角的度量(度分秒的转化与计算)

合集下载

角的度分秒的换算方法

角的度分秒的换算方法

≈ 45°+0.396°
= 45.396°
小结: 角的度数的换算有两种情况: (1)把度化成度、分、秒的形式,即从高单位向低单位转化时,一般都是把 度的小数部分化成分,把分的小数部分化成秒,每级变化乘以60. (2)把度、分、秒化成度的形式,即从低单位向高单位转化时,一般地是先 把秒化成分,再把分化成度,每级变化除以60.
初中数学七年级上册
角的度分秒的换算方法
1.角度制的起源
知识链接
角度制起源于四大文明古国之一的古代巴比伦.为什么选择60这个数作为进制的基 数呢?据说是由于60这个数是许多常用的数2,3,4,5,6,10,12,15,20,30 的倍数,60=12×5,12是一年中的月数,5是一只手的手指数,所以古巴比伦人 认为60是一个特别而又重要的数.
1周角=---3-6--0---°,1平角=--1--8-0---°,
1°=---6--0---′,1′=---6--0---″.
1
1
反过来 1′=---6--0---°,1″=---6--0---′.
典例剖析 1.角的度、分、秒的换算
例1:(1)把4.62°化成度、分、秒;
(2)把45°23′45″化成度.
解:(1) 4.62°= 4°+ 0.62 ×60′ (2) 45°23′45″=45°+23′+45÷60′
= 4°+ 37.2′
=45°+23′+0.75′
= 4°+ 37′+ 0.2 ×60″
= 45°+23.75′
= 4°+ 37′+ 12″
= 45°+23.75÷60°
= 4°37′12″

角度的运算(度分秒的加减乘除)

角度的运算(度分秒的加减乘除)

×60
×3600
÷60 ÷3600

÷ 60 ×60

复习:
填空
(1)34.50= 34 0 30 / (2)112.270= 112 016 / 12 // 解:(1)34.50=340+0.50
=340+0.5×60/
=340+3 0/=34030/ (2)112.270=1120+0.27×60/
3 乘法运算度分秒同时分别乘;
4 除法先从度开始除,除不尽转化为分,再 除不尽转化为秒,直到精确到要求的位数为止;
解 247 1424,
=46°60′-14°24′
= 37°38′+45°21′36″
=(46-14)°(60-24)′
=(37+45)°(38+21)′36″
=32°36′
=82°59′36″
小结与归纳
1 度、分、秒都是60进制,逢60进1; 2 加减法要将度与度、分与分、秒与秒分别加减, 分秒相加逢60要进位,相减时要借1当作60; (借1°作60′;借1′作60″)
角度的运算
试一试:一副三角板可以拼成多少度的角?(0度和180度除外)
30°、45°、60°、90°、 15°、75°、105°、120°、135°、 150°、165°
回顾:角的度量单位
角的度量单位:度 、分、秒. 1°的60分之一为1分,记作“1′”,即1°=60′
1′的60分之一度为1秒,记作“1″”,即1′=60″
(4) 63021/39//÷3
(5)10606/25//÷5
• 解:原式=(21×3)0(31×3)/(27×3)//

ห้องสมุดไป่ตู้

角度的换算(度分秒转化)

角度的换算(度分秒转化)
一个周角360 等分,每一份 就是1度的角, 记作1°, 1° 的角60等分每 一份角叫1 分 的角,1分记作 1′, 1′的角 60等分每一份 的角叫1秒的 角,1秒记作 1″
练习: 300= 1800 分= 108000 秒 30 0.50= 分= 1800 秒 2 度= 7200 秒 120分= 60 1 3600秒= 分= 度
角度的换算
(时针与分针的夹角)
淮滨一中 张世宇
一周角=2平角=4直角=360° 一平角=180° 一直角=90° 1°=60′, 1′=60″ (读成1度等于60分,1分等于60秒)
角的度量单位及其换算
角的度量单位:度、分、秒 1度= 60 分,1分= 60 秒 1秒= 1/60 分,1分= 1/60 度

例1 计算: ⑴ 1.45°等于多少分?等于多少秒? ⑵ 1800″等于多少分?等于多少度?
角的度量
例题2 (1)把27.38°化成度、分、秒的形式;
(2)46°30′36″转化成用度表示的形式. 解析: 27.38° 46°30′36″ =27°+0.38° =46°+30′+36×(1/60) =27°+0.38°×60′ ′ =46°+30.6′ =27°+22.8′ =46°+30.6×(1/60)° =27°+22′+0.8′ =46°+0.51° =27°+22′+0.8×60″ =46.51°. =27°22′48″ 点评: 角度的换算实际上是单位的换算:①把高单位换成低单 位用乘法;②把低单位换成高单位用除法,体现数学中的转化 思想,培养学生的运算能力.
试一试:
请你计算时针与分针的夹角: (1)8:30

角度的换算(度分秒转化)

角度的换算(度分秒转化)

感谢您的观看
THANKS
误区一:混淆单位换算关系
错误地将1度等于60分、1分等于60秒的关系应用于所有情况,忽略了度、分、秒之间的换算关系仅 适用于角度的度量。
在进行角度加减运算时,未将度、分、秒转换为同一单位,导致计算错误。
误区二:忽视小数位数处理
在进行角度的度分秒转化时,未对小 数位数进行正确处理,导致精度损失 或计算错误。
对于练习题一,需要将度数的小数部分转换为分和秒。具体步骤为
将小数部分乘以60得到分,再将所得结果的小数部分乘以60得到秒。例如,10.25度可以转换为10度15分0秒 。
对于练习题二,需要将分和秒转换为度。具体步骤为
将分除以60得到度的整数部分和小数部分,再将小数部分乘以60并加上秒数,最后再除以3600得到度的小数部 分。例如,45分30秒可以转换为0.7639度(约等于)。
弧度制转角度制
同样地,有时也需要将弧度制转换为角度制。转换公式为:角度 = 弧度 × 180 / π。 例如,将π / 3弧度转换为角度制,即为(π / 3) × 180 / π = 60度。
工程测量中方向角和高差角计算
方向角计算
在工程测量中,方向角通常用于表示两点之间的方向关 系。计算方向角时,需要将角度从北方向开始顺时针测 量到目标方向。例如,若目标方向位于正东方向,则其 方向角为90度;若目标方向位于东南方向,则其方向角 为135度。
03
在进行角度加减运算时,需先 将度、分、秒转换为同一单位 ,再进行计算,以避免单位换 算错误导致的计算失误。
04
实际应用场景举例
地理坐标表示中经纬度转换
经度转换
地理坐标中的经度通常以度为单位表示,但在某些情况下需要转换为分或秒。例如,将经度120.5度转换为度分 秒形式,即为120度30分0秒。

角的度量换算方法

角的度量换算方法

角的度量换算方法
角度是描述两条辐线在空间中相对位置的度量,通常使用度数、弧度或梯度三种不同
的方式来表示和计算角度。

一、度数
角度度数通常是指以每个直角为90度,整个圆周为360度的度量方式。

在角的度量中,角度度数是最为常用的一种,通过度数可以直观地表示出角的大小。

其换算方法如下:
1度 = 60分
360度= 2π弧度约等于6.28318
例如将角的度数从60度换算为弧度:
60度= 60 x π/180 = π/3弧度
二、弧度
弧度是指半径长的一段圆弧所对应的圆心角的大小。

通常以弧长与半径之比表示弧度,也可表示为角度的比率。

例如,一段弧长为l,半径为r的圆弧,对应的角度度数为θ,
则所对应的弧度为:
θ(弧度)= l/r
弧度换算方法如下:
三、梯度
梯度是指一圆周等分成400份,每份所对应的圆心角大小,即为1梯度。

与角度和弧
度不同,梯度是一种少用的角度度量单位,大多数应用中仅限于一些特定的行业和领域。

360度 = 400梯度
以上为角的度量换算方法,不同的应用场景和需要计算的角度大小,可以选择适合的
换算方式,便于角度的表示和计算。

角的度量与变换

角的度量与变换
角的度量与变换
汇报人:XX
角的度量方法 角的变换规则 角度的运算 角度的应用 角度的近似计算
角的度量方法
度量单位
定义:将角的大小用度量单位来表示的过程 度量工具:量角器 度量单位:度、分、秒 换算关系:1度=60分,1分=60秒
度量工具
量角器:用于测量角度大小的工具,刻度精确到度 角规:用于切割精确角度的工具,由两条交叉的金属线组成 角度计:用于测量角度或倾斜度的工具,常用于工程和建筑领域 电子角度测量仪:用于测量角度的电子设备,精度高且操作简便
在几何图形中,角度的应用还涉及到一些重要的定理和性质,例如角平分 线定理、余弦定理等,这些定理和性质在解决几何问题中有着重要的应用。
在三角函数中的应用
角度的度量:在三角函数中,角度是重要的量,用于描述角的大小和方向。
角度的变换:通过角度的变换,可以研究三角函数的性质和图像。
角度的应用:角度在三角函数中有着广泛的应用,如解三角形、求平面图 形的面积和周长等。 角度与三角函数的关系:角度与三角函数之间有着密切的联系,通过角度 可以计算三角函数的值,反之亦然。
THANK YOU
汇报人:XX
通过角度测量,可以精确控制施工方向、位置和高度,提高工程质量。
随着科技的发展,角度测量技术不断进步,如全站仪、GPS等先进仪器的应用,为工程测量提供 了更高效、精确的方法。
角度的近似计算
泰勒公式近似计算
泰勒公式定义
近似计算的方法和步骤
角度近似计算的原理 近似计算的应用场景
角度的近似值计算
定义:将角度值近 似到小数点后一定 位数
计算方法:利用三 角函数表或计算器 进行查找或计算
近似值的精度:根 据实际需求选择合 适的精度

角度的换算度分秒转化 ppt课件

角度的换算度分秒转化 ppt课件
(2)112.27°=112°+0.27×60′ =112°+16.2′ =112°+16′+0.2×60″ =112°16′12″
角度的换算度分秒转化
1°=60′ 1′=60″
练习2 : 把下列各题的结果化成度.
(1)72°36′
(2)37°14′24″
解:(1)72°36′=72°+36′
=72°+(36÷60)°
位用乘法;②把低单位换成高单位用除法,体现数学中的转化
思想,培养学生的运算能力.
角度的换算度分秒转化
【练习1】
填空: (1)34.5°= 34 ° 30 ′ (2)112.27°= 112 ° 16 ′12 ″
解:(1)34.5°=34°+0.5° =34°+0.5×60′ =34°+30′=34°30′
=72°+0.6°
=72.6°
角度的换算度分秒转化
(2)37°14′24″=37°+14′+24″ =37°+14′+(24÷60)′ =37°+14′+0.4′ =37°+14.4′ =37°+(14.4÷60)° =37°+0.24°=37.24°
角度的换算度分秒转化
用度、分、秒表示: ⑴0.75°= 45 ′= ″ 2700
30°

120°
角度的换算度分秒转化
90°
北京时间上午8:30时,时钟上时针和分针之间 的夹角(小于平角)是( B)
A.85° B.75° C.70° D.60°
角度的换算度分秒转化
计算公式:
时针和分针夹角计算公式5.:5 m30 h

角度的换算(度分秒转化)

角度的换算(度分秒转化)

, 其中m代表几分,
那么公式就是
,因为我们求得是劣弧所对的圆 心角角度。
-
试一试:
请你计算时针与分针的夹角: (1)8:30 (2)1:25 (3)1:40 (4)10:10
-
=112°+16.2′
=112°+16′+0.2×60″
=112°16′12″
-
练习2 : 把下列各题的结果化成度.
(1)72°36′
(2)37°14′24″
解:(1)72°36′=72°+36′
=72°+(36÷60)°
=72°+0.6°
=72.6°
-
(2)37°14′24″=37°+14′+24″ =37°+14′+(24÷60)′ =37°+14′+0.4′ =37°+14.4′ =37°+(14.4÷60)° =37°+0.24°=37.24°
思想,培养学生的运算能力.
-
【练习1】
填空:
(1)34.5°= 34 ° 30 ′ (2)112.27°= 112 ° 16 ′12 ″
1°=60′ 1′=60″
解:(1)34.5°=34°+0.5°
=34°+0.5×60′
=34°+30′=34°30′
(2)112.27°=112°+0.27×60′
1″
-
例1 计算: ⑴ 1.45°等于多少分?等于多少秒? ⑵ 1800″等于多少分?等于多少度?
-
角的度量
例题2 (1)把27.38°化成度、分、秒的形式;
(2)46°30′36″转化成用度表示的形式.

角的度量单位及换算

角的度量单位及换算

角的度量单位及换算角是平面上由两条射线共同起点构成的形状。

角的度量是用角度来表示的,而角度是一个单位,用于测量角的大小。

角度的单位主要有度(°)、弧度(rad)、百分度(%)和直角度(grad)。

1. 度(°):度是角度的基本单位,一个完整的圆周(360°)被平均分成360个等份,每一份为1度(°)。

度数可以用小数、分数或整数来表示。

例如,一个直角是90度,一个钝角是大于90度小于180度。

2. 弧度(rad):弧度是另一种角度的度量单位,用于在数学上进行计算。

一个圆的周长是2π个半径长度,一周是2π弧度,所以一个圆周用2π弧度来表示。

一个弧度等于从圆心沿圆弧上的一段长度等于半径长的弧长所对应的角。

换句话说,一个半径长的圆弧对应一个弧度。

弧度可以用π的倍数来表示,如π弧度、2π弧度等。

在一般情况下,弧度可以通过度数与π之间的换算来转换。

一个角度等于π/180弧度,一个弧度等于180/π度。

3. 百分度(%):百分度是另一种角度的度量单位,将一个角度等分为100份。

百分度的换算公式是:1百分度= 1/100度。

百分度主要用于工程计算和一些特殊的实际问题中。

4. 直角度(grad):直角度是角度的一种度量单位,也叫做梯度。

一个直角等于100直角度,一个直角度等于1/4度。

直角度用于一些工程测量中。

除了以上常见的角度度量单位,还可以通过换算关系来转换角度的度量单位。

例如,1度=π/180弧度≈0.017度;1弧度=180/π度≈57.3度;1百分度=0.01度;1度≈0.9直角度。

在实际生活中,角度的度量单位用于描述和测量旋转、转角、方向等概念。

例如,在航空导航中,航班方向通常用度数表示,方向360°对应正北,顺时针方向逐渐增加;在几何学中,角度用于描述图形的形状、位置和变化等,与直线、曲线等元素有关。

总之,角度是角的度量单位,主要有度、弧度、百分度和直角度。

角度的换算度分秒转化

角度的换算度分秒转化

=27°+22′+0.8×60″ =27°22′48″
=46.51°.
点评:角度的换算实际上是单位的换算:①把高单位换成低单
位用乘法;②把低单位换成高单位用除法,体现数学中的转化
思想,培养学生的运算能力.
【练习1】
填空:
(1)34.5°= 34 ° 30 ′ (2)112.27°= 112 ° 16 ′12 ″
用度、分、秒表示: ⑴0.75°= 45 ′= ″ 2700
⑵(1-45)°= 16 ′= 960 ″
⑶16.24°= 16 ° 14 ′ ⑷34.37°= 34 ° 22 ′
用度表示: ⑴1800″= 0.5 ° ⑵48′= 0.8 ° ⑶39°36′= ° 39.6
27 7
24 ″ 12 ″
分别确定四个钟表上时针与分针所成角的度数 。
角的度量
例题2 (1)把27.38°化成度、分、秒的形式;
(2)46°30′36″转化成用度表示的形式.
解析: 27.38°
46°30′36″
=27°+0.38°
=46°+30′+36×(1/60)′
=27°+0.38°×60′ =27°+22.8′ =27°+22′+0.8′
=46°+30.6′ =46°+30.6×(1/60)° =46°+0.51°
一周角=2平角=4直角=360° 一平角=180° 一直角=90°
1°=60′, 1′=60″ (读成1度等于60分,1分等于60秒)
角的度量单位及其换算
角的度量单位:度、分、秒 1度= 60 分,1分= 60 秒 1秒= 1/60 分,1分= 1/60 度

角的度量与计算

角的度量与计算

角的度量与计算(1)学习目标:1、认识角的度量单位度、分、秒,会对度分秒进行简单的换算。

2、会进行角的和、差计算。

教学重点难点:角的和、差计算活动一:1.我们用角的始边绕顶点旋转到终边位置的旋转量来度量角的大小.旋转量用“度”来表示.2.把一个周角(即它的旋转量)分为360等份,每一等份叫做1度,记做1°,因此,一个周角等于360°一个平角等于180°3.平角的一半(即90°的角)叫做直角.4.小于直角(即小于90°)的角叫做锐角.5.大于直角但小于平角(即大于90°但小于180°)的角叫做钝角.活动二:我们可以用量角器来测量一个角的大小,但有时一个角的度数并不一定是整数,这时与长度单位一样,需要考虑用更小的单位来度量.1.把1°的角分成60等份,每一等份叫做1分,记做1′.2.把1′的角分成60等份,每一等份叫做1秒,记做1″.度、分、秒是角的基本度量单位。

度、分、秒之间的换算是60进制,这与时间的时、分、秒之间的换算是一样的.活动三:例1:用度、分、秒表示54.260解:(1)54.260=540+0.260=540+0.26×60’=540+15.6’=540+ 15’+ 0.6’=540+ 15’ +0.6×60”=540+ 15’ +36”即:54.260 = 54015’36”例2 用度表示48°25′48″练习1.填空(1)0.65°= ′;(2)32.43°= °′″;(3)120°36′54〃= °;(4)108°42′36″= °.例3 计算:(1)37°28′+ 24°35′;(2)83°20′- 45°38′20″练习2. 计算(1)72°12′+ 50°40′30″;(2)113°50′40″-57°48′42″.3. 10 时整,钟表的时针与分针之间所成的角的度数是多少?15时整呢?活动四:讨论3 °15′与3 . 15°相等吗?活动五:1、说说你这节课你学了那些知识。

4.4_角的度量(度分秒的转化与计算)

4.4_角的度量(度分秒的转化与计算)




把1度的角60等分,每一份所对的角叫做 1 分角。记作 “1 ′ ” 。 把1分的角60等分,每一份所对的角叫做 1 秒角。记作 “1″ ” 。
以度,分,秒为单位的角的度量制叫做角度制。

1度=60分 1分=60秒
1 1秒= 60 分
1 1秒= 度 3600
1°=60 ′ 1″
1 = 60
1′=60″. 1′=
1 ° 60


例1: 用度、分、秒表示: ⑴0.75°= 45 ′= 2700 ″ 4 960 ⑵(-)°= 16 ′= ″
15
⑶16.24°= 16 ° ⑷34.37°= 34 °
14 ′ 22 ′
24 ″ 12 ″
用度表示: 0.5° ⑴1800″= 0.8° ⑵48′= 39.6 ° ⑶39°36′= ⑷27°14′=
观察与思考
角的大小与角的两边画出的长短有关吗?
角的大小与角的两边画出的长短没有关系。
猜一猜
你能猜出这几个角的度数吗?并说明原因。
猜一猜
你能猜出这几个角的度数吗?并说明原因。
把半圆分成180等份,每一份所对的角 叫做一度角。记作 “ ” 。
1度角 。记作 “ 把半圆分成 180 等分,每一份所对的角叫做
5个小格,每个大格对应的角度是300,每个小 0 30 格对应的角度为 60 5 0 30 0 0 0.5 (2)每分钟分针转6 ,时针转 0 60
解: 3:30分针指向6,而时针在3~4之间。时 针每分钟转0.50 故0.50 30 150。
夹角为90 0 150 750
讨论 3 ° 15′ 与3 . 15°相等吗?
7 27 30 °

求角的度量度分秒的计算及习题

求角的度量度分秒的计算及习题

七年级数学求角的度量度分秒的计算及习题第三节角(二)角的度量与画法一. 教学内容:角的度量与画法【知识点讲解】1. 角的度量:按对线、对中、度数的步骤用量角器量出角的度数2. 角的度数计算:角的单位是度分秒,都是60进制,可以比照时间中的时分秒理解,分别用“°”、“ ’”、“ ””来表示。

3 . 余角、补角的概念与性质:如果两个角的和是90度(或直角)时,叫做两个角互余;4. 如果两个角的和是180度(或平角)时,叫做两个角互补。

(补角同理)性质:同角(或等角)的余角相等;同角(或等角)的补角相等(补角同理)5. 能利用三角板画出15°、30°、45°、60°、75°、90°等11种特殊角6. 会用尺规画一个角等于已知角,角的和、差的画法。

【技能要求】1. 掌握度、分、秒的计算。

2. 逐步掌握学过的几何图形的表示方法,懂得学过的几何语句,能由这些语句准确、整洁地画出图形。

认识学过的图形,会用语句描述这些简单的几何图形。

【典型例题】例1. 将33.72°用度、分、秒表示。

解:33.72°=33°+(0.72×60′)=33°+43.2′=33°+43′+(0.2′×60″)=33°43′12″例2. 用度表示152°13′30″。

解:152°13′30″=152°+(13 )′=152°+13.5′=152°+( )°=152.225°例3. 判断下列计算的对错,对的画“√”,错的说明错在哪里,并改正。

(1)31°56′÷3=10°52′(2)138°29′+44°49′=183°18′(3) 13.5°×3=39.50(4) 21.36°-18°30′=3.14°.解:(1)错,因为用1°=100′计算的。

角度转换度分秒公式

角度转换度分秒公式

角度转换度分秒公式在我们的数学世界里,角度转换度分秒公式就像是一把神奇的钥匙,能帮我们打开很多几何和三角问题的大门。

先来说说度分秒是啥吧。

度,大家都好理解,就是咱们平常说的角度单位。

但分和秒呢,就像是度的“小跟班”。

1 度等于 60 分,1 分又等于 60 秒。

这就好比 1 元等于 10 角,1 角等于 10 分一样。

那怎么把度转换成分秒呢?这就用到咱们的角度转换度分秒公式啦!比如说,有一个角度是 56.78 度。

首先,整数部分 56 就是度。

然后,小数部分 0.78 乘以 60,得到 46.8,这 46.8 的整数部分 46 就是分。

接着,再把 0.8 乘以 60,就得到了秒,约为 48 秒。

所以,56.78 度就等于 56 度 46 分 48 秒。

我记得有一次给学生们讲这个知识点的时候,有个小家伙怎么都转不过弯来。

我就给他举了个例子,说咱们一天有 24 小时,这就相当于24 度。

然后 1 小时有 60 分钟,这 60 分钟就相当于 60 分。

1 分钟又有60 秒,这就好比 1 分等于 60 秒。

那如果一天过去了 12 小时 30 分钟45 秒,怎么把它换算成度呢?先把 30 分钟除以 60 得到 0.5 小时,45秒除以 3600 得到 0.0125 小时,然后加上 12 小时,一共就是 12.5125小时,再乘以 15(因为 1 小时等于 15 度),就得到了大约 187.6875 度。

这小家伙听完,眼睛一下子亮了,说:“老师,我懂啦!”反过来,如果要把度分秒转换回度,那就先把分除以 60,秒除以3600,然后把得到的数加上度的部分就行。

比如说 30 度 25 分 15 秒,先把 25 分除以 60 得到约 0.42 度,15 秒除以 3600 得到约 0.0042 度,然后加上 30 度,就是 30.4242 度。

角度转换度分秒公式在实际生活中也挺有用的。

比如你在看地图的时候,上面标注的经纬度可能就是用度分秒来表示的。

角度的换算度分秒转化

角度的换算度分秒转化

用度、分、秒表示: ⑴0.75°= 45 ′= ″ 2700
⑵(1-45)°= 16 ′= 960 ″
⑶16.24°= 16 ° 14 ′ ⑷34.37°= 34 ° 22 ′
用度表示: ⑴1800″= 0.5 ° ⑵48′= 0.8 ° ⑶39°36′= ° 39.6
27 7
24 ″ 12 ″
分别确定四个钟表上时针与分针所成角的度数 。
,因为我们求得是劣弧所对的圆 心角角度。
试一试:
请你计算时针与分针的夹角叫1秒的 角,1秒记作1″
例1 计算: ⑴ 1.45°等于多少分?等于多少秒? ⑵ 1800″等于多少分?等于多少度?
角的度量
例题2 (1)把27.38°化成度、分、秒的形式;
(2)46°30′36″转化成用度表示的形式.
解析: 27.38°
46°30′36″
=27°+0.38°
=46°+30′+36×(1/60)′
=27°+0.38°×60′ =27°+22.8′ =27°+22′+0.8′
=46°+30.6′ =46°+30.6×(1/60)° =46°+0.51°
=27°+22′+0.8×60″ =27°22′48″
=46.51°.
点评:角度的换算实际上是单位的换算:①把高单位换成低单
位用乘法;②把低单位换成高单位用除法,体现数学中的转化
❖ 练习:
❖ 300= 1800
分= 108000 秒
❖ 0.50= 30 分= 1800 秒
❖ 120分= 2 度= 7200 秒
❖ 3600秒= 60 分= 1 度

数学人教版七年级上册角度制及其换算

数学人教版七年级上册角度制及其换算
• 例 1 将 57.32°用度、分、秒表示。 解:先把0.32 °化为分, 0.32 °=60′×0.32 =19 .2′ 再把0.2′化为秒, 0.2′=60″× 0.2=12″
所以 57.32°=57 °19′12″
用度、分、秒表示: (1) 78.26 ° (2) 48.32 °
解:(1) 78.26°=78°15′36″ (2) 48.32°=48°19′12″
(3)34.50= 34 0 30 / (4)112.270= 1120 16 / 12 //
解:(1)34.560//
=340+0.5×60/
=340+3 0/=34030/
(2)112.270=1120+0.27×60/
=1120+16.2/
=1120+16/+0.2×60//
=780104/60// - 61048/49// =(78 -61)0(104 -48)/(60-49)// =17056/11// (3)21031/27//×3 解:原式=(21×3)0(31×3)/(27×3)// =63093/81// =63094/21// =64034/21//
练1: 用度、分、秒表示: ⑴0.75°= 45 ′= 2700″
=112016/12//
例题2 把下列各题结果化成度
(1)72036/
(2)37014/24//
解:(1)72036/=720+36/
=720+(36÷60)0
=720+0.60
=72.60
(2)37014/24//=370+14/+24// =370+14/+(24÷60)/ =370+14/+0.4/ =370+14.4/ =370+(14.4÷60)0 =370+0.240=37.240

角度的运算(度分秒的加减乘除)

角度的运算(度分秒的加减乘除)

(2) 79045/ - 61048/49// 解:原式=79044/60//- 61048/49//
=780104/60// - 61048/49// =(78 -61)0(104 -48)/(60-49)//
=17056/11//
角度的乘除法
• 例2、乘除法运算 (3)21031/27//×3
3 乘法运算度分秒同时分别乘;
4 除法先从度开始除,除不尽转化为分,再 除不尽转化为秒,直到精确到要求的位数为止;
(4) 63021/39//÷3
(5)10606/25//÷5
• 解:原式=(21×3)0(31×3)/(27×3)//

=63093/81//

=63094/21//

=64034/21//
题型三:角度的乘除法运算
(4) 63021/39//÷3 解:原式=(63÷3)0(21÷3)/(39÷3)//
=1120+16.2/ =1120+16/+0.2×60//
=112016/12//
复习: 把下列各题结果化成度
(1)72036/
(2)37014/24//
解:(1)72036/=720+36/
=720+(36÷60)0
=720+0.60
=72.60
复习:
(2)37014/24//=370+14/+24// =370+14/+(24÷60)/ =370+14/+0.4/ =370+14.4/ =370+(14.4÷60)0 =370+0.240=37.240
=37°38′+45°21.6′
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档