足条件的1,2,3,...,n 的排列()12,,...,n a a a 有1个.②若2k =,则234,1,2,...,2n a n a n a n a ==-=-=.所以11a =.此时满足条件的1,2,3,...,n 的排列()12,,...,n a a a 有1个. ③若2k n <<,只要()121,,...,k a a a -是1,2,3,...,1k -的满足条件的一个排列,就可以相应得到1,2,3,...,n 的一个满足条件的排列.此时,满足条件的1,2,3,...,n 的排列()12,,...,n a a a 有1k b -个.(ii )假设n a n =,只需()121,,...,n a a a -是1,2,3,...,1n -的满足条件的排列,此时满足条件的1,2,3,...,n 的排列()12,,...,n a a a 有1n b -个.综上23111...,3n n b b b b n -=+++++≥.因为3221142b b b =++==,且当4n ≥时, ()2321111...2n n n n b b b b b b ---=++++++=,所以对任意,3n N n +∈≥,都有12nn b b -=. 所以{}n b 成等比数列.。

2020年百校联考高考百日冲刺数学试卷(理科)(一)(含答案解析)

2020年百校联考高考百日冲刺数学试卷(理科)(一)(含答案解析)

2020年百校联考高考百日冲刺数学试卷(理科)(一)一、选择题(本大题共12小题,共60.0分)1.设集合A={x∈R|x>1},B={x∈R|x2≤4},则A∪B=()A. [−2,+∞)B. (1,+∞)C. (1,2]D. (−∞,+∞)=()2.若复数z=m(m−1)+(m−1)i是纯虚数,其中m是实数,则1zA. −iB. 2iC. iD. −2i3.某中学共有360名教师,其中一线教师280名,行政人员55人,后勤人员25人,采取分层抽样,拟抽取一个容量为72的样本,则一线教师应该抽取()人.A. 56B. 28C. 11D. 54.过三点A(1,3),B(4,2),C(1,−7)的圆交y轴于M,N两点,则|MN|等于()A. 2√6B. 8C. 4√6D. 105.执行如图所示的程序框图,若输入x=2,则输出的S值为()A. 8B. 19C. 42D. 896.《九章算术》卷第五《商功》中,有问题“今有刍甍,下广三丈,袤四丈,上袤二丈,无广,高一丈.问积几何?”,意思是:“今有底面为矩形的屋脊状的楔体,下底面宽3丈,长4丈;上棱长2丈,无宽,高1丈(如图).问它的体积是多少?”这个问题的答案是()A. 5立方丈B. 6立方丈C. 7立方丈D. 9立方丈7. 设S n 为等差数列{a n }的前n 项和,且a 7=4,则S 13= ( )A. 52B. 39C. 26D. 138. 在(3−x)(x +1)n (n ∈N ∗)的展开式中,已知各项系数之和为64,则x 3的系数是( )A. 10B. 20C. 30D. 409. 如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的体积是( )A. 323B. 163C. 8√33 D. 16√2310. 如图,已知双曲线C :x 2a2−y 2b 2=1(a >0,b >0)的右顶点为A ,O 为坐标原点,以A 为圆心的圆与双曲线C 的某渐近线交于两点P 、Q ,若∠PAQ =60°,且OQ ⃗⃗⃗⃗⃗⃗ =3OP ⃗⃗⃗⃗⃗ ,则双曲线C 的离心率为( )A. 2√33 B. √72 C. √396D. √311. 已知定义在R 上的可导函数f(x)的导函数为f′(x),满足f′(x)<f(x),且f(0)=12,则不等式f(x)−12e x <0的解集为( )A. (−∞,12)B. (0,+∞)C. (12,+∞)D. (−∞,0)12.已知数列{a n}的前n项和为S n,若a1=1,a2n=n−a n,a2n+1=a n+1,则S100=()A. 1306B. 1308C. 1310D. 1312二、填空题(本大题共4小题,共20.0分)13.已知向量a⃗=(2,1),b⃗ =(1,−2),则(a⃗+2b⃗ )⋅a⃗=______ .14.设变量x,y满足约束条件{y≥xx+2y−2≤0x+2≥0则z=|x−3y|的最大值是.15.函数f(x)=x2−2lnx的单调减区间是________.16.已知函数的部分图象如图所示,则f(0)=__________.三、解答题(本大题共7小题,共84.0分)17.如图,在梯形ABCD中,已知AD//BC,AD=1,BD=2√10,∠CAD=π4,tan∠ADC=−2,(1)求CD的长;(2)求ΔBCD的面积。

2020届百校联考高考百日冲刺金卷(全国I卷语文)

2020届百校联考高考百日冲刺金卷(全国I卷语文)

2020届百校联考高考百日冲刺金卷全国I卷·语文(三)注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在本试卷相应的位置。

2.全部答案写在答题卡上,写在本试卷上无效。

3.本试卷满分150分,测试时间150分钟。

4.考试范围:高考全部内容。

一、现代文阅读(36分)(一)论述类文本阅读(本题共3小题,9分)阅读下面的文字,完成1~3题。

不断提升中华文化在世界上的影响力,需要把中华优秀传统文化的精神实质讲清楚,让世界知道中华文化究竟是一种什么样的文化。

回顾中华民族5000多年的文明史,先秦时期的春秋战国无疑是中华文化发展的第一个高峰时期。

正是这一时期的众多杰出思想家,提出了中华文化的若干基本主张。

在诸多主张之中,对个人与他人关系问题的探讨当属最重要的。

老子的《道德经》讲,“既以为人己愈有,既以与人己愈多”,最终形成“为而不争”的主张。

这样的主张把个人和他人作为一个整体来思考,反映了在中华文明形成早期我们的先哲思考这一问题的出发点。

孔子同老子相呼应,提出“己欲立而立人,己欲达而达人”“己所不欲,勿施于人”。

孔子主张把自己和他人合为一体,设身处地去思考人如何在社会上生活,如何同他人和谐共生,这就是孔子的仁学。

作为孔子的后学,孟子提出“老吾老以及人之老,幼吾幼以及人之幼”,主张“穷则独善其身,达则兼善天下”。

《礼记》中有很经典的一句话:“君子贵人而贱己,先人而后己,则民作让。

”这句话是说凡事要尊重别人,把他人摆在第一位,一个社会若能做到“先人后己”,那么礼让和谐就会蔚然成风。

同样的思想还见于《尚书》,该书《大禹谟》一篇记载上古君臣治国之道,主张多方听取意见,甚至可以“舍己从人”。

中华文化始终把人作为探究的核心,而这个“人”并不仅仅是生理意义上的个体,更主要的是具有社会意义的人群。

正是在追求人己和谐共生的历史演进中,人们不断完善自我,逐步形成了中华民族“先人后己”的传统美德。

此后,经过一代又一代的传承,“舍己为人”逐渐成为中华民族的崇高精神追求。

2020年百校联考高考百日冲刺数学试卷(文科)(一)(全国Ⅰ卷)(有答案解析)

2020年百校联考高考百日冲刺数学试卷(文科)(一)(全国Ⅰ卷)(有答案解析)

2020年百校联考高考百日冲刺数学试卷(文科)(一)(全国Ⅰ卷)一、选择题(本大题共12小题,共60.0分)1.已知集合,,则A. B. C. D.2.设复数,则复数z的虚部为A. B. C. D.3.为了调查某地区不同年龄、不同等级的教师的工资情况,研究人员在A学校进行抽样调查,则比较合适的抽样方法为A. 简单随机抽样B. 系统抽样C. 分层抽样D. 不能确定4.若双曲线的离心率为,则双曲线C的渐近线方程为A. B. C. D.5.执行如图所示的程序框图,若判断框中的条件为,则输出A的值为A.B. 2C.D.6.九章算术卷第五商功中有如下问题:“今有冥谷上广二丈,袤七丈,下广八尺,袤四丈,深六丈五尺,问积几何”译文为:“今有上下底面皆为长方形的墓坑,上底宽2丈,长7丈;下底宽8尺,长4丈,深6丈5尺,问它的容积量是多少?”则该几何体的容积为注:1丈尺.A. 45000立方尺B. 52000立方尺C. 63000立方尺D. 72000立方尺7.记单调递减的等比数列的前n项和为,且,若,则数列的公比为A. B. C. D.8.图中小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的表面积为A.B.C.D.9.设函数,则函数的图象大致为A. B.C. D.10.设抛物线C:的焦点F到其准线l的距离为2,点A,B在抛物线C上,且A,B,F三点共线,作,垂足为E,若直线EF的斜率为4,则A. B. C. D.11.记等差数列的前n项和为,且,若,,成等比数列,则A. 13B. 15C. 17D. 1912.已知,则a,b,c的大小关系为A. B. C. D.二、填空题(本大题共4小题,共20.0分)13.已知向量,若,则实数的值为______.14.已知首项为1的数列满足,则数列的通项公式为______.15.已知函数,则函数在上的取值范围为______.16.已知函数,若直线l与曲线交于M,N,P三点,且,则点N的坐标为______.三、解答题(本大题共7小题,共82.0分)17.在中,,,,M是线段AC上的一点,且.Ⅰ求AM的长度;Ⅱ求的面积.18.如图,在四棱锥中,,,.在线段AB上作出一点E,使得平面PDE,并说明理由;若,,求点B到平面PAD的距离.19.为了响应绿色出行,某市推出了一款新能源租赁汽车,并对该市市民对这款新能源租赁汽车的使用态度进行调查,具体数据如表1所示:愿意使用新能源租赁汽车不愿意使用新能源租赁汽车总计男性8001000女性600总计1200相关研究人员还调查了某一辆新能源租赁汽车一个月内的使用时间情况,统计如表2所示:时间分钟频数150********根据上述事实,研究人员针对租赁的价格作出如下调整,该价格分为两部分:根据行驶里程数按1元公里计费;行驶时间不超过45分钟,按元分计费;超过45分钟,超出部分按元分计费.是否有的把握认为该市市民对这款新能源租赁汽车的使用态度与性别有关;根据表中的数据求该辆汽车一个月内的平均使用时间;若小明的住宅距离公司20公里,且每天驾驶新能源租赁汽车到公司的时间在分钟之间,若小明利用滴滴打车到达公司需要27元,讨论:小明使用滴滴打车上班还是驾驶新能源租赁汽车上班更加合算.附:k20.已知中,,,,点Q在线段上,且Ⅰ求点Q的轨迹E的方程;Ⅱ若点M,N在曲线E上,且M,N,三点共线,求面积的最大值.21.已知函数.求曲线在处的切线方程;已知函数存在极大值和极小值,且极大值和极小值分别为M,N,若,,求的最大值.22.在平面直角坐标系xOy中,曲线C的参数方程为为参数,点M是曲线C上的任意一点,将点M绕原点O逆时针旋转得到点以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系.Ⅰ求点N的轨迹的极坐标方程;Ⅱ若曲线与曲线C,分别交于点A,B,点,求的面积.23.已知函数.Ⅰ求不等式的解集;Ⅱ若关于x的不等式在R上恒成立,求实数m的取值范围.-------- 答案与解析 --------1.答案:D解析:解:依题意,,,故.故选:D.可以求出集合A,B,然后进行交集的运算即可.考查描述法、区间表示集合的定义,函数的定义域,不等式的解法以及交集的运算.2.答案:C解析:解:,复数z的虚部为.故选:C.直接利用复数代数形式的乘除运算化简得答案.本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题.3.答案:C解析:解:A学校不同年龄、不同等级的教师的工资情况相差较大,研究人员在A学校进行抽样调查时,则比较合适的抽样方法是按照年龄或等级,采取分层抽样的方法,故选:C.由题意利用分层抽样的定义和方法,得出结论.本题主要考查分层抽样的定义和方法,属于基础题.4.答案:C解析:解:双曲线的离心率为,可得,即,解得,双曲线C的渐近线方程为:.故选:C.利用双曲线的离心率求出a,b关系,即可区间双曲线的渐近线方程.本题考查双曲线的简单性质的应用,是基本知识的考查,基础题.5.答案:B解析:解:由题意,模拟程序的运行,可得,满足条件,执行循环体,,满足条件,执行循环体,,满足条件,执行循环体,,观察规律可知A的取值周期为3,且,可得时,满足条件,执行循环体,,此时,不满足条件,退出循环,输出A的值为2.故选:B.由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量A的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.6.答案:B解析:解:进行分割如图所示,故立方尺.故选:B.利用分割几何体为锥体,棱柱,然后求解几何体的体积即可.本题考查几何体的体积的求法,考查转化思想以及计算能力,是中档题.7.答案:C解析:解:设单调递减的等比数列的公比为,,,,解得:,或舍去.则数列的公比为.故选:C.设单调递减的等比数列的公比为,由,,可得:,解得:q.本题考查了等比数列的通项公式、求和公式及其单调性,考查了推理能力与计算能力,属于基础题.8.答案:C解析:解:由三视图还原原几何体如图,该几何体为组合体,上面部分为两个四分之一圆锥,底面半径为2,高为2,中间部分为棱长是4的正方体,下面部分为直三棱柱.则其表面积:.故选:C.由三视图还原原几何体,该几何体为组合体,上面部分为两个四分之一圆锥,底面半径为2,高为2,中间部分为棱长是4的正方体,下面部分为直三棱柱,则其表面积可求.本题考查由三视图求面积、体积,关键是由三视图还原原几何体,是中档题.9.答案:B解析:解:函数的定义域为R,,则函数为偶函数,可排除选项C;当时,,可排除选项D;又,可排除A.故选:B.根据函数解析式判断奇偶性,结合极限和特殊值进行排除选项,即可得解.本题考查根据函数解析式选择合适的函数图象,关键在于熟练掌握函数性质,结合特殊值与极限求解,此类问题常用排除法解决.10.答案:C解析:解:由抛物线的性质可得:焦点F到其准线l的距离为2,可得,所以抛物线的方程为:所以可得焦点,准线方程为,设,,由题意可得,可得,所以,将代入抛物线中,,,及,所以,所以直线AB的方程为:,与抛物线联立可得,所以,所以,所以,故选:C.由抛物线的性质,焦点到准线的距离为p,由题意可得p的值,可求出抛物线的方程,设A,B的坐标,由题意可得E的坐标,求出直线EF的斜率,由题意可得E的坐标,将E的纵坐标代入抛物线求出B的坐标,进而求出直线AB的斜率及方程,代入抛物线的方程求出A的横坐标,由抛物线的性质可得的值.本题考查抛物线的性质,及直线与抛物线的综合,属于中档题.11.答案:C解析:解:等差数列的公差设为d,前n项和为,由,可得,即,由,可得,即,解得,,则,,若,,成等比数列,则,即为,可得,则.故选:C.等差数列的公差设为d,运用等差数列的通项公式和求和公式,解方程可得首项和公差,再由等比数列的中项性质,解方程可得m,进而得到所求值.本题考查等差数列的通项公式和求和公式的运用,同时考查等比数列的中项性质,考查方程思想和运算能力,属于基础题.12.答案:A解析:解:由于,根据三角函数的值,则,由于,所以,根据近似值的运算,整理得.故.故选:A.直接利用三角函数的值和正弦函数的图象的应用求出结果.本题考查的知识要点:三角函数的值的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.13.答案:解析:解:根据题意,向量,则,若,则,则;故答案为:.根据题意,由向量的坐标公式可得,由向量垂直与数量积的关系可得,解可得的值,即可得答案.本题考查向量数量积的计算,涉及向量的坐标计算,属于基础题.14.答案:解析:解:,,又,数列是首项为,公比为5的等比数列,,,故答案为:.由可得,所以构造出等比数列,再利用等比数列的通项公式即可求出.本题主要考查了数列的递推式,以及构造等比数列求数列的通项,是中档题.15.答案:解析:解:,当时,,,则当时,函数取得最大值,最大值为,当时,函数取得最小值,最小值为,即的取值范围是,故答案为:.利用三角函数的倍角公式,以及辅助角公式进行化简,求出角的范围,结合三角函数的单调性和最值关系求出最大值和最小值即可.本题主要考查三角函数的图象和性质,利用辅助角公式进行化简,求出角的范围,结合三角函数的单调性和最值关系是解决本题的关键.难度不大.16.答案:解析:解:函数,若直线l与曲线交于M,N,P三点,且,所以N是MP的中点,因为函数,可得,,令,解得,此时,所以函数的对称中心的坐标.所以,故答案为:.利用已知条件说明N是函数的对称中心的坐标,通过平方转化求解即可.本题考查函数的导数的应用,函数的极值以及函数的对称中心的关系,是基本知识的考查.17.答案:解:Ⅰ;,;由正弦定理,,即,解得;由余弦定理,,即,解得;Ⅱ,,在中,由余弦定理,有,.解析:Ⅰ先求出的正弦值和余弦值,利用正弦定理求出BM的长,利用余弦定理求出AM 的长;Ⅱ利用正弦定理求出的值,利用余弦定理求出CM的值,最后使用公式求出的面积.本题考查了利用正弦定理和余弦定理解三角形,已知条件较多,难度不大,但是计算量较大,属中档题.18.答案:解:取AB的中点E,连接PE,DE,,,又,,则四边形DCBE为平行四边形,可得.平面PDE,平面PDE,则平面PDE;,,且,平面PCD,又平面ABCD,平面平面ABCD,平面平面,在平面PCD内过P作,可得平面ABCD,在与中,,,又由题意,,,由已知求得..连接BD,则,又求得,设B到平面PAD的距离为h,则由,得,即.解析:取AB的中点E,连接PE,DE,可证四边形DCBE为平行四边形,得,由直线与平面平行的判定可得平面PDE;由已知证明平面PCD,可得平面平面ABCD,在平面PCD内过P作,得平面ABCD,求解三角形求得,再由等体积法求点B到平面PAD的距离.本题考查直线与平面平行的判定,考查空间想象能力与思维能力,训练了利用等体积法求点到面的距离,是中档题.19.答案:解:补充完整的列联表如下所示,愿意使用新能源租赁汽车不愿意使用新能源租赁汽车合计男性 800 200 1000女性 400 600 1000合计 1200 800 2000,故有的把握认为该市市民对这款新能源租赁汽车的使用态度与性别有关.表2中的数据整理如下,时间分钟频数 150 200 100 50频率所求的平均使用时间为分钟.设小明驾驶新能源租赁汽车到达公司需要y元,上班所用的时间为t分钟,当时,;当时,.故,当时,;当时,,令,解得,综上所述:当时,使用驾驶新能源租赁汽车上班更加合算;当时,使用滴滴打车上班更加合算;当时,两种方案情况相同.解析:先根据现有数据补充完整列联表,再利用的公式计算出其观测值,并与附表中的临界值进行对比即可作出判断;根据表格2中的频数分布,计算出每一组的频率,再利用平均数的计算方法求解即可;设小明驾驶新能源租赁汽车到达公司需要y元,上班所用的时间为t分钟,写出y关于t的分段函数,并求出每段中对应的y的取值范围,便于知道滴滴打车花费的27元在租赁新能源汽车花费中对应的上班时间,然后,解得,最后分类说明哪种方式上班更合算即可.本题考查独立性检验,根据频数分布表计算平均数,利用函数模型来解决优化问题等,解题的关键是熟练掌握相关计算公式,考查学生对数据的分析能力、逻辑推理能力和运算能力,属于中档题.20.答案:解:Ⅰ设,,,点Q在线段上,且,点Q为焦点在x轴上,长轴长,焦距的椭圆上的点,且,点Q的轨迹E的方程为;Ⅱ设直线MN的方程为,联立可得,设,,则,.,点到直线MN的距离,,令,则在上单调递减,故当也即时,面积的最大值为3.解析:Ⅰ先设点Q的坐标,再由椭圆的定义求得其轨迹方程;Ⅱ先设出直线MN的方程与椭圆方程联立求得,,进而求得与点到直线MN的距离d,找出面积的表达式,最后解决其最值问题.本题主要考查椭圆的定义及圆锥曲线中的最值问题,属于中档题.21.答案:解:依题意,函数的定义域为,,故,而,故所求切线方程为,即;依题意,,故,显然,令,解得或,因为极大值,故,此时,函数,所以,令,得,当a变化时,,,变化情况如下表:a2e增极大值减所以函数的最大值为.解析:根据导函数求出切线斜率,利用点斜式写出直线方程化简得解;根据导函数讨论单调性求出极大值,讨论的单调性即可求得最值.本题考查导数的几何意义,求解切线方程,利用导函数讨论函数单调性,求解极值和最值问题,属于中档题.22.答案:解:Ⅰ依题意,曲线C的普通方程为,即,整理可得:,故曲线C的极坐标方程为,设,则,则有,故点N的轨迹的极坐标方程为.Ⅱ曲线的极坐标方程为,D到曲线的距离为,曲线与曲线C交点,曲线与曲线交点,,故的面积.解析:Ⅰ直接利用转换关系,把参数方程极坐标方程和直角坐标方程之间进行转换.Ⅱ利用直线和圆的位置关系的应用和极径的应用及三角形的面积公式的应用求出结果.本题考查的知识要点:参数方程极坐标方程和直角坐标方程之间的转换,直线和圆的位置关系的应用,极径的应用,三角形面积公式的应用,主要考查学生的运算能力和转换能力及思维能力,属于中档题型.23.答案:解:Ⅰ依题意,,当时,原式化为,解得,故,当时,原式化为,解得,故无解,当时,原式化为,解得,故,综上所述,不等式的解集为.Ⅱ依题意,,则,即,即,则只需,解得,实数m的取值范围是.解析:Ⅰ依题意,,运用零点分区间和绝对值的定义,去绝对值,解不等式,求并集,可得所求解集;Ⅱ依题意可得,即,再由二次函数的性质,结合判别式小于等于0,解不等式可得所求范围.本题考查绝对值不等式的解法,注意运用分类讨论思想,考查不等式恒成立问题解法,注意运用绝对值不等式的解法和二次函数的性质,考查运算能力和推理能力,属于中档题.。

2020届百校高考百日冲刺金卷全国Ⅰ卷数学(文)(三)试题(解析版)

2020届百校高考百日冲刺金卷全国Ⅰ卷数学(文)(三)试题(解析版)

2020届百校高考百日冲刺金卷全国Ⅰ卷数学(文)试题一、单选题 1.已知集合{}|22xA x =>,{}2|,RB y y x x ==∈,则()R A B =( )A .[0,1)B .(0,2)C .(,1]-∞D .[0,1]【答案】D【解析】根据指数函数单调性,求出{|1}A x x =>,得出R{|1}A x x =,求出集合B ,根据交集的计算即可得出答案. 【详解】解:由题可知,{}|22{|1}xA x x x =>=>,R {|1}A x x ∴=,{}2|,{|0}B y y x x y y ==∈=R ,所以()R{|01}B x A x ⋂=.故选:D. 【点睛】本题考查集合的交集和补集运算,属于基础题. 2.已知i 是虚数单位,11122z i i ⎛⎫-= ⎪⎝⎭,则复数z 所对应的点位于( ) A .第一象限 B .第二象限C .第三象限D .第四象限【答案】B 【解析】【详解】 解:11122z i i ⎛⎫-= ⎪⎝⎭, 11122221115111222ii i i z i i i ⎛⎫+ ⎪-+⎝⎭∴===⎛⎫⎛⎫⎛⎫--+ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭,整理得1255z i =-+,则复数z 所对应的点为(12,55-),位于第二象限. 故选:B. 【点睛】本题考查复数的除法运算以及复数的几何意义,属于基础题.3.已知O 为坐标原点,椭圆2222:1x y C a b+=(0)a b >>,过右焦点F 的直线l x ⊥轴,交椭圆C 于A ,B 两点,且AOB ∆为直角三角形,则椭圆C 的离心率为( )A .B C .12D 【答案】A【解析】因为椭圆2222:1x y C a b+=(0)a b >>,过右焦点F 的直线l x ⊥轴,交椭圆C于A ,B 两点,且AOB ∆为直角三角形,根据椭圆通径可得:22||b AB a=,结合已知,即可求得答案. 【详解】椭圆2222:1x y C a b+=(0)a b >>,过右焦点F 的直线l x ⊥轴,交椭圆C 于A ,B 两点,且AOB ∆为直角三角形根据椭圆通径可得:22||b AB a =,∴2b ca, 2b ac ∴=,22a c ac ∴-=,210e e ∴+-=,解得12e -+=或12e --=. 故选:A. 【点睛】本题主要考查了求椭圆的离心率,解题关键是掌握椭圆离心率定义和椭圆的通径求法,考查了分析能力和计算能力,属于中档题.4.如图,长方形内部的阴影部分为六个全等的小正三角形顶点连接组成的图形T ,在长方形内随机取一点,则此点取自阴影部分T 的概率是( )A .18B .14C .12D .23【答案】B【解析】设小三角形的边长为13和为333642⨯=,又长方形的宽为3,长为3423=,即可求得答案. 【详解】设小三角形的边长为13333642⨯=, 又长方形的宽为3,长为3423= ∴长方形的面积为3故此点取自阴影部分T 3312463=. 故选:B. 【点睛】本题主要考查了几何型概率问题,解题关键是掌握概率计算公式,考查了分析能力和计算能力,属于基础题.5.在ABC ∆中,23AB =4AC =,D 为BC 上一点,且3BC BD =,2AD =,则BC 的长为( ) A 42 B 42 C .4 D 42【答案】D【解析】设BD x =,由余弦定理222(2)22cos AC AD x AD x ADC =+-⋅∠,2222cos AB AD x AD x ADB =+-⋅∠,即可求得答案.【详解】 设BD x =,由余弦定理222(2)22cos AC AD x AD x ADC =+-⋅∠;即22242(2)222cos x x ADC =+-⨯⋅∠——①2222cos AB AD x AD x ADB =+-⋅∠;即222222cos x x ADB =+-⨯∠,——② 又()0cos cos 180cos ADC ADB ADB ∠=-∠=-∠——③由①②③可得.3x =, ∴3B B D C ==故选:D. 【点睛】本题主要考查了根据余弦定理解三角形,解题关键是掌握余弦定理公式和灵活使用诱导公式,考查了分析能力和计算能力,属于基础题. 6.已知()sin 2cos 2f x a x b x =+的最大值为412f π⎛⎫=⎪⎝⎭,将()f x 图象上所有点的横坐标伸长为原来的2倍得到的函数解析式为( ) A .4sin 23y x π⎛⎫=+⎪⎝⎭B .4sin 3y x π⎛⎫=+⎪⎝⎭C .14sin 23y x π⎛⎫=+ ⎪⎝⎭D .4sin 43y x π⎛⎫=+⎪⎝⎭【答案】B【解析】根据题意,()f x 的最大值为4且412f π⎛⎫=⎪⎝⎭,列式可算出2a =,b =利用辅助角公式化简得()2sin 224sin 23f x x x x π⎛⎫=+=+ ⎪⎝⎭,根据平移伸缩的性质即可得出变换后的解析式. 【详解】解:由题可知,()sin 2cos 2f x a x b x =+的最大值为4,则22()sin(2)f x a b x ϕ=++,224a b +=, 且22sin cos 121212f a b πππ⎛⎫=+⎪⎝⎭, 解之得2a =,23b =.故()2sin 223cos 24sin 23f x x x x π⎛⎫=+=+ ⎪⎝⎭,将()f x 图象上所有点的横坐标伸长为原来的2倍, 得到4sin 3y x π⎛⎫=+ ⎪⎝⎭. 故选:B. 【点睛】本题考查三角函数的平移伸缩求解析式,涉及三角函数最值和辅助角公式的应用,考查计算能力.7.如图为某几何体的三视图,则该几何体的体积为( )A .233π- B .223π- C .23π D .413π- 【答案】B【解析】由几何体的三视图,可看出几何体为一个半球挖去个正四棱锥后剩余的几何体,根据棱锥和球的体积公式求出几何体的体积. 【详解】解:根据三视图,此几何体为一个半球挖去个正四棱锥后剩余的几何体, 2,高为1, 所以四棱锥的体积为1222133=,半球的体积为322133ππ⨯⨯=,故该几何体的体积为223π-. 故选:B. 【点睛】本题考查由三视图还原几何体,以及运用棱锥和球的体积公式,考查想象能力和计算能力.8.函数()()22xf x x x e =-的图象大致为( )A .B .C .D .【答案】B【解析】判断函数的奇偶性,结合具体函数值,进行排除即可. 【详解】易知()f x 定义域为R ,()()()()2222x xf x x x e x x e f x -⎡⎤-=---=-=⎣⎦,∴()f x 为偶函数,关于y 轴对称,∴排除C ,又()()21112f e e =-=-,排除A 和D.故选:B. 【点睛】本题考查了函数图象的识别和判断,考查了函数的奇偶性,属于基础题. 9.已知0a b >>,1ab =,设2ab x =,2log ()y a b =+,1z a b=+,则log 2x x ,log 2y y ,log 2z z 的大小关系为( )A .log 2log 2log 2x y z x y z >>B .log 2log 2log 2y z x y z x >>C .log 2log 2log 2x z y x z y >>D .log 2log 2log 2y x z y x z >>【答案】B【解析】由已知0a b >>,1ab =,可得1=a b,且a >1>b >0,不难判断x ,y ,z 的大小关系01x y z <<<<,再根据对数运算法则及对数函数性质可得大小关系. 【详解】∵a >b >0,1ab =,∴可得1=a b ,且a >1>b >0, ∴11222a ab x a ==<⋅,222log ()log log 21y a b =+>==, 122z a a a a b=+=+=>, 又()()22log (1)z y a a b f a a -=-+=>, ()120f a a b'=-+>,()f a 单调递增, ()()212log (1)0f a f b =-+>>,∴z y ->0, ∴01x y z <<<<,∵log 2=log 21x x x +,log 2log 21y y y =+,log 2=log 2+1z z z , 根据对数函数性质可得log 2log 2log 2x z y <<, ∴log 2log 2log 2y z x y z x >>. 故选B . 【点睛】本题考查对数函数的性质及运算定律,涉及基本不等式和不等式性质的应用,属于综合题.10.执行如图所示的程序框图,则输出的结果为( )A .31B .39C .47D .60【答案】D【解析】根据循环程序框图,循环计算到11n =时,输出T ,即可得出答案. 【详解】解:根据题意,0T =,1n =;8T =,2n =;84T =+,3n =;844T =++,4n =;8448T =+++,5n =;84480T =++++,6n =; 8448+012T =++++,7n =; 84480124T =+++++-,8n =; 8448012416T =+++++-+,9n =; 84480124168T =+++++-+-,10n =; 8448012416820T =+++++-+-+,11n =,故输出的结果为844801241682060T =+++++-+-+=. 故选:D. 【点睛】本题考查程序框图的循环计算,考查计算能力.11.已知三棱柱111ABC A B C -3的球,四边形11A ACC 与11B BCC 均为正方形,,M N 分别是11A B ,11A C 的中点,11112C M A B =,则异面直线BM 与AN 所成角的余弦值为( )A .310B .3010C .710D .7010【答案】B【解析】画出图形,找出BM 与AN 所成角的平面角,利用解三角形求出BM 与AN 所成角的余弦值. 【详解】直三棱柱ABC −A 1B 1C 1中,∠BCA =90°,M ,N 分别是A 1B 1,A 1C 1的中点, 如图:BC 的中点为O ,连结ON ,MN ∥12B 1C 1=OB ,则MNOB 是平行四边形,BM 与AN 所成角就是∠ANO , ∵,M N 分别是11A B ,11A C 的中点,11112C M A B =,可得A 1C 1⊥B 1C 1,四边形11A ACC 与11B BCC 均为正方形,可得BC =CA =CC 1, ∵三棱柱111ABC A B C -3 设BC =CA =CC 1=a ,三棱柱111ABC A B C -外接球可看作棱长为a 的正方体外接球, 22223a a a ++=a =2, ∴BC =CA =CC 1=2,CO =1,AO 5AN 5()222211226NO MB B M BB ==+=+=在△ANO 中,由余弦定理可得:222302256AN NO AO cos ANO AN NO +-∠===⋅⨯⨯故选:B . 【点睛】本题考查异面直线及其所成的角,涉及几何体外接球及空间位置关系等知识点,根据外接球半径解出三棱柱棱长是关键点,也是本题难点,属于较难题.12.已知函数22e 1,0,()22,0,x x f x x x x ⎧->=⎨---≤⎩若|()|f x mx ≥恒成立,则实数m 的取值范围为( )A .222,2⎡⎤-⎣⎦B .222,1⎡⎤-⎣⎦C .222,e ⎡⎤-⎣⎦D .22e,e ⎡⎤-⎣⎦【答案】A【解析】作出函数|()|f x 的图象如图所示,在考虑直线与曲线相切时m 的临界值,结合图像即可得到答案. 【详解】作出函数|()|f x 的图象如图所示;当0x ≤时;令222x x mx ++=,即2(2)20x m x +-+=, 令0∆=,即2(2)80m --=,解得222m =± 结合图象可知,222m =-当0x >时,令2e 1x mx -=,则此时2()e 1xf x =-,()h x mx =相切,设切点()020,1x x e-,则00202e 1,2e ,x x mx m ⎧-=⎨=⎩解得2m =,观察可知,实数m 的取值范围为222,2⎡⎤-⎣⎦.故选:A. 【点睛】本题考查利用导数研究恒成立问题,考查函数与方程思想、转化与化归思想、分类讨论思想、数形结合思想,考查逻辑推理能力、运算求解能力,求解时注意借助图像的直观性进行分析.二、填空题13.已知向量(2,1)a =,(,1)b m =-,且(2)b a b ⊥-,则a b ⋅=______. 【答案】1或5【解析】由(2,1)a =,(,1)b m =-,求得2(4,3)a b m -=-,利用向量垂直的坐标运算,即可求出m ,再结合向量的数量积运算,即可求出结果. 【详解】解:根据题意,2(4,3)a b m -=-,(2)b a b ⊥-,(4)30m m ∴--=,解得:1m =或3m =,所以1a b ⋅=或5. 故答案为:1或5. 【点睛】本题考查平面向量的坐标运算,以及向量垂直的坐标运算和向量的数量积,考查计算能力.14.若sin cos 63παα⎛⎫++= ⎪⎝⎭,则2cos 23πα⎛⎫+= ⎪⎝⎭_________. 【答案】79【解析】由sin cos 63παα⎛⎫++=- ⎪⎝⎭,展开化简可得1sin 33πα⎛⎫+=- ⎪⎝⎭,结合已知,即可求得答案. 【详解】由sin cos 6παα⎛⎫++= ⎪⎝⎭展开化简可得coscos sincos 66s in ππααα++= 整理可得:1sin 33πα⎛⎫+=- ⎪⎝⎭, ∴22217cos 212sin 123339ππαα⎛⎫⎛⎫⎛⎫+=-+=--=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.故答案为:79. 【点睛】本题主要考查了求三角函数值,解题关键是掌握正弦两角和公式和余弦的二倍角公式,考查了分析能力和计算能力,属于基础题.15.已知圆22:20(0)M x y ay a +-=>与直线0x y +=相交所得圆的弦长是过点(3,0)A 作圆M 的切线,则切线长为_______. 【答案】3【解析】根据题意,得出圆222:()(0)M x y a a a +-=>的圆心为(0,)a ,利用点到直线的距离公式,求出圆心(0,)a 到直线0x y +=的距离d =,再结合弦长公式求得2a =【详解】解:由题知,圆222:()(0)M x y a a a +-=>, 圆心为(0,)a ,半径r a =, 圆心(0,)a 到直线0x y +=的距离d =所以=,解得:2a =.故圆M 的方程为22(2)4x y +-=.过点(3,0)A 作圆M 的切线,所以切线长为:3==.故答案为:3. 【点睛】本题考查直线与圆的位置关系,涉及圆心和半径、点到直线距离和切线长等知识,考查解题能力.16.某饮料厂生产A ,B 两种饮料.生产1桶A 饮料,需该特产原料100公斤,需时间3小时;生产1桶B 饮料,需该特产原料100公斤,需时间1小时,每天A 饮料的产量不超过B 饮料产量的2倍,每天生产两种饮料所需该特产原料的总量至多750公斤,每天生产A 饮料的时间不低于生产B 饮料的时间,每桶A 饮料的利润是每桶B 饮料利润的1.5倍,若该饮料厂每天生产A 饮料m 桶,B 饮料n 桶时()*,m n N∈利润最大,则m n +=_________.【答案】7【解析】设每天A ,B 两种饮料的生产数量分别为x 桶,y 桶,则有0,0231001007500x y x y x y y x ≥≥⎧⎪≤⎪⎨≥⎪⎪+-≤⎩,画出可行域,结合已知,即可求得答案. 【详解】设每天A ,B 两种饮料的生产数量分别为x 桶,y 桶,则有0,0231001007500x y x y x y y x ≥≥⎧⎪≤⎪⎨≥⎪⎪+-≤⎩ 则其表示的可行域如图中阴影部分所示,设B 饮料每桶利润为1,则目标函数为 1.5z x y =+,则 1.5y x z =-+,z 表示直线在y 轴上的截距,x ,y 只取整数,∴当直线 1.5y x z =-+经过点()4,3即4m =,3n =时,z 取得最大值,故7m n +=. 故答案为:7. 【点睛】本题主要考查了线性规划问题,关键是根据所给的约束条件准确地画岀可行域和目标函数.在平面区域中,求线性目标函数的最优解,要注意分析线性目标函数所表示的几何意义,从而确定目标函数在何处取得最优解.三、解答题17.已知正项等比数列{}n a 满足12a =,23732a a =,数列{}n b 的前n 项和2n S n n =-.(Ⅰ)求数列{}n a 与{}n b 的通项公式;(Ⅱ)设,,,,n n n a n c b n ⎧=⎨⎩为奇数为偶数求数列{}n c 的前n 项和n T .【答案】(Ⅰ)2nn a =,22n b n =-;(Ⅱ)222122(1),3222,23n n n n n T n n ++⎧--+⎪⎪=⎨-⎪+⎪⎩为奇数为偶数. 【解析】(1)利用等比数列的性质和通项公式,求出2q ,即可得出数列{}n a 的通项公式;利用n S 和n b 的关系,求出{}n b 的通项公式;(2)根据题意可知,数列{}n c 的奇数项构成一个等比数列,首项为2,公比为4,数列{}n c 的偶数项构成一个等差数列,首项为2,公差为4,利用等比数列和等差数列的前n 项和公式,即可求出n T . 【详解】(Ⅰ)根据题意,12a =,22532a =,12a ∴=,532a =,故2q,所以2nn a =,因为2n S n n =-,()221(1)(1)22(2)n n n b S S n n n n n n -⎡⎤∴=-=-----=-⎣⎦,又110b S ==,所以22n b n =-.(Ⅱ)根据题意,数列{}n c 的奇数项构成一个等比数列,首项为2,公比为4, 数列{}n c 的偶数项构成一个等差数列,首项为2,公差为4,所以当n 为偶数时,221214(222)22214223nn n n n n T +⎛⎫- ⎪+--⎝⎭=+=+-, 当n 为奇数时,122211214(224)22(1)2214232n n nn n n n n n T T c -+-⎛⎫-- ⎪+---⎝⎭=+=++=+-,故22 2122(1),3222,23nn nnnTnn++⎧--+⎪⎪=⎨-⎪+⎪⎩为奇数为偶数【点睛】本题考查等比数列的通项公式和递推关系求通项公式,以及等比数列和等差数列的前n 项和公式,考查计算能力.18.2019年中央电视台在周日晚上推出的一档新的综艺节目,为了解节目效果,一次节目结束后,现随机抽取了500名观众(含200名女性)的评分(百分制)进行分析,分别得到如图所示的两个频率分布直方图.(1)计算女性观众评分的中位数与男性观众评分的平均分;(2)若把评分低于70分定为“不满意”,评分不低于70分定为“满意”.(i)试比较男观众与女观众不满意的概率大小,并说明理由;(ii)完成下列22⨯列联表,并回答是否有95%的把握认为性别和对该综艺节目是否满意有关.女性观众男性观众合计“满意”“不满意”合计参考数据:22()()()()()n ad bcKa b c d a c b d-=++++()2P K k≥0.050.0100.001k 3.841 6.63510.828【答案】(1)女性观众评分的中位数为75,男性观众评分的平均数为73.5(2)(i )男性观众不满意的概率大,详见解析(ii )填表见解析;有95%的把握认为性别和对该综艺节目是否满意有关【解析】(1)根据所给数据,即可求得中位数和平均数,即可求得答案;(2)记A C 表示事件:“女性观众不满意”;B C 表示事件:“男性观众不满意”,由直方图求得()A P C 和()B P C ,即可比较男观众与女观众不满意的概率大小. 完成下列22⨯列联表,计算出2K ,结合已知,即可求得答案. 【详解】(1)根据题意,设女性观众评分的中位数为x ,100.01100.02(70)0.040.5x ⨯+⨯+-⨯=,75x ∴=.男性观众评分的平均数为550.15650.25750.3850.2950.173.5⨯+⨯+⨯+⨯+⨯=. (2)(i )男性观众不满意的概率大,记A C 表示事件:“女性观众不满意”;B C 表示事件:“男性观众不满意”,由直方图得()A P C 的估计值为(0.010.02)100.3+⨯=, ()B P C 的估计值为(0.0150.025)100.4+⨯=,所以男性观众不满意的概率大. (ii )列联表如下图:所以22500(14012018060) 5.208 3.841200300320180K ⨯⨯-⨯=≈>⨯⨯⨯故有95%的把握认为性别和对该综艺节目是否满意有关.【点睛】本题主要考查了根据频率直方图计算中位数和平均数,及其卡方计算,解题关键是掌握频率直方图基础知识和卡方计算方法,考查了分析能力和计算能力,属于基础题. 19.如图,在三棱锥A BCD -中,ABD ∆是等边三角形,平面ABD ⊥平面BCD ,BC CD ⊥,2BC CD ==,E 为三棱锥A BCD -外一点,且CDE ∆为等边三角形.(1)证明:AC BD ⊥;(2)若AE ⊥平面CDE ,求点E 到平面BCD 的距离. 【答案】(1)证明见解析(2)633+ 【解析】(1)要证AC BD ⊥,只需证BD ⊥平面AOC ,即可求得答案;(2)因为平面ABD ⊥平面BCD ,平面ABD ⋂平面CBD CD =,所以AO ⊥平面BCD ,且2BD =,3AO =,取CD 的中点F ,连接OF ,EF ,同理可证CD ⊥平面EOF ,CD ⊥平面AOF ,结合已知,即可求得答案. 【详解】(1)取BD 的中点O ,连接OC ,OA ,ABD ∆是等边三角形,∴AO BD ⊥,又BC CD =,∴CO BD ⊥,CO AO O ⋂=,∴BD ⊥平面AOC ,AC ⊂平面AOC ,故AC BD ⊥. (2)平面ABD ⊥平面BCD ,平面ABD ⋂平面CBD CD =,∴AO ⊥平面BCD ,且2BD =,AO =取CD 的中点F ,连接OF ,EF ,同理可证CD ⊥平面EOF ,CD ⊥平面AOF ,A ∴,O ,F ,E 共面,∴平面BCD ⊥平面OFE ,作EH 垂直OF 于点H ,则EH ⊥平面BCD ,故点E 到平面BCD 的距离即为EH , 又AE ⊥平面CDE ,所以AE EF ⊥,AE EC ⊥,∴2OF =,EF =,2AF =,AE =由sin sin()EFO AFO AFE ∠=∠+∠sin cos cos sin AFO AFE AFO AFE =∠∠+∠∠∴27EH +==. 【点睛】本题主要考查了求证异面直线垂直和求点到面距离,解题关键是掌握将求证线线垂直转化为线面垂直的证法和点到面距离的定义,考查了分析能力和计算能力,属于中档题. 20.已知抛物线2:2(0)C y px p =>的焦点为F ,圆22:3O x y +=与抛物线C 相交于,M N 两点,且||MN =(Ⅰ)若,,A B E 为抛物线C 上三点,若F 为ABC 的重心,求FA FB FE ++的值;(Ⅱ)抛物线C 上存在关于直线:20l x y --=对称的相异两点P 和Q ,求圆O 上一点G 到线段PQ 的中点H 的最大距离.【答案】(Ⅰ)3;(Ⅱ【解析】(Ⅰ)根据题意,求出,M N 的坐标,得出抛物线22y x =,由焦点1,02F ⎛⎫⎪⎝⎭,F 为ABC 的重心,设点()11,A x y ,()22,B x y ,()33,E x y ,得出()12332FA FB FE x x x ++=+++,即可得出结果;(Ⅱ)设点()11,P x y ,()22,Q x y ,利用点差法,求得122PQ k y y =+,根据条件,得出122y y +=-,得出线段PQ 的中点H 坐标为(1,1)-,即可得出G 到线段PQ 的中点H 的最大距离.【详解】(Ⅰ)因为,M N 关于x 轴对称,所以,M N 的纵坐标为,横坐标为1, 代入22(0)y px p =>,可得22y x =,依题意,设点()11,A x y ,()22,B x y ,()33,E x y , 又焦点1,02F ⎛⎫⎪⎝⎭, 所以12313322x x x ++=⨯=, 则123111222FA FB FE x x x ⎛⎫⎛⎫++=+++++ ⎪ ⎪⎝⎭⎝⎭. ()1233333222x x x =+++=+= (Ⅱ)设点()11,P x y ,()22,Q x y ,则2112222,2,y x y x ⎧=⎨=⎩ 则()()()1212122y y y y x x -+=-,122PQ k y y ∴=+,又,P Q 关于直线l 对称,1PQ k ∴=-,即122y y +=-,1212y y +∴=-, 又PQ ∵的中点一定在直线l 上,12122122x x y y ++∴=+=, ∴线段PQ 的中点H 坐标为(1,1)-,故GH ≥=从而G 到H 【点睛】本题考查抛物线的标准方程,涉及点差法求直线的斜率、点对称的性质、中点坐标公式等知识点,考查转化思想和解题能力. 21.已知函数()ln f x x x =-.(I )当12x <<时,比较ln x x ,2ln x x ⎛⎫ ⎪⎝⎭,22ln x x 的大小; (Ⅱ)当102m <≤时,若方程2()21f x mx mx m =-++在(0,)+∞上有且只有一个解,求m 的值.【答案】(I )222ln ln ln x x x x x x ⎛⎫<< ⎪⎝⎭;(Ⅱ)12. 【解析】(I )由题可知,函数()f x 的定义域为(0,)+∞,11()1x f x x x '-=-=,利用导函数得出()f x 的单调性,得出()ln (1)10f x x x f =->=>,则有ln 10xx>>,再利用作差法,即可比较ln x x ,2ln x x ⎛⎫ ⎪⎝⎭,22ln x x 的大小;(Ⅱ)由题知,设2()ln (21)g x mx x x mx m =-+---,则()g x 在(0,)+∞上有且只有一个零点,而(1)0g =,故函数()g x 有零点1x =,由(21)(1)()mx x g x x--=',再利用导函数研究()g x 的单调性和极值,即可求出m 的值. 【详解】(Ⅰ)函数()f x 的定义域为(0,)+∞,11()1x f x x x '-=-=, 令11()10x f x x x -'=-=>,得1x >,令11()10x f x x x-'=-=<,得01x <<, 所以函数()f x 的单调递减区间为(0,1),函数()f x 的单调递增区间为(1,)+∞.所以()ln (1)10f x x x f =->=>,所以ln 0x x >>,即ln 10x x>>, 所以2ln ln x x x x ⎛⎫< ⎪⎝⎭; 又因为222ln ln 2ln ln 0x x x x x x x x --=>, 所以222ln ln ln x x x x x x ⎛⎫<< ⎪⎝⎭; (Ⅱ)设2()ln (21)g x mx x x mx m =-+---, 则()g x 在(0,)+∞上有且只有一个零点,又(1)0g =,故函数()g x 有零点1x =,212(21)1(21)(1)()212mx m x mx x g x mx m x x x-++--+='-=-=, 当12m =时,()0g x ', 又()g x 不是常数函数,故()g x 在(0,)+∞上单调递增,∴函数()g x 有且只有一个零点1x =,满足题意 当102m <<时,由()0g x '=,得12x m =或1x =,且112m>, 由()0g x '>,得01x <<或12x m>, 由()0g x '<,得112x m <<, 故当x 在(0,)+∞上变化时,()g x ',()g x 的变化情况如下表:根据上表知012g m ⎛⎫ ⎪⎭<⎝, 又1()2ln 1g x mx x m x m ⎡⎫⎛⎤=-++++ ⎪⎢⎥⎝⎦⎣⎭, 120g m ⎛⎫∴+> ⎪⎝⎭, 故在1,2m ⎛⎫+∞ ⎪⎝⎭上,函数()g x 又有一个零点,不满足题意, 综上所述,12m =. 【点睛】 本题考查利用导函数比较大小以及根据方程解得个数求参数,还涉及利用导数研究函数的单调性、极值,考查转化能力、综合分析能力和计算能力.22.在平面直角坐标系xOy 中,曲线1C 的参数方程为1212x y ⎧=-⎪⎪⎨⎪=+⎪⎩(t 为参数),以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,已知点,,A B C 的极坐标分别为53(4,),(4,),(4,)662πππ,且ABC ∆的顶点都在圆2C 上,将圆2C 向右平移3个单位长度后,得到曲线3C .(1)求曲线3C 的直角坐标方程;(2)设()1, 1M ,曲线1C 与3C 相交于,P Q两点,求MP MQ ⋅的值.【答案】(1)22(3)16x y -+=(2)11【解析】(1)直接利用转换关系,把极坐标转化为直角坐标,再进一步求解即可,进行转换;(2)由(1)联立曲线1C 与3C ,利用一元二次方程根和系数的关系即可求出结果.【详解】(1)由cos ,sin x y ρθρθ==可得点A 的直角坐标系为2)A ,点B 的直角坐标系为(2)B -,点C 的直角坐标系为(0,4)C -.设圆2C 的直角坐标系方程为222()x y m r +-=, 代入,A C 可得222212(2)(4)m r m r ⎧+-=⎨--=⎩, 0,4m r ==∴.∴圆2C 的直角坐标方程为2216x y +=.故曲线3C 的直角坐标方程为:22(3)16x y -+=.(2)由(1)联立曲线1C ,3C 可得22(13)(1)1622--++=,整理可得,2110t +-=,121211t t t t +=-=-∴,1212||||||||11MP MQ t t t t ⋅=⋅=-=∴.【点睛】本题主要考查参数方程、极坐标方程,直线与圆的位置关系等知识,考查转化能力和运算求解能力,属于中档题.23.已知函数()|31||2|f x x x =-+-.(1)求不等式()3f x ≥的解集;(2)若1,1m n >>,对x R ∀∈,不等式2253log log ()m n f x ⋅≥恒成立,求mn 的最小值.【答案】(1){|0x x ≤或1}x ≥.(2)4【解析】(1)由题意可得,利用零点分段法进行分区间讨论,脱去绝对值符号解不等式,再求并集即可;(2)由题意可得22log log 1m n ⋅≥,利用基本不等式22log log 2m n +≥≥,从而求得mn 的最小值.【详解】(1)原不等式可化为|31||2|3x x -+-≥,①当13x ≤时, 原不等式可化为3123x x -++-≥,解得0x ≤,0x ∴≤;②当123x <<时, 原不等式可化为3123x x -+-≥,解得1x ≥,12x ≤<∴;③当2x ≥时,原不等式可化为3123x x --+≥, 解得32x ≥, 2x ∴≥;综上,不等式的解集为{|0x x ≤或1}x ≥.(2)143,31()21,2343,2x x f x x x x x ⎧-+≤⎪⎪⎪=+<<⎨⎪-≥⎪⎪⎩, min 15()()33f x f ==∴. ∴由2253log log ()m n f x ⋅≥恒成立可知, 不等式22log log 1m n ⋅≥恒成立.22log log 2m n +≥≥,2log ()2m n ⋅≥∴,4m n ⋅≥∴,当且仅当2m n ==时等号成立.∴故mn 的最小值4.【点睛】本题考查绝对值三角不等式及基本不等式的应用,绝对值不等式的解法通常零点分段法脱去绝对值分区间解不等式即可,基本不等式的应用需注意取等条件不要遗漏,属于中等题.。

2020届百校高考百日冲刺金卷全国Ⅰ卷数学(文)(二)试题(解析版)

2020届百校高考百日冲刺金卷全国Ⅰ卷数学(文)(二)试题(解析版)
2020 届百校高考百日冲刺金卷全国Ⅰ卷数学(文)试题
一、单选题
1.已知集合 A x | x 6 且 x N* ,则 A 的非空真子集的个数为( )
A.30
B.31
C.62
D.63
【答案】A
【解析】先化简集合 A,再根据非空真子集的个数与集合 A 的元素个数间的关系求解.
【详解】
因为集合 A x | x 6 且 x N* 1, 2,3, 4,5 ,
x 22 y2 1相切,则有 2b 1求解.
a2 b2
【详解】
双曲线 C1 的一条渐近线方程为 bx ay 0 ,
圆心 2,0 到渐近线的距离为 1,

2b a2 b2
1,得 a2 =
3b2
即b 3. a3
所以双曲线 C1 的渐近线方程为: y
3x 3
故选;D
【点睛】
本题主要考查双曲线的几何性质和直线与圆的位置关系,还考查了理解辨析的能力,属
1 i
2
故选:C.
【点睛】
本题考查了复数的乘除运算与模长计算问题,是基础题.
3.在 ABCO 中, O 为原点, A1, 2 , C 2,3 ,则 B 点坐标为( )
A. 3,1
B. 1, 5
C. 1,5
D. 3, 1
【答案】A
【解析】设 B x, y
,根据四边形为平行四边形,则有 OB OA OC 求解。
于基础题.
7.已知等差数列 an 的前 n 项和 Sn 满足: S37 S23 a ,则 S60 ( )
A. 4a
B. 30 a 7
C. 5a
D. 40 a 7
第 3 页 共 24 页
【答案】B

2020届百校联考高考百日冲刺全国I卷文科数学试题三和答案详细解析及备考策略

2020届百校联考高考百日冲刺全国I卷文科数学试题三和答案详细解析及备考策略

“满意”
“不满意”
合计
参考数据:K2=
P(K2≥k)
0.05
0.010
0.001
k
3.841
6.635
10.828
19.(12 分)如图,在三棱锥 A﹣BCD 中,△ABD 是等边三角形,平面 ABD⊥平面 BCD,BC⊥
CD,BC=CD= ,E 为三棱锥 A﹣BCD 外一点,且△CDE 为等边三角形. (Ⅰ)证明:AC⊥BD; (Ⅱ)若 AE⊥平面 CDE,求点 E 到平面 BCD 的距离.
[选修 4-5:不等式选2|.
(1)求不等式 f(x)≥3 的解集; (Ⅱ)若 m>1,n>1,对∀ x∈R,不等式 小值.
恒成立,求 mn 的最
2020 届百校联考高考百日冲刺全国 I 卷文科数学试题三答案
一、选择题:本大题共 12 小题,每小题 5 分,在每小题给出的四个选项中,只有一项是符 合题目要求的. 1.D; 2.B; 3.A; 4.B; 5.D; 6.B; 7.B; 8.B; 9.B; 10.D; 11.B; 12.A; 二、填空题:本大题共 4 小题,每小题 5 分. 13.1 或 5; 14. ; 15.3; 16.7;
一个真正的人,首先必须是一个爱国的人。一个人,没有脊梁骨,便不能直立行走;一 个人,不属于他的祖国,便不属于人类。
谁能忘记,屈原“长太息以掩涕兮,哀民生之多艰”的忧国忧民,曹植“捐躯赴国难, 视死忽如归”的慷慨凛然,陆游“僵卧孤村不自哀,尚思为国戍轮台”的矢志不移。
三、佳作欣赏
龙的脊梁
读屈原的名辞《离骚》后,有人写下这样的诗句:
你埋下了一坛老酒/酒坛上的红纸/沉沉地写着黑字/——魂/每当到了汩罗江悲凄 的那一天/那酒坛里就溢出芦叶的清香/回荡起亘古不变的激昂/路漫漫其修远兮/吾将 上下而求索……/几千年了/喝过这坛酒的人/都醉成了龙的脊梁……

2020届百校联考高考百日冲刺金卷全国Ⅰ卷 数学(文)

2020届百校联考高考百日冲刺金卷全国Ⅰ卷 数学(文)

2020届百校联考高考百日冲刺金卷全国I 卷·文数(三)注意事项:1.本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分。

2.答题前,考生务必将自己的姓名、准考证号填写在本试卷相应的位置。

3.全部答案写在答题卡上,写在本试卷上无效。

4.本试卷满分150分,测试时间120分钟。

5.考试范围:高考全部内容。

第I 卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)已知集合A ={x|2x >2},B ={y|y =x 2,x ∈R},则(R ðA)∩B =(A)[0,1)(B)(0,2)(C)(-∞,1](D)[0,1](2)已知i 是虚数单位,z(1-12i)=12i ,则复数z 所对应的点位于(A)第一象限(B)第二象限(C)第三象限(D)第四象限(3)已知O 为坐标原点,椭圆C :22221(0)x y a b a b+=>>,过右焦点F 的直线l ⊥x 轴,交椭圆C 于A ,B 两点,且△AOB 为直角三角形,则椭圆C 的离心率为A.152-+ B.132-+ C.12D.152-(4)如图,长方形内部的阴影部分为六个全等的小正三角形顶点连接组成的图形T ,在长方形内随机取一点,则此点取自阴影部分T 的概率是A.18B.14C.12D.23(5)在△ABC 中,AB =3,AC =4,D 为BC 上一点,且BC =3BD ,AD =2,则BC 的长为(A)3(B)2(C)4(6)已知f(x)=asin2x +bcos2x 的最大值为f(12π)=4,将f(x)图象上所有点的横坐标伸长为原来的2倍得到的函数解析式为(A)y =4sin(2x +3π)(B)y =4sin(x +3π)(C)y =4sin(12x +3π)(D)y =4sin(4x +3π)(7)如图为某几何体的三视图,则该几何体的体积为A.233π- B.223π- C.23π D.413π-(7)函数f(x)=(x 2-2|x|)e |x|的图象大致为(9)已知a>b>0,ab =1,设x =2a b ,y =log 2(a +b),z =a +1b,则log x 2x ,log y 2y ,log z 2z 的大小关系为(A)log x 2x>log y 2y>log z 2z (B)log y 2y>log z 2z>log x 2x (C)log x 2x>log z 2z>log y 2y(D)log y 2y>log x 2x>log z 2z(10)执行如图所示的程序框图,则输出的结果为(A)31(B)39(C)47(D)60(11)已知三棱柱ABC -A 1B 1C 13的球,四边形A 1ACC 1与B 1BCC 1均为正方形,M ,N 分别是A 1B 1,A 1C 1的中点,C 1M =12A 1B 1,则异面直线BM 与AN 所成角的余弦值为A.310B.3010C.710D.7010(12)已知函数()221,022,0x e x f x x x x ⎧->⎪=⎨---≤⎪⎩,若|f(x)|≥mx 恒成立,则实数m 的取值范围为(A)[2-2,2](B)[2-2,1](C)[2-2,e](D)[2-e ,e]第II 卷本卷包括必考题和选考题两部分。

2020年百校联考高考百日冲刺数学试卷(理科)(一)(全国Ⅰ卷) (含答案解析)

2020年百校联考高考百日冲刺数学试卷(理科)(一)(全国Ⅰ卷) (含答案解析)

2020年百校联考高考百日冲刺数学试卷(理科)(一)(全国Ⅰ卷)一、选择题(本大题共12小题,共60.0分)1.设集合A={x|2≤x<4},B={x|x−1≥2},则A∩B=()A. [2,3)B. [3,4)C. (3,4)D. [2,4)2.已知在复平面内,复数z对应的点为(1,−1),则z2=()A. 1−2iB. 1+2iC. 2iD. −2i3.某校有高级教师26人,中级教师104人,其他教师若干人,为了了解该校教师的工资收入情况,从该校的所有教师中抽取56人进行调查,若按分层抽样,已知从其他教师中共抽取了16人,则该校共有教师()人.A. 180B. 170C. 172D. 1824.已知双曲线x2a2−y2b2=1(a>0,b>0)的右顶点为M,离心率为√3,过点M与点(0,−2)的直线与双曲线的一条渐近线平行,则双曲线的方程为()A. x24−y22=1 B. x24−y23=1 C. x22−y24=1 D. x22−y2=15.执行如图所示的程序框图,若输入x=−1,则输入y的值为()A. −1B. 0C. 1D. 26.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有曲池,上中周二丈,外周四丈,广一丈,下中周一丈四尺,外周二丈四尺,广五尺,深,丈,问积几何?”其意思为:“今有上下底面皆为扇形的水池,上底中周2丈,外周4丈,宽1丈;下底中周1丈4尺,外周长2丈4尺,宽5尺;深1丈.问它的容积是多少?”则该曲池的容积为()立方尺(1丈=10尺,曲池:上下底面皆为扇形的土池,其容积公式为)A.56503B. 1890C.56303D.566037. 若数列{a n }为等差数列,S n 为其前n 项和,且a 1=2a 5−1,则S 17=( )A. −17B. −172C. 172D. 178. 已知某几何体的三视图如下所示,若网格纸上小正方形的边长为1,则该几何体的最短棱长为( )A. 2B. 2√2C. 2√3D. 49. 设(2−x)5=a 0+a 1x +a 2x 2+⋯+a 5x 5,那么a 0+a 2+a 4a 1+a 3的值为( )A. −122121B. −6160C. −244241D. −110. 抛物线C :y 2=2px(p >0)的焦点F 到准线l 的距离为2,则C 的焦点坐标为( )A. (4,0)B. (2,0)C. (1,0)D. (12,0)11. 已知f(1−x 1+x)=1−x 21+x 2,则曲线y =f(x)在点(0,f(0))处的切线方程为( )A. y =−xB. y =xC. y =2xD. y =−2x12. 已知数列{a n }满足:a 1=1,a n+1+a n =3n +1,则数列{1a2n−1a 2n+1}(n ∈N ∗)的前30项的和为( )A. 2990B. 2988C. 1093D. 3091二、填空题(本大题共4小题,共20.0分) 13. 如图,在边长为2的菱形ABCD 中,,E 为CD 中点,则AE ⃗⃗⃗⃗⃗ ⋅BD ⃗⃗⃗⃗⃗⃗ =______________.14. 已知实数x ,y 满足{x −2y +1≥0x +y −1≥0x <2,则z =2x −y 的取值范围是______.15. 已知函数f(x)=2sin(ωx +φ)(ω>0,且|φ|<π2)的部分图象如图所示,则函数f(x)的单调递增区间是________.16. 已知直线l 1:y =2x +3a ,l 2:y =(a 2+1)x +3,若l 1//l 2,则a =__________. 三、解答题(本大题共7小题,共84.0分)17. 如图,在四边形ABCD 中,AB =5,AD =CD =4,BC =3,A =60∘.(1)求tan∠ABD 的值; (2)求ΔBCD 的面积.18.如图,在三棱锥A−BCD中∠BAC=∠BAD=∠DAC=60°,AC=AD=2,AB=3.(1)证明:AB⊥CD;(2)求CD与平面ABD所成角的正弦值.19.“中国式过马路”存在很大的交通安全隐患.某调查机构为了解路人对“中国式过马路”的态度是否与性别有关,从马路旁随机抽取30名路人进行了问卷调查,得到了如下列联表:男性女性总计反感10不反感8总计30.已知在这30人中随机抽取1人抽到反感“中国式过马路”的路人的概率是815(1)请将上面的列联表补充完整(直接写结果,不需要写求解过程),并据此资料分析反感“中国式过马路”与性别是否有关?(2)若从这30人中的女性路人中随机抽取2人参加一活动,记反感“中国式过马路”的人数为X,求X的分布列和均值..附:K2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d)20.设A是圆O:x2+y2=16上的任意一点,l是过点A且与x轴垂直的直线,B是直线l与x轴的交点,点Q在直线l上,且满足4|BQ|=3|BA|.当点A在圆O上运动时,记点Q的轨迹为曲线C.(1)求曲线C的方程;(2)已知直线y=kx−2(k≠0)与曲线C交于M,N两点,点M关于y轴的对称点为M′,设P(0,−2),证明:直线M′N过定点,并求△PM′N面积的最大值.21.函数(1)当−2<a<0时,求f(x)在(0,1)上的极值点;(2)当m≥1时,不等式f(2m−1)≥2f(m)−f(1)恒成立,求实数a的取值范围.22.平面直角坐标系xOy中,圆C的参数方程为{x=√3+2cosα(α为参数),在以坐标原点O为极y=1+2sinα上,且点P到极点O的距离为4.点,x轴正半轴为极轴的极坐标系中,点P在射线l:θ=π3(1)求圆C的普通方程与点P的直角坐标;(2)求△OCP的面积.23.已知函数f(x)=|x−2|−|x+1|.(Ⅰ)解不等式f(x)>−x;(Ⅱ)若关于x的不等式f(x)≤a2−2a的解集为R,求实数a的取值范围.-------- 答案与解析 --------1.答案:B解析:本题考查描述法、区间的定义,以及交集的运算,属于基础题.先解出集合B,然后进行交集的运算即可.解:B={x|x≥3},∴A∩B={x|3≤x<4}=[3,4).故选:B.2.答案:D解析:本题考查了复数的化简与运算问题,是基础题目.先求出z=1−i,再根据复数的运算法则,进行化简计算即可.解:复数z的对应点为(1,−1),∴z=1−i.∴z2=(1−i)2=−2i.故选D.3.答案:D解析:本题考查了分层抽样,属于基础题.根据各层所占的抽样比相等进行列式求解即可.解:设该校其他教师共有n人,由已知得16n =5626+104+n,解得n=52.∴该校共有教师26+104+52=182人.故选D.4.答案:C解析:本题考查了双曲线的性质,属于基础题.根据斜率公式、渐近线方程求出b,根据离心率计算a,从而得出答案.解:双曲线的右顶点为M(a,0),渐近线方程为:y=±bax.∴过M与点(0,−2)的直线斜率为2a =ba,∴b=2,又e=ca =√a2+b2a=√3,∴a=√2.∴双曲线的方程为x22−y24=1.故选C.5.答案:B解析:解:模拟程序运行可知程序框图的功能是求分段函数y={|x|+1,x<−1x2−1,x=−1x,x>−1的值,代入x=−1,可得y=0,故选:B.模拟程序运行可知程序框图的功能是求分段函数y={|x|+1,x<−1x2−1,x=−1x,x>−1的值,代入x=−1,即可得解.本题主要考查了程序框图和算法,模拟程序运行正确得到程序框图的功能是解题的关键,属于基本知识的考查.6.答案:A解析:本题考查几何体的体积,比较基础.根据已知容积公式求解即可.解:根据已知容积公式可得该曲池的容积为[(2×10+5)×20+402+(2×5+10)×14+242]6×10=56503.故选A.7.答案:D解析:本题考查等差数列的性质及求和问题,属于较易题.求得a9后根据等差数列的性质即可求解,解:因为数列{a n}为等差数列,S n为其前n项和,且a1=2a5−1,所以a1=2(a1+4d)−1,所以a1+8d=1,即a9=1,所以S17=17×(a1+a17)2=17a9=17.故选D.8.答案:B解析:本题考查的知识点棱锥的几何特征,简单几何体的三视图,难度中档.作出直观图,计算各棱长,即可得出结论.解:如图所示,该几何体是三棱锥P−ABC,故可得PC=AB=2√2,BC=4,PA=4√2,PB=AC=2√6,故该几何体的最短棱长为2√2,故选B.9.答案:B解析:本题主要考查二项式定理的应用,是给变量赋值的问题,关键是根据要求的结果,选择合适的数值代入,属于中档题.令x=1,可得a0+a1+a2+a3+a4+a5=1,再令x=−1可得a0−a1+a2−a3+a4−a5=35.解得a0+a2+a4和a1+a3+a5的值,结合a5=−1,即可求得要求式子的值.解:令x=1,可得a0+a1+a2+a3+a4+a5=1,再令x=−1可得a0−a1+a2−a3+a4−a5=35,两式相加除以2可得a0+a2+a4=122,两式相减除以2可得a1+a3+a5=−121,结合a5=C55(2)0(−x)5=−1,故a0+a2+a4a1+a3=122−120=−6160,故选B.10.答案:C解析:本题考查抛物线的性质,属于基础题.根据p的几何意义,即焦点F到准线l的距离是p进行求解.解:∵焦点F到准线l的距离为2,∴p=2.抛物线方程为y2=4x,∴焦点F的坐标为(1,0).故选:C.11.答案:C解析:本题考查函数的解析式的求法以及利用导数研究过曲线上某点处的切线方程,属中档题.先求函数的解析式,再求导函数,最后求切线方程.解:令1−x1+x =t得x=1−t1+t,则f(t)=1−(1−t1+t)21+(1−t1+t)2=4t2+2t2=2tt2+1,所以f(x)=2xx+1,所以f′(x)=2−2x 2(x2+1)2,∴f′(0)=2,又f(0)=0,故切线方程为y =2x . 故选C .12.答案:D解析:解:已知数列{a n }满足:a 1=1,由a n+1+a n =3n +1,得a n+2+a n+1=3n +4, 作差得a n+2−a n =3,故奇数项和偶数项都为以3为公差的等差数列, 由a 1=1,所以a 2k−1=1+(k −1)3=3k −2, 又1a2n−1⋅a 2n+1=13(1a 2n−1−1a 2n+1),所以数列{1a2n−1a 2n+1}(n ∈N ∗)的前30项的和S 30=13[(1a 1−1a 3)+(1a 3−1a 5)+⋯+(1a 59−1a 61)]=13(1−191)=3091. 故选:D .已知数列{a n }满足:a 1=1,由a n+1+a n =3n +1,得a n+2+a n+1=3n +4,作差得a n+2−a n =3,故奇数项和偶数项都为以3为公差的等差数列,求出a 2k−1=1+(k −1)3=3k −2,利用裂项求和法求出结果即可.本题考查了递推公式求通项公式,裂项相消法求数列的前n 项和,考查运算能力,中档题.13.答案:1解析:本题考查了向量的数量积和向量的加减法,AE ⃗⃗⃗⃗⃗ =AD ⃗⃗⃗⃗⃗⃗ +12AB ⃗⃗⃗⃗⃗ ,BD ⃗⃗⃗⃗⃗⃗ =AD ⃗⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ ,所以AE ⃗⃗⃗⃗⃗ ·BD ⃗⃗⃗⃗⃗⃗ =(AD ⃗⃗⃗⃗⃗⃗ +12AB ⃗⃗⃗⃗⃗ )(AD ⃗⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ ),计算即可.解:AE ⃗⃗⃗⃗⃗ =AD ⃗⃗⃗⃗⃗⃗ +DE ⃗⃗⃗⃗⃗⃗ =AD ⃗⃗⃗⃗⃗⃗ +12AB ⃗⃗⃗⃗⃗ , BD ⃗⃗⃗⃗⃗⃗ =AD ⃗⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ ,∴AE ⃗⃗⃗⃗⃗ ·BD ⃗⃗⃗⃗⃗⃗ =(AD ⃗⃗⃗⃗⃗⃗ +12AB ⃗⃗⃗⃗⃗ )(AD ⃗⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ )=AD ⃗⃗⃗⃗⃗⃗ 2−12AD ⃗⃗⃗⃗⃗⃗ ·AB ⃗⃗⃗⃗⃗ −12AB ⃗⃗⃗⃗⃗ 2=22−12×2×2×cos60°−12×22=1,故答案为1.14.答案:[0,5)解析:本题主要考查线性规划的应用,利用数形结合是解决本题的关键,属于基础题. 作出不等式组对应的平面区域,利用目标函数的几何意义即可得到结论. 解:画出不等式组所表示的区域,如图阴影部分所示,做直线l :2x −y =0,平移l 可知过C 时z 最小,过B 时z 最大, 联立{x −2y +1=0x +y −1=0得C(13,23),同理B(2,−1),即z 的取值范围是[0,5). 故答案为:[0,5).15.答案:[kπ−π12,kπ+5π12],k ∈Z解析: 本题考查函数的图像与性质的应用,属于基础题.首先,根据函数图象,确定所给函数的解析式f(x),然后结合三角函数的单调性求解其单调增区间即可. 解:根据函数的部分图象,可得14⋅T =14⋅2πω=2π3−5π12=π4,求得ω=2,所以函数,再把(5π12,2)代入函数的解析式,可得,所以,而|φ|<π2,故φ=−π3,故函数,令,求得,故答案为[kπ−π12,kπ+5π12],k∈Z.16.答案:−1解析:因为l1//l2,所以a2+1=2,a2=1,所以a=±1,又两直线l1与l2不能重合,则3a≠3,即a≠1,故a=−1.17.答案:解:(1)由已知,在△ABD中,由余弦定理有,所以BD=√21,由正弦定理有,所以sin∠ABD=ADBD ·sinA=2√77,因为BD>AD,所以∠ABD为锐角,所以cos∠ABD=√217,tan∠ABD=2√33;(2)在△BCD中,,因为C∈(0,π),所以,所以ΔBCD的面积.解析:本题考查正弦定理余弦定理及面积公式,同时考查同角关系式.(1)由余弦定理,求出BD,然后结合正弦定理和同角关系式求解即可;(2)由余弦定理求出cos C,得sin C,然后由面积公式求解即可.18.答案:证明:(1)∵在三棱锥A−BCD中,∠BAC=∠BAD=∠DAC=60°,AC=AD=2,AB=3.∴△ABD≌△ABC,∴BC=BD,取CD的中点E,连结AE,BE,∴AE⊥CD,BE⊥CD,∵AE∩BE=E,∴CD⊥平面ABE,∵AB⊂平面ABE,∴CD⊥AB.解:(2)在△ABD中,根据余弦定理得:BD2=AB2+AD2−2AB⋅AD⋅cos60°=7,∴BD=√7,∵DE=1,∴BE=√6,AE=√3,∴AB2=BE2+AE2,∴AE⊥BE,设CD到平面ABD的距离为h,CD与平面ABD所成的角为α,∵V A−BCD=V C−ABD,∴13×CD×S△ABE=13×ℎ×S△ABD,∴ℎ=CD×S△ABES△ABD =2×12×√6×√312×3×3×sin60°=2√63,∴sinα=ℎCD =√63.∴CD与平面ABD所成角的正弦值为√63.解析:(1)推导出△ABD≌△ABC,从而BC=BD,取CD的中点E,连结AE,BE,从而AE⊥CD,BE⊥CD,进而CD⊥平面ABE,由此能证明CD⊥AB.(2)由余弦定理求出BD=√7,从而AE⊥BE,设CD到平面ABD的距离为h,CD与平面ABD所成的角为α,由V A−BCD=V C−ABD,求出ℎ=2√63,由此能求出CD与平面ABD所成角的正弦值.本题考查线线垂直的证明,考查线面角的正弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查化归与转化思想,是中档题.19.答案:解(1)由已知数据得K2的观测值k=30×(10×8−6×6)216×14×16×14≈1.158<2.706.所以,没有充足的理由认为反感“中国式过马路”与性别有关.(2)X的可能取值为0,1,2,P(X=0)=C82C142=413,P(X=1)=C61C81C142=4891,P(X=2)=C62C142=1591.所以X的分布列为X的均值为E(X)=0×413+1×4891+2×1591=67.解析:本题考查独立检验思想的应用,离散型随机变量的分布列以及期望的求法,考查计算能力.(1)利用已知条件填写联列表,然后代入公式计算观测值,与观测值表中的数据比较即可;(2)依题意可知X的可能取值为0,1,2,求出相应的概率,写出分布列,然后根据期望公式求解即可.20.答案:解:(1)设Q(x,y),A(x0,y0),∵4|BQ|=3|BA|,Q在直线l上,∴x0=x,|y0|=43|y|.①∵点A在圆x2+y2=16上运动,∴x02+y02=16.②将①式代入②式即得曲线C 的方程为x 216+y 29=1.证明:(2)设M(x 1,y 1),N(x 2,y 2), 则M′(−x 1,y 1),联立{x 216+y 29=1y =kx −2,得(16k 2+9)x 2−64kx −80=0,Δ>0, ∴x 1+x 2=64k 16k 2+9,x 1x 2=−8016k 2+9.∵直线M′N 的斜率k M′N =y 2−y1x 2+x 1,∴直线M′N 的方程为y −y 1=y 2−y1x 2+x 1(x +x 1).令x =0,得y =y 2x 1+y 1x 2x 2+x 1=(kx 2−2)x 1+(kx 1−2)x 2x 2+x 1=2kx 1x 2x 2+x 1−2=−92,∴直线M′N 过定点D(0,−92).△PM′N 面积S △PM ‘N =12|PD|⋅|x 1+x 2| =54×|64k16k 2+9|=8016|k |+9|k|≤2√16|k |×9|k|=103,当且仅当16|k|=9|k |,即k =±34时取等号, ∴△PM′N 面积的最大值为103.解析:本题考查曲线方程的求法,考查直线过定点的证明,考查三角形的面积的最大值的求法,考查椭圆、直线方程、韦达定理、三角形面积公式、均值不等式等基础知识,考查运算求解能力,考查化归与转化思想,是较难题.(1)点A 在圆x 2+y 2=16上运动,引起点Q 的运动,我们可以由4|BQ|=3|BA|,得到点A 和点Q 坐标之间的关系式,并由点A 的坐标满足圆的方程得到点Q 坐标所满足的方程;(2)设M(x 1,y 1),N(x 2,y 2),则M′(−x 1,y 1),联立{x 216+y 29=1y =kx −2,得(16k 2+9)x 2−64kx −80=0,利用直线的斜率,求直线M′N 的方程,即可求得直线M′N 所过定点,并求出△PM′N 面积的最大值.21.答案:解:(1)∵f′(x)=x +1+ax (x >0),令g(x)=x 2+x +a ,∵−2<a <0,∴g(x)的判别式△=1−4a>0,令f′(x)=0,得x=−1+√1−4a2.当−2<a<0时,0<−1+√1−4a2<1,所以f(x)在(0,−1+√1−4a2)上单调递减,在(−1+√1−4a2,1)上单调递增,即f(x)在(0,1)上有1个极值点x0=−1+√1−4a2.(2)不等式f(2m−1)≥2f(m)−f(1)⇔−(2m−1)+aln(2m−1)≥−m2+2alnm,即−(2m−1)+aln(2m−1)≥−m2+alnm2,令g(x)=−x+alnx.∵m2≥2m−1≥1,∴要使不等式−(2m−1)+aln(2m−1)≥−m2+alnm2恒成立,只需g(x)=−x+alnx在[1,+∞)上单调递减,g′(x)=−1+ax,令g′(x)≤0,即a≤x在[1,+∞)上恒成立,可得实数a的取值范围是(−∞,1].解析:本题考查了函数的单调性、最值问题,考查导数的应用以及分类讨论思想、转化思想,是一道中档题.(1)求出函数的导数,解关于导函数的不等式,求出函数的极值点即可;(2)令g(x)=−x+alnx,根据m2≥2m−1≥1,问题转化为g(x)=−x+alnx在[1,+∞)上单调递减,根据函数的单调性求出a的范围即可.22.答案:解:(1)曲线C的普通方程为(x−√3)2+(y−1)2=4,点P的极坐标为(4,π3),直角坐标为(2,2√3).(2)(方法一)圆心C(√3,1),直线OC的方程为:y=√33x⇒x−√3y=0,点P到直线OC的距离d=|2−√3⋅2√3|2=2,且|OC|=2,所以S△OCP=12|OC|⋅d=2.(方法二)圆心C(√3,1),其极坐标为(2,π6),而P(4,π3),结合图形利用极坐标的几何含义,可得∠COP=π3−π6=π6,|OC|=2,|OP|=4,所以S△OCP=12|OC|⋅|OP|sin∠COP=12⋅2⋅4⋅sinπ6=2.解析:本题考查的知识要点:参数方程极坐标方程和直角坐标方程之间的转换,点到直线的距离公式的应用,三角形面积公式的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.(1)直接利用转换关系,把参数方程极坐标方程和直角坐标方程之间的进行转换.(2)利用点到直线的距离公式的应用和三角形的面积公式的应用求出结果.23.答案:解:(Ⅰ)不等式f(x)>−x,即为|x−2|−|x+1|>−x,当x≥2时,x−2−x−1>−x,解得x>3,即x>3;当x≤−1时,2−x+x+1>−x,解得x>−3,即−3<x≤−1;当−1<x<2时,2−x−x−1>−x,解得x<1,即−1<x<1,综上可得原不等式的解集为{x|x>3或−3<x<1};(Ⅱ)关于x的不等式f(x)≤a2−2a的解集为R,即有a2−2a≥f(x)的最大值,由|x−2|−|x+1|≤|x−2−x−1|=3,当且仅当x≤−1时,等号成立,可得a2−2a≥3,解得a≥3或a≤−1.所以实数a的取值范围是(−∞,−1]∪[3,+∞)解析:本题考查绝对值不等式的解法,以及绝对值不等式的性质,不等式恒成立问题解法,考查分类讨论思想和化简运算能力,属于中档题.(Ⅰ)讨论当x≥2时,当x≤−1时,当−1<x<2时,去掉绝对值,解不等式求并集,即可得到所求解集;(Ⅱ)由题意可得a2−2a≥f(x)的最大值,运用绝对值不等式的性质可得最大值,由二次不等式的解法可得a的范围.。

2020届百校联考高考百日冲刺金卷全国Ⅰ卷数学(文)(一)及答案

2020届百校联考高考百日冲刺金卷全国Ⅰ卷数学(文)(一)及答案

2020届百校联考高考百日冲刺金卷全国I 卷·文数(一)第I 卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)已知集合A ={x|4x 2-3x ≤0},B ={x|y =21x -},则A ∩B = (A)[0,34] (B)∅ (C)[0,12] (D) [12,34] (2)设复数4273i z i-=-,则复数z 的虚部为 (A)1729- (B)1729 (C)-129 (D)129 (3)为了调查某地区不同年龄、不同等级的教师的工资情况,研究人员在A 学校进行抽样调查,则比较合适的抽样方法为(A)简单随机抽样 (B)系统抽样 (C)分层抽样 (D)不能确定(4)若双曲线C :22221(0,0)x y a b a b-=>>的离心率为133,则双曲线C 的渐近线方程为 A.2y x =± B.22y x =± C.23y x =± D.32y x =± (5)执行如图所示的程序框图,若判断框中的条件为n<2019,则输出A 的值为(A)12(B)2 (C)-1 (D)-2 (6)《九章算术(卷第五)·商功》中有如下问题:“今有冥谷上广二丈,袤七丈,下广八尺,袤四丈,深六丈五尺,问积几何”。

译文为:“今有上下底面皆为长方形的墓坑,上底宽2丈,长7丈;下底宽8尺,长4丈,深6丈5尺,问它的容积量是多少?”则该几何体的容积为(注:1丈=10尺。

)(A)45000立方尺(B)52000立方尺(C)63000立方尺(D)72000立方尺(7)记单调递减的等比数列{an}的前n项和为S。

,且S3=0,若az=号,则数列{an}的公比为(A)12(B)13(C)23(D)34(8)图中小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的表面积为(A)104+85+2π(B)104+45+(2-2)π(C)104+85+(2-2)π(D)104+85+(22-2) π(9)设函数f(x)=e|x|-5cosx-x2,则函数f(x)的图象大致为(10)设抛物线C:y2=2px(p>0)的焦点F到其准线l的距离为2,点A,B在抛物线C上,且A,B,F三点共线,作BE⊥l,垂足为E,若直线EF的斜率为4,则|AF|=(A)178(B)98(C)1716(D)3316(11)记等差数列{a n}的前n项和为S n,且a4+a6=18,S11=121。

2020届全国1卷百校联考高考冲刺金卷文科数学试卷含答案

2020届全国1卷百校联考高考冲刺金卷文科数学试卷含答案

2020届百校联考高考百日冲刺金卷全国I 卷·文数(一)注意事项:1.本试卷分第I 卷(选择题)和第I 卷(非选择题)两部分。

2.答题前,考生务必将自己的姓名、准考证号填写在本试卷相应的位置。

3.全部答案写在答题卡上,写在本试卷上无效。

4.本试卷满分150分,测试时间120分钟。

5.考试范围:高考全部内容。

第I 卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)已知集合A ={x|4x 2-3x ≤0},B ={x|y 21x -,则A ∩B =(A)[0,34] (B)∅ (C)[0,12] (D) [12,34] (2)设复数4273i z i-=-,则复数z 的虚部为 (A)1729- (B)1729 (C)-129 (D)129 (3)为了调查某地区不同年龄、不同等级的教师的工资情况,研究人员在A 学校进行抽样调查,则比较合适的抽样方法为(A)简单随机抽样 (B)系统抽样 (C)分层抽样 (D)不能确定(4)若双曲线C :22221(0,0)x y a b a b-=>>13,则双曲线C 的渐近线方程为 A.2y x = B.2y x = C.23y x =± D.32y x =± (5)执行如图所示的程序框图,若判断框中的条件为n<2019,则输出A 的值为(A)12(B)2 (C)-1 (D)-2(6)《九章算术(卷第五)·商功》中有如下问题:“今有冥谷上广二丈,袤七丈,下广八尺,袤四丈,深六丈五尺,问积几何”。

译文为:“今有上下底面皆为长方形的墓坑,上底宽2丈,长7丈;下底宽8尺,长4丈,深6丈5尺,问它的容积量是多少?”则该几何体的容积为(注:1丈=10尺。

)(A)45000立方尺(B)52000立方尺(C)63000立方尺(D)72000立方尺(7)记单调递减的等比数列{an}的前n项和为S。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档