高考数学模拟复习试卷试题模拟卷092 4
2024年高考数学模拟试题与答案解析
2024年高考数学模拟试题与答案解析一、选择题1.设集合A={x|x=2k,k∈Z},B={x|x=3k,k∈Z},则A∩B={()}A.{x|x=6k,k∈Z}B.{x|x=2k,k∈Z}C.{x|x=3k,k∈Z}D.{x|x=k,k∈Z}【答案】B解析:集合A包含所有2的倍数,集合B包含所有3的倍数。
A ∩B表示同时属于A和B的元素,即同时是2和3的倍数的数,也就是6的倍数。
所以A∩B={x|x=6k,k∈Z},故选B。
2.若函数f(x)=x²-4x+c的图像的对称轴是x=2,则c的值为()A.4B.3C.2D.1【答案】A解析:函数f(x)=x²-4x+c的图像的对称轴是x=-b/2a,即x=2。
根据对称轴的公式,得到-(-4)/(21)=2,解得c=4。
故选A。
3.已知等差数列的前n项和为Sn=n(a1+an)/2,若S3=18,S6-S3=24,则a4的值为()A.6B.8C.10D.12【答案】B解析:根据等差数列的前n项和公式,得到S3=3(a1+a3)/2=18,即a1+a3=12。
又因为S6-S3=24,得到a4+a5+a6=24。
由等差数列的性质,a3+a6=a4+a5。
将a3+a6替换为a4+a5,得到3a4+3a5=48,即a4+a5=16。
解方程组a1+a3=12和a4+a5=16,得到a4=8。
故选B。
二、填空题4.若|x-2|≤3,则|x+1|的取值范围是______【答案】-2≤x≤5解析:由|x-2|≤3,得到-3≤x-2≤3,即-1≤x≤5。
再由|x+1|的图像可知,当-3≤x≤5时,|x+1|的取值范围是-2≤x≤5。
5.已知函数f(x)=2x²-3x+1,求f(1/2)的值。
【答案】3/4解析:将x=1/2代入函数f(x),得到f(1/2)=2(1/2)²-3(1/2)+1=2/4-3/2+1=3/4。
三、解答题6.(1)求证:对任意正整数n,都有n²+2n+1≥n+2。
高三数学模拟试题及答案
高三数学模拟试题及答案一、选择题(本题共10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1. 已知函数f(x) = 2x^2 - 4x + 3,求f(2)的值。
A. 1B. 3C. 5D. 7答案:C2. 求下列数列的通项公式:数列:1, 1/2, 1/3, 1/4, ...A. a_n = nB. a_n = 1/nC. a_n = n^2D. a_n = 1/(n+1)答案:B3. 已知圆x^2 + y^2 = 9,点P(1, 2),求点P到圆心的距离。
A. 2B. 3C. 4D. 5答案:C4. 已知向量a = (3, -4),向量b = (-2, 3),求向量a与向量b的夹角θ。
A. 30°B. 45°C. 60°D. 90°答案:B5. 已知函数y = x^3 - 3x^2 + 4x,求导数y'。
A. 3x^2 - 6x + 4B. 3x^2 - 6x + 5C. 3x^2 - 6x + 3D. 3x^2 - 6x + 2答案:A6. 已知等差数列的第5项为15,第8项为25,求公差d。
A. 2B. 3C. 4D. 5答案:B7. 已知三角形ABC的三边长分别为a = 3,b = 4,c = 5,求三角形ABC的面积。
A. 6B. 9C. 12D. 15答案:A8. 已知函数f(x) = sin(x) + cos(x),求f(π/4)的值。
A. √2B. √3C. 2D. 1答案:A9. 已知复数z = 1 + i,求z的共轭复数。
A. 1 - iB. 1 + iC. -1 + iD. -1 - i答案:A10. 已知函数y = x^2 - 6x + 9,求函数的最小值。
A. 0B. 3C. 6D. 9答案:A二、填空题(本题共5小题,每小题4分,共20分。
)11. 已知函数f(x) = x^3 - 3x + 1,求f''(x)的值。
高考数学模拟试卷复习试题高三模拟卷文科数学9
高考数学模拟试卷复习试题高三模拟卷文科数学本试题卷共8页,23题(含选考题)。
全卷满分150分。
考试用时120分钟。
一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,有且只有一项符合题目要求。
1.已知集合A={x|x23x<0},B={y|y=},则A∩B()A.(0,3)B.[1,3)C.(3,0)D.(3,1]2.若复数z满足z2=4,则复数z的实部为()A.2B.1C.2D.03.已知命题p:“x<0”是“x+1<0”的充分不必要条件,命题q:“∃x0∈R,x0>0”的否定是“∀x∈R,x2x≤0”,则下列命题是真命题的是()A.p∨(¬q)B.p∧qC.p∨qD.(¬p)∧(¬q)4. 已知圆C过点A(2,4),B(4,2),且圆心C在直线x+y=4上,若直线x+2yt=0与圆C相切,则t的值为()A.6±2B.6±2C.2±6D.6±45.已知函数y=sinωx在[,]上是减函数,则ω的取值范围是()A.[−,0)B.[3,0)C.(0,]D.(0,3]6. 设x1=18,x2=19,x3=20,x4=21,x5=22,将这五个数据依次输入下边程序框进行计算,则输出的S值及其统计意义分别是()A.S=2,即5个数据的方差为2B.S=2,即5个数据的标准差为2C.S=10,即5个数据的方差为10D.S=10,即5个数据的标准差为107.若三角形ABC中,sinCsin(AB)=sin2(A+B),则此三角形的形状是()A.直角三角形B.等腰三角形C.等边三角形D.等腰直角三角形8.某四棱锥的三视图如图所示,则该四棱锥的体积为()A.2B.3C.4D.69.如图,点A(2,m),B(n,2),均在双曲线y=(x>0)上,过点A,B分别作AG⊥y轴,BH⊥x轴,垂足为G,H,下列说法错误的是()A.AO=BO B.∠AOB可能等于30°C.△AOG与△BOH的面积相等D.△AOG≌△BOH10.已知平面区域D={(x,y)|},Z=.若命题“∀(x,y)∈D,Z≥m”为真命题,则实数m的最大值为()A.B.C.D.11.设点M,N为圆x2+y2=9上两个动点,且|MN|=4,若点P为线段3x+4y+15=0(xy≥0)上一点,则|+|的最大值为()A.4B.6C.8D.1212.已知e是自然对数的底数,函数f(x)=(ax2+x)ex,若f(x)在[1,1]上是单调增函数,则a的取值范围是()A.[,0]B.(∞,0)∪[,+∞)C.[0,]D.(∞,]∪[0,+∞)二、填空题:本大题共4小题,每小题5分,共20分.13.若函数y=的定义域为R,则k∈。
高考模拟复习试卷试题模拟卷高三数学高三第三次调研考试
高考模拟复习试卷试题模拟卷高三数学高三第三次调研考试数 学(文科)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答题前,考生务必将自己的姓名、准考证号、座位号、学校、班级等考生信息填写在答题卡上。
2.回答第Ⅰ卷时,选出每个小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号,写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷 一、选择题:本大题共12小题,每小题5分。
在每个小题给出的四个选项中,只有一项是符合题目要求的。
(1)复数321iz i i =+-(i 为虚数单位)的共轭复数为() (A )12i +(B )1i -(C )1i -(D )12i -(2)已知集合{}1,0=A ,{}A y A x y x z zB ∈∈+==,,,则B 的子集个数为()(A )3 (B )4 (C )7 (D )8(3)已知2.12=a ,8.021-⎪⎭⎫ ⎝⎛=b ,2log 25=c ,则c b a ,,的大小关系为()(A )a b c <<(B )b a c <<(C )c a b <<(D )a c b <<(4)已知向量()1,3a =,()3,b m =,若向量b 在a 方向上的投影为3,则实数m =()(A )3 (B )3-(CD )-(5)设n S 为等差数列{}n a 的前n 项和,且65101=-+a a a ,则11S =()(A )55 (B )66 (C )110 (D )132 (6)已知34cos sin =+θθ)40(πθ<<,则θθcos sin -的值为() (A )32(B )32-(C )31(D )31-(7)已知圆O :224x y +=上到直线:l x y a +=的距离等于1的点恰有3个,则实数a 的值为()(A )B (C)(D )-或(8)某程序框图如图所示,该程序运行后输出的S 的值是()(A )1007(B ) (C )(D )3024(9)已知双曲线122=-my x 与抛物线x y 82=的一个交点为P ,F 为抛物线的焦点,若5=PF ,则双曲线的渐近线方程为()(A )03=±y x (B )03=±y x (C )02=±y x (D )02=±y x (10)记数列{}n a 的前n 项和为n S ,若2(1)4n n S a n++=,则n a =() (A )2n n (B )12n n -(C )2nn (D )12n n - (11)某几何体的三视图如图,其正视图中的曲线部分为半个圆弧,则该几何体的表面积为() (A )π42616++ (B )π32616++ (C )π42610++ (D )π32610++(12)如图,偶函数()x f 的图象如字母M ,奇函数()x g 的图象如字母N , 若方程()()0=x g f ,()()0=x f g 的实根个数分别为m 、n ,则m n +=()(A )18 (B )16 (C )14 (D )12第Ⅱ卷本卷包括必考题和选考题两部分。
高考数学模拟题复习试卷高三第二次联考·数学试卷9
高考数学模拟题复习试卷高三第二次联考·数学试卷考生注意:1.本试卷共150分.考试时间120分钟.2.答题前,考生务必将密封线内的项目填写清楚.3.请将各题答案填在试卷后面的答题卷上.4.交卷时,可根据需要在加注“”标志的夹缝处进行裁剪.5.本试卷主要考试内容:第1次联考内容+三角函数与解三角形+平面向量.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合M={x|2x2-x-6<0},N={x|0<x≤4},则M∩N等于A.(0,2)B.(-,0)C.(-2,3)D.(-2,2)2.已知命题p:对∀x∈(0,+∞),有3x>2x;命题q:∃θ∈R,sinθ+cosθ=,则下列命题为真命题的是A.p∧qB.p∧(q)C.(p)∧qD.(p)∧(q)3.设a=(,cosθ)与b=(-1,2cosθ)垂直,则cos2θ的值等于A.-B.0C.-D.-14.设函数f(x)=的最小值为-1,则实数a的取值范围是A.[-,+∞)B.(-∞,-]C.(-1,]D. [1,+∞)5.若四边形ABCD满足:+=0,(+)·=0,则该四边形一定是A.矩形B.正方形C.菱形D.直角梯形6.设△ABC的内角A,B,C所对的边长分别为a,b,c,且atanB=,bsinA=4,则a等于A.3B.C.4D.57.已知非零向量a,b的夹角为60°,且满足|a-2b|=2,则a·b的最大值为A. B.1C.2D.38.若函数f(x)=sinωx+cosωx(x∈R,ω>0),又f(α)=-2,f(β)=0,且|α-β|的最小值为,则函数g(x)=f(x)-1在[-2π,0]上零点的个数为A.0B.1C.2D.39.已知△ABC各角的对应边分别为a,b,c,且满足+≥ 1,则角A的取值范围是A.(0,]B.(0,]C.[,π)D.[,π)10.已知向量a,b的模均为2,且<a,b≥.若向量c满足|c-(a+b)|=,则|c|的取值范围为A.[2-,2]B.[1-,1+]C.[2,2+]D.[2-,2+]11.已知函数f(x)=,函数g(x)=asin(x)-2a+2(a>0),若存在x1∈[0,1],对任意x2∈[0,1]都有f(x1)=g(x2)成立,则实数a的取值范围是A.(,1]B.[,1)C.[,1]D.[,2]12.已知函数f(x)=aln(x+1)-x2,在区间(0,1)内任取两个实数p,q,且p≠q,不等式>1恒成立,则实数a的取值范围为A.(-12,15]B.(-∞,15]C.(12,30]D.[15,+∞)第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卷中的横线上.13.已知sin2α=cos(+α),α∈(0,π),则sin2α=▲.14.给出如下三个命题:①“x≥2”是“log2(x+1)>2”的充分不必要条件;②将函数y=sin(2x-)的图象向左平移个单位可得到函数y=sin2x的图象;③a,b为单位向量,其夹角为θ,若|a-b|>1,则<θ≤π.其中正确的命题是▲.(填序号)15.已知△ABC的三边a,b,c和其面积S满足S=c2-(a-b)2,则tanC=▲.16.圆心为O的圆内有一条弦BC,其长为2,动点A在圆上运动,且∠BAC=45°,若∠ABC 为锐角,则·的取值范围是▲.三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(本小题满分10分)已知函数f(x)=2sinx·sin(+x)-2sin2x+1(x∈R).(1)若f()=,x0∈(-,),求cos2x0的值;(2)在锐角△ABC中,三条边a,b,c对应的内角分别为A,B,C,若b=2,C=,且满足f(-)=, 求△ABC的面积.18.(本小题满分12分)已知向量m=(sinωx,cosωx),n=(cosωx,-cosωx)(ω>0),函数f(x)=m·n的最小正周期为.(1)求ω的值;(2)设△ABC的三边a、b、c满足:b2=ac,且边b所对的角为x,若关于x的方程f(x)=k 有两个不同的实数解,求实数k的取值范围.19.(本小题满分12分)在平行四边形ABCD中,E是DC的中点,AE交BD于点M,||=4,||=2,,的夹角为.(1)若=λ+μ,求λ+3μ的值;(2)当点P在平行四边形ABCD的边BC和CD上运动时,求·的取值范围.20.(本小题满分12分)在△OAC地段中,OB是连接△OBC与△OAB的一条道路,且OB=(1+)百米, 点B在AC 上,且∠AOB=30°,∠BOC=45°.设OA=x(3≤x≤6)百米,OC=y百米.(1)将y表示成x的函数;(2)当x取何值时,△AOC的面积最小?最小值是多少平方米?21.(本小题满分12分)已知函数f(x)=cos(2x-)+2sin(x-)cos(x-),x∈R.(1)若对任意x∈[-,],都有f(x)≥a成立,求a的取值范围;(2)若先将y=f(x)的图象上每个点纵坐标不变,横坐标变为原来的2倍,然后再向左平移个单位得到函数y=g(x)的图象,求函数y=g(x)-在区间[-2π,4π]内的所有零点之和.22.(本小题满分12分)已知函数f(x)=lnx+x2+ax,a∈R .(1)若函数f(x)在其定义域上为增函数,求a的取值范围;(2)当a=1时,函数g(x)=-x在区间[t,+∞)(t∈N*)上存在极值,求t的最大值.(参考数值: 自然对数的底数e≈2.71828)高三第二次联考·数学试卷参考答案1.AM={x|-<x<2},所以M∩N={x|0<x<2}.2.B由题意可知命题p:∀x∈(0,+∞),有3x>2x,为真命题;命题q:∃θ∈R,使得sinθ+cosθ=为假命题.故选B.3.C根据题意得-+2cos2θ=0,∴cos2θ=,则cos2θ=2cos2θ-1=2×-1=-.4.A当x≥时,4x-3≥-1,∴当x<时,f(x)=-x+a≥-1,即-+a≥-1,得a≥-.5.C∵+=0,∴AB∥DC且AB=DC,即四边形ABCD是平行四边形,又∵(+)·=0,∴·=0,即BD⊥AC,∴四边形ABCD是菱形.6.D∵atanB=,bsinA=4,∴=,即=cosB=,则tanB=,∴a=⇒a=5.7.B∵a,b的夹角为60°,且|a-2b|=2,∴a2+4b2-4a·b=|a|2+4|b|2-2|a||b|=4≥4|a||b|-2|a||b|=2|a||b|,即|a||b|≤2,∴a·b=|a||b|≤1.8.B∵|α-β|的最小值为,∴=,则T=3π,又∵ω>0,∴ω==.令g(x)=f(x)-1=2sin(x+)-1=0,得x+=2kπ+或x+=2kπ+(k∈Z),即x=3kπ-或x=3kπ+(k∈Z).当且仅当k=0时,有x=-符合题意.9.A由已知得:b(a+b)+c(a+c)≥(a+c)(a+b),即b2+c2-a2≥bc,将不等式两边同除以2bc得≥,即cosA≥(0<A<π),所以0<A≤.10.D如图所示,圆的半径为,|a+b|=2.当c与a+b共线时,|c|分别取得最大值2+与最小值2-,所以|c|的取值范围为[2-,2+].11.C因为f(x)=,所以当x1∈[0,1]时,f(x1)∈[0,1],因为x2∈[0,1],所以x2∈[0,],又a>0,所以asin(x2)∈[0,a],所以g(x2)∈[2-2a,2-a],因为若存在x1∈[0,1],对任意x2∈[0,1]都有f(x1)=g(x2)成立,所以解得a∈[,1].12.D由于>1 表示点(p+1,f(p+1)) 与点(q+1,f(q+1))连线的斜率,因实数p,q在区间(0,1)内,故p+1 和q+1在区间(1,2)内.∵不等式>1恒成立,∴函数图象上在区间(1,2)内任意两点连线的斜率大于1,故函数的导数大于1在(1,2)内恒成立.由函数的定义域知x>-1,∴f'(x)=-2x>1 在(1,2)内恒成立,即 a>2x2+3x+1在(1,2)内恒成立.由于二次函数y=2x2+3x+1在[1,2]上是单调增函数,故 x=2时,y=2x2+3x+1 在[1,2]上取最大值为15,∴a≥15.13.由已知得2sinαcosα=sinα,即cosα=,∵α∈(0,π),∴sinα=,sin2α=2××=.14.②③由log2(x+1)>2得x>3,则“x>2”是“log2(x+1)>2”的必要不充分条件,故①错误;②正确;由|a-b|>1,得cosθ<,θ∈[0,π],所以<θ≤π,③正确.15.S=c2-(a2+b2)+2ab=-2abcosC+2ab=2ab(1-cosC)=absinC,=,∴=,∴tan=,tanC===.16.(-2,2]因为BC=2,∠A=45°,所以2R=⇒R=,建立如图所示的直角坐标系,则B(-1,0),C(1,0),O(0,1),求得圆O:x2+(y-1)2=2.设A(x,y),则因为-1<x≤,所以·=2x∈(-2,2].17.解:(1)f(x)=2sinx·cosx-2sin2x+1=sin2x+cos2x=sin(2x+).因为x0∈(-,),所以x0+∈(0,).又因为f()=sin(2·+)=sin(x0+)=,得sin(x0+)=.所以cos(x0+)==.所以cos2x0=sin(2x0+)=sin[2(x0+)]=2sin(x0+)cos(x0+)=2··=.5分(2)由(1)知f(x)=sin(2x+),所以f(-)=sin[2(-)+]=sinA=,sinA=,又因为△ABC为锐角三角形,所以A=,又因为C=,所以B=,所以b=c=2,△ABC的面积S=bcsinA=×2×2×sin=1.10分18.解:(1)f(x)=m·n=sinωxcosωx-cos2ωx=sin2ωx-cos2ωx=sin2ωx-=sin(2ωx-)-,∴T==,ω=2.5分(2)由余弦定理得cosx==≥=,∴0<x≤,由 f(x)=k得sin(4x-)=k+,由函数y=sin(4x-)(0<x≤)的图象知,方程sin(4x-)=k+有两个不同的实数解等价于-<k+<1,所以-1<k<.12分19.解:(1)如图所示,易得△ABM与△EDM相似,且===2,∴=,又=+=+=+,∴=(+)=+,=+,=-,代入=λ+μ,得+=λ(+)+μ(-)=(λ+μ)+(λ-μ),∴,解得λ=,μ=,∴λ+3μ=+3×=1.6分(2)如图所示,以A为原点,AB所在直线为x轴,建立直角坐标系.则A(0,0),B(4,0),C(5,),D(1,),E(3,).∴=(4,0)=,=(1,)=,=(3,),①当点P位于边BC上时,设=m(0≤m≤1).则=+=+m=(4,0)+m(1,)=(4+m,m),∴·=(4+m,m)·(3,)=3(4+m)+3m=6m+12.∵0≤m≤1,∴12≤6m+12≤18,∴·的取值范围[12,18].9分②当点P位于边CD上时,设=n(0≤n≤1).则=+=+n=(1,)+n(4,0)=(1+4n,),∴·=(1+4n,)·(3,)=3(1+4n)+3=12n+6.∵0≤n≤1,∴6≤12n+6≤18,∴·的取值范围是[6,18].综上①②可知:·的取值范围是[6,18].12分20.解:(1)根据图形可知S△BOC+S△BOA=S△AOC,3分于是x(1+)sin30°+y(1+)sin45°=xysin75°,即x(1+)+y(1+)=xy,所以2x+2y=xy,解得y=(3≤x≤6).6分(2)由(1)知y=(3≤x≤6),因此S△AOC=xysin75°=·=[(x-2)++4]≥2+2(当且仅当x -2=,即x=4时,等号成立).即当x=400米时,△AOC的面积最小,最小值是(2+2)×104平方米.12分21.解:(1)f(x)=cos(2x-)+2sin(x-)cos(x-)=cos(2x-)+sin(2x-)=cos2x+sin2x-cos2x=sin2x-cos2x=sin(2x-).3分若对任意x∈[-,],都有f(x)≥a成立,则只需fmin(x)≥a即可.∵-≤x≤,∴ -≤2x-≤,∴当2x-=-,即x=-时,f(x)有最小值-,故a≤-.6分(2)依题意可得g(x)=sinx,由g(x)-=0得sinx=,由图可知,sinx=在[-2π,4π]上有6个零点:x1,x2,x3,x4,x5,x6.根据对称性有=-,=,=,从而所有零点和为x1+x2+x3+x4+x5+x6=3π.12分22.解:(1)函数f(x)的定义域为(0,+∞),∵f(x)=lnx+x2+ax,∴f'(x)=+2x+a.∵函数f(x)在(0,+∞)上单调递增,∴ f'(x)≥0, 即+2x+a≥0对x∈(0,+∞)恒成立.∴ -a≤+2x对x∈(0,+∞)都成立.当x>0时, +2x≥2=2, 当且仅当=2x, 即x=时,取等号.∴-a≤2, 即a≥-2.∴a的取值范围为[-2,+∞).6分(2)当a=1时, g(x)=-x=-x=.g'(x)=.∵函数g(x)在[t,+∞)(t∈N*)上存在极值,∴方程g'(x)=0在[t,+∞)(t∈N*)上有解,即方程1+-lnx=0在[t,+∞)(t∈N*)上有解.令φ(x)=1+-lnx(x>0), 则φ'(x)=--<0,∴函数φ(x)在(0,+∞)上单调递减.∵φ(3)=-ln3=ln>0,φ(4)=-ln4=ln<0,∴函数φ(x)的零点x0∈(3,4).∵方程φ(x)=0在[t,+∞)(t∈N*)上有解,∴t≤3,∴t的最大值为3.12分高考数学试卷解析一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上.1.已知集合{124}A =,,,{246}B =,,,则A B =▲.【答案】{}1,2,4,6。
高考模拟试题(九)数学(后附参考答案解析)
绝密★启用前高考模拟试题(九)数学时间:120 分钟 分值:150 分注意事项:1、本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答题前,考生务必将自己的姓名、考生号填写在答题卡上。
2、回答第Ⅰ卷时,选出每小题的答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在试卷上无效。
3、回答第Ⅱ卷时,将答案填写在答题卡上,写在试卷上无效。
4、考试结束,将本试卷和答题卡一并交回。
第Ⅰ卷(选择题共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数i R a ai z ,∈-=(23为虚数单位),若i z 23212-=,则=a ()A.1B.2C.21D.232.若61)4tan(=-πθ,则=θtan ()A.1B.75-C.65-D.573.如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA ,终边为射线OP ,过点P 做直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离表示为x 的函数)(x f ,则)(x f y =在],0[π的图象大致为()BA CD4.已知平面向量a )1,2(=,b ),2(x =,且(a +2b )⊥(a —b ),则=x ()A.21-B.21 C.—1 D.15.一个多面体的三视图如图所示,则该多面体的表面积为()A.18B.21C.318+ D.321+6.设集合}1)2()(|),{(}1)4(|),{(2222=+-+-==+-=at y t x y x B y x y x A ,,如果命题“ØB A R t ≠∈∃ ,”是真命题,则实数a 的取值范围为()A.34,(-∞ B.]34,0[ C.)2,34[ D.),2(+∞7.两所学校分别有2名,3名学生获奖,这5名学生要排成一排合影,则同校学生排在一起的概率为()A.51 B.41 C.32D.528.“斐波那契数列”由十三世纪意大利数学家列昂纳多斐波那契发现,因为斐波那契以兔子繁殖为例子而引入,故又称该数列为“兔子数列”,斐波那契数列}{n a 满足:11=a ,12=a ,21--+=n n n a a a (3≥n ,*N n ∈),记其前n 项和为n S ,设t a =2018(t 为常数),则=-+2015201720182S S S ()A.2tB.tC.t2 D.t39.作出不等式组⎪⎩⎪⎨⎧≤≤≥+341043y x y x ,,表示的平面区域,过该区域上任意一点P 作圆122=+y x 的两条切线,切点分别为B A ,,则PAB ∠cos 的最大值为()A.23 B.32 C.31 D.2110.已知函数)(x f '是函数)(x f 的导函数,ef 1)1(=(e 是自然对数的底数),对任意实数x ,都有0)()(>'-x f x f ,则不等式2)(-<x e x f 的解集为()A.),(e -∞ B.),1(+∞ C.),1(e D.),(+∞e 11.抛物线)0(22>=p px y 的焦点为F ,准线为l ,B A 、是抛物线上的两个动点,且满足32π=∠AFB ,设线段AB 的中点M 在l 上的投影为N ,则ABMN 的最大值是()A.3B.23 C.33 D.4312.体积为3的三棱锥ABC P -的顶点都在球的球O 面上,⊥PA 平面ABC ,。
高三数学模拟试题及答案
高三数学模拟试题及答案一、选择题(每题4分,共40分)1. 下列函数中,哪一个是奇函数?A. f(x) = x^2B. f(x) = |x|C. f(x) = x^3D. f(x) = sin(x)2. 已知集合A={1, 2, 3},B={2, 3, 4},求A∪B。
A. {1, 2, 3, 4}B. {1, 3, 4}C. {2, 3, 4}D. {1, 2, 3}3. 若sin(α) = 1/2,且α为锐角,求cos(α)的值。
A. √3/2B. -√3/2C. 1/2D. -1/24. 已知等差数列{an}的首项a1=2,公差d=3,求其第5项a5。
A. 17B. 14C. 11D. 85. 圆的方程为(x-3)^2 + (y-4)^2 = 25,求圆心坐标。
A. (3, 4)B. (-3, -4)C. (0, 0)D. (4, 3)6. 函数f(x) = x^2 - 4x + 4的最小值是多少?A. 0B. -4C. 4D. 17. 已知直线y = 2x - 3与抛物线y^2 = 4x相交于两点,求这两个点的坐标。
A. (1, -1), (3, 3)B. (1, 1), (3, -1)C. (1, 1), (3, 3)D. (1, -1), (3, -1)8. 已知向量a = (2, 3),b = (-1, 2),求a·b。
A. 4B. -1C. 1D. -49. 已知三角形ABC,∠A = 60°,a = 5,b = 7,求c的长度。
A. 3B. 4C. 6D. 810. 已知函数f(x) = x^3 - 3x^2 - 9x + 5,求f'(x)。
A. 3x^2 - 6x - 9B. x^2 - 6x - 9C. 3x^2 - 6x + 5D. x^3 - 3x^2 - 9二、填空题(每题4分,共20分)11. 已知等比数列{bn}的首项b1=8,公比q=2,求其第4项b4的值。
高考数学模拟试卷9答案
高考数学模拟试卷9参考答案及评分标准一、选择题:〔1〕C 〔2〕C 〔3〕C 〔4〕D 〔5〕C 〔6〕A 〔7〕B 〔8〕C 〔9〕A 〔10〕D 〔11〕B 〔12〕B 二、填空题: 〔13〕分层〔14〕x= —1或3x —4y+3=0 〔15〕⑤ 〔16〕233 三、解做题〔17〕根本领件的种数为26c =15种 ……〔2分〕〔Ⅰ〕恰有一名参赛学生是男生的根本领件有1313c c ⋅=9种 ……〔4分〕∴这一事件的概率P 1=159=0.6 ……〔5分〕〔Ⅱ〕至少有一名参赛学生是男生这一事件是由两类事件构成的,即恰有一名参赛学生是男生和两名参赛学生都是男生∴所求事件的概率P 2=8.0151215923==+c ……〔9分〕〔Ⅲ〕至多有一名参赛学生是男生这一事件也是由两类事件构成的,即参赛学生没有男生和恰有一名参赛学生是男生∴所求事件的概率P 3=8.0151215923==+c ……〔12分〕〔18〕〔Ⅰ〕b a ⋅=cos23x cos 2x +sin 23x (—sin 2x )=cos(23x +2x )=cos2x …〔3分〕 b a +=(cos 23x +cos 2x ,sin 23x —sin 2x) ……〔4分〕+=x x x xx x x cos 2cos 42cos 22)2sin 23(sin )2cos 23(cos222==+=-++ … 〔5分〕∵x ∈[2π,23π] ,+=—2cosx ……〔6分〕〔Ⅱ〕f(x)=b a ⋅+=cos2x —(—2cosx)=cos2x+2cosx =2cos 2x+2cosx —1=23)21(cos 22-+x …… 〔10分〕 ∵x ∈[2π,23π] , ∴—1≤cosx ≤0 ∴当cosx=—21时,f(x)min =23- ……〔12分〕〔19〕〔Ⅰ〕由f(x)=ax 2+bx+c 知:f ′(x)=2ax+b ……〔2分〕由得:⎪⎩⎪⎨⎧==-=⎪⎩⎪⎨⎧-===∴⎪⎩⎪⎨⎧=++==101101001c b a c b a c b a b c 或 ……〔4分〕∵a>0 ∴f(x)=x 2—1 ……〔5分〕〔Ⅱ〕x 1,x 2∈[0,1]且x 1≠x 2∴f(x 2) — f(x 1)=(x 22—1) —(x 12—1)=x 22—x 12∴|f(x 2) —f(x 1)|=|x 22—x 12|=|x 2+x 1|·|x 2—x 1| ……〔7分〕 ∵x 1,x 2∈[0,1] , ∴0≤x 2+x 1≤2∴|x 2+x 1|·|x 2—x 1|≤2|x 2—x 1| 即 |f(x 2) — f(x 1)|≤2|x 2—x 1|成立. ……〔9分〕又 f(x 2) — f(x 1)= x 22—x 12∵x 1,x 2∈[0,1] , ∴x 12,x 22∈[0,1]∴—1≤x 22—x 12≤1 , ∴| x 22—x 12|≤1∴|f(x 2) — f(x 1)|= |x 22—x 12|≤1成立. ……〔12分〕 由以上知:|f(x 2) — f(x 1)|≤2|x 2—x 1|与|f(x 2) —f(x 1)|≤1都成立.〔20〕〔Ⅰ〕有一条侧棱垂直于底面的四棱锥 ……〔1分〕……〔3分〕〔Ⅱ〕需要3个这样的几何体 ……〔5分〕〔Ⅲ〕①取DD 1中点F,连AF,那么AF ∥BE.∴∠FAB 1为异面直线EB 与AB 1所成的角. ……〔6分〕 易计算得 B 1F=9,AF=35 ,AB 1=62∴cos ∠FAB 1=1010265328172452121212=⨯⨯-+=⋅-+AB FA FB AB FA ∴异面直线EB 与AB 1所成角的余弦值为1010……〔8分〕②设B 1E 、BC 的延长线交于点G,连结GA,那么GA 为平面AB 1E 与平面ABC 所成二面角的棱 ……〔9分〕在底面ABC 内作BH ⊥AG,垂足为H.连结HB 1,由三垂线定理知:B 1H ⊥AG, ∴∠B 1HB 为平面AB 1E 与平面ABC 所成二面角的平面角. ……〔10分〕在Rt △ABG 中,BH=51214436126=+⨯∴HB 1=518365144212=+=+BB BH ∴cos ∠B 1HB=325185121==HB HB ∴平面AB 1E 与平面ABC 所成二面角的余弦值为32. ……〔12分〕〔21〕〔Ⅰ〕由y =412-x 得2214y x =- , ∴2214y x +=∵x <—2 , ∴214y x +-= ……〔2分〕 ∴g(x)= 214x +- 〔x>0〕 ……〔3分〕〔II 〕∵点An(a n ,11+-n a )在曲线y =g(x)上(n ∈N +)∴11+-n a = g(a n )= 214na +- , 并且a n >0 ……〔4分〕21141nn a a +=∴+ , ),1(411221N n n a a nn ∈≥=-∴+ ∴数列{21na }为等差数列. ……〔6分〕〔Ⅲ〕∵数列{21n a }为等差数列,并且首项为211a =1,公差为4 ∴21na =1+4〔n —1〕 , ∴3412-=n a n ∵a n >0 , ∴341-=n a n ……〔9分〕〔Ⅳ〕b n =1111++n n a a =4341414341--+=++-n n n n , ……〔11分〕∴S n =b 1+b 2+…+b n =43414.......459415--+++-+-n n =4114-+n ……〔12分〕〔22〕〔Ⅰ〕圆F 1:〔x+3〕2+y 2=5 , 圆F 2:〔x —3〕2+ y 2=45 ……〔1分〕 设动圆半径为r,圆心为M,那么由得:⎪⎩⎪⎨⎧+=+=53521r MF r MF ∴|MF 2|—|MF 1|=25 ……〔2分〕 ∴动圆圆心的轨迹C 为以F 1,F 2为焦点,实轴长为25的双曲线的左支,易得其方程为:14522=-y x 〔x<0〕 ……〔4分〕〔Ⅱ〕设L 方程为:y+16=k 〔x+20〕,并设L 与轨迹C 交点坐标为〔x 1,y 1〕, 〔x 2,y 2〕.那么由得:20221-=+x x , 即x 1+x 2= —40……① 由⎪⎩⎪⎨⎧=--+=145162022y x k kx y 消去y 得: 〔4—5k 2〕x 2—10k 〔20k —16〕x —5〔20k —16〕2—20=0∴x 1+x 2=254)1620(10kk k -- ……② ……〔6分〕 由①、②得:254)1620(10k k k --= —40∴k=1∴所求直线L 的方程为y=x+4 ……〔8分〕椭圆的长轴长等于|PF 1|+|PF 2|.要长轴最短,只需在直线L 上找一点P,使点P 到F 1、F 2的距离之和最小.由平面几何知识知:作F 1关于L 的对称点Q,连结QF 2交直线L 于点P,那么点P 即为所求点,坐标为〔87,825-〕 ……〔11分〕此时长轴2a=|PF 1|+|PF 2|=|PQ|+|PF 2|=|QF 2|=52从而a 2=225,C=3 ∴b 2=a 2—c 2=279225=-∴椭圆C ′的方程为:12722522=+y x ……〔14分〕。
全国高考数学模拟试卷(4套)
全国高考数学模拟试卷(4套)一、选择题(共30题,每题2分,共60分)1. 已知函数 $ f(x) = x^2 4x + 3 $,则下列哪个选项是正确的?A. $ f(x) $ 在 $ x = 2 $ 处取得最小值B. $ f(x) $ 在 $ x = 2 $ 处取得最大值C. $ f(x) $ 在 $ x = 2 $ 处取得极值D. $ f(x) $ 在 $ x = 2 $ 处无极值2. 若 $ \log_2 8 = x $,则 $ x $ 的值为多少?A. 3B. 4C. 5D. 63. 已知等差数列 $ \{a_n\} $,若 $ a_1 = 3 $,$ a_3 = 9 $,则 $ a_5 $ 的值为多少?A. 12B. 15C. 18D. 214. 若 $ \sin^2 x + \cos^2 x = 1 $,则下列哪个选项是正确的?A. $ \sin x $ 和 $ \cos x $ 必须同时为正B. $ \sin x $ 和 $ \cos x $ 必须同时为负C. $ \sin x $ 和 $ \cos x $ 一正一负D. $ \sin x $ 和 $ \cos x $ 可以同时为零5. 若 $ \frac{a}{b} = \frac{c}{d} $,则下列哪个选项是正确的?A. $ a + c = b + d $B. $ ad = bc $C. $ a c = b d $D. $ \frac{a}{c} = \frac{b}{d} $6. 已知 $ a $、$ b $、$ c $ 是等边三角形的三边长,则下列哪个选项是正确的?A. $ a^2 + b^2 = c^2 $B. $ a^2 + c^2 = b^2 $C. $ b^2 + c^2 = a^2 $D. $ a = b = c $7. 若 $ \frac{x^2}{a^2} \frac{y^2}{b^2} = 1 $,则下列哪个选项是正确的?A. 该方程表示椭圆B. 该方程表示双曲线C. 该方程表示抛物线D. 该方程表示圆8. 已知 $ \sqrt{3} $ 是方程 $ x^2 2x + 1 = 0 $ 的根,则该方程的另一根为多少?A. $ 1 \sqrt{3} $B. $ 1 + \sqrt{3} $C. $ 2 \sqrt{3} $D. $ 2 + \sqrt{3} $9. 若 $ a $、$ b $、$ c $ 是三角形的三边长,且 $ a^2 +b^2 = c^2 $,则下列哪个选项是正确的?A. 该三角形是等腰三角形B. 该三角形是等边三角形C. 该三角形是直角三角形D. 该三角形是钝角三角形10. 若 $ \frac{1}{x} + \frac{1}{y} = \frac{1}{z} $,则下列哪个选项是正确的?A. $ x + y = z $B. $ xy = z $C. $ \frac{1}{x} + \frac{1}{y} = z $D. $ x + y + z = 0 $二、填空题(共10题,每题2分,共20分)11. 已知 $ f(x) = 2x + 1 $,若 $ f(3) = 7 $,则 $ f(1)$ 的值为______。
全国高考数学模拟试卷(4套)
全国高考数学模拟试卷(4套)试卷一:基础能力测试一、选择题(每题5分,共50分)1. 若函数 $ f(x) = \sqrt{3x 1} $ 在区间 $[0, 2]$ 上有定义,则 $ x $ 的取值范围是:A. $[0, 1]$B. $[0, 2]$C. $[1, 2]$D. $[1, 3]$2. 已知集合 $ A = \{x | x^2 3x + 2 = 0\} $,则集合 $ A $ 的元素个数是:A. 1B. 2C. 3D. 43. 若 $ a, b $ 是方程 $ x^2 4x + 3 = 0 $ 的两个根,则$ a + b $ 的值是:A. 1B. 2C. 3D. 44. 已知函数 $ f(x) = 2x^3 3x^2 + x $,则 $ f'(1) $ 的值是:A. 2B. 3C. 4D. 55. 若 $ \log_2 8 = x $,则 $ x $ 的值是:A. 2B. 3C. 4D. 56. 已知等差数列 $ \{a_n\} $ 的首项 $ a_1 = 2 $,公差 $ d = 3 $,则第10项 $ a_{10} $ 的值是:A. 29B. 30C. 31D. 327. 若 $ \sin 45^\circ = x $,则 $ x $ 的值是:A. $ \frac{\sqrt{2}}{2} $B. $ \frac{\sqrt{3}}{2} $C. $ \frac{1}{2} $D. $ \frac{1}{\sqrt{2}} $8. 已知函数 $ f(x) = \frac{1}{x} $,则 $ f^{1}(x) $ 的表达式是:A. $ x $B. $ \frac{1}{x} $C. $ x $D. $ \frac{1}{x} $9. 若 $ a^2 = b^2 $,则 $ a $ 和 $ b $ 的关系是:A. $ a = b $B. $ a = b $C. $ a = b $ 或 $ a = b $D. $ a $ 和 $ b $ 无关10. 已知等比数列 $ \{a_n\} $ 的首项 $ a_1 = 1 $,公比 $ q = 2 $,则第5项 $ a_5 $ 的值是:A. 8B. 16C. 32D. 64二、填空题(每题5分,共20分)1. 若 $ x^2 5x + 6 = 0 $,则 $ x $ 的值是 ________。
高考数学模拟试卷复习试题高考数学试卷理科9
高考数学模拟试卷复习试题高考数学试卷(理科)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)在等差数列{an}中,若a2=4,a4=2,则a6=()A.﹣1 B.0 C.1 D.62.(5分)已知集合A={1,2,3},B={2,3},则()A.A=B B.A∩B=∅C.A B D.B A3.(5分)重庆市各月的平均气温(℃)数据的茎叶图如,则这组数据的中位数是()A.19 B.20 C.21.5 D.234.(5分)“x>1”是“(x+2)<0”的()A.充要条件B.充分而不必要条件C.必要而不充分条件D.既不充分也不必要条件5.(5分)某几何体的三视图如图所示,则该几何体的体积为()A.B.C.D.6.(5分)若非零向量,满足||=||,且(﹣)⊥(3+2),则与的夹角为()A.B.C.D.π7.(5分)执行如图所示的程序框图,若输出k的值为8,则判断框图可填入的条件是()A.s≤B.s≤C.s≤D.s≤8.(5分)已知直线x+ay﹣1=0是圆C:x2+y2﹣4x﹣2y+1=0的对称轴,过点A(﹣4,a)作圆C的一条切线,切点为B,则|AB|=()A.2 B.6 C.4D.29.(5分)若tanα=2tan,则=()A.1 B.2 C.3 D.410.(5分)设双曲线=1(a>0,b>0)的右焦点为F,右顶点为A,过F作AF 的垂线与双曲线交于B,C两点,过B,C分别作AC,AB的垂线,两垂线交于点D.若D 到直线BC的距离小于a+,则该双曲线的渐近线斜率的取值范围是()A.(﹣1,0)∪(0,1)B.(﹣∞,﹣1)∪(1,+∞)C.(﹣,0)∪(0,)D.(﹣∞,﹣)∪(,+∞)二、填空题:本大题共3小题,考生作答5小题,每小题5分,共25分.把答案填写在答题卡相应位置上.11.(5分)设复数a+bi(a,b∈R)的模为,则(a+bi)(a﹣bi)=.12.(5分)的展开式中x8的系数是(用数字作答).13.(5分)在△ABC中,B=120°,AB=,A的角平分线AD=,则AC=.三、考生注意:(14)、(15)、(16)三题为选做题,请从中任选两题作答,若三题全做,则按前两题给分.14.(5分)如题图,圆O的弦AB,CD相交于点E,过点A作圆O的切线与DC的延长线交于点P,若PA=6,AE=9,PC=3,CE:ED=2:1,则BE=.15.(5分)已知直线l的参数方程为(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为,则直线l与曲线C的交点的极坐标为.16.若函数f(x)=|x+1|+2|x﹣a|的最小值为5,则实数a=.四、解答题:本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤.17.(13分)端午节吃粽子是我国的传统习俗,设一盘中装有10个粽子,其中豆沙粽2个,肉粽3个,白粽5个,这三种粽子的外观完全相同,从中任意选取3个.(Ⅰ)求三种粽子各取到1个的概率;(Ⅱ)设X表示取到的豆沙粽个数,求X的分布列与数学期望.18.(13分)已知函数f(x)=sin(﹣x)sinx﹣cos2x.(I)求f(x)的最小正周期和最大值;(II)讨论f(x)在[,]上的单调性.19.(13分)如题图,三棱锥P﹣ABC中,PC⊥平面ABC,PC=3,∠ACB=.D,E分别为线段AB,BC上的点,且CD=DE=,CE=2EB=2.(Ⅰ)证明:DE⊥平面PCD(Ⅱ)求二面角A﹣PD﹣C的余弦值.20.(12分)设函数f(x)=(a∈R)(Ⅰ)若f(x)在x=0处取得极值,确定a的值,并求此时曲线y=f(x)在点(1,f (1))处的切线方程;(Ⅱ)若f(x)在[3,+∞)上为减函数,求a的取值范围.21.(12分)如题图,椭圆=1(a>b>0)的左、右焦点分别为F1,F2,过F2的直线交椭圆于P,Q两点,且PQ⊥PF1(Ⅰ)若|PF1|=2+|=2﹣,求椭圆的标准方程;(Ⅱ)若|PF1|=|PQ|,求椭圆的离心率e.22.(12分)在数列{an}中,a1=3,an+1an+λan+1+μan2=0(n∈N+)(Ⅰ)若λ=0,μ=﹣2,求数列{an}的通项公式;(Ⅱ)若λ=(k0∈N+,k0≥2),μ=﹣1,证明:2+<<2+.重庆市高考数学试卷(理科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)在等差数列{an}中,若a2=4,a4=2,则a6=()A.﹣1 B.0 C.1 D.6【分析】直接利用等差中项求解即可.【解答】解:在等差数列{an}中,若a2=4,a4=2,则a4=(a2+a6)==2,解得a6=0.故选:B.【点评】本题考查等差数列的性质,等差中项个数的应用,考查计算能力.2.(5分)已知集合A={1,2,3},B={2,3},则()A.A=B B.A∩B=∅C.A B D.B A【分析】直接利用集合的运算法则求解即可.【解答】解:集合A={1,2,3},B={2,3},可得A≠B,A∩B={2,3},B A,所以D正确.故选:D.【点评】本题考查集合的基本运算,基本知识的考查.3.(5分)重庆市各月的平均气温(℃)数据的茎叶图如,则这组数据的中位数是()A.19 B.20 C.21.5 D.23【分析】根据中位数的定义进行求解即可.【解答】解:样本数据有12个,位于中间的两个数为20,20,则中位数为,故选:B.【点评】本题主要考查茎叶图的应用,根据中位数的定义是解决本题的关键.比较基础.4.(5分)“x>1”是“(x+2)<0”的()A.充要条件B.充分而不必要条件C.必要而不充分条件D.既不充分也不必要条件【分析】解“(x+2)<0”,求出其充要条件,再和x>1比较,从而求出答案.【解答】解:由“(x+2)<0”得:x+2>1,解得:x>﹣1,故“x>1”是“(x+2)<0”的充分不必要条件,故选:B.【点评】本题考察了充分必要条件,考察对数函数的性质,是一道基础题.5.(5分)某几何体的三视图如图所示,则该几何体的体积为()A.B.C.D.【分析】判断三视图对应的几何体的形状,利用三视图的数据,求解几何体的体积即可.【解答】解:由三视图可知,几何体是组合体,左侧是三棱锥,底面是等腰三角形,腰长为,高为1,一个侧面与底面垂直,并且垂直底面三角形的斜边,右侧是半圆柱,底面半径为1,高为2,所求几何体的体积为:=.故选:A.【点评】本题考查三视图与直观图的关系,组合体的体积的求法,判断几何体的形状是解题的关键.6.(5分)若非零向量,满足||=||,且(﹣)⊥(3+2),则与的夹角为()A.B.C.D.π【分析】根据向量垂直的等价条件以及向量数量积的应用进行求解即可.【解答】解:∵(﹣)⊥(3+2),∴(﹣)•(3+2)=0,即32﹣22﹣•=0,即•=32﹣22=2,∴cos<,>===,即<,>=,故选:A.【点评】本题主要考查向量夹角的求解,利用向量数量积的应用以及向量垂直的等价条件是解决本题的关键.7.(5分)执行如图所示的程序框图,若输出k的值为8,则判断框图可填入的条件是()A.s≤B.s≤C.s≤D.s≤【分析】模拟执行程序框图,依次写出每次循环得到的k,S的值,当S>时,退出循环,输出k的值为8,故判断框图可填入的条件是S.【解答】解:模拟执行程序框图,k的值依次为0,2,4,6,8,因此S=(此时k=6),因此可填:S.故选:C.【点评】本题考查了当型循环结构的程序框图,根据框图的流程判断程序运行的S值是解题的关键.8.(5分)已知直线x+ay﹣1=0是圆C:x2+y2﹣4x﹣2y+1=0的对称轴,过点A(﹣4,a)作圆C的一条切线,切点为B,则|AB|=()A.2 B.6 C.4D.2【分析】求出圆的标准方程可得圆心和半径,由直线l:x+ay﹣1=0经过圆C的圆心(2,1),求得a的值,可得点A的坐标,再利用直线和圆相切的性质求得|AB|的值.【解答】解:∵圆C:x2+y2﹣4x﹣2y+1=0,即(x﹣2)2+(y﹣1)2 =4,表示以C(2,1)为圆心、半径等于2的圆.由题意可得,直线l:x+ay﹣1=0经过圆C的圆心(2,1),故有2+a﹣1=0,∴a=﹣1,点A(﹣4,﹣1).∵AC==2,CB=R=2,∴切线的长|AB|===6.故选:B.【点评】本题主要考查圆的切线长的求法,解题时要注意圆的标准方程,直线和圆相切的性质的合理运用,属于基础题.9.(5分)若tanα=2tan,则=()A.1 B.2 C.3 D.4【分析】直接利用两角和与差的三角函数化简所求表达式,利用同角三角函数的基本关系式结合已知条件以及积化和差个数化简求解即可.【解答】解:tanα=2tan,则=============3.故选:C.【点评】本题考查两角和与差的三角函数,积化和差以及诱导公式的应用,考查计算能力.10.(5分)设双曲线=1(a>0,b>0)的右焦点为F,右顶点为A,过F作AF 的垂线与双曲线交于B,C两点,过B,C分别作AC,AB的垂线,两垂线交于点D.若D 到直线BC的距离小于a+,则该双曲线的渐近线斜率的取值范围是()A.(﹣1,0)∪(0,1)B.(﹣∞,﹣1)∪(1,+∞)C.(﹣,0)∪(0,)D.(﹣∞,﹣)∪(,+∞)【分析】由双曲线的对称性知D在x轴上,设D(x,0),则由BD⊥AB得•=﹣1,求出c﹣x,利用D到直线BC的距离小于a+,即可得出结论.【解答】解:由题意,A(a,0),B(c,),C(c,﹣),由双曲线的对称性知D 在x轴上,设D(x,0),则由BD⊥AB得•=﹣1,∴c﹣x=,∵D到直线BC的距离小于a+,∴c﹣x=||<a+,∴<c2﹣a2=b2,∴0<<1,∴双曲线的渐近线斜率的取值范围是(﹣1,0)∪(0,1).故选:A.【点评】本题考查双曲线的性质,考查学生的计算能力,确定D到直线BC的距离是关键.二、填空题:本大题共3小题,考生作答5小题,每小题5分,共25分.把答案填写在答题卡相应位置上.11.(5分)设复数a+bi(a,b∈R)的模为,则(a+bi)(a﹣bi)=3.【分析】将所求利用平方差公式展开得到a2+b2,恰好为已知复数的模的平方.【解答】解:因为复数a+bi(a,b∈R)的模为,所以a2+b2==3,则(a+bi)(a﹣bi)=a2+b2=3;故答案为:3.【点评】本题考查了复数的模以及复数的乘法运算;属于基础题.12.(5分)的展开式中x8的系数是(用数字作答).【分析】先求出二项式展开式的通项公式,再令x的幂指数等于8,求得r的值,即可求得展开式中的x8的系数.【解答】解:由于的展开式的通项公式为 Tr+1=••,令15﹣=8,求得r=2,故开式中x8的系数是•=,故答案为:.【点评】本题主要考查二项式定理的应用,二项式展开式的通项公式,属于基础题.13.(5分)在△ABC中,B=120°,AB=,A的角平分线AD=,则AC=.【分析】利用已知条件求出A,C,然后利用正弦定理求出AC即可.【解答】解:由题意以及正弦定理可知:,即,∠ADB=45°,A=180°﹣120°﹣45°,可得A=30°,则C=30°,三角形ABC是等腰三角形,AC=2=.故答案为:.【点评】本题考查正弦定理以及余弦定理的应用,三角形的解法,考查计算能力.三、考生注意:(14)、(15)、(16)三题为选做题,请从中任选两题作答,若三题全做,则按前两题给分.14.(5分)如题图,圆O的弦AB,CD相交于点E,过点A作圆O的切线与DC的延长线交于点P,若PA=6,AE=9,PC=3,CE:ED=2:1,则BE=2.【分析】利用切割线定理计算CE,利用相交弦定理求出BE即可.【解答】解:设CE=2x,ED=x,则∵过点A作圆O的切线与DC的延长线交于点P,∴由切割线定理可得PA2=PC•PD,即36=3×(3+3x),∵x=3,由相交弦定理可得9BE=CE•ED,即9BE=6×3,∴BE=2.故答案为:2.【点评】本题考查切割线定理、相交弦定理,考查学生的计算能力,比较基础.15.(5分)已知直线l的参数方程为(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为,则直线l与曲线C的交点的极坐标为(2,π).【分析】求出直线以及曲线的直角坐标方程,然后求解交点坐标,转化我2极坐标即可.【解答】解:直线l的参数方程为(t为参数),它的直角坐标方程为:x﹣y+2=0;曲线C的极坐标方程为,可得它的直角坐标方程为:x2﹣y2=4,x<0.由,可得x=﹣2,y=0,交点坐标为(﹣2,0),它的极坐标为(2,π).故答案为:(2,π).【点评】本题考查曲线的极坐标方程直线的参数方程与普通方程的互化,基本知识的考查.16.若函数f(x)=|x+1|+2|x﹣a|的最小值为5,则实数a=﹣6或4.【分析】分类讨论a与﹣1的大小关系,化简函数f(x)的解析式,利用单调性求得f (x)的最小值,再根据f(x)的最小值等于5,求得a的值.【解答】解:∵函数f(x)=|x+1|+2|x﹣a|,故当a<﹣1时,f(x)=,根据它的最小值为f(a)=﹣3a+2a﹣1=5,求得a=﹣6.当a=﹣1时,f(x)=3|x+1|,它的最小值为0,不满足条件.当a≥﹣1时,f(x)=,根据它的最小值为f(a)=a+1=5,求得a=4.综上可得,a=﹣6 或a=4,故答案为:﹣6或4.【点评】本题主要考查对由绝对值的函数,利用单调性求函数的最值,体现了转化、分类讨论的数学思想,属于中档题.四、解答题:本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤.17.(13分)端午节吃粽子是我国的传统习俗,设一盘中装有10个粽子,其中豆沙粽2个,肉粽3个,白粽5个,这三种粽子的外观完全相同,从中任意选取3个.(Ⅰ)求三种粽子各取到1个的概率;(Ⅱ)设X表示取到的豆沙粽个数,求X的分布列与数学期望.【分析】(Ⅰ)根据古典概型的概率公式进行计算即可;(Ⅱ)随机变量X的取值为:0,1,2,别求出对应的概率,即可求出分布列和期望.【解答】解:(Ⅰ)令A表示事件“三种粽子各取到1个”,则由古典概型的概率公式有P(A)==.(Ⅱ)随机变量X的取值为:0,1,2,则P(X=0)==,P(X=1)==,P(X=2)==,X 0 1 2PEX=0×+1×+2×=.【点评】本题主要考查离散型随机变量的分布列和期望的计算,求出对应的概率是解决本题的关键.18.(13分)已知函数f(x)=sin(﹣x)sinx﹣cos2x.(I)求f(x)的最小正周期和最大值;(II)讨论f(x)在[,]上的单调性.【分析】(Ⅰ)由条件利用三角恒等变换化简函数的解析式,再利用正弦函数的周期性和最值求得f(x)的最小正周期和最大值.(Ⅱ)根据2x﹣∈[0,π],利用正弦函数的单调性,分类讨论求得f(x)在上的单调性.【解答】解:(Ⅰ)函数f(x)=sin(﹣x)sinx﹣x=cosxsinx﹣(1+cos2x)=sin2x﹣cos2x﹣=sin(2x﹣)﹣,故函数的周期为=π,最大值为1﹣.(Ⅱ)当x∈时,2x﹣∈[0,π],故当0≤2x﹣≤时,即x∈[,]时,f(x)为增函数;当≤2x﹣≤π时,即x∈[,]时,f(x)为减函数.【点评】本题主要考查三角恒等变换,正弦函数的周期性和最值,正弦函数的单调性,属于中档题.19.(13分)如题图,三棱锥P﹣ABC中,PC⊥平面ABC,PC=3,∠ACB=.D,E分别为线段AB,BC上的点,且CD=DE=,CE=2EB=2.(Ⅰ)证明:DE⊥平面PCD(Ⅱ)求二面角A﹣PD﹣C的余弦值.【分析】(Ⅰ)由已知条件易得PC⊥DE,CD⊥DE,由线面垂直的判定定理可得;(Ⅱ)以C为原点,分别以,,的方向为xyz轴的正方向建立空间直角坐标系,易得,,的坐标,可求平面PAD的法向量,平面PCD的法向量可取,由向量的夹角公式可得.【解答】(Ⅰ)证明:∵PC⊥平面ABC,DE⊂平面ABC,∴PC⊥DE,∵CE=2,CD=DE=,∴△CDE为等腰直角三角形,∴CD⊥DE,∵PC∩CD=C,DE垂直于平面PCD内的两条相交直线,∴DE⊥平面PCD(Ⅱ)由(Ⅰ)知△CDE为等腰直角三角形,∠DCE=,过点D作DF垂直CE于F,易知DF=FC=FE=1,又由已知EB=1,故FB=2,由∠ACB=得DF∥AC,,故AC=DF=,以C为原点,分别以,,的方向为xyz轴的正方向建立空间直角坐标系,则C(0,0,0),P(0,0,3),A(,0,0),E(0,2,0),D(1,1,0),∴=(1,﹣1,0),=(﹣1,﹣1,3),=(,﹣1,0),设平面PAD的法向量=(x,y,z),由,故可取=(2,1,1),由(Ⅰ)知DE⊥平面PCD,故平面PCD的法向量可取=(1,﹣1,0),∴两法向量夹角的余弦值cos<,>==∴二面角A﹣PD﹣C的余弦值为.【点评】本题考查二面角,涉及直线与平面垂直的判定,建系化归为平面法向量的夹角是解决问题的关键,属难题.20.(12分)设函数f(x)=(a∈R)(Ⅰ)若f(x)在x=0处取得极值,确定a的值,并求此时曲线y=f(x)在点(1,f (1))处的切线方程;(Ⅱ)若f(x)在[3,+∞)上为减函数,求a的取值范围.【分析】(I)f′(x)=,由f(x)在x=0处取得极值,可得f′(0)=0,解得a.可得f(1),f′(1),即可得出曲线y=f(x)在点(1,f(1))处的切线方程;(II)解法一:由(I)可得:f′(x)=,令g(x)=﹣3x2+(6﹣a)x+a,由g(x)=0,解得x1=,x2=.对x分类讨论:当x<x1时;当x1<x<x2时;当x>x2时.由f(x)在[3,+∞)上为减函数,可知:x2=≤3,解得即可.解法二:“分离参数法”:由f(x)在[3,+∞)上为减函数,可得f′(x)≤0,可得a≥,在[3,+∞)上恒成立.令u(x)=,利用导数研究其最大值即可.【解答】解:(I)f′(x)==,∵f(x)在x=0处取得极值,∴f′(0)=0,解得a=0.当a=0时,f(x)=,f′(x)=,∴f(1)=,f′(1)=,∴曲线y=f(x)在点(1,f(1))处的切线方程为,化为:3x﹣ey=0;(II)解法一:由(I)可得:f′(x)=,令g(x)=﹣3x2+(6﹣a)x+a,由g(x)=0,解得x1=,x2=.当x<x1时,g(x)<0,即f′(x)<0,此时函数f(x)为减函数;当x1<x<x2时,g(x)>0,即f′(x)>0,此时函数f(x)为增函数;当x>x2时,g(x)<0,即f′(x)<0,此时函数f(x)为减函数.由f(x)在[3,+∞)上为减函数,可知:x2=≤3,解得a≥﹣.因此a的取值范围为:.解法二:由f(x)在[3,+∞)上为减函数,∴f′(x)≤0,可得a≥,在[3,+∞)上恒成立.令u(x)=,u′(x)=<0,∴u(x)在[3,+∞)上单调递减,∴a≥u(3)=﹣.因此a的取值范围为:.【点评】本题考查了导数的运算法则、利用导数的几何意义研究切线方程、利用导数研究函数的单调性极值,考查了分类讨论思想方法、“分离参数法”、推理能力与计算能力,属于难题.21.(12分)如题图,椭圆=1(a>b>0)的左、右焦点分别为F1,F2,过F2的直线交椭圆于P,Q两点,且PQ⊥PF1(Ⅰ)若|PF1|=2+|=2﹣,求椭圆的标准方程;(Ⅱ)若|PF1|=|PQ|,求椭圆的离心率e.【分析】(Ⅰ)由椭圆的定义,2a=|PF1|+|PF2|,求出a,再根据2c=|F1F2|==2,求出c,进而求出椭圆的标准方程;(Ⅱ)由椭圆的定义和勾股定理,得|QF1|=|PF1|=4a﹣2|PF1|,解得|PF1|=2(2﹣)a,从而|PF2|=2a﹣|PF1|=2(﹣1)a,再一次根据勾股定理可求出离心率.【解答】解:(Ⅰ)由椭圆的定义,2a=|PF1|+|PF2|=2++2﹣=4,故a=2,设椭圆的半焦距为c,由已知PF2⊥PF1,因此2c=|F1F2|==2,即c=,从而b==1,故所求椭圆的标准方程为.(Ⅱ)连接F1Q,由椭圆的定义,|PF1|+|PF2|=2a,|QF1|+|QF2|=2a,从而由|PF1|=|PQ|=|PF2|+|QF2|,有|QF1|=4a﹣2|PF1|,又由PQ⊥PF1,|PF1|=|PQ|,知|QF1|=|PF1|=4a﹣2|PF1|,解得|PF1|=2(2﹣)a,从而|PF2|=2a﹣|PF1|=2(﹣1)a,由PF2⊥PF1,知2c=|F1F2|=,因此e=====.【点评】本题考查了椭圆的定义2a=|PF1|+|PF2|,椭圆的标准方程,直角三角形的勾股定理,属于中档题.22.(12分)在数列{an}中,a1=3,an+1an+λan+1+μan2=0(n∈N+)(Ⅰ)若λ=0,μ=﹣2,求数列{an}的通项公式;(Ⅱ)若λ=(k0∈N+,k0≥2),μ=﹣1,证明:2+<<2+.【分析】(Ⅰ)把λ=0,μ=﹣2代入数列递推式,得到(n∈N+),分析an≠0后可得an+1=2an(n∈N+),即{an}是一个公比q=2的等比数列.从而可得数列的通项公式;(Ⅱ)把代入数列递推式,整理后可得(n∈N).进一步得到=,对n=1,2,…,k0求和后放缩可得不等式左边,结合,进一步利用放缩法证明不等式右边.【解答】(Ⅰ)解:由λ=0,μ=﹣2,有( n∈N+).若存在某个n0∈N+,使得,则由上述递推公式易得,重复上述过程可得a1=0,此与a1=3矛盾,∴对任意n∈N+,an≠0.从而an+1=2an(n∈N+),即{an}是一个公比q=2的等比数列.故.(Ⅱ)证明:由,数列{an}的递推关系式变为,变形为:(n∈N).由上式及a1=3>0,归纳可得3=a1>a2>...>an>an+1> 0∵=,∴对n=1,2,…,k0求和得:=>.另一方面,由上已证的不等式知,,得=2+.综上,2+<<2+.【点评】本题考查了数列递推式,考查了等比关系的确定,训练了放缩法证明数列不等式属难度较大的题目.高考数学高三模拟试卷试题压轴押题重庆市高考数学试卷(理科)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个备选项中,只有一项是符合题目要求的.1.(5分)已知全集U={1,2,3,4},集合A={1,2},B={2,3},则∁U(A∪B)=()A.{1,3,4} B.{3,4} C.{3} D.{4}2.(5分)命题“对任意x∈R,都有x2≥0”的否定为()A.对任意x∈R,都有x2<0 B.不存在x∈R,都有x2<0C.存在x0∈R,使得x02≥0D.存在x0∈R,使得x02<03.(5分)(﹣6≤a≤3)的最大值为()A.9 B.C.3 D.4.(5分)以下茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分).已知甲组数据的中位数为15,乙组数据的平均数为16.8,则x,y的值分别为()A.2,5 B.5,5 C.5,8 D.8,85.(5分)某几何体的三视图如图所示,则该几何体的体积为()A.B.C.200 D.2406.(5分)若a<b<c,则函数f(x)=(x﹣a)(x﹣b)+(x﹣b)(x﹣c)+(x﹣c)(x ﹣a)的两个零点分别位于区间()A.(a,b)和(b,c)内B.(﹣∞,a)和(a,b)内C.(b,c)和(c,+∞)内D.(﹣∞,a)和(c,+∞)内7.(5分)已知圆C1:(x﹣2)2+(y﹣3)2=1,圆C2:(x﹣3)2+(y﹣4)2=9,M,N 分别是圆C1,C2上的动点,P为x轴上的动点,则|PM|+|PN|的最小值为()A.﹣1 B.5﹣4 C.6﹣2D.8.(5分)执行如图所示的程序框图,如果输出S=3,那么判断框内应填入的条件是()A.k≤6B.k≤7C.k≤8D.k≤99.(5分)4cos50°﹣tan40°=()A.B.C.D.2﹣110.(5分)在平面上,⊥,||=||=1,=+.若||<,则||的取值范围是()A.(0,] B.(,] C.(,] D.(,]二、填空题:本大题共3小题,考生作答5小题,每小题5分,共25分,把答案填写在答题卡相应位置上.11.(5分)已知复数z=(i是虚数单位),则|z|=.12.(5分)已知{an}是等差数列,a1=1,公差d≠0,Sn为其前n项和,若a1,a2,a5成等比数列,则S8=.13.(5分)从3名骨科、4名脑外科和5名内科医生中选派5人组成一个抗震救灾医疗小组,则骨科、脑外科和内科医生都至少有1人的选派方法种数是(用数字作答).14,15,16三题为选做题,请从中任选两题作答,若三题全做,则按前两题给分:14.(5分)如图,在△ABC中,∠C=90°,∠A=60°,AB=20,过C作△ABC的外接圆的切线CD,BD⊥CD,BD与外接圆交于点E,则DE的长为.15.(5分)在直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴建立极坐标系.若极坐标方程为ρcosθ=4的直线与曲线(t为参数)相交于A,B两点,则|AB|=.16.若关于实数x的不等式|x﹣5|+|x+3|<a无解,则实数a的取值范围是.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.17.(13分)设f(x)=a(x﹣5)2+6lnx,其中a∈R,曲线y=f(x)在点(1,f(1))处的切线与y轴相交于点(0,6).(1)确定a的值;(2)求函数f(x)的单调区间与极值.18.(13分)某商场举行的“三色球”购物摸奖活动规定:在一次摸奖中,摸奖者先从装有3个红球与4个白球的袋中任意摸出3个球,再从装有1个蓝球与2个白球的袋中任意摸出1个球,根据摸出4个球中红球与蓝球的个数,设一、二、三等奖如下:奖级摸出红、蓝球个数获奖金额一等奖3红1蓝200元二等奖3红0蓝50元三等奖2红1蓝10元其余情况无奖且每次摸奖最多只能获得一个奖级.(1)求一次摸奖恰好摸到1个红球的概率;(2)求摸奖者在一次摸奖中获奖金额x的分布列与期望E(x).19.(13分)如图,四棱锥P﹣ABCD中,PA⊥底面ABCD,BC=CD=2,AC=4,∠ACB=∠ACD=,F为PC的中点,AF⊥PB.(1)求PA的长;(2)求二面角B﹣AF﹣D的正弦值.20.(12分)在△ABC中,内角A,B,C的对边分别是a,b,c,且a2+b2+ab=c2.(1)求C;(2)设cosAcosB=,=,求tanα的值.21.(12分)如图,椭圆的中心为原点O,长轴在x轴上,离心率,过左焦点F1作x轴的垂线交椭圆于A、A′两点,|AA′|=4.(Ⅰ)求该椭圆的标准方程;(Ⅱ)取垂直于x轴的直线与椭圆相交于不同的两点P、P′,过P、P′作圆心为Q的圆,使椭圆上的其余点均在圆Q外.若PQ⊥P'Q,求圆Q的标准方程.22.(12分)对正整数n,记In={1,2,3…,n},Pn={|m∈In,k∈In}.(1)求集合P7中元素的个数;(2)若Pn的子集A中任意两个元素之和不是整数的平方,则称A为“稀疏集”.求n的最大值,使Pn能分成两个不相交的稀疏集的并集.重庆市高考数学试卷(理科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个备选项中,只有一项是符合题目要求的.1.(5分)已知全集U={1,2,3,4},集合A={1,2},B={2,3},则∁U(A∪B)=()A.{1,3,4} B.{3,4} C.{3} D.{4}【分析】根据A与B求出两集合的并集,由全集U,找出不属于并集的元素,即可求出所求的集合.【解答】解:∵A={1,2},B={2,3},∴A∪B={1,2,3},∵全集U={1,2,3,4},∴∁U(A∪B)={4}.故选:D.【点评】此题考查了交、并、补集的混合运算,熟练掌握各自的定义是解本题的关键.2.(5分)命题“对任意x∈R,都有x2≥0”的否定为()A.对任意x∈R,都有x2<0 B.不存在x∈R,都有x2<0C.存在x0∈R,使得x02≥0D.存在x0∈R,使得x02<0【分析】直接利用全称命题的否定是特称命题,写出命题的否定命题即可.【解答】解:因为全称命题的否定是特称命题,所以命题“对任意x∈R,都有x2≥0”的否定为.存在x0∈R,使得x02<0.故选:D.【点评】本题考查命题的否定,全称命题与特称命题的否定关系,基本知识的考查.3.(5分)(﹣6≤a≤3)的最大值为()A.9 B.C.3 D.【分析】令f(a)=(3﹣a)(a+6)=﹣+,而且﹣6≤a≤3,利用二次函数的性质求得函数f(a)的最大值,即可得到所求式子的最大值.【解答】解:令f(a)=(3﹣a)(a+6)=﹣+,而且﹣6≤a≤3,由此可得当a=﹣时,函数f(a)取得最大值为,故(﹣6≤a≤3)的最大值为=,故选:B.【点评】本题主要考查二次函数的性质应用,体现了转化的数学思想,属于中档题.4.(5分)以下茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分).已知甲组数据的中位数为15,乙组数据的平均数为16.8,则x,y的值分别为()A.2,5 B.5,5 C.5,8 D.8,8【分析】求乙组数据的平均数就是把所有乙组数据加起来,再除以5.找甲组数据的中位数要把甲组数据按从小到大的顺序排列,位于最中间的一个数为中位数.据此列式求解即可.【解答】解:乙组数据平均数=(9+15+18+24+10+y)÷5=16.8;∴y=8;甲组数据可排列成:9,12,10+x,24,27.所以中位数为:10+x=15,∴x=5.故选:C.【点评】本题考查了中位数和平均数的计算.平均数是指在一组数据中所有数据之和再除以数据的个数.将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数.5.(5分)某几何体的三视图如图所示,则该几何体的体积为()A.B.C.200 D.240【分析】如图所示,该几何体是棱长分别为4,8,10的长方体砍去两个小三棱柱得到一个四棱柱,据此即可计算出体积.【解答】解:如图所示,该几何体是棱长分别为4,8,10的长方体砍去两个小三棱柱得到一个四棱柱,由图知V==200.故选:C.【点评】由三视图正确恢复原几何体是解题的关键.6.(5分)若a<b<c,则函数f(x)=(x﹣a)(x﹣b)+(x﹣b)(x﹣c)+(x﹣c)(x ﹣a)的两个零点分别位于区间()A.(a,b)和(b,c)内B.(﹣∞,a)和(a,b)内C.(b,c)和(c,+∞)内D.(﹣∞,a)和(c,+∞)内【分析】由函数零点存在判定定理可知:在区间(a,b),(b,c)内分别存在一个零点;又函数f(x)是二次函数,最多有两个零点,即可判断出.【解答】解:∵a<b<c,∴f(a)=(a﹣b)(a﹣c)>0,f(b)=(b﹣c)(b﹣a)<0,f(c)=(c﹣a)(c﹣b)>0,由函数零点存在判定定理可知:在区间(a,b),(b,c)内分别存在一个零点;又函数f(x)是二次函数,最多有两个零点,因此函数f(x)的两个零点分别位于区间(a,b),(b,c)内.故选:A.【点评】熟练掌握函数零点存在判定定理及二次函数最多有两个零点的性质是解题的关键.7.(5分)已知圆C1:(x﹣2)2+(y﹣3)2=1,圆C2:(x﹣3)2+(y﹣4)2=9,M,N 分别是圆C1,C2上的动点,P为x轴上的动点,则|PM|+|PN|的最小值为()A.﹣1 B.5﹣4 C.6﹣2D.【分析】求出圆C1关于x轴的对称圆的圆心坐标A,以及半径,然后求解圆A与圆C2的圆心距减去两个圆的半径和,即可求出|PM|+|PN|的最小值.【解答】解:如图圆C1关于x轴的对称圆的圆心坐标A(2,﹣3),半径为1,圆C2的圆心坐标(3,4),半径为3,由图象可知当P,M,N,三点共线时,|PM|+|PN|取得最小值,|PM|+|PN|的最小值为圆C3与圆C2的圆心距减去两个圆的半径和,即:|AC2|﹣3﹣1=﹣4=﹣4=5﹣4.故选:B.【点评】本题考查圆的对称圆的方程的求法,两个圆的位置关系,两点距离公式的应用,考查转化思想与计算能力.8.(5分)执行如图所示的程序框图,如果输出S=3,那么判断框内应填入的条件是()A.k≤6B.k≤7C.k≤8D.k≤9【分析】根据程序框图,写出运行结果,根据程序输出的结果是S=3,可得判断框内应填入的条件.【解答】解:根据程序框图,运行结果如下:S k第一次循环 log23 3第二次循环log23•log34 4第三次循环log23•log34•log45 5第四次循环log23•log34•log45•log56 6第五次循环log23•log34•log45•log56•log67 7第六次循环log23•log34•log45•log56•log67•log78=log28=3 8故如果输出S=3,那么只能进行六次循环,故判断框内应填入的条件是k≤7.故选:B.【点评】本题考查程序框图,尤其考查循环结构.对循环体每次循环需要进行分析并找出内在规律.本题属于基础题.9.(5分)4cos50°﹣tan40°=()A.B.C.D.2﹣1【分析】原式第一项利用诱导公式化简,第二项利用同角三角函数间的基本关系切化弦,通分后利用同分母分式的减法法则计算,再利用诱导公式及两角和与差的正弦函数公式化简,整理后利用两角和与差的余弦函数公式化为一个角的余弦函数,约分即可得到结果.【解答】解:4cos50°﹣tan40°=4sin40°﹣tan40°======.故选:C.【点评】此题考查了两角和与差的正弦、余弦函数公式,同角三角函数间的基本关系,以及诱导公式的作用,熟练掌握公式是解本题的关键.10.(5分)在平面上,⊥,||=||=1,=+.若||<,则||的取值范围是()A.(0,] B.(,] C.(,] D.(,]【分析】建立坐标系,将向量条件用等式与不等式表示,利用向量模的计算公式,即可得到结论.【解答】解:根据条件知A,B1,P,B2构成一个矩形AB1PB2,以AB1,AB2所在直线为坐标轴建立直角坐标系,设|AB1|=a,|AB2|=b,点O的坐标为(x,y),则点P的坐标为(a,b),由=1,得,则∵||<,∴∴∴∵(x﹣a)2+y2=1,∴y2=1﹣(x﹣a)2≤1,∴y2≤1同理x2≤1∴x2+y2≤2②由①②知,∵||=,∴<||≤故选:D.【点评】本题考查向量知识的运用,考查学生转化问题的能力,考查学生的计算能力,属于难题.二、填空题:本大题共3小题,考生作答5小题,每小题5分,共25分,把答案填写在答题卡相应位置上.11.(5分)已知复数z=(i是虚数单位),则|z|=.【分析】通过复数的分子与分母同时求模即可得到结果.【解答】解:|z|===.故答案为:.【点评】本题考查复数的模的求法,考查计算能力.12.(5分)已知{an}是等差数列,a1=1,公差d≠0,Sn为其前n项和,若a1,a2,a5成等比数列,则S8=64.【分析】依题意,a1=1,=a1•(a1+4d),可解得d,从而利用等差数列的前n。
高考数学模拟试题及答案 (二十套)
【解析】
【分析】
以点 为坐标原点, 、 、 所在直线分别为 、 、 轴建立空间直角坐标系 ,利用空间向量法可判断A选项的正误;证明出 平面 ,分别取棱 、 、 、 、 、 的中点 、 、 、 、 、 ,比较 和六边形 的周长和面积的大小,可判断B选项的正误;利用空间向量法找出平面 与棱 、 的交点 、 ,判断四边形 的形状可判断C选项的正误;将矩形 与矩形 延展为一个平面,利用 、 、 三点共线得知 最短,利用平行线分线段成比例定理求得 ,可判断D选项的正误.
9.Keep是一款具有社交属性的健身APP,致力于提供健身教学、跑步、骑行、交友及健身饮食指导、装备购买等一站式运动解决方案.Keep可以让你随时随地进行锻炼,记录你每天的训练进程.不仅如此,它还可以根据不同人的体质,制定不同的健身计划.小明根据Keep记录的2019年1月至2019年11月期间每月跑步的里程(单位:十公里)数据整理并绘制了下面的折线图.根据该折线图,下列结论正确的是()
,则 , ,所以B正确.
对于选项C、D, ,
令 ,即 ,所以 ,则令 ,
,令 ,得
由函数 的图像性质可知:
时, , 单调递减.
时, , 单调递增.
所以 时, 取得极小值,
即当 时 取得极小值,
又 ,即
又因为在 上 单调递减,所以
所以 时, 取得极小值,
即当 时 取得极大值,
又 ,即
所以
当 时,
所以当 ,即 时,f(x)在(-π,+∞)上无零点,所以C不正确.
A.月跑步里程最小值出现在2月
B.月跑步里程逐月增加
C.月跑步里程的中位数为5月份对应的里程数
D. 1月至5月的月跑步里程相对于6月至11月波动性更小
高考数学模拟考试试卷(含有答案)
高考数学模拟考试试卷(含有答案)本试卷共19题。
全卷满分120分。
考试用时120分钟注意事项:1.答题前,先将自己的姓名、准考证号、考场号、座位号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试卷、草稿纸和答题卡的非答题区域均无效。
3.填空题和解答题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内。
写在试卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项符合题目要求。
1.已知集合{}21,S s s n n ==+∈Z ,{}41,T t t n n ==+∈Z 则T S ( ) A .∅ B .S C .T D .Z2.已知复数z 满足1z =且有510z z ++=则z = ( )A .12-±B .12±C .22±D i 12±3.已知α,β均为锐角,且sin cos()sin ααββ+=则tan α的最大值是 ( )A .4B .2CD 4.为了激发同学们学习数学的热情,某学校开展利用数学知识设计LOGO 的比赛,其中某位同学利用函数图像的一部分设计了如图的LOGO ,那么该同学所选的函数最有可能是 ( )A .()sin x x x f -=B .()sin cos f x x x x =-C .()221f x x x =-D .()3sin f x x x =+5.如图1所示,古筝有多根弦,每根弦下有一个雁柱,雁柱用于调整音高和音质.图2是根据图1绘制的古筝弦及其雁柱的简易平面图.在图2中,每根弦都垂直于x 轴,相邻两根弦间的距离为1,雁柱所在曲线的方程为 1.1x y =,第n 根弦(N n ∈,从左数第1根弦在y 轴上,称为第0根弦)分别与雁柱曲线和直线:1l y x =+交于点n A (n x ,n y )和n B (nx ',n y ')则200n n n y y ='=∑( ) 参考数据:取221.18.14=.A .814B .900C .914D .10006.表面积为4π的球内切于圆锥则该圆锥的表面积的最小值为( ) A .4πB .8πC .12πD .16π7.已知定点(,0)P m ,动点Q 在圆O :2216x y +=上,PQ 的垂直平分线交直线 OQ 于M 点,若动点M 的轨迹是双曲线则m 的值可以是 ( ) A .2B .3C .4D .58.设cos0.1a =和10sin0.1b =,110tan 0.1c =则 ( )A .a b c <<B .c b a <<C .c a b <<D .a c b <<二、选择题:本题共3小题,每小题6分,共18分。
高考模拟数学试卷及答案
高考模拟数学试卷及答案高考模拟数学试卷及答案高考即将到来,数学作为一门重要的科目,对于许多学生来说都是一个挑战。
为了帮助大家更好地备考,我们为大家提供了一份高考模拟数学试卷及答案,希望对大家有所帮助。
一、选择题(每题5分,共40分)1、在等差数列{an}中,a1=1,an=6n-5,则公差d的值为() A. 1B. 2C. 3D. 4 答案:B2、已知复数z满足|z|=1,则|z-i|的最大值为() A. 1 B. 2 C. 3D. 4 答案:B3、已知函数f(x)=x3+ax2+bx在x=1处取得极小值-2,则a、b的值为() A. a=1,b=0 B. a=3,b=3 C. a=1,b=2 D. a=3,b=2 答案:A4、已知双曲线x2-y2=1的焦点为F1、F2,点P在双曲线上,且∠F1PF2=90°,则|PF1|•|PF2|的值为() A. 2 B. 4 C. 8 D. 16 答案:B5、已知{an}为等比数列,a1=1,公比为q,则“q>1”是“{an}为递增数列”的() A. 充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要条件答案:A6、已知向量a、b的夹角为60°,|a|=2,|b|=4,则|a-b|=() A.2 B. 4 C. 6 D. 8 答案:C7、已知函数f(x)=x3+ax2+bx在x=1处取得极小值-2,则a、b的值为() A. a=1,b=0 B. a=3,b=3 C. a=1,b=2 D. a=3,b=2 答案:A8、等差数列{an}的前n项和记为Sn,已知a2=3,S9=45,则数列{an}的前多少项的和最大() A. 7 B. 8 C. 9 D. 10 答案:C二、填空题(每题6分,共30分)9、已知角α的终边过点P(3,-4),则sin(α-π)=__________。
答案:-4/591、若空间中有四个点A、B、C、D,则直线AB和直线CD的位置关系为____________。
模拟高考数学试卷及答案
一、选择题(本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1. 下列函数中,y是x的函数的是()A. y = 2x + 1,x = 3B. y = 2x + 1,x = 3或x = 4C. y = 2x + 1,x可以是任意实数D. y = 2x + 1,x = 2或x = 32. 已知函数f(x) = 2x - 3,若f(a) = f(b),则a和b的关系是()A. a = bB. a = b + 1C. a = b - 1D. a + b = 23. 在△ABC中,∠A = 60°,∠B = 45°,则sinC的值为()A. √3/2B. √3/4C. 1/2D. √2/24. 下列各式中,表示x与y成反比例关系的是()A. xy = 5B. x + y = 5C. x/y = 5D. x - y = 55. 已知等差数列{an}的公差d = 3,且a1 + a3 = 15,则a2的值为()A. 6B. 9C. 12D. 156. 下列各式中,表示一元二次方程的判别式的是()A. b^2 - 4acB. a^2 + b^2 + c^2C. a^2 - b^2D. a^2 + b^27. 已知等比数列{bn}的公比q = 2,且b1 + b2 = 6,则b3的值为()A. 12B. 18C. 24D. 308. 下列各式中,表示圆的方程的是()A. x^2 + y^2 = 1B. x^2 + y^2 + 2x - 2y + 1 = 0C. x^2 + y^2 - 2x + 2y + 1 = 0D. x^2 + y^2 + 2x + 2y + 1 = 09. 下列函数中,在定义域内单调递增的是()A. y = x^2B. y = -x^2C. y = x^3D. y = -x^310. 已知等差数列{an}的前n项和为Sn,若S5 = 25,则S10的值为()A. 45B. 50C. 55D. 6011. 下列各式中,表示一元二次不等式的解集的是()A. x^2 - 4 > 0B. x^2 - 4 < 0C. x^2 - 4 ≥ 0D. x^2 - 4 ≤ 012. 已知函数f(x) = ax^2 + bx + c,若f(1) = 3,f(-1) = 1,则a、b、c的值分别为()A. a = 1,b = -2,c = 3B. a = 1,b = 2,c = 3C. a = -1,b = -2,c = 3D. a = -1,b = 2,c = 3二、填空题(本大题共6小题,每小题5分,共30分。
2024年高考数学全真模拟试题
2024年高考数学全真模拟试题一、选择题(本大题共 12 小题,每小题 5 分,共 60 分)1、已知集合 A ={x | x² 3x + 2 = 0},B ={1, 2},则A ∩ B =()A {1}B {2}C {1, 2}D ∅2、复数 z =(1 + i)(2 i),则|z| =()A 2B 5C 10D 2 23、已知向量 a =(1,2),b =(2,-1),则 a·b =()A 0B 3C 4D 54、函数 f(x) = sin(2x +π/3)的最小正周期为()A πB 2πC π/2D 4π5、若直线 l₁:x + 2y 3 = 0 与直线 l₂:2x my + 1 = 0 平行,则 m =()A -4B -1C 1D 46、已知等差数列{aₙ}的前 n 项和为 Sₙ,若 a₁= 1,d = 2,则S₅=()A 25B 20C 15D 107、从 5 名男生和 3 名女生中选出 3 人参加某项活动,至少有 1 名女生的选法有()A 80 种B 70 种C 65 种D 60 种8、抛物线 y²= 8x 的焦点到准线的距离为()A 2B 4C 8D 169、已知函数 f(x) = x³ 3x + 1,则函数 f(x) 的单调递增区间是()A (∞,-1)和(1,+∞)B (-1,1)C (∞,-1)D (1,+∞)10、若函数 f(x) =logₐx(a > 0 且a ≠ 1)在区间2,4上的最大值与最小值之差为 1,则 a =()A 2B 4C 1/2D 1/411、若圆 C:x²+ y² 2x 4y + 1 = 0 关于直线 l:ax + by 1 = 0(a > 0,b > 0)对称,则 1/a + 2/b 的最小值为()A 4B 6C 8D 1012、已知函数 f(x) =2sin(ωx +φ)(ω > 0,|φ| <π/2)的图象过点(0,1),且在区间(π/12,5π/12)上单调递减,则ω 的最大值为()A 11B 9C 7D 5二、填空题(本大题共 4 小题,每小题 5 分,共 20 分)13、曲线 y = x³ 3x²+ 1 在点(1,-1)处的切线方程为________。
高考数学模拟复习试卷试题模拟卷0924
高考模拟复习试卷试题模拟卷【考情解读】1.考查指数函数的求值、指数函数的图象和性质;2.讨论与指数函数有关的复合函数的性质;3.将指数函数与对数函数、抽象函数相结合,综合考查指数函数知识的应用. 【重点知识梳理】 1.根式的性质 (1)(na)n =a.(2)当n 为奇数时nan =a. 当n 为偶数时nan ={ a a≥0-a a<0.2.有理数指数幂 (1)幂的有关概念①正整数指数幂:an =a·a·…·a n 个 (n ∈N*). ②零指数幂:a0=1(a≠0).③负整数指数幂:a -p =1ap (a≠0,p ∈N*).④正分数指数幂:a m n =nam(a>0,m 、n ∈N*,且n>1). ⑤负分数指数幂:a -m n =1a m n =1n am (a>0,m 、n ∈N*,且n>1).⑥0的正分数指数幂等于0,0的负分数指数幂没有意义. (2)有理数指数幂的性质 ①aras =ar +s(a>0,r 、s ∈Q); ②(ar)s =ars(a>0,r 、s ∈Q); ③(ab)r =arbr(a>0,b>0,r ∈Q). 3.指数函数的图象与性质y =axa>10<a<1图象定义域(1)R值域 (2)(0,+∞) 性质(3)过定点(0,1)(4)当x>0时,y>1; x<0时,0<y<1(5)当x>0时,0<y<1; x<0时,y>1(6)在(-∞,+∞)上是增函数(7)在(-∞,+∞)上是减函数【高频考点突破】 考点一 指数幂的运算例1、 (1)计算:(124+223)12-2716+1634-2×(8-23)-1; (2)已知x 12+x -12=3,求x2+x -2-2x 32+x -32-3的值.【探究提高】根式运算或根式与指数式混合运算时,将根式化为指数式计算较为方便,对于计算的结果,不强求统一用什么形式来表示,如果有特殊要求,要根据要求写出结果.但结果不能同时含有根号和分数指数,也不能既有分母又有负指数.【变式探究】计算下列各式的值:(1)⎝⎛⎭⎫-278-23+(0.002)-12-10(5-2)-1+(2-3)0;(2)15+2-(3-1)0-9-45;(3)a3b23ab2a14b124a-13b13(a>0,b>0).考点二指数函数的图象、性质的应用例2、 (1)函数f(x)=ax-b的图象如图所示,其中a,b为常数,则下列结论正确的是 ()A.a>1,b<0B.a>1,b>0C.0<a<1,b>0D.0<a<1,b<0【答案】 (1)D(2)求函数f(x)=3x2-5x+4的定义域、值域及其单调区间.【探究提高】(1)与指数函数有关的函数的图象的研究,往往利用相应指数函数的图象,通过平移、对称变换得到其图象.(2)对复合函数的性质进行讨论时,要搞清复合而成的两个函数,然后对其中的参数进行讨论. 【变式探究】 (1)函数y =ex +e -xex -e -x的图象大致为()【答案】A(2)若函数f(x)=e -(x -μ)2 (e 是自然对数的底数)的最大值是m ,且f(x)是偶函数,则m +μ=________.【答案】1考点三 指数函数的综合应用例3、(1)k 为何值时,方程|3x -1|=k 无解?有一解?有两解? (2)已知定义在R 上的函数f(x)=2x -12|x|. ①若f(x)=32,求x 的值;②若2tf(2t)+mf(t)≥0对于t ∈[1,2]恒成立,求实数m 的取值范围.【探究提高】对指数函数的图象进行变换是利用图象的前提,方程f(x)=g(x)解的个数即为函数y =f(x)和y =g(x)图象交点的个数;复合函数问题的关键是通过换元得到两个新的函数,搞清复合函数的结构.【变式探究】已知f(x)=aa2-1(ax -a -x) (a>0且a≠1).(1)判断f(x)的奇偶性;(2)讨论f (x)的单调性;(3)当x ∈[-1,1]时,f(x)≥b 恒成立,求b 的取值范围.【真题感悟】1.【高考新课标1,文10】已知函数1222,1()log (1),1x x f x x x -⎧-≤=⎨-+>⎩,且()3f a =-,则(6)f a -=( )(A )74-(B )54-(C )34-(D )14- 【答案】A2.【高考山东,文8】若函数21()2x x f x a+=-是奇函数,则使3f x >()成立的x 的取值范围为( )(A )( ) (B)() (C )0,1()(D )1,+∞()【答案】C3.【高考山东,文2】设0.61.50.60.60.6 1.5a b c ===,,,则a b c ,,的大小关系是( ) (A )a b c <<(B ) a c b <<(C )b a c <<(D )b c a << 【答案】C1.(·天津卷)设a =log2π,b =log 12π,c =π-2,则() A .a >b >c B .b >a >c C .a >c >b D .c >b >a 【答案】C2.(·四川卷)已知b >0,lo g5b =a ,lg b =c ,5d =10,则下列等式一定成立的是() A .d =ac B .a =cd C .c =ad D .d =a +c 【答案】B3.(·安徽卷)设a =log37,b =21.1,c =0.83.1,则()A .b<a<cB .c<a<bC .c<b<aD .a<c<b 【答案】B4.(·福建卷)若函数y =logax(a>0,且a≠1)的图像如图所示,则下列函数图像正确的是()【答案】B5.(·辽宁卷)已知a =2-13,b =log213,c =log 1213,则() A .a >b >c B .a >c >b C .c >b >a D .c >a >b 【答案】D6.(·全国新课标卷Ⅰ] 设函数f(x)=⎩⎪⎨⎪⎧ex -1,x <1,x 13,x≥1,则使得f(x)≤2成立的x 的取值范围是________.【答案】(-∞,8]7.(·山东卷)已知实数x ,y 满足ax<ay(0<a<1),则下列关系式恒成立的是() A .x3>y3 B .sin x>sin yC .ln(x2+1)>l n(y2+1) D.1x2+1>1y2+1 【答案】A8.(·陕西卷)下列函数中,满足“f(x +y)= f(x)f(y)”的单调递增函数是() A .f(x)=x3 B .f(x)=3x C .f(x)=x 12 D .f(x)=⎝⎛⎭⎫12x【答案】B9.(·陕西卷)已知4a =2,lg x =a ,则x =________. 【答案】1010.(·四川卷)设m ∈R ,过定点A 的动直线x +my =0和过定点B 的动直线mx -y -m +3=0交于点P(x ,y),则|PA|+|PB|的取值范围是()A .[5,2 5 ]B .[10,2 5 ]C .[10,4 5 ]D .[25,4 5 ] 【答案】B【押题专练】 1.已知a<14,则化简44a -12的结果是()A.4a -1 B .-4a -1 C.1-4a D .-1-4a 【答案】C2.设y1=40.9,y2=80.48,y3=⎝⎛⎭⎫12-1.5,则() A .y3>y1>y2 B .y2>y1>y3 C .y1>y2>y3 D .y1>y3>y2【答案】D3.若点(a,9)在函数y =3x 的图像上,则tan aπ6的值为() A .0 B.33 C. 1D. 3【答案】D4.函数y =ax -a(a>0,且a≠1)的图像可能是()【答案】C5.给出下列结论: ①当a<0时,(a2) 32=a3;②nan =|a|(n>1,n ∈N +,n 为偶数);③函数f(x)=(x -2) 12-(3x -7)0的定义域是{x|x≥2且x≠73}; ④若2x =16,3y =127,则x +y =7. 其中正确的是() A .①② B .②③ C .③④ D .②④ 【答案】B6.函数y =ax 在[0,1]上的最大值与最小值的和为3,则a 的值为() A.12 B .2 C .4 D.14【答案】B7.已知集合P ={(x ,y)|y =m},Q ={(x ,y)|y =ax +1,a>0,a≠1},如果P∩Q 有且只有一个元素,那么实数m 的取值范围是________.【答案】(1,+∞)8.已知2x2+x≤⎝⎛⎭⎫14x -2,则函数y =2x -2-x 的值域是________. 【答案】⎣⎡⎦⎤-25516,329.若x>0,则(2x 14 +3 32 )(2x 14 -3 32 )-4x -12 (x -x 12)=________. 【答案】-2310.若函数f(x)=ax -1(a>0且a≠1)的定义域和值域都是[0,2],则a =________. 【答案】311.求下列函数的定义域、值域.12.已知定义域为R的函数f(x)=-2x+b2x+1+a是奇函数.(1)求a,b的值;(2)若对任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求k的取值范围.13.已知f(x)=3x,并且f(a+2)=18,g(x)=3ax-4x的定义域为[-1,1].(1)求函数g(x)的解析式;(2)判断g(x)的单调性;(3)若方程g(x)=m有解,求m的取值范围.高考模拟复习试卷试题模拟卷高考模拟复习试卷试题模拟卷【高频考点解读】1.会从实际情境中抽象出一元二次不等式模型;2.通过函数图象了解一元二次不等式与相应的二次函数、一元二次方程的联系;3.会解一元二次不等式,对给定的一元二次不等式,会设计求解的程序框图. 【热点题型】题型一 一元二次不等式的解法 例1、求下列不等式的解集: (1)-x2+8x -3>0; (2)ax2-(a +1)x +1<0.解 (1)因为Δ=82-4×(-1)×(-3)=52>0,所以方程-x2+8x -3=0有两个不相等的实根x1=4-13,x2=4+13. 又二次函数y =-x2+8x -3的图象开口向下, 所以原不等式的解集为{x|4-13<x<4+13}.当a =0时,解集为{x|x>1};当0<a<1时,解集为{x|1<x<1a };当a =1时,解集为∅;当a>1时,解集为{x|1a <x<1}.【提分秘籍】含有参数的不等式的求解,往往需要对参数进行分类讨论.(1)若二次项系数为常数,首先确定二次项系数是否为正数,再考虑分解因式,对参数进行分类讨论,若不易分解因式,则可依据判别式符号进行分类讨论;(2)若二次项系数为参数,则应先考虑二次项系数是否为零,确定不等式是不是二次不等式,然后再讨论二次项系数不为零的情形,以便确定解集的形式;(3)对方程的根进行讨论,比较大小,以便写出解集. 【举一反三】(1)若不等式ax2+bx +2>0的解为-12<x<13,则不等式2x2+bx +a<0的解集是________. (2)不等式x -12x +1≤0的解集是________.答案 (1)(-2,3) (2)(-12,1]题型二 一元二次不等式的恒成立问题 例2、设函数f(x)=mx2-mx -1.(1)若对于一切实数x ,f(x)<0恒成立,求m 的取值范围; (2)若对于x ∈[1,3],f(x)<-m +5恒成立,求m 的取值范围. 解 (1)要使mx2-mx -1<0恒成立, 若m =0,显然-1<0;若m≠0,则⎩⎪⎨⎪⎧m<0,Δ=m2+4m<0⇒-4<m<0.所以-4<m≤0.(2)要使f(x)<-m +5在x ∈[1,3]上恒成立,即m ⎝⎛⎭⎫x -122+34m -6<0在x ∈[1,3]上恒成立.有以下两种方法:方法二 因为x2-x +1=⎝⎛⎭⎫x -122+34>0,又因为m(x2-x +1)-6<0,所以m<6x2-x +1.因为函数y =6x2-x +1=6⎝⎛⎭⎫x -122+34在[1,3]上的最小值为67,所以只需m<67即可.所以,m 的取值范围是⎩⎨⎧⎭⎬⎫m|m<67.【提分秘籍】(1)对于一元二次不等式恒成立问题,恒大于0就是相应的二次函数的图象在给定的区间上全部在x 轴上方,恒小于0就是相应的二次函数的图象在给定的区间上全部在x 轴下方.另外常转化为求二次函数的最值或用分离参数法求最值.(2)解决恒成立问题一定要搞清谁是主元,谁是参数.一般地,知道谁的范围,谁就是主元,求谁的范围,谁就是参数.【举一反三】(1)若不等式x2-2x +5≥a2-3a 对任意实数x 恒成立,则实数a 的取值范围为( ) A .[-1,4]B .(-∞,-2]∪[5,+∞) C .(-∞,-1]∪[4,+∞) D .[-2,5](2)已知a ∈[-1,1]时不等式x2+(a -4)x +4-2a>0恒成立,则x 的取值范围为( ) A .(-∞,2)∪(3,+∞) B .(-∞,1)∪(2,+∞) C .(-∞,1)∪(3,+∞) D .(1,3)答案 (1)A (2)C解析 (1)x2-2x +5=(x -1)2+4的最小值为4, 所以x2-2x +5≥a2-3a 对任意实数x 恒成立, 只需a2-3a≤4,解得-1≤a≤4.(2)把不等式的左端看成关于a 的一次函数,记f(a)=(x -2)a +(x2-4x +4), 则由f(a)>0对于任意的a ∈[-1,1]恒成立, 易知只需f(-1)=x2-5x +6>0, 且f(1)=x2-3x +2>0即可, 联立方程解得x<1或x>3.题型三 题型三 一元二次不等式的应用例3、某商品每件成本价为80元,售价为100元,每天售出100件.若售价降低x 成(1成=10%),售出商品数量就增加85x 成.要求售价不能低于成本价.(1)设该商店一天的营业额为y ,试求y 与x 之间的函数关系式y =f(x),并写出定义域; (2)若再要求该商品一天营业额至少为10260元,求x 的取值范围.【提分秘籍】求解不等式应用题的四个步骤(1)阅读理解,认真审题,把握问题中的关键量,找准不等关系.(2)引进数学符号,将文字信息转化为符号语言,用不等式表示不等关系,建立相应的数学模型. (3)解不等式,得出数学结论,要注意数学模型中自变量的实际意义. (4)回归实际问题,将数学结论还原为实际问题的结果. 【举一反三】某商家一月份至五月份累计销售额达3860万元,预测六月份销售额为500万元,七月份销售额比六月份递增x%,八月份销售额比七月份递增x%,九、十月份销售总额与七、八月份销售总额相等,若一月份至十月份销售总额至少达7000万元,则x 的最小值是________.答案 20 解析 由题意得,3860+500+[500(1+x%)+500(1+x%)2]×2≥7000, 化简得(x%)2+3·x%-0.64≥0,解得x%≥0.2,或x%≤-3.2(舍去).∴x≥20,即x 的最小值为20. 【高考风向标】1.【高考广东,文11】不等式2340x x --+>的解集为.(用区间表示) 【答案】()4,1-【解析】由2340x x --+<得:41x -<<,所以不等式2340x x --+>的解集为()4,1-,所以答案应填:()4,1-.2.(·全国卷)设集合M ={x|x2-3x -4<0},N ={x|0≤x≤5},则M∩N =() A .(0,4] B .[0,4) C .[-1,0) D .(-1,0] 【答案】B【解析】因为M ={x|x2-3x -4<0}={x|-1<x<4},N ={x|0≤x≤5},所以M∩N ={x|-1<x<4}∩{0≤x≤5}={x|0≤x<4}.3.(·新课标全国卷Ⅱ] 设函数f(x)=3sin πx m ,若存在f(x)的极值点x0满足x20+[f(x0)]2<m2,则m 的取值范围是()A .(-∞,-6)∪(6,+∞)B .(-∞,-4)∪(4,+∞)C .(-∞,-2)∪(2,+∞)D .(-∞,-1)∪(1,+∞) 【答案】C【解析】函数f(x)的极值点满足πx m =π2+kπ,即x =m ⎝⎛⎭⎫k +12,k ∈Z ,且极值为±3,问题等价于存在k0使之满足不等式m2⎝⎛⎭⎫k0+122+3<m2.因为⎝⎛⎭⎫k +122的最小值为14,所以只要14m2+3<m2成立即可,即m2>4,解得m>2或m<-2,故m 的取值范围是(-∞,-2)∪(2,+∞).4.(·安徽卷)已知一元二次不等式f(x)<0的解集为x<-1或x>12,则f(10x)>0的解集为() A .{x|x<-1或x>-lg 2} B .{x|-1<x<-lg 2} C .{x|x>-lg 2} D .{x|x<-lg 2} 【答案】D【解析】根据已知可得不等式f(x)>0的解是-1<x<12,故-1<10x<12,解得x<-lg 2. 5.(·广东卷)不等式x2+x -2<0的解集为________. 【答案】{x|-2<x<1}【解析】x2+x -2=(x +2)(x -1)<0,解得-2<x<1.故不等式的解集是{x|-2<x<1}.6.(·四川卷)已知f(x)是定义域为R 的偶函数,当x≥0时,f(x)=x2-4x ,那么,不等式f(x +2)<5的解集是________.【答案】(-7,3)7.(高考全国新课标卷Ⅰ)已知函数f(x)=⎩⎪⎨⎪⎧-x2+2x ,x≤0,ln x +1,x>0.若|f(x)|≥ax ,则a 的取值范围是()A .(-∞,0]B .(-∞,1]C .[-2,1]D .[-2,0]解析:当x≤0时,f(x)=-x2+2x =-(x -1)2+1≤0,所以|f(x)|≥ax 化简为x2-2x≥ax ,即x2≥(a +2)x ,因为x≤0,所以a +2≥x 恒成立,所以a≥-2;当x>0时,f(x)=ln(x +1)>0,所以|f(x)|≥ax 化简为ln(x +1)>ax 恒成立,由函数图象可知a≤0,综上,当-2≤a≤0时,不等式|f(x)|≥ax 恒成立,选择D.【答案】D 【高考押题】1.函数f(x)=1-xx +2的定义域为( )A .[-2,1]B .(-2,1]C .[-2,1)D .(-∞,-2]∪[1,+∞)答案 B解析 1-xx +2≥0⇔x -1x +2≤0⇔⎩⎪⎨⎪⎧ x -1x +2≤0,x +2≠0⇔⎩⎪⎨⎪⎧ -2≤x≤1,x≠-2⇔-2<x≤1.2.设函数f(x)=⎩⎪⎨⎪⎧ x2-4x +6,x≥0,x +6,x<0,则不等式f(x)>f(1)的解集是( )A .(-3,1)∪(3,+∞)B .(-3,1)∪(2,+∞)C .(-1,1)∪(3,+∞)D .(-∞,-3)∪(1,3)答案 A解析 由题意得⎩⎪⎨⎪⎧ x≥0,x2-4x +6>3或⎩⎪⎨⎪⎧ x<0,x +6>3,解得-3<x<1或x>3.3.设a>0,不等式-c<ax +b<c 的解集是{x|-2<x<1},则a ∶b ∶c 等于( )A .1∶2∶3B .2∶1∶3C .3∶1∶2D .3∶2∶1答案 B解析 ∵-c<ax +b<c ,又a>0,∴-b +c a <x<c -ba .∵不等式的解集为{x|-2<x<1},∴⎩⎪⎨⎪⎧ -b +c a =-2,c -ba =1,∴⎩⎨⎧b =a2,c =32a ,∴a ∶b ∶c =a ∶a 2∶3a2=2∶1∶3.4.若不等式mx2+2mx -4<2x2+4x 对任意x 都成立,则实数m 的取值范围是()A .(-2,2]B .(-2,2)C .(-∞,-2)∪[2,+∞)D .(-∞,2]答案 A5.若集合A ={x|ax2-ax +1<0}=∅,则实数a 的值的集合是( )A .{a|0<a<4}B .{a|0≤a<4}C .{a|0<a≤4}D .{a|0≤a≤4}答案 D解析 由题意知a =0时,满足条件.a≠0时,由⎩⎪⎨⎪⎧a>0,Δ=a2-4a≤0得0<a≤4,所以0≤a≤4. 6.已知一元二次不等式f(x)<0的解集为⎩⎨⎧⎭⎬⎫x|x<-1或x>12,则f(10x)>0的解集为________. 答案 {x|x<-lg2}解析 由已知条件0<10x<12,解得x<lg 12=-lg2.7.若0<a<1,则不等式(a -x)(x -1a )>0的解集是________________.答案 {x|a<x<1a }解析 原不等式即(x -a)(x -1a )<0,由0<a<1得a<1a ,∴a<x<1a .8.已知f(x)是定义在R 上的奇函数.当x>0时,f(x)=x2-4x ,则不等式f(x)>x 的解集用区间表示为________________.答案 (-5,0)∪(5,+∞)解析 由已知得f(0)=0,当x<0时,f(x)=-f(-x)=-x2-4x ,因此f(x)=⎩⎪⎨⎪⎧x2-4x ,x≥0,-x2-4x ,x<0.不等式f(x)>x 等价于⎩⎪⎨⎪⎧ x≥0,x2-4x>x ,或⎩⎪⎨⎪⎧x<0,-x2-4x>x. 解得:x>5,或-5<x<0.9.已知f(x)=-3x2+a(6-a)x +6.(1)解关于a 的不等式f(1)>0;(2)若不等式f(x)>b 的解集为(-1,3),求实数a 、b 的值.10.某农贸公司按每担200元收购某农产品,并每100元纳税10元(又称征锐率为10个百分点),计划可收购a 万担,政府为了鼓励收购公司多收购这种农产品,决定将征税率降低x(x≠0)个百分点,预测收购量可增加2x 个百分点.(1)写出降税后税收y(万元)与x 的函数关系式;(2)要使此项税收在税率调节后不少于原计划税收的83.2%,试确定x 的取值范围.解 (1)降低税率后的税率为(10-x)%,农产品的收购量为a(1+2x%)万担,收购总金额为200a(1+2x%)万元.依题意得y =200a(1+2x%)(10-x)%=150a(100+2x)(10-x)(0<x<10).(2)原计划税收为200a·10%=20a(万元).依题意得150a(100+2x)(10-x)≥20a×83.2%,化简得x2+40x -84≤0,解得-42≤x≤2.又∵0<x<10,∴0<x≤2.即x的取值范围为(0,2].高考模拟复习试卷试题模拟卷高考模拟复习试卷试题模拟卷第八章 直线与圆一.基础题组1.(重庆市巴蜀中学高三月考数学、文、1)若直线210ax y ++=与直线20x y +-=互相垂直,那么a 的值等于( )A .1B .13-C .23-D .2- 2.(文昌中学高三模拟考试、文、15)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________________.3.(重庆市巴蜀中学高三月考数学、文、15)在平面直角坐标系xOy 中,以点)0,1(为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为.4.(重庆市部分区县高三上学期入学考试、文、16)若实数c b a ,,成等差数列,点)0,1(-P 在动直线0:==+c by ax l 上的射影为M ,点)3,0(N ,则线段MN 长度的最小值是.二.能力题组1.(五校协作体高三上学期期初考试数学、文、9)曲线21y x =+在点(1,2)处的切线为l ,则直线l 上的任意点P 与圆22430x y x +++=上的任意点Q 之间的最近距离是( )A.4515-B.2515- C.51- D.2 2.(示范高中高三第一次联考、文、14)已知圆的方程为()2214x y +-=。
高考数学模拟复习试卷试题模拟卷2094
高考模拟复习试卷试题模拟卷【高频考点解读】1.掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题;2.能够运用正弦定理、余弦定理等知识解决一些与测量和几何计算有关的实际问题. 【热点题型】题型一 正、余弦定理的简单运用【例1】 在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c. (1)若a =23,b =6,A =45°,则c =________. (2)若(a +b +c)(a -b +c)=ac ,则B =________.解析 (1)法一 在△ABC 中,由正弦定理得sin B =bsin A a =6×2223=12,因为b <a ,所以B <A ,所以B =30°,C =180°-A -B =105°,sin C =sin 105°=sin(45°+60°)=sin 45°cos 60°+cos 45°sin 60°=6+24. 故c =asin C sin A =23×6+2422=3+3.【提分秘籍】(1)在解有关三角形的题目时,要有意识地考虑用哪个定理更适合,或是两个定理都要用,要抓住能够利用某个定理的信息,一般地,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到.(2)解题中注意三角形内角和定理的应用及角的范围限制.【举一反三】(1)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且2c2=2a2+2b2+ab ,则△ABC 是( ) A .钝角三角形 B .直角三角形 C .锐角三角形 D .等边三角形(2)在△ABC 中,A =60°,b =1,S △ABC =3,则a +b +csin A +sin B +sin C=________.题型二正、余弦定理的综合运用【例2】在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c.已知a =3,cos A =63,B =A +π2. (1)求b 的值; (2)求△ABC 的面积.解 (1)在△ABC 中,由题意知,sin A =1-cos2A =33, 因为B =A +π2,所以sin B =sin ⎝⎛⎭⎫A +π2=cosA =63.由正弦定理,得b =asin Bsin A =3×6333=3 2.(2)由B =A +π2,得cos B =cos ⎝⎛⎭⎫A +π2=-sin A =-33.由A +B +C =π,得C =π-(A +B). 所以sin C =sin[π-(A +B)]=sin(A +B)=sin Acos B +cos Asin B =33×⎝ ⎛⎭⎪⎫-33+63×63=13.因此△ABC 的面积S =12absin C =12×3×32×13 =322. 【提分秘籍】有关三角形面积问题的求解方法:(1)灵活运用正、余弦定理实现边角转化;(2)合理运用三角函数公式,如同角三角函数的基本关系、两角和与差的正弦、余弦公式、二倍角公式等.【举一反三】在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且a +b +c =8. (1)若a =2,b =52,求cos C 的值;(2)若sin Acos2B 2+sin Bcos2A 2=2sin C ,且△ABC 的面积S =92sin C ,求a 和b 的值. 解 (1)由题意可知c =8-(a +b)=72.由余弦定理得cos C =a2+b2-c22ab=22+⎝⎛⎭⎫522-⎝⎛⎭⎫7222×2×52=-15.(2)由sin Acos2B 2+sin Bcos2A2=2sin C 可得: sin A·1+cos B 2+sin B·1+cos A 2=2sinC ,化简得sin A +sin Acos B +sin B +sin Bcos A =4sin C. 因为sin Acos B +cos Asin B =sin(A +B)=sin C , 所以sin A +sin B =3sin C. 由正弦定理可知a +b =3c. 又因为a +b +c =8,故a +b =6. 由于S =12absin C =92sin C ,所以ab =9, 从而a2-6a +9=0, 解得a =3,b =3.题型三正、余弦定理在实际问题中的应用【例3】如图,在海岸A处,发现北偏东45°方向距A为(3-1)海里的B处有一艘走私船,在A处北偏西75°方向,距A为2海里的C处的缉私船奉命以103海里/时的速度追截走私船.此时走私船正以10海里/时的速度从B处向北偏东30°方向逃窜,问缉私船沿什么方向能最快追上走私船?并求出所需要的时间(注:6≈2.449).【提分秘籍】解三角形应用题的两种情形:(1)实际问题经抽象概括后,已知量与未知量全部集中在一个三角形中,可用正弦定理或余弦定理求解;(2)实际问题经抽象概括后,已知量与未知量涉及到两个或两个以上的三角形,这时需作出这些三角形,先解够条件的三角形,然后逐步求解其他三角形,有时需设出未知量,从几个三角形中列出方程(组),解方程(组)得出所要求的解.【举一反三】如图,为测量山高MN ,选择A 和另一座山的山顶C 为测量观测点,从A 点测得M 点的仰角∠MAN =60°,C 点的仰角∠CAB =45°以及∠MAC =75°;从C 点测得∠MCA =60°.已知山高BC =100 m ,则山高MN =________m.解析 在Rt △ABC 中,∠CAB =45°,BC =100 m ,所以AC =1002(m).在△AMC 中,∠MAC =75°,∠MCA =60°,从而∠AMC =45°,由正弦定理,得AC sin 45°=AMsin 60°,因此AM =1003(m).在Rt △MNA 中,AM =100 3 m ,∠MAN =60°,由MN AM =sin 60°,得MN =1003×32=150(m). 答案 150 【高考风向标】【高考湖北,文15】如图,一辆汽车在一条水平的公路上向正西行驶,到A 处时测得公路北侧一山顶D 在西偏北30的方向上,行驶600m 后到达B 处,测得此山顶在西偏北75的方向上,仰角为30,则此山的高度CD =_________m.【答案】1006.【解析】在ABC ∆中,030CAB ∠=,000753045ACB ∠=-=,根据正弦定理知,sin sin BC ABBAC ACB=∠∠, 即1sin 2sin 22AB BC BAC ACB =⨯∠==∠3tan 30021006CD BC DBC =⨯∠==,故应填 6.AB C D.【高考湖南,文17】(本小题满分12分)设ABC ∆的内角,,A B C 的对边分别为,,,tan a b c a b A =. (I )证明:sin cos B A =; (II) 若3sin sin cos 4C A B -=,且B 为钝角,求,,A B C . 【答案】(I )略;(II)30,120,30.A B C ===【解析】(Ⅰ)由tan a b A =及正弦定理,得sin sin cos sin A a AA bB ==,所以sin cos B A =。
高考模拟复习试卷试题模拟卷高三数学第四次月考
高考模拟复习试卷试题模拟卷高三数学第四次月考数学试卷(理科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
考生作答时,将答案写在答题卡上,在本试卷上答题无效。
第Ⅰ卷一、选择题:(本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.设集合{|12}M x x =-≤<,{|0}N x x k =-≤,若M N φ≠,则k 的取值范围是().A .2k ≤B .12k -<≤C .1k ->D .1k ≥- 2.下列命题正确的是( )A .∀x ∈R ,x2+2x +1=0B .∃x ∈R ,-x +1≥0C .∀x ∈N*,log2x>0D .∃x ∈R ,cosx<2x -x2-33. 将函数x y 2sin =的图象向右平移4π个单位,再向上平移1个单位,所得函数图象对应的解析式为( )A.1)42sin(+-=πx y B.x y 2cos 2=C.x y 2sin 2=D.x y 2cos -=4.已知由不等式00240x y y kx y x ≤⎧⎪≥⎪⎨-≤⎪⎪--≤⎩确定的平面区域Ω的面积为7,则k 的值( )A .2-B .1-C .3-D .25.设,,l m n 表示不同的直线,αβγ,,表示不同的平面,给出下列四个命题: ①若m ∥l ,且.m α⊥则l α⊥; ②若m ∥l ,且m ∥α.则l ∥α;③若,,l m n αββγγα===,则l ∥m ∥n ; ④若,,,m l n αββγγα===且n ∥β,则l ∥m. 其中正确命题的个数是( ) A .1 B .2 C .3 D .46.在各项均为正数的等比数列{}n a 中,351,1a a ==,则2326372a a a a a ++=( )A . 8B .6C .4D.8-7. 下列各点中,能作为函数tan()5y x π=+(x ∈R 且310x k ππ≠+,k ∈Z )的一个对称中心的点是( )A .(0,0)B .(,0)5πC .(,0)πD .3(,0)10π8.用数学归纳法证明不等()2242321312111≥>++++++n n n n n 的过程中,由n=k 递推到n=k+1时,不等式左边( )A.增加了一项)1(21+k B.增加了一项)1(21121+++k kC.增加了)1(21121+++k k ,又减少了11+k D.增加了)1(21+k ,又减少了11+k9.定义在R 上的偶函数f(x)满足:对任意的x1,x2∈[0,+∞)(x1≠x2),有0x -x x f -x f 1212<)()(,则( )A .f(3)<f(-2)<f(1)B .f(1)<f(-2)<f(3)C .f(-2)<f(1)<f(3)D .f(3)<f(1)<f(-2)10.已知x>0,y>0,2lg 8lg 2lg yx =+,则1x +13y的最小值是( )A .2B .2 2C .4D .2311.已知f(x)=3-2|x|,g(x)=x2-2x ,F(x)=⎩⎪⎨⎪⎧gx ,若f x ≥g x ,f x,若fx<gx.则F(x)的最值是( )A .最大值为3,最小值-1B .最大值为7-27,无最小值C .最大值为3,无最小值D .既无最大值,又无最小值12.对于任意两个正整数,m n ,定义某种运算“※”如下:当,m n 都为正偶数或正奇数时,m ※n =m n +;当,m n 中一个为正偶数,另一个为正奇数时, m ※n =mn .则在此定义下,集合{(,)M a b a =※12,,}b a b **=∈∈N N 中的元素个数是( ) A .10个 B .18个 C .16个 D .15个第Ⅱ卷二、填空题:(本大题共4小题,每小题5分,共20分.将答案填在答题卷相应位置上.) 13.已知正四棱柱ABCD -A1B1C1D1中,AA1=2AB ,则CD 与平面BDC1所成角的正弦值等于________________.14.已知2n cos n f π=)(,则f(1)+f(2)+...+f()+f()=_______________. 15.一个几何体的三视图及其尺寸如下图所示,其中主视图是直角三角形,侧视图是半圆,俯视图是等腰三角形,则这个几何体的表面积是________.16.若定义在R 上的偶函数y =()f x 满足(1)f x +=1()f x ,且当x ∈(0,1]时,()f x =x ,函数()g x =3+1log (>0)2(0)x x x x ⎧⎨≤⎩,则函数()h x =()()f x g x -在区间[-4,4]内的零点的个数为 .三、解答题:(本大题共6小题,满分70分.解答须写出文字说明、证明过程和演算步骤.)17.(满分12分)已知0a -12x -x q ,020-x 8-x p 222>+>::.若p 是q 的充分不必要条件,求正实数a 的取值范围.18. (满分12分)已知函数25()5sin cos 53cos 32f x x x x =-+(其中x ∈R ),求:(1)函数()f x 的最小正周期; (2)函数()f x 的单调区间;(3)函数()f x 图象的对称轴和对称中心.19.(满分12分)在公差不为0的等差数列{an}中,a1,a4,a8成等比数列. (1)已知数列{an}的前10项和为45,求数列{an}的通项公式; (2)若,且数列{bn}的前n 项和为Tn ,若,求数列{an}的公差.20.(满分12分) 在直三棱柱111ABC A B C -中,12,22AB BC AA ===ACB=90°,M是1AA 的中点,N是1BC 的中点(Ⅰ)求证:MN ∥平面111A B C ; (Ⅱ)求点1C 到平面BMC 的距离; (Ⅲ)求二面角11B C M A --的平面角 的余弦值大小。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考模拟复习试卷试题模拟卷【考情解读】1.考查指数函数的求值、指数函数的图象和性质;2.讨论与指数函数有关的复合函数的性质;3.将指数函数与对数函数、抽象函数相结合,综合考查指数函数知识的应用. 【重点知识梳理】 1.根式的性质 (1)(na)n =a.(2)当n 为奇数时nan =a. 当n 为偶数时nan ={ a a≥0-a a<0.2.有理数指数幂 (1)幂的有关概念①正整数指数幂:an =a·a·…·a n 个 (n ∈N*). ②零指数幂:a0=1(a≠0).③负整数指数幂:a -p =1ap (a≠0,p ∈N*).④正分数指数幂:a m n =nam(a>0,m 、n ∈N*,且n>1). ⑤负分数指数幂:a -m n =1a m n =1n am (a>0,m 、n ∈N*,且n>1).⑥0的正分数指数幂等于0,0的负分数指数幂没有意义. (2)有理数指数幂的性质 ①aras =ar +s(a>0,r 、s ∈Q); ②(ar)s =ars(a>0,r 、s ∈Q); ③(ab)r =arbr(a>0,b>0,r ∈Q). 3.指数函数的图象与性质y =axa>10<a<1图象定义域(1)R值域 (2)(0,+∞) 性质(3)过定点(0,1)(4)当x>0时,y>1; x<0时,0<y<1(5)当x>0时,0<y<1; x<0时,y>1(6)在(-∞,+∞)上是增函数(7)在(-∞,+∞)上是减函数【高频考点突破】 考点一 指数幂的运算例1、 (1)计算:(124+223)12-2716+1634-2×(8-23)-1; (2)已知x 12+x -12=3,求x2+x -2-2x 32+x -32-3的值.【探究提高】根式运算或根式与指数式混合运算时,将根式化为指数式计算较为方便,对于计算的结果,不强求统一用什么形式来表示,如果有特殊要求,要根据要求写出结果.但结果不能同时含有根号和分数指数,也不能既有分母又有负指数.【变式探究】计算下列各式的值:(1)⎝⎛⎭⎫-278-23+(0.002)-12-10(5-2)-1+(2-3)0;(2)15+2-(3-1)0-9-45;(3)a3b23ab2a14b124a-13b13(a>0,b>0).考点二指数函数的图象、性质的应用例2、 (1)函数f(x)=ax-b的图象如图所示,其中a,b为常数,则下列结论正确的是 ()A.a>1,b<0B.a>1,b>0C.0<a<1,b>0D.0<a<1,b<0【答案】 (1)D(2)求函数f(x)=3x2-5x+4的定义域、值域及其单调区间.【探究提高】(1)与指数函数有关的函数的图象的研究,往往利用相应指数函数的图象,通过平移、对称变换得到其图象.(2)对复合函数的性质进行讨论时,要搞清复合而成的两个函数,然后对其中的参数进行讨论. 【变式探究】 (1)函数y =ex +e -xex -e -x的图象大致为()【答案】A(2)若函数f(x)=e -(x -μ)2 (e 是自然对数的底数)的最大值是m ,且f(x)是偶函数,则m +μ=________.【答案】1考点三 指数函数的综合应用例3、(1)k 为何值时,方程|3x -1|=k 无解?有一解?有两解? (2)已知定义在R 上的函数f(x)=2x -12|x|. ①若f(x)=32,求x 的值;②若2tf(2t)+mf(t)≥0对于t ∈[1,2]恒成立,求实数m 的取值范围.【探究提高】对指数函数的图象进行变换是利用图象的前提,方程f(x)=g(x)解的个数即为函数y =f(x)和y =g(x)图象交点的个数;复合函数问题的关键是通过换元得到两个新的函数,搞清复合函数的结构.【变式探究】已知f(x)=aa2-1(ax -a -x) (a>0且a≠1).(1)判断f(x)的奇偶性;(2)讨论f (x)的单调性;(3)当x ∈[-1,1]时,f(x)≥b 恒成立,求b 的取值范围.【真题感悟】1.【高考新课标1,文10】已知函数1222,1()log (1),1x x f x x x -⎧-≤=⎨-+>⎩,且()3f a =-,则(6)f a -=( )(A )74-(B )54-(C )34-(D )14- 【答案】A2.【高考山东,文8】若函数21()2x x f x a+=-是奇函数,则使3f x >()成立的x 的取值范围为( )(A )( ) (B)() (C )0,1()(D )1,+∞()【答案】C3.【高考山东,文2】设0.61.50.60.60.6 1.5a b c ===,,,则a b c ,,的大小关系是( ) (A )a b c <<(B ) a c b <<(C )b a c <<(D )b c a << 【答案】C1.(·天津卷)设a =log2π,b =log 12π,c =π-2,则() A .a >b >c B .b >a >c C .a >c >b D .c >b >a 【答案】C2.(·四川卷)已知b >0,lo g5b =a ,lg b =c ,5d =10,则下列等式一定成立的是() A .d =ac B .a =cd C .c =ad D .d =a +c 【答案】B3.(·安徽卷)设a =log37,b =21.1,c =0.83.1,则()A .b<a<cB .c<a<bC .c<b<aD .a<c<b 【答案】B4.(·福建卷)若函数y =logax(a>0,且a≠1)的图像如图所示,则下列函数图像正确的是()【答案】B5.(·辽宁卷)已知a =2-13,b =log213,c =log 1213,则() A .a >b >c B .a >c >b C .c >b >a D .c >a >b 【答案】D6.(·全国新课标卷Ⅰ] 设函数f(x)=⎩⎪⎨⎪⎧ex -1,x <1,x 13,x≥1,则使得f(x)≤2成立的x 的取值范围是________.【答案】(-∞,8]7.(·山东卷)已知实数x ,y 满足ax<ay(0<a<1),则下列关系式恒成立的是() A .x3>y3 B .sin x>sin yC .ln(x2+1)>l n(y2+1) D.1x2+1>1y2+1 【答案】A8.(·陕西卷)下列函数中,满足“f(x +y)= f(x)f(y)”的单调递增函数是() A .f(x)=x3 B .f(x)=3x C .f(x)=x 12 D .f(x)=⎝⎛⎭⎫12x【答案】B9.(·陕西卷)已知4a =2,lg x =a ,则x =________. 【答案】1010.(·四川卷)设m ∈R ,过定点A 的动直线x +my =0和过定点B 的动直线mx -y -m +3=0交于点P(x ,y),则|PA|+|PB|的取值范围是()A .[5,2 5 ]B .[10,2 5 ]C .[10,4 5 ]D .[25,4 5 ] 【答案】B【押题专练】 1.已知a<14,则化简44a -12的结果是()A.4a -1 B .-4a -1 C.1-4a D .-1-4a 【答案】C2.设y1=40.9,y2=80.48,y3=⎝⎛⎭⎫12-1.5,则() A .y3>y1>y2 B .y2>y1>y3 C .y1>y2>y3 D .y1>y3>y2【答案】D3.若点(a,9)在函数y =3x 的图像上,则tan aπ6的值为() A .0 B.33 C. 1D. 3【答案】D4.函数y =ax -a(a>0,且a≠1)的图像可能是()【答案】C5.给出下列结论: ①当a<0时,(a2) 32=a3;②nan =|a|(n>1,n ∈N +,n 为偶数);③函数f(x)=(x -2) 12-(3x -7)0的定义域是{x|x≥2且x≠73}; ④若2x =16,3y =127,则x +y =7. 其中正确的是() A .①② B .②③ C .③④ D .②④ 【答案】B6.函数y =ax 在[0,1]上的最大值与最小值的和为3,则a 的值为() A.12 B .2 C .4 D.14【答案】B7.已知集合P ={(x ,y)|y =m},Q ={(x ,y)|y =ax +1,a>0,a≠1},如果P∩Q 有且只有一个元素,那么实数m 的取值范围是________.【答案】(1,+∞)8.已知2x2+x≤⎝⎛⎭⎫14x -2,则函数y =2x -2-x 的值域是________. 【答案】⎣⎡⎦⎤-25516,329.若x>0,则(2x 14 +3 32 )(2x 14 -3 32 )-4x -12 (x -x 12)=________. 【答案】-2310.若函数f(x)=ax -1(a>0且a≠1)的定义域和值域都是[0,2],则a =________. 【答案】311.求下列函数的定义域、值域.12.已知定义域为R的函数f(x)=-2x+b2x+1+a是奇函数.(1)求a,b的值;(2)若对任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求k的取值范围.13.已知f(x)=3x,并且f(a+2)=18,g(x)=3ax-4x的定义域为[-1,1].(1)求函数g(x)的解析式;(2)判断g(x)的单调性;(3)若方程g(x)=m有解,求m的取值范围.高考模拟复习试卷试题模拟卷高考模拟复习试卷试题模拟卷第03节 几何概型A 基础巩固训练1.在区间[0,π]上随机取一个数x ,则事件“sin x≥cos x”发生的概率为( ) A.14 B.12 C.34 D .1 【答案】 C【解析】 ∵sin x≥cos x ,x ∈[0,π], ∴π4≤x≤π, ∴事件“sin x≥cos x”发生的概率为π-π4π-0=34.2.(·西城模拟)在区间[0,2]上任取两个实数a ,b ,则函数f(x)=x3+ax -b 在区间[-1,1]上有且只有一个零点的概率是( )A.18B.14C.34D.78【答案】D3.如图10-6-8所示,墙上挂有一边长为a 的正方形木板,它的四个角的空白部分都是以正方形的顶点为圆心,a2为半径的扇形,某人向此板投镖,假设每次都能击中木板,且击中木板上每个点的可能性都一样,则他击中阴影部分的概率是( ) A .1-π4B.π4C .1-π8D.与a 的取值有关【解析】 由题意知,阴影部分的面积为a2-4×14×π⎝⎛⎭⎫a 22=⎝⎛⎭⎫1-π4a2,故概率为1-π4. 【答案】 A4. (·阜阳模拟)一艘轮船从O 点的正东方向10 km 处出发,沿直线向O 点的正北方向10 km 处的港口航行,某台风中心在点O ,距中心不超过r km 的位置都会受其影响,且r 是区间[5,10]内的一个随机数,则轮船在航行途中会遭受台风影响的概率是( ) A.2-12B.1-22C.2-1D.2- 2【答案】 D【解析】 以O 为圆心,r 为半径作圆,易知当r >52时,轮船会遭受台风影响,所以P =10-5210-5=10-525=2- 2. 5.在棱长为2的正方体ABCD -A1B1C1D1中,点O 为底面ABCD 的中心,在正方体ABCD -A1B1C1D1内随机取一点P ,则点P 到点O 的距离大于1的概率为________. 【答案】1-π12B 能力提升训练1. 【高考辽宁卷第6题】若将一个质点随机投入如图所示的长方形ABCD 中,其中AB=2,BC=1,则质点落在以AB 为直径的半圆内的概率是( ) A .2π B .4π C .6π D .8π【答案】B2. 在区间(0,1)内任取两个实数,则这两个实数的和大于13的概率为()A.1718B.79C.29D.118【答案】A3.【湖北八校高三第二次联考数学试题】记集合{}22(,)|4A x y x y=+≤和集合{}(,)|20,0,0B x y x y x y=+-≤≥≥表示的平面区域分别为1Ω和2Ω,若在区域1Ω内任取一点(,)M x y,则点M落在区域2Ω的概率为.【答案】12πBAyxO4.一只小蜜蜂在一个棱长为4的正方体内自由飞行,若蜜蜂在飞行过程中始终保持与正方体6个表面的距离均大于1,称其为“安全飞行”,则蜜蜂“安全飞行”的概率为( )A .18B .116C .127D .2764【答案】A【解析】根据几何概型知识,概率为体积之比,即P =4-2343=18. 5. (·福建三明质量检测)已知集合M ={x|-2≤x ≤8},N ={x|x2-3x +2≤0},在集合M 中任取一个元素x ,则“x ∈(M ∩N)”的概率是( )A .110B .16C .310D .12【答案】A【解析】因为N ={x|x2-3x +2≤0}=[1,2],所以M ∩N =[1,2],所以所求的概率为2-18+2=110.C 思维扩展训练1. 【东莞市高三模拟考试一】已知(2,1)A ,(1,2)B -,31,55C ⎛⎫- ⎪⎝⎭,动点(,)P a b 满足02OP OA ≤⋅≤且02OP OB ≤⋅≤,则点P 到点C 的距离大于14的概率为( )A .5164π-B .564πC .116π- D .16π 【答案】A2. 【高考重庆卷第15题】某校早上8:00开始上课,假设该校学生小张与小王在早上7:30—7:50之间到校,且每人在该时间段的任何时刻到校是等可能的,则小张比小王至少早5分钟到校的概率为_____(用数字作答)【答案】932【解析】用x表示小张到校的时间,3050x≤≤,用y表示小王到校的时间,3050y≤≤则所有可能的结果对应直角坐标平面内的正方形区域ABCD记“小张比小王至少早到5分钟”为事件M,则M所对区域为图中的阴影部分DEF∆所以()1151592202032DEFABCDSP AS∆⨯⨯===⨯正方形,所以答案应填:932.3. (济南市高三3月考模拟考试)如图,长方体ABCD—A1B1C1D1,有一动点在此长方体内随机运动,则此动点在三棱锥A—A1BD内的概率为.【答案】164. 【北京市丰台区高三一模】设不等式组2210x yy⎧+-≤⎨≥⎩,表示的平面区域为M,不等式组201t x ty t-≤≤⎧⎪⎨≤≤-⎪⎩,表示的平面区域为N.在M内随机取一个点,这个点在N内的概率的最大值是_________.【答案】2π5. 若k∈[-3,3],则k的值使得过A(1,1)可以作两条直线与圆(x-k)2+y2=2相切的概率等于( )A .12B .13C .23D .34【答案】C 【解析】点在圆外,过该点可做两条直线与圆相切.故使圆心与点A 的距离大于半径即可,即(1-k)2+1>2,解得k <0或k >2,所以所求k ∈[-3,0)∪(2,3],所求概率P =46=23.高考模拟复习试卷试题模拟卷第八章 直线与圆一.基础题组1.(重庆市巴蜀中学高三月考数学、文、1)若直线210ax y ++=与直线20x y +-=互相垂直,那么a 的值等于( )A .1B .13-C .23-D .2- 2.(文昌中学高三模拟考试、文、15)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________________.3.(重庆市巴蜀中学高三月考数学、文、15)在平面直角坐标系xOy 中,以点)0,1(为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为.4.(重庆市部分区县高三上学期入学考试、文、16)若实数c b a ,,成等差数列,点)0,1(-P 在动直线0:==+c by ax l 上的射影为M ,点)3,0(N ,则线段MN 长度的最小值是.二.能力题组1.(五校协作体高三上学期期初考试数学、文、9)曲线21y x =+在点(1,2)处的切线为l ,则直线l 上的任意点P 与圆22430x y x +++=上的任意点Q 之间的最近距离是( )A.4515-B.2515- C.51- D.2 2.(示范高中高三第一次联考、文、14)已知圆的方程为()2214x y +-=。